

Probability Distribution of von Mises Stress in the Presence of Pre-Load

Daniel J. Segalman,
Michigan State University
Segalman@egr.msu.edu

Garth M. Reese & Richard V. Field, Jr.
Sandia National Laboratories

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

von Mises Stress in Random Environments

- Serious issue in many field, including in launch and re-entry
- Prediction is still pretty primitive
 - Single degree of freedom model (Miles' equation, 1954)
 - RMS von Mises stress for arbitrary zero-mean random load (Segalman et al 2000a)
 - Approximate probability distribution for Gaussian loads (Segalman et al 2000b)
 - Approximate probability distribution for a single Gaussian load in the presence of pre-load (Tibbits 2011)

Work Presented Here

- An effort to approximate the probability distributions for von Mises stresses given
 - Multiple independent loads, each a weakly stationary Gaussian process with zero mean
 - A field of static pre-loads

Dynamic Loads are Characterized

- Let $F(t)$ be an \mathbb{R}^d -valued, weakly stationary Gaussian process of zero mean and having correlation matrix

$$r_{FF}(\tau) = E[F(t)F(t+\tau)^T]$$

a $d \times d$ matrix.

- The matrix of two-sided spectral densities $S_{FF}(\omega)$ is defined so that

$$S_{FF}(\omega) = \frac{1}{2\pi} \int_{\mathbb{R}} r_{FF}(\tau) e^{-i\omega\tau} d\tau$$

Assuming a Linear Structure (A BIG Assumption)

- From $S_{FF}(\omega)$ plus the structure's frequency response functions we can derive the cross spectral density matrix of modal displacement

$$S_{qq}(\omega) = \overline{H_q(\omega)} S_{FF}(\omega) H_q(\omega)^T$$

- From $S_{qq}(\omega)$ we can evaluate Γ_{qq} , the zero-time-lag covariance matrix of modal displacement.

$$\Gamma_{qq} = E[q(t)q(t)^T] = \int_{-\infty}^{\infty} S_{qq}(\omega) d\omega$$

von Mises Stress

- Stress:

$$\sigma(t, x) = \sigma_0(x) + \sum q_n(t) \Psi_n(x) = \sigma_0(x) + \Psi(x)q(t)$$

- von Mises stress ⁿ

$$p^2(t, x) = (\Psi(x)q(t) + \sigma_0(x))^T A (\Psi(x)q(t) + \sigma_0(x))$$

....where

$$A = \begin{bmatrix} 1 & -1/2 & -1/2 & 0 & 0 & 0 \\ -1/2 & 1 & -1/2 & 0 & 0 & 0 \\ -1/2 & -1/2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 \end{bmatrix}$$

von Mises Stress

- Expanding

$$\begin{aligned} p^2(t, x) = & \left(\Psi(x)q(t) \right)^T A \left(\Psi(x)q(t) \right) + \sigma_0^T(x)A\sigma_0(x) \\ & + \left(\Psi(x)q(t) \right)^T A\sigma_0(x) + \sigma_0^T(x)A\left(\Psi(t)q(t) \right) \end{aligned}$$

- For future convenience, define $B(x) = \Psi^T(x)A\Psi(x)$

$$\begin{aligned} \text{so } p^2(t, x) = & q(t)^T B(x)q(t) + \sigma_0^T(x)A\sigma_0(x) \\ & + \left(\Psi(x)q(t) \right)^T A\sigma_0(x) + \sigma_0^T(x)A\left(\Psi(t)q(t) \right) \end{aligned}$$

- Note that

$$p_{RMS}^2(x) = E[p^2(t)] = \text{Tr}(B(x)^T \Gamma_{qq}) + \sigma_0^T(x)A\sigma_0(x)$$

About this Intermediate Result

$$p_{RMS}^2(x) = \text{Tr}(\mathbf{B}(x)^T \boldsymbol{\Gamma}_{qq}) + \boldsymbol{\sigma}_0^T(x) \mathbf{A} \boldsymbol{\sigma}_0(x)$$

$$p_{RMS}(x) = \sqrt{\text{Tr}(\mathbf{B}^T(x) \boldsymbol{\Gamma}_{qq}) + \boldsymbol{\sigma}_0^T(x) \mathbf{A} \boldsymbol{\sigma}_0(x)}$$

$$\leq \sqrt{\text{Tr}(\mathbf{B}^T(x) \boldsymbol{\Gamma}_{qq})} + \sqrt{\boldsymbol{\sigma}_0^T(x) \mathbf{A} \boldsymbol{\sigma}_0(x)}$$

- Provides information about time average von Mises stress independent of the nature of the probability distribution $p(t)$
- Tells very little about the likelihood of high stress levels.

Back to More General Problem: Probability Distributions for Combined Stress

Elements of the process

- Gaussian Loads
 -→Gaussian Modal Coordinates
 -→Gaussian Modal Stresses
- Many changes of variable to put dynamic stresses and static stresses in commensurate form
- A very approximate assumption
- Completing the square
- Integration strategy
- A couple of examples

Stress Processes

- Noting that matrix Γ_{qq} is square $N_M \times N_M$ and positive semi-definite, we may decompose it $\Gamma_{qq} = QX^2Q^T$ where $\dim(X) = N_R$ and $Q^TQ = I_{N_R}$
- Note that because Γ_{qq} has no time or spatial dependence, neither do Q or X .
- Make change of variable $\beta(t) = X^{-1}Q^Tq(t)$.
- If the elements of $F(t)$ are Gaussian, so are the elements of $\beta(t)$.
- By construction $E[\beta(t)\beta(t)^T] = I_{N_R}$ so the elements of $\beta(t)$ are IID Gaussian processes.

Back to the Problem of Pre-stress

Try to put

- Recall

$$\begin{aligned} p^2(t, x) &= (\Psi(x)q(t))^T A (\Psi(x)q(t)) + \sigma_0^T(x) A \sigma_0(x) \\ &\quad + (\Psi(x)q(t))^T A \sigma_0(x) + \sigma_0^T(x) A (\Psi(t)q(t)) \end{aligned}$$

- In the absence of pre-stress

$$\begin{aligned} p^2(t, x) &= p_R^2(x, t) = (\Psi(x)q(t))^T A (\Psi(x)q(t)) \\ &= \beta(t)^T C(x) \beta(t) \end{aligned}$$

where $C(x) = X^T Q^T B(x) Q X$

- Decompose $C(x) = R(x) D^2(x) R(x)^T$ where $R(x)$ is a rectangular matrix

Introduce a new Gaussian Random Variable (I apologize for the complexity)

- Define $y(t, x) = R^T(x)\beta(t)$ then

$$p_R^2(x, t) = y(t, x)^T D(x)^2 y(t, x)$$

- The dimension of $D(x)^2$ is the number of independent “stress processes”

- The combined von Mises stress is

$$p^2(t, x) = y(t, x)^T D(x)^2 y(t, x)$$

$$+ 2\beta(t)^T (X^T Q^T \Psi(x)^T) A \sigma_0(x) + \sigma_0(x)^T A \sigma_0(x)$$

- How to reconcile terms with $\beta(t)$ and those with $y(t, x)$?

The Big Approximation

- Recall that by definition $y(t, x) = R^T(x)\beta(t)$, where $R^T(x)$ is a rectangular matrix.

- Let's approximate $\beta(t) \approx R(x)y(t, x)$

- The von Mises stress is now

$$p^2(t, x) = y^T(t, x)D(x)^2y(t, x) - 2y(t, x)^T D(x)^2\gamma(x) + p_0(x)^2$$

- where $p_0^2(x) = \sigma_0^T(x)A\sigma_0(x)$, $\gamma(x) = G(x)\sigma_0(x)$, and $G(x) = -D(x)^{-2}R(x)^T X Q^T \Psi(x)^T A$

- Note the diagonal nature of the above equation.

Completing the Square

$$\begin{aligned} p^2(t, x) &= y^T(t, x) D(x)^2 y(t, x) - 2 y(t, x)^T D(x)^2 \gamma(x) \\ &\quad + p_0(x)^2 \end{aligned}$$

- Adding and subtracting appropriate constants

$$p^2(t, x) = (y(t) - \gamma(x))^T D(x)^2 (y(t) - \gamma(x)) + Y_0(x)^2$$

... where $Y_0(x)^2 = p_0(x)^2 - \gamma(x)^T D(x)^2 \gamma(x)$

- Define an N dimensional ellipsoid in y space

$$Z(\{D\}, \gamma, Y_0, Y) =$$

$$\{y : ((y - \gamma)^T D^2 (y - \gamma)) \leq Y^2 - Y_0^2\}$$

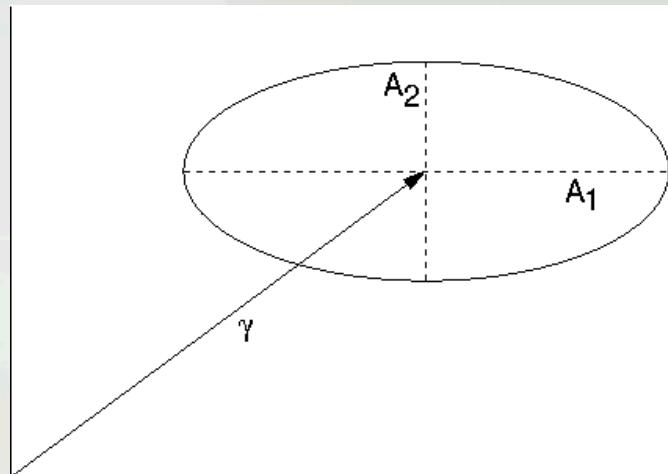
About Our N-Dimensional Ellipsoid

$$Z(\{D\}, \gamma, Y_0, Y) =$$

$$\{y : ((y - \gamma)^T D^2 (y - \gamma)) \leq Y^2 - Y_0^2$$

Ellipsoid centered at $\gamma(x)$
with semi-axes

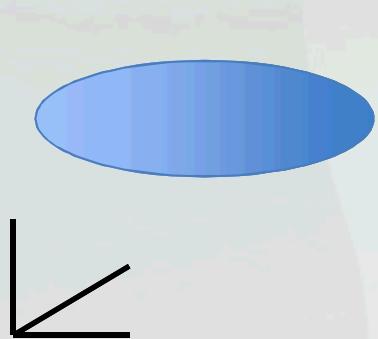
$$A_r = \sqrt{\frac{Y^2 - Y_0^2}{D_r^2}}$$



Now we can calculate probabilities

- The probability of von Mises stress being less than value Y is

$$F_Y = P(p \leq Y) = P(p^2 \leq Y^2) =$$

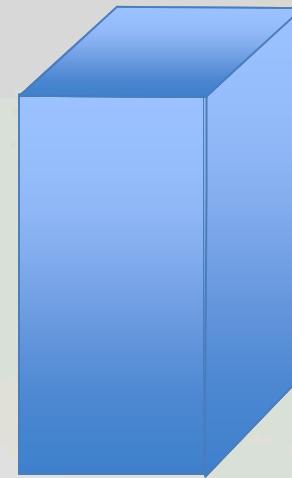

$$\begin{cases} 0 & \text{for } Y \leq Y_0 \\ \int_{Z(\{D\}, \gamma, Y_0, Y)} \prod \rho_r(y_r) dy_r & \text{for } Y > Y_0 \end{cases}$$

... where $\rho_r(y_r) = \frac{1}{\sqrt{2\pi}} e^{-y_r^2/2}$

- A numerical technique for evaluating these is presented outlined and detailed in the paper.

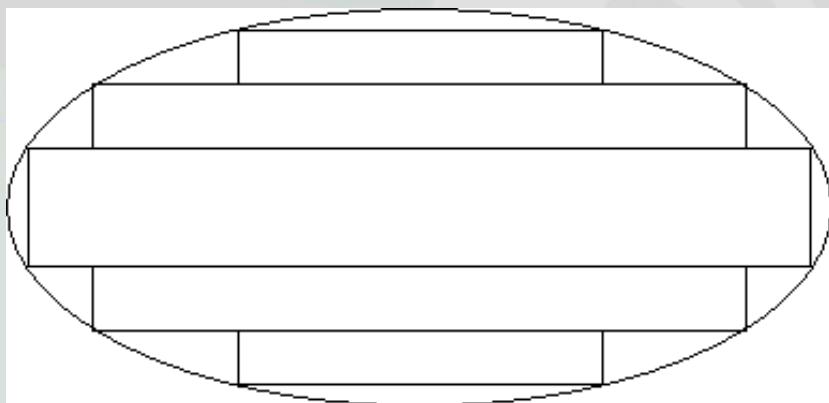
Outline of Integration Strategy

- Note that we can perform the integrals over N-dimensional boxes in closed form

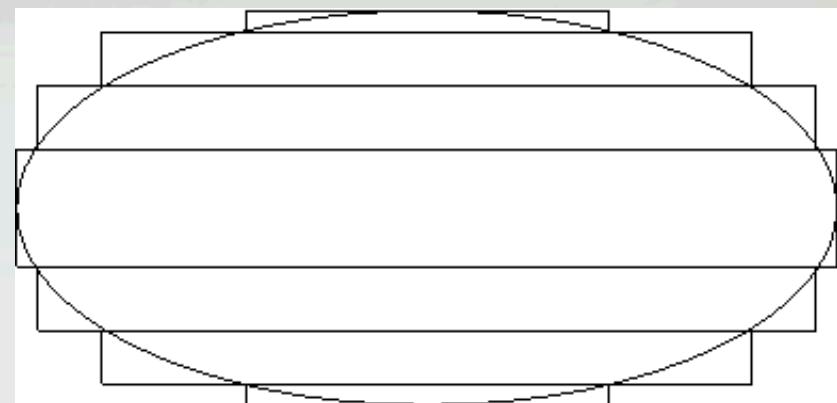


$$\int_{B_\lambda} \prod_{r=1}^{N_P} \rho_r(y_r) dy_r = \prod_{r=1}^{N_P} [\Phi(y_{r,\max}) - \Phi(y_{r,\min})]$$

We can approximate N-Dimensional Ellipsoids as the Union of N-Dimensional Boxes



Set B_L contained in Z



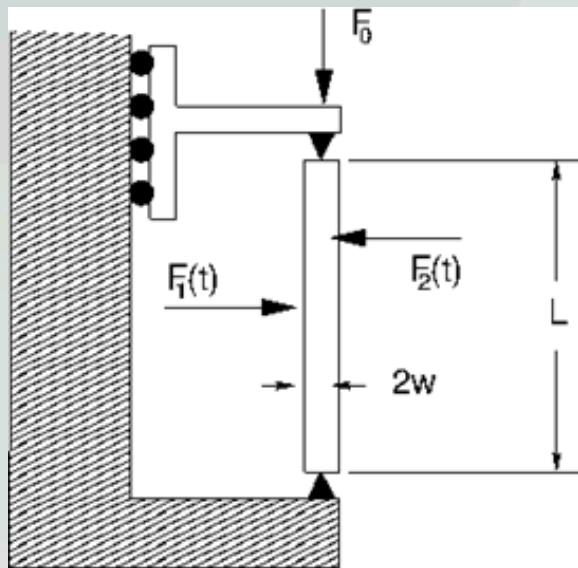
Set B_U containing Z

$$\int_{B_L} \prod \rho_r(y_r) dy_r \leq \int_{Z(\{D\}, \gamma, Y_0, Y)} \prod \rho_r(y_r) dy_r$$

$$\leq \int_{B_U} \prod \rho_r(y_r) dy_r$$

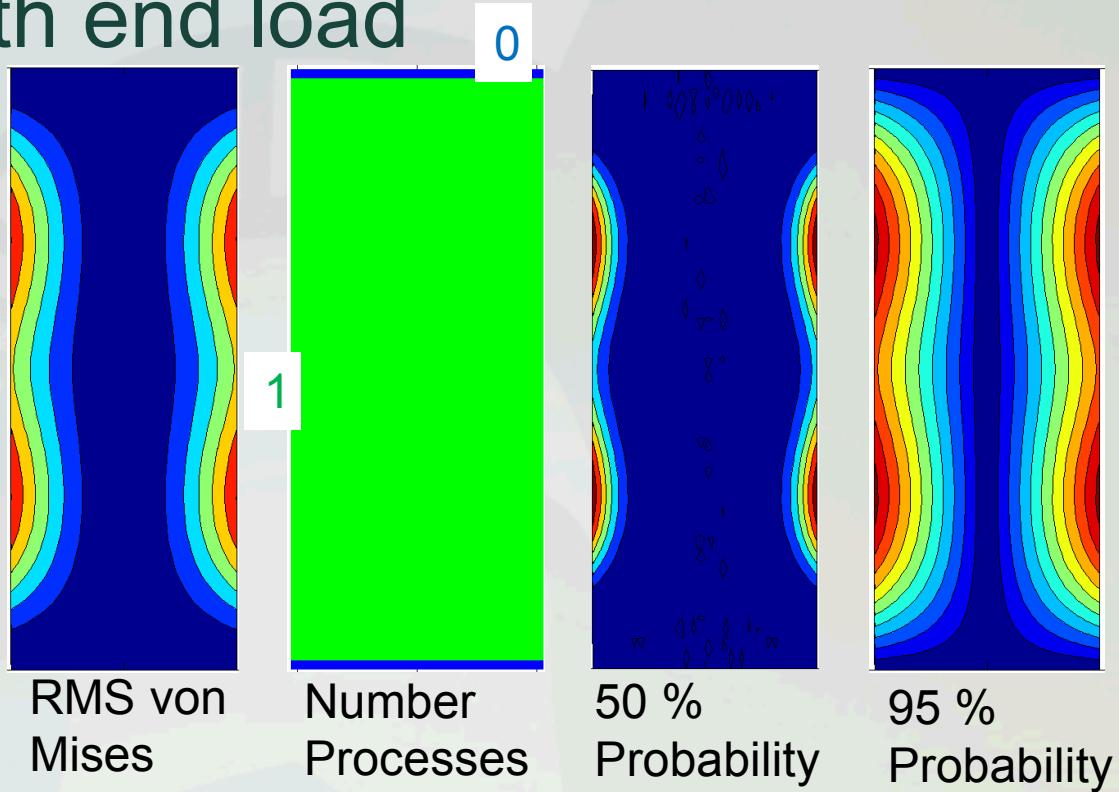
Some Example Calculations

Example Calculation 1: A simply supported beam column with end load

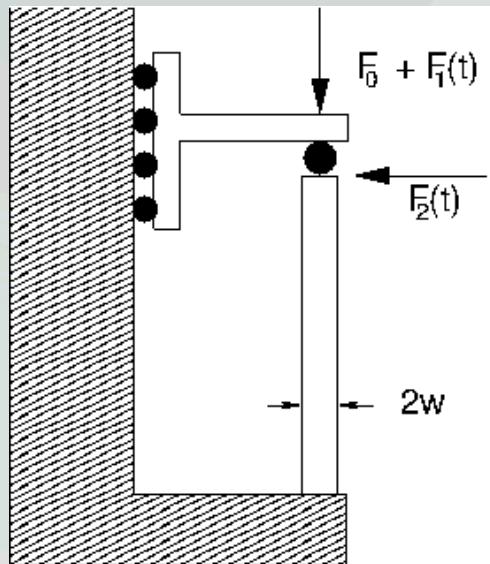


F_1 band limited and excites
first bending mode

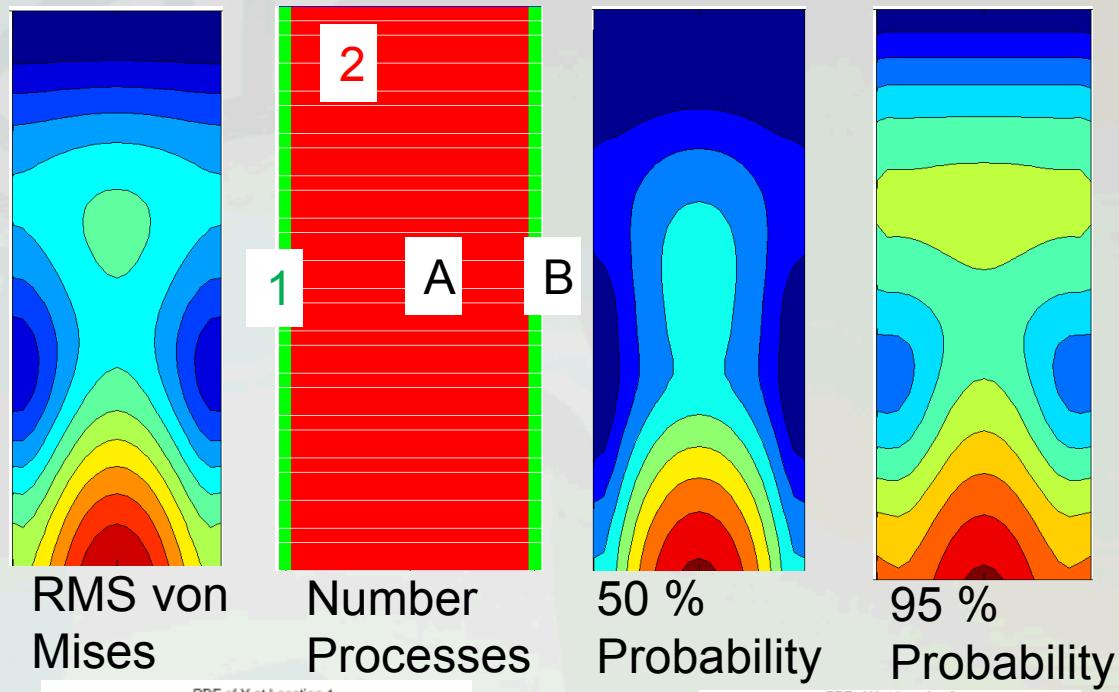
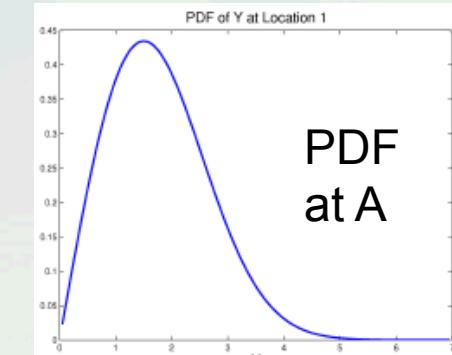
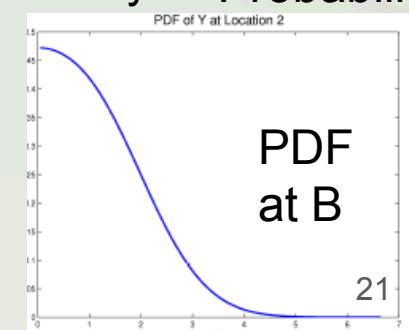
F_2 band limited and excites
second bending mode



Example Calculation 2: A cantilevered beam-column with end load



F_1 band limited and excites
 first 2 axial modes
 F_2 band limited and excites
 the first bending mode



Summary

- Despite the complex derivation, this approach is straight-forward and numerically efficient to implement.
- We have no idea how good (or bad) the core approximation is.
- This whole process is restricted to Gaussian loads.