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von Mises Stress in Random Environments

= Serious issue in many field, including in launch
and re-entry

* Prediction is still pretty primitive
= Single degree of freedom model (Miles’ equation, 1954)

= RMS von Mises stress for arbitrary zero-mean random
load (Segalman et al 2000a)

= Approximate probability distribution for Gaussian loads
(Segalman et al 2000b)

= Approximate probability distribution for a single

Gaussian load in the presence of pre-load (Tibbits 2011)
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Work Presented Here

= An effort to approximate the probability
distributions for von Mises stresses given

= Multiple independent loads, each a weakly stationary
Gaussian process with zero mean

= A field of static pre-loads
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Dynamic Loads are Characterized

= | et F(t) be an R “valued, weakly stationary
Gaussian process of zero mean and having

correlation matrix _
(1) = E| F(OF(t+7)"

a d xd matrix. _

= The matrix of two-sided spectral densities

S (@) is defined so that
1 [ —ioT
SFF(G)):E.RFFF(T)Q dt
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Assuming a Linear Structure
(A BIG Assumption)

= From S, (@) plus the structure's frequency
response functions we can derive the cross
spectral density matrix of modal displacement

S,y (@) = H () S, (0)H (@)

= From S, (®) we can evaluate I, the zero-

time-lag covariance matrix of modal
displacement.

L, =Elq®)g®1=| S, (0)do
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von Mises Stress
= Stress:

o(t,x) = 0y(x)+ ) q,(O)Y ,(x) = 0, (x)+ ¥ (x)g(?)
= von Mises stress”

P’ (.2) = (@) +0,() A(¥()g(0)+0, (1)

where 1 -1/2 =-1/2 0 0 0
-1/2 1 =1/2 0 0 0
. ~1/2 =1/2 1 0 0 0
0 0 0O 3 0 0
0 0 0O 0 3 0
0 0 0 0 0 3 :
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von Mises Stress
= Expanding

p2(t,x) = (P (0)q(0) A(¥(x)q(1)) + o7 (x) Ao, (x)
+(Y(0)q(1))" doy(x)+ ol (x) A(F(1)q(1))

= For future convenience, define B(x) =¥ (x) 4 ¥(x)
so  p’(t,x) =q(t) B(x)q(t)+ 0, (x) Ao, (x)

+(Y(x)q())" Ao, (x)+ ol (x)A(¥()q(t))

= Note that
Prs(X) =E[p*()]=Tr(B(x)' T, )+ 0, (x)Ao,(x)
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About this Intermediate Result
Prus(X) =Tr(B(x)'T, )+ 0, (x) Ao, (x)
Pas(¥) = Te(B" ()T, ) + 07 (x) Ao, ()

< \/Tr(BT (x)qu)+\/GOT (x)Ao,(x)

* Provides information about time average von
Mises stress independent of the nature of the
probability distribution p(¢)

= Tells very little about the likelihood of high stress
levels.
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Back to More General Problem:
Probabillity Distributions for Combined Stress

Elements of the process

= Gaussian Loads

........ —Gaussian Modal Coordinates
.............. —Gaussian Modal Stresses

= Many changes of variable to put dynamic stresses
and static stresses in commensurate form

= Avery approximate assumption

= Completing the square

* Integration strategy

= A couple of examples 0
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Stress Processes

" Noting that matrix I'  is square N, x N, and
positive semi-definite, we may decompose it

=0 X’Q" where dim(X)=N,and Q' Q=1
E Note that because L, has no time or spatial
dependence, neither do O or X.

= Make change of variable ()= X"'0"q(?)

= |f the elements of F'(¢) are Gaussian, so are the
elements of £(7) .

= By construction E[S()f(t)' 1=1, sothe
elements of S(¢)are [ID Gaussian processes.
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Back to the Problem of Pre-stress
Try to put
= Recall

P’ (t.x)=(¥®)q(0) A(P(x)q() + 0] (x) Ao, (x)

+(P(0)q()" 40,(x)+ 0, () A(P(1)g(1))

= |In the absence of pre-stress

P’ (t.x)=p’ (x.0)=(¥(x)q())" A(¥(x)q(1))

= B(t)" C(x) B(t)
where C(x)=X'O'B(x)0OX

= Decompose C(x)=R(x)D*(x)R(x)" where

R(x) is a rectangular matrix
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Introduce a new Gaussian Random Variable
(I apologize for the complexity)

= Define y(t,x) =R (x)B(¢) then
p(x,1) = y(t,x)" D(x)" y(t,x)

= The dimension of D(x)’is the number of
Independent “stress processes”

= The combined von Mises stress is
p (t,x) = y(t,x)" D(x)" y(t,x)
+2B0)" (X7 Q"W(x)" ) A0, (x) + 0, (x)" oy (x)
= How to reconcile terms with #(¢) and those with
y(t,x)?
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The Big Approximation
» Recall that by definition y(¢,x)=R" (x)5(t) where
R (x) is a rectangular matrix.
» Let's approximate  B(t) = R(x)y(z,x)
* The von Mises stress is now
p (t,x) =y (t,x)D(x)’ y(t,x)—2y(t,x)" D(x)"y(x)

+ D (x)2
where P, (x) =0, (x)Ao,(x), 7(x)=G(x)o,(x),
and G(x)=-D(x)”"R(x)' XO"¥(x)" 4

* Note the diagonal nature of the above equation.
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Completing the Square

p (t,x)=y" (¢, )D(x)" p(t,x)=2(t,x)" D(x)" y(x)

+ P (x)2
= Adding and subtracting appropriate constants

P (6,x) = (¥(0) —y(x)) D(x)*(y(t) = y(x)) + ¥, (x)’
where Y,(x)" = p,(x)" —y(x)" D(x)" y(x)
= Define an N dimensional ellipsoid in V space

Z({D},7.Y,,Y) =
(=) D (y-y) <Y -1]
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About Our N-Dimensional Ellipsoid

Z({D},7.Y,,Y) =
(-9 D (y-y) <Y -1]

Ellipsoid centered at  y(x)
with semi-axes

y :\/Yz_Yoz
r D2

r
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Now we can calculate probabilities

= The probably of von Mises stress being less
than value Y is
F,=P(p<Y)=P(p"<Y")=

-

O 0 for Y<Y,
3
|4 \IZ({D}aV,K),Y)HIOr(yr)dyr for Y >1Y,
I ~y; 12

where p,(y,) = me

= A numerical technique for evaluating these is
presented outlined and detailed in the paper.
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Outline of Integration Strategy

= Note that we can perform the
integrals over N-dimensional boxes
In closed form

pa—a
4

| T12.00, = T1[@0, )~ @07

17



. MICHIGAN STATE UNIVERSITY

We can approximate N-Dimensional Ellipsoids
as the Union of N-Dimensional Boxes

</ \) K/
N e | pd
Set B, contained in Z Set B, containing Z

-[BL HIOr (y,)dy, < J‘Z({D},y,YO,Y) HIOr (v,)dy,
I, [pow, .
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Some Example Calculations

19
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Example Calculation 1: A simply supported
beam column with end load |

RMS von  Number 50 % 95 %

> _ Mises Processes Probability Probability
F, band limited and excites

first bending mode
F, band limited and excites
second bending mode
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Example Calculation 2: A cantilevered
beam-column with end load

- —
“ oy
\/
RMS von  Number 50 % 95 %
_ Mises Processes Probability  Probability
F, band limited and excites

first 2 axial modes . | |
F, band limited and excites : PDF .'i PDF
the first bending mode : atA atB

| - | 21,
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Summary

= Despite the complex derivation, this approach is
straight-forward and numerically efficient to
implement.

= WWe have no idea how good (or bad) the core
approximation is.

= This whole process is restricted to Gaussian
loads.
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