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von Mises Stress in Random Environments

 Serious issue in many field, including in launch 
and re-entry

 Prediction is still pretty primitive

 Single degree of freedom model (Miles’ equation, 1954)

 RMS von Mises stress for arbitrary zero-mean random 
load (Segalman et al 2000a)

 Approximate probability distribution for Gaussian loads 
(Segalman et al 2000b)

 Approximate probability distribution for a single 
Gaussian load in the presence of pre-load (Tibbits 2011)
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Work Presented Here

 An effort to approximate the probability 
distributions for von Mises stresses given

 Multiple independent loads, each a weakly stationary 
Gaussian process with zero mean

 A field of static pre-loads
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Dynamic Loads are Characterized

 Let  be an  -valued, weakly stationary 
Gaussian process of zero mean and having 
correlation matrix 
…………………………………….
a ….. matrix.

 The matrix of two-sided spectral densities 
………..is defined so that
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Assuming a Linear Structure 
………………….(A BIG Assumption)

 From ……... plus the structure's frequency 
response functions we can derive the cross 
spectral density matrix of modal displacement 
……….

 From ……….we can evaluate ….,, the zero-
time-lag covariance matrix of modal 
displacement.
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von Mises Stress

 Stress: 

 von Mises stress 

….where
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von Mises Stress
 Expanding

 For future convenience, define

so

 Note that
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About this Intermediate Result

 Provides information about time average von 
Mises stress independent of the nature of the 
probability distribution …………………………

 Tells very little about the likelihood of high stress 
levels.
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Back to More General Problem:
Probability Distributions for Combined Stress

Elements of the process

 Gaussian Loads 

……..→Gaussian Modal Coordinates

…………..→Gaussian Modal Stresses

 Many changes of variable to put dynamic stresses 
and static stresses in commensurate form

 A very approximate assumption

 Completing the square

 Integration strategy

 A couple of examples 9



Stress Processes

 Noting that matrix ……is square ...............and 
positive semi-definite, we may decompose it 
……………….where……………….and

 Note that because ......has no time or spatial 
dependence, neither do ....or ....

 Make change of variable …………………..

 If the elements of ..    are Gaussian, so are the 
elements of  …....……

 By construction ………………………so the  
elements of …….are IID  Gaussian processes. 
…
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Back to the Problem of Pre-stress
Try to put 

 Recall

 In the absence of pre-stress

………….…………………..

….where

 Decompose …………………………..where

……….is a rectangular matrix
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Introduce a new Gaussian Random Variable   
(I apologize for the complexity)

 Define ……………………..then

 The dimension of           is the number of 
independent “stress processes”

 The combined von Mises stress is 

 How to reconcile terms with          and those with

……………?.
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The Big Approximation 

 Recall that by definition………………………where 
.. ………is a rectangular matrix.

 Let’s approximate  

 The von Mises stress is now

…

…where ……………………….,……………………, 
…and

 Note the diagonal nature of the above equation.

( , ) ( ) ( )Ty t x R x t
( )TR x

( ) ( ) ( , )t R x y t x 

2 2 2

2
0

( , ) ( , ) ( ) ( , ) 2 ( , ) ( ) ( )

( )

T Tp t x y t x D x y t x y t x D x x

p x

 


2
0 0 0( ) ( ) ( )Tp x x A x  0( ) ( ) ( )x G x x 

2( ) ( ) ( ) ( )T T TG x D x R x X Q x A  

13



Completing the Square

 Adding and subtracting appropriate constants

…where 

 Define an …dimensional ellipsoid in …space 
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About Our N-Dimensional Ellipsoid
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Now we can calculate probabilities

 The probably of von Mises stress being less 
than value … is

…where

 A numerical technique for evaluating these is 
presented outlined and detailed in the paper.             
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Outline of Integration Strategy

 Note that we can perform the 
integrals over N-dimensional boxes 
in closed form  
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We can approximate N-Dimensional  Ellipsoids 
as the Union of N-Dimensional Boxes
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Some Example Calculations
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Example Calculation 1: A simply supported 
beam column with end load

RMS von 
Mises

Number
Processes

50 % 
Probability

95 % 
Probability

F1 band limited and excites 
first bending mode

F2 band limited and excites 
second bending mode

0

1
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Example Calculation 2: A cantilevered 
beam-column with end load

RMS von 
Mises

Number
Processes

50 % 
Probability

95 % 
Probability

F1 band limited and excites 
first 2 axial modes

F2 band limited and excites 
the first bending mode

1

2

A B

PDF
at A

PDF
at B
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Summary

 Despite the complex derivation, this approach is 
straight-forward and numerically efficient to 
implement.

 We have no idea how good (or bad) the core 
approximation is.

 This whole process is restricted to Gaussian 
loads.
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