SAND2018- 1531PE

STK Mesh Modification on GPU

Applied Computer Science (ACS) Technical Exchange
Meeting

Feb 16, 2018
Presenter Alan Williams

STK-Mesh Dev. Team: Manoj Bhardwaj, Dave Glaze, Tolu Okusanya,
Johnathan Vo, Riley Wilson

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.



Introduction to STK-Mesh
(STK — Sierra Tool Kit)

Parallel, unstructured Mesh database
*Heterogeneous element types
*Field-data on subsets (Parts)

*Dynamic modification (refinement,
remeshing, rebalancing, ...)




What is Mesh Modificatior™

Structural/Topological changes to the mesh
* Creating or deleting mesh entities
* Adaptive Refinement

* Moving mesh entities from one Part to anoth
* Moving front calculations

* Creating or deleting connections between enuties
(e.g., element-to-node connectivity)

* Adaptive Refinement

* ‘Ghosting” mesh entities from one MPI rank to others
* Contact, Sliding Interface

* Moving mesh entities from one MPI rank to others
* Dynamic rebalancing




Why is mesh modification difficult on GPU?

Memory management:

* Mesh modifications typically involve
heap memory allocation/deallocation,
which isn’t possible on GPUs.

» Can we use memory-pool-like
approaches with a pre-allocation to
simulate dynamic heap allocations?

MPI| communication:

* Modification requires communication to
ensure global mesh consistency

» Can MPI reach directly into GPU (device)
memory?

Will on-GPU modifications be “thread” safe
and high-performing?



We're just getting started. So...
Progression of unit tests to explore issues

1. GPU-aware MPI communication
* simple unit-test to send/recv GPU memory directly

2. Single Local Mesh modification
* GPU memory management
» Single MPI-rank, single GPU initially, to avoid MPI questions

3. Tests for more mesh-modifications, in parallel, etc



GPU Mesh Modification

A core concept in STK-Mesh is the Bucket —

a contiguous allocation holding a subset of the mesh.

CPU (host)

class Mesh {

std::vector<Bucket*> buckets;

class Bucket {

std::vector<DataType> data;

GPU (device)

class Mesh {

Kokkos::View<Bucket*> buckets;
...HostMirror hostBuckets;

};...

class Bucket {

Kokkos::View<DataType*> data;
...HostMirror hostData;




GPU Mesh Modification

Simulate heap memory allocation using Kokkos::MemoryPool

GPU (device)

class Mesh { Need to size the pool at
Kokkos::MemoryPool<ExecSpace> pool; construction, i.e., set max
Kokkos::View<Bucket*> buckets; number of buckets, and
...HostMirror hostBuckets; max capacity per bucket.

b

class Bucket { Bucket memory is tagged as
Unmanaged, since it will be
Kokkos::View<DataType*,MemoryUnmanaged> data; ‘views’ into pool memory.
...HostMirror hostData;

b




GPU Mesh Modification

Create outer array (View) on host, create inner arrays (Views) on device.

CPU (host)

//during mesh construction
buckets = Kokkos::View<..>(numBuckets);

//later, during mesh modification...
Kokkos::parallel for(numBuckets, [..](..)

{
mesh.add_bucket(...); GPU (device)

}

KOKKOS_FUNCTION
void add_bucket(...)

{

buckets(index).data =
Kokkos::View<..>(static_cast<..>(pool.allocate(bytesPerBucket)));




Conclusion, Path Forward

1. Technical issues such as memory management and MPI
communication with GPU memory contain challenges but are
not road-blocks.

2. Haven’t yet explored performance and thread-safety issues.

3. Developing robust production-quality mesh modification on the
GPU would be expensive. We will need to balance this with
other capability development priorities.



