
STK Mesh Modification on GPU

Applied Computer Science (ACS) Technical Exchange 
Meeting

Feb 16, 2018

Presenter Alan Williams

STK-Mesh Dev. Team: Manoj Bhardwaj, Dave Glaze, Tolu Okusanya, 
Johnathan Vo, Riley Wilson

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and 
Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. 
Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.

SAND2018-1531PE



Introduction to STK-Mesh
(STK – Sierra Tool Kit)

Parallel, unstructured Mesh database
•Heterogeneous element types
•Field-data on subsets (Parts)
•Dynamic modification (refinement, 
remeshing, rebalancing, …)

i j

kl
m n



What is Mesh Modification?

Structural/Topological changes to the mesh
• Creating or deleting mesh entities

• Adaptive Refinement

• Moving mesh entities from one Part to another.
• Moving front calculations

• Creating or deleting connections between entities 
(e.g., element-to-node connectivity)

• Adaptive Refinement

• ‘Ghosting’ mesh entities from one MPI rank to others
• Contact, Sliding Interface 

• Moving mesh entities from one MPI rank to others
• Dynamic rebalancing



Why is mesh modification difficult on GPU?

1. Memory management:

• Mesh modifications typically involve 
heap memory allocation/deallocation, 
which isn’t possible on GPUs.

Can we use memory-pool-like 
approaches with a pre-allocation to 
simulate dynamic heap allocations?

2. MPI communication:

• Modification requires communication to 
ensure global mesh consistency

Can MPI reach directly into GPU (device) 
memory?

3. Will on-GPU modifications be “thread” safe 
and high-performing?



We’re just getting started. So…
Progression of unit tests to explore issues

1. GPU-aware MPI communication

• simple unit-test to send/recv GPU memory directly

2. Single Local Mesh modification

• GPU memory management

• Single MPI-rank, single GPU initially, to avoid MPI questions

3. Tests for more mesh-modifications, in parallel, etc



GPU Mesh Modification
A core concept in STK-Mesh is the Bucket –
a contiguous allocation holding a subset of the mesh.

class Mesh {
…
std::vector<Bucket*> buckets;
…

};

CPU (host) GPU (device)

class Mesh {
…
Kokkos::View<Bucket*> buckets;
…HostMirror hostBuckets;
…

};

class Bucket {
…
std::vector<DataType> data;
…

};

class Bucket {
…
Kokkos::View<DataType*> data;
…HostMirror hostData;
…

};



GPU Mesh Modification

Simulate heap memory allocation using Kokkos::MemoryPool

GPU (device)

class Mesh {
Kokkos::MemoryPool<ExecSpace> pool;
Kokkos::View<Bucket*> buckets;
…HostMirror hostBuckets;
…

};

class Bucket {
…
Kokkos::View<DataType*,MemoryUnmanaged> data;
…HostMirror hostData;
…

};

Need to size the pool at
construction, i.e., set max
number of buckets, and
max capacity per bucket.

Bucket memory is tagged as
Unmanaged, since it will be
‘views’ into pool memory.



GPU Mesh Modification
Create outer array (View) on host, create inner arrays (Views) on device.

GPU (device)

KOKKOS_FUNCTION
void add_bucket(…)
{

buckets(index).data =
Kokkos::View<..>(static_cast<..>(pool.allocate(bytesPerBucket)));

…
}

CPU (host)

//during mesh construction
buckets = Kokkos::View<..>(numBuckets);

//later, during mesh modification…
Kokkos::parallel_for(numBuckets, [..](..)
{

mesh.add_bucket(…);
}
…

{
mesh.add_bucket(…);

}



Conclusion, Path Forward

1. Technical issues such as memory management and MPI 
communication with GPU memory contain challenges but are 
not road-blocks.

2. Haven’t yet explored performance and thread-safety issues.

3. Developing robust production-quality mesh modification on the 
GPU would be expensive. We will need to balance this with 
other capability development priorities.


