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6 Buses (or Nodes)
3 Generators (or Thermal Units)
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11 Branches (or Transmission Lines)




AC Optimal Power Flow (OPF) Problem (M) &,
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ACOPF: seeking an optimal operation condition (power production
for each generator) by minimizing a certain cost (generation cost)
subject to network physical limits and constraints
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NCUC: seeking an optimal schedule for each generator by
minimizing a certain cost (generation cost) subject to network
physical limits and constraints




ISO OPF Applications () i

Real-time economic dispatch
Run every hour (with 5-15 minute dispatch)
Generator commitment (discrete decisions) fixed
Solve for generator setpoints
LP/QP formulation: DCOPF model

DCOPF: Linearized model, real power flows only, might include losses
AC feasibility tests

Day-ahead unit commitment
Determine the On/Off schedule and set points for generation units (based on forecast)
Generator startup/shutdown/up/down time constraints, ramping limits
MIP formulation: NCUC+DCOPF model

DCOPF: Linearized model, real power flows only, might include losses
AC feasibility tested on solution
Locational marginal pricing (LMP) determines spot prices for wholesale market
Dual variable on the real power balance at network buses
Considers marginal unit cost, network congestion, and power losses

Desire for global solutions to these problems with nonlinear AC
transmission models
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NCUC is very challenging
Binary variables and transmission models
mixed-integer nonlinear programming (MINLP)

Large scale
real-world network: ~100 generators, ~1000 buses and branches
multiple time periods: 24, 48, and 96 hours

Solution time limit

Solved in minutes for rescheduling, global solutions
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Network-Constrained Unit Commitment (NCUC) Problem

‘State-of-the-art’ UC skeleton

Nonlinear AC transmission model

Mixed-Integer Quadratically Constrained Quadratic Programming (MIQCQP)
Global Solution Strategy for NCUC

lterative algorithm based on adding integer cuts

Solution for non-convex, nonlinear subproblems

‘Convex’ relaxations for mixed-integer master problems

Numerical Results

Benchmark problems with 6, 24, and 118 buses
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Cost Functions

Production Cost
Startup Cost
Shutdown Cost

Operation Constraints

Minimum Startup/Shutdown Time

Reserve Constraints

Minimum Power Reservation

Bounds

Power Generation Limits

Logical Constraints

Relations between Binaries

i ;
3
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Transmission Model

Power Balance
generation and demand

Power Flow
real/reactive power

/ power losses in the system

Safety Constraints
thermal limit on transmission line

Bounds
voltage, phase angle, ...
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Power Balance
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UC Skeleton: 3-Binary

Transmission Model: AC

_I_

Mixed-Integer Quadratically-Constrained
Quadratic Programming (MIQCQP)
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Global Solution Strategy for NCUC
lterative algorithm based on adding integer cuts
Solution for non-convex, nonlinear subproblems
‘Convex’ relaxations for mixed-integer master problems
Numerical Results

Benchmark problems with 6, 24, and 118 buses




Global Optimization Framework for NCUC () &=,

Multi-Tree Algorithm

MIP NLP

Master Sub-
Problem Problem

Iterations between Master Problem and Subproblem
Master Problem: lower bound, relaxation of NCUC problem

Subproblem: upper bound, discrete decisions from the master problem

Implemented in Pyomo
T
Optimization

Flexible Modeling Language Based in Python Modeling

in Python

MIP Solver: GUROBI 6.5.2, NLP Solver: IPOPT 3.12.6
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Modeling Power Systems with Pyomo () .,

q4 Pyomo IPOPT

Algebraic
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Integrated
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) Springer
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ACOPF Solution with Pyomo and lpopt () i

Case Name Number of Solution Time
Variables (CPU seconds)

case30 46 2.410E-05
case9 95 -2.931E-04
case9Q 95 -4.806E-04
casebww 105 -7.390E-05
casel14 197 5.000E-03
case30Q 399 -3.940E-05
case_ieee30 399 -8.082E-04
case?4 _ieee_rts 416 -5.421E-03
case39 465 2.282E-04
caseb7 767 8.225E-04
casel118 1,831 3.700E-02
case2383wp 28,456 2.200E+00
case2737s0p 33,742 1.139E-03
case2736sp 33,807 -5.044E-03
case2746wop 34,013 -1.544E-04
case2746wp 34,063 -6.135E-03
case3012wp 35,242 -1.976E-02
case3120sp 36,247 -1.149E-02
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Global Optimization Framework for NCUC () &=,

Initialization

v

Simple Master Problem

v

Add Integer Cuts
to Refine
Master Problem

A

»| Solve Master Problem for LB

l Fix binary

Solve Subproblem for UB Solving nonlinear, non-
convex subproblem
to global optimality?

No

Feasible

No

Done
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UC Skeleton

Transmission Model

_I_

Mixed-Integer Quadratically-Constrained
Quadratic Programming (MIQCQP)




Subproblem: Multi-Period AC OPF Problem (f) &=,
UC Skeleton

Transmission Model

Fixed Binary Variables

Quadratically-Constrained
Quadratic Programming (QCQP)
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Power Balance
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Convex Relaxations of AC Transmission Model () i,

Semi-Definite Programming (SDP) (Bai, 2008, Levaei, 2012)

Empirically exact for a wide range of problems

No sufficient condition ensuring an exact SDP relaxation

High computational burden and difficult to incorporate within UC model
Quadratic Convex (QC) Relaxations (Hijazi, 2013, Coffrin, 2015)

Not uniformly better compared with SDP relaxations

Tight relaxation depends on small voltage phase angle differences
Second-Order Cone Programming (SOCP) (Jabr, 2006, Kocuk, 2015)

Competitive performance on many problems

Computational efficiency




SOCP Relaxation of AC Transmission Model () i

Second-Order Cone Programming (SOCP) Relaxation
(Jabr, 2006, Kocuk, 2015)
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SOCP Relaxation of AC Transmission Model () i

Power Balance
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Cycle Constraints:
the sum of angle differences on
each cycle equals zero
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Strong SOCP Relaxation

Cycle Constraints

the sum of angle differences on

each cycle equals zero
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t

Y
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Strong SOCP Relaxation

OB1,B2t

OB3,B1.t

OB2 B3t

B3

Convex Relaxation of arctan:
Linear Over- and Under-Estimators

Optimality-Based Bound Tightening (OBBT)

Gradually Adding Cycle Constraints
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Cycle Constraints:
the sum of angle differences on
each cycle equals zero

01,82t +0B2.B3¢t +0B3 B1t =0

Sb,k.t

b1t = — arctan(

Ch,k,t
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Initialization

v

Simple SOCP Relaxation
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> Solve SOCP for LB

OBBT and
Cycle Constraints

Feasible Infeasible, Done

A

Reinitialize and Solve QCQP for UB

No

Yes
Done
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Numerical Results (Sub-Algorithm)

Case Name Optimal Solution  Optimality Gap (%) CPU Time (s) Iterations
Casebww 3126.36 8 x 1073 0.85 4
Casel4 8081.52 4 %1073 1.00 3
Case30 574.52 7x 1073 1.18 6
Case39 41864.18 6 x 1073 1.60 3
Case57 41737.79 9 x 1073 9.16 13
Casel18 129660.69 4 %1073 37.2 26
Case300 719725.10 8 x 1073 257.0 36
NESTA Casebww 3143.97 0.0 1.04 7
NESTA Casel4 244.05 2 x 1073 0.51 3
NESTA Case30 204.97 0.0 2.53 11
NESTA Case39 96505.52 1 x 1072 9.89 13
NESTA Case57 1143.27 9 x 1073 9.65 20
NESTA Casell18 3718.64 0.0 48.9 41
NESTA Case300 16891.28 0.0 136.6 45




Global Optimization Framework for NCUC () &=,

Initialization
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Initialization

v

Simple Master Problem

v

Add Integer Cuts
to Refine
Master Problem

A
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>
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NCUC Problem Formulation: MIQCQP () i
UC Skeleton

Transmission Model
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Mixed-Integer Quadratically-Constrained
Quadratic Programming (MIQCQP)
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UC Skeleton

Relaxed Transmission Model
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Mixed-Integer Quadratically-Constrained
Quadratic Programming (MIQCQP)




Plecewise relaxations

Piecewise linear over-estimators

\

Linear under-estimators
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Quadratic Cost Functions
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Mixed-Integer Master Problems () &

Second-Order
Cone Constraints

Formulation Cost Function Thermal Limits

‘Convex’ . . .
NCUC-RQ MIQCQP Quadratic Quadratic Quadratic
Linear .
NCUC-R MISOCP Under-Estimators — Quadratic
Linear ~ Linear Outer
NS MILP ~ Under-Estimators - ~ Appromixations
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Numerical Results

Benchmark problems with 6, 24, and 118 buses




Numerical Results
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Case Formulation Upper Bound Lower Bound Gap (%) CPU Time (s) Iteration
(NCUC-RQ) 101,763 101,655 0.11% 3.6 1
Caseb (NCUC-R) 101,763 101,624 0.14% 3.7 1
(NCUC-RL)-5 101,763 101,479 0.28% 11.8 1
(NCUC-RL)-10 101,763 101, 665 0.10% 47.0 1
(NCUC-RQ) 895, 096 893,967 0.13% 266.4 1
RTS-79 (NCUC-R) 895, 040 894, 247 0.09% 3274 16
(NCUC-RL)-5 — 820, 736 — 3755 30*
(NCUC-RL)-10 — 886, 783 — 36000* 19
(NCUC-RQ) 886, 362 885, 707 0.07% 321.0 1
RTS-96 (NCUC-R) 886, 759 885,759 0.11% 146.4 1
(NCUC-RL)-5 — 813,401 — 4309 30*
(NCUC-RL)-10 — 878,793 — 36000* 13
(NCUC-RQ) 835, 926 833,057 0.34% 8480 1
Casel18 (NCUC-R) 835,996 833,207 0.33% 15705 3
(NCUC-RL)-5 - 647,112 — 36000* 1
(NCUC-RL)-10 — 823,684 — 36000* 1

NCUC-RQ: relaxation with quadratic cost functions and thermal limits
NCUC-R: relaxation with linear under-estimators of cost functions
NCUC-RL5 /10: linear outer approximations with different segment points
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Casel18 (NCUC-R) 835,996 833,207 0.33% 15705 3
(NCUC-RL)-5 — 647,112 — 36000* 1
(NCUC-RL)-10 — 823,684 — 36000* 1

NCUC-RQ: relaxation with quadratic cost functions and thermal limits

NCUC-R: relaxation with linear under-estimators of cost functions

NCUC-RL5 /10: linear outer approximations with different segment points




Conclusion and Future Work () i,
Network-Constrained Unit Commitment (NCUC) Problem
‘State-of-the-art’ UC skeleton
Nonlinear AC transmission model
Tailored Global Solution Strategy for NCUC
Global solution for non-convex, nonlinear subproblems
Three ‘convex’ relaxations for mixed-integer master problems
Efficient solution on benchmark problems with 6, 24, and 118 buses
Future Work
Possible enhancements of the tailored global algorithm

Modeling and optimization tool for general NCUC problems
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