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6 Buses (or Nodes)


3 Generators (or Thermal Units)


3 Demands (or Loads)


11 Branches (or Transmission Lines) 

AC Optimal Power Flow (OPF) Problem

ACOPF: seeking an optimal operation condition (power production 
for each generator) by minimizing a certain cost (generation cost) 
subject to network physical limits and constraints 
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Multiple Time Periods:  

24, 48, 96 hours


Generator States:  

on: P ∈ [Pmin, Pmax] , Q ∈ [Qmin, Qmax]


off: P = 0;  Q = 0
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NCUC: seeking an optimal schedule for each generator by 
minimizing a certain cost (generation cost) subject to network 
physical limits and constraints 

Network-Constrained Unit Commitment (NCUC) Problem
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95MW Multiple Time Periods:  

24, 48, 96 hours


Generator States:  

on: P ∈ [Pmin, Pmax] , Q ∈ [Qmin, Qmax]


off: P = 0;  Q = 0



ISO OPF Applications
Real-time economic dispatch


Run every hour (with 5-15 minute dispatch)

Generator commitment (discrete decisions) fixed

Solve for generator setpoints

LP/QP formulation: DCOPF model


DCOPF: Linearized model, real power flows only, might include losses

AC feasibility tests


Day-ahead unit commitment

Determine the On/Off schedule and set points for generation units (based on forecast)

Generator startup/shutdown/up/down time constraints, ramping limits

MIP formulation: NCUC+DCOPF model


DCOPF: Linearized model, real power flows only, might include losses

AC feasibility tested on solution


Locational marginal pricing (LMP) determines spot prices for wholesale market

Dual variable on the real power balance at network buses

Considers marginal unit cost, network congestion, and power losses


Desire for global solutions to these problems with nonlinear AC 
transmission models
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NCUC is very challenging 

Binary variables and transmission models


mixed-integer nonlinear programming (MINLP)


Large scale


real-world network: ~100 generators, ~1000 buses and branches


multiple time periods: 24, 48, and 96 hours 


Solution time limit


Solved in minutes for rescheduling, global solutions


Network-Constrained Unit Commitment (NCUC) Problem
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Network-Constrained Unit Commitment (NCUC) Problem 

‘State-of-the-art’ UC skeleton


Nonlinear AC transmission model


Mixed-Integer Quadratically Constrained Quadratic Programming (MIQCQP)


Global Solution Strategy for NCUC 

Iterative algorithm based on adding integer cuts


Solution for non-convex, nonlinear subproblems


‘Convex’ relaxations for mixed-integer master problems


Numerical Results 

Benchmark problems with 6, 24, and 118 buses

Outline



NCUC Problem Formulation
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UC Skeleton Transmission Model



UC Skeleton

Cost Functions 
production, startup, shutdown 

Operation Constraints 
minimum up/downtime, ramping 

up/down limits 

Reserve Constraints 
minimum power reservation 

Bounds 
power generation limits

Transmission Model

Unit Commitment Skeleton

17
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Cost Functions 
Production Cost 
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Operation Constraints 
Minimum Startup/Shutdown Time

Reserve Constraints 
Minimum Power Reservation

Bounds 
Power Generation Limits

Logical Constraints 
Relations between Binaries

3-Binary Formulation (Morales, 2013)
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UC Skeleton

Cost Functions 
production, startup, shutdown 

Operation Constraints 
minimum up/downtime, ramping 

up/down limits 

Reserve Constraints 
minimum power reservation 

Bounds 
power generation limits

Transmission Model

Power Balance 
generation and demand 

Power Flow 
real/reactive power 

power losses in the system 

Safety Constraints 
thermal limit on transmission line 

Bounds 
voltage, phase angle, …

✔



linear equations, LP (MILP) 
approximation 

poor solution quality

nonlinear equations, NLP (MINLP) 
system complexities 

simultaneous solutions

DC Power Flow

AC Power Flow
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Transmission Model

Power Balance 
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Power Flow 
real/reactive power 

power losses in the system 

Safety Constraints 
thermal limit on transmission line 

Bounds 
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Transmission Model
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Transmission Model

Power Balance 
generation and demand 

Power Flow 
real/reactive power 

power losses in the system 

Safety Constraints 
thermal limit on transmission line 

Bounds 
voltage, phase angle, …

Transmission Model
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UC Skeleton: 3-Binary

Cost Functions 
production, startup, shutdown 

Operation Constraints 
minimum up/downtime, ramping 

up/down limits 

Reserve Constraints 
minimum power reservation 

Bounds 
power generation limits

Transmission Model: AC

Power Balance 
generation and demand 

Power Flow 
real/reactive power 

power losses in the system 

Safety Constraints 
thermal limit on transmission line 

Bounds 
voltage, phase angle, …
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Mixed-Integer Quadratically-Constrained 
Quadratic Programming (MIQCQP)

UC Skeleton: 3-Binary

Transmission Model: AC
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Network-Constrained Unit Commitment (NCUC) Problem 

‘State-of-the-art’ UC skeleton


Nonlinear AC transmission model


Mixed-Integer Quadratically Constrained Quadratic Programming (MIQCQP)


Global Solution Strategy for NCUC 

Iterative algorithm based on adding integer cuts


Solution for non-convex, nonlinear subproblems


‘Convex’ relaxations for mixed-integer master problems


Numerical Results 

Benchmark problems with 6, 24, and 118 buses

Outline

✔



Global Optimization Framework for NCUC

NLP 
Sub-

Problem

   MIP   
Master 

Problem

Multi-Tree Algorithm

Iterations between Master Problem and Subproblem 

Master Problem: lower bound, relaxation of NCUC problem


Subproblem: upper bound, discrete decisions from the master problem 

Implemented in Pyomo 

Flexible Modeling Language Based in Python


MIP Solver: GUROBI 6.5.2, NLP Solver: IPOPT 3.12.6 
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Modeling Power Systems with Pyomo

30

PyomoAlgebraic  
Modeling Existing Solvers

Hackebeil, Hart, Laird, 
Siirola, Watson, Woodruff, 

and many others…



Modeling Power Systems with Pyomo
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PyomoAlgebraic  
Modeling Existing Solvers

Hackebeil, Hart, Laird, 
Siirola, Watson, Woodruff, 

and many others…

Integrated 
Python-based 

toolchain

Power System 
Model Formulation 

& Solution 
System Analysis

Matpower & Other 
Input Formats (PSSE)

IPOPT



ACOPF Solution with Pyomo and Ipopt
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Case Name Number of 
 Variables

Solution Time  
(CPU seconds)

case30 46 2.410E-05
case9 95 -2.931E-04

case9Q 95 -4.806E-04
case6ww 105 -7.390E-05
case14 197 5.000E-03

case30Q 399 -3.940E-05
case_ieee30 399 -8.082E-04

case24_ieee_rts 416 -5.421E-03
case39 465 2.282E-04
case57 767 8.225E-04
case118 1,831 3.700E-02

case2383wp 28,456 2.200E+00
case2737sop 33,742 1.139E-03
case2736sp 33,807 -5.044E-03

case2746wop 34,013 -1.544E-04
case2746wp 34,063 -6.135E-03
case3012wp 35,242 -1.976E-02
case3120sp 36,247 -1.149E-02



Global Optimization Framework for NCUC
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Initialization

Simple Master Problem

Solve Master Problem for LB

Solve Subproblem for UB

Feasible

Gap< ✏

Add Integer Cuts 
to Refine 

Master Problem

Done
Yes

No

No

Yes

Fix binary
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Initialization

Simple Master Problem

Solve Master Problem for LB

Solve Subproblem for UB

Feasible

Gap< ✏

Add Integer Cuts 
to Refine 

Master Problem

Done
Yes

No

No

Yes

Tight Relaxation? 

Solving nonlinear, non-
convex subproblem 
to global optimality?

Fix binary
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Fixed Binary Variables 

Quadratically-Constrained 
Quadratic Programming (QCQP)
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Convex Relaxations of AC Transmission Model
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Semi-Definite Programming (SDP) (Bai, 2008, Levaei, 2012) 

Empirically exact for a wide range of problems


No sufficient condition ensuring an exact SDP relaxation 


High computational burden and difficult to incorporate within UC model


Quadratic Convex (QC) Relaxations (Hijazi, 2013, Coffrin, 2015) 

Not uniformly better compared with SDP relaxations


Tight relaxation depends on small voltage phase angle differences


Second-Order Cone Programming (SOCP) (Jabr, 2006, Kocuk, 2015) 

Competitive performance on many problems


Computational efficiency
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SOCP Relaxation of AC Transmission Model
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Second-Order Cone Programming (SOCP) Relaxation 
(Jabr, 2006, Kocuk, 2015)
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Cycle Constraints: 
the sum of angle differences on 
each cycle equals zero
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Cycle Constraints: 
the sum of angle differences on 
each cycle equals zero
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Global Sub-Algorithm for Subproblem
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Numerical Results (Sub-Algorithm)
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Global Optimization Framework for NCUC
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Global Optimization Framework for NCUC
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Global Optimization Framework for NCUC

48

Solve Subproblem for UB

Initialization

Simple Master Problem

Solve Master Problem for LB

Feasible

Gap< ✏

Add Integer Cuts 
to Refine 

Master Problem

Fix binary

Done
Yes

No

No

Yes

Tight Relaxation? 



fsu =
X

g2G

X

t2T

X

⌧2Sg

Ksu
g,⌧�g,⌧,t

fsd =
X

g2G

X

t2T
Ksd

g wg,t

tX

t0=t�Tu
g

ug,t0  yg,t 8 g, t

tX

t0=t�Td
g

wg,t0  1� yg,t 8 g, t

�g,⌧.t 
t+1�T su

g,⌧+1X

t0=t�T su
g,⌧

wg,t0 8 g, t, ⌧

ug,t =
X

⌧2Sg

�g,⌧,t 8 g, t

yg,t � yg,t�1 = ug,t � wg,t 8 g, t

X

b2B
PD
b,t + PR

t 
X

g2G
P a
g,t 8 t

A2
g(P

G
g,t)

2 +A1
gP

G
g,t +A0

gyg,t  cpg,t 8 g, t

fp =
X

g2G

X

t2T
cpg,t,

min fp + fsu + fsd

PG,min

g

y
g,t

 PG

g,t

 P a

g,t

 PG,max

g

y
g,t

8 g, t

QG,min

g

y
g,t

 QG

g,t

 QG,max

g

y
g,t

8 g, t

QSC,min

sc

y
sc,t

 QSC

sc,t

 QSC,max

sc

y
sc,t

8 sc, t

X

l2Lin

b

P t
l,t +

X

l2Lout

b

P f
l,t +Gsh

b v2b,t + PD
b,t �

X

g2G
b

PG
g,t = 0 8 b, t

X

l2Lin

b

Qt
l,t +

X

l2Lout

b

Qf
l,t �Bsh

b v2b,t +QD
b,t �

X

g2G
b

QG
g,t �

X

sc2SC
b

QSC
sc,t = 0 8 b, t

P f
l,t = Gff

l v2b,t +Gft
l (vrb,tv

r
k,t + vjb,tv

j
k,t)�Bft

l (vrb,tv
j
k,t � vjb,tv

r
k,t) 8 l, t

Qf
l,t = �Bff

l v2b,t �Bft
l (vrb,tv

r
k,t + vjb,tv

j
k,t)�Gft

l (vrb,tv
j
k,t � vjb,tv

r
k,t) 8 l, t

P t
l,t = Gtt

l v
2
k,t +Gtf

l (vrk,tv
r
b,t + vjk,tv

j
b,t)�Btf

l (vrk,tv
j
b,t � vjk,tv

r
b,t) 8 l, t

Qt
l,t = �Btt

l v
2
k,t �Btf

l (vrk,tv
r
b,t + vjk,tv

j
b,t)�Gtf

l (vrk,tv
j
b,t � vjk,tv

r
b,t) 8 l, t

(vmin

b

)2  v2
b,t

= (vr
b,t

)2 + (vj
b,t

)2  (vmax

b

)2 8 b, t

(P f

l,t

)2 + (Qf

l,t

)2  (Smax

l,t

)2 8 l, t

(P t

l,t

)2 + (Qt

l,t

)2  (Smax

l,t

)2 8 l, t

UC Skeleton

Transmission Model

NCUC Problem Formulation: MIQCQP

49

Mixed-Integer Quadratically-Constrained 
Quadratic Programming (MIQCQP)



fsu =
X

g2G

X

t2T

X

⌧2Sg

Ksu
g,⌧�g,⌧,t

fsd =
X

g2G

X

t2T
Ksd

g wg,t

tX

t0=t�Tu
g

ug,t0  yg,t 8 g, t

tX

t0=t�Td
g

wg,t0  1� yg,t 8 g, t

�g,⌧.t 
t+1�T su

g,⌧+1X

t0=t�T su
g,⌧

wg,t0 8 g, t, ⌧

ug,t =
X

⌧2Sg

�g,⌧,t 8 g, t

yg,t � yg,t�1 = ug,t � wg,t 8 g, t

X

b2B
PD
b,t + PR

t 
X

g2G
P a
g,t 8 t

A2
g(P

G
g,t)

2 +A1
gP

G
g,t +A0

gyg,t  cpg,t 8 g, t

fp =
X

g2G

X

t2T
cpg,t,

min fp + fsu + fsd

PG,min

g

y
g,t

 PG

g,t

 P a

g,t

 PG,max

g

y
g,t

8 g, t

QG,min

g

y
g,t

 QG

g,t

 QG,max

g

y
g,t

8 g, t

QSC,min

sc

y
sc,t

 QSC

sc,t

 QSC,max

sc

y
sc,t

8 sc, t

UC Skeleton
Relaxation NCUC-RQ

50

X

l2Lin

b

P t
l,t +

X

l2Lout

b

P f
l,t +Gsh

b cb,b,t + PD
b,t �

X

g2G
b

PG
g,t = 0 8 b, t

X

l2Lin

b

Qt
l,t +

X

l2Lout

b

Qf
l,t �Bsh

b cb,b,t +QD
b,t �

X

g2G
b

QG
g,t �

X

sc2SC
b

QSC
sc,t = 0 8 b, t

P f
l,t = Gff

l cb,b,t +Gft
l cb,k,t �Bft

l sb,k,t 8 l, t

Qf
l,t = �Bff

l cb,b,t �Bft
l cb,k,t �Gft

l sb,k,t 8 l, t

P t
l,t = Gtt

l ck,k,t +Gtf
l cb,k,t +Btf

l sb,k,t 8 l, t

Qt
l,t = �Btt

l ck,k,t �Btf
l cb,k,t +Gtf

l sb,k,t 8 l, t

(vmin

b

)2  c
b,b,t

 (vmax

b

)2 8 b, t

c2b,k,t + s2b,k,t  cb,b,tck,k,t 8 l, t

(P f

l,t

)2 + (Qf

l,t

)2  (Smax

l,t

)2 8 l, t

(P t

l,t

)2 + (Qt

l,t

)2  (Smax

l,t

)2 8 l, t

Mixed-Integer Quadratically-Constrained 
Quadratic Programming (MIQCQP)

Relaxed Transmission Model



B⇤
g,t,nP

G
g,t + C⇤

g,t,n +A0
gyg,t  cpg,t 8 g, t, n

fp =
X

g2G

X

t2T

cpg,t
Linear under-estimators

Piecewise linear over-estimators
A2

g(P
G
g,t)

2 +A1
gP

G
g,t +A0

gyg,t  cpg,t 8 g, t

fp =
X

g2G

X

t2T
cpg,t,

Quadratic Cost Functions

Linear Under-Estimators

Piecewise relaxations

51



Mixed-Integer Master Problems
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Formulation Cost Function Thermal Limits Second-Order 
Cone Constraints

NCUC-RQ ‘Convex’ 
MIQCQP Quadratic Quadratic Quadratic

NCUC-R MISOCP Linear  
Under-Estimators — Quadratic

NCUC-RL MILP Linear  
Under-Estimators — Linear Outer 

Appromixations
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Network-Constrained Unit Commitment (NCUC) Problem 

‘State-of-the-art’ UC skeleton


Nonlinear AC transmission model


Mixed-Integer Quadratically Constrained Quadratic Programming (MIQCQP)


Global Solution Strategy for NCUC 

Iterative algorithm based on adding integer cuts


Solution for non-convex, nonlinear subproblems


‘Convex’ relaxations for mixed-integer master problems


Numerical Results 

Benchmark problems with 6, 24, and 118 buses

Outline

✔

✔



Numerical Results
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NCUC-RQ: relaxation with quadratic cost functions and thermal limits  
NCUC-R: relaxation with linear under-estimators of cost functions 
NCUC-RL5 /10: linear outer approximations with different segment points



Numerical Results
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NCUC-RQ: relaxation with quadratic cost functions and thermal limits  
NCUC-R: relaxation with linear under-estimators of cost functions 
NCUC-RL5 /10: linear outer approximations with different segment points
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Network-Constrained Unit Commitment (NCUC) Problem 

‘State-of-the-art’ UC skeleton


Nonlinear AC transmission model


Tailored Global Solution Strategy for NCUC 

Global solution for non-convex, nonlinear subproblems


Three ‘convex’ relaxations for mixed-integer master problems 


Efficient solution on benchmark problems with 6, 24, and 118 buses


Future Work 

Possible enhancements of the tailored global algorithm


Modeling and optimization tool for general NCUC problems

Conclusion and Future Work
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