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Connection between asymptotic normalization coefficients and resonance widths of mirror states2
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Asymptotic normalization coefficients (ANCs) are fundamental nuclear constants that play an important role
in nuclear reactions, nuclear structure, and nuclear astrophysics. In this paper a connection between ANCs and
resonance widths of the mirror states is established. Using the Pinkston-Satchler equation the ratio for resonance
widths and ANCs of mirror nuclei is obtained in terms of the Wronskians from the radial overlap functions
and regular solutions of the two-body Schrödinger equation with the short-range interaction excluded. This ratio
allows one to use microscopic overlap functions for mirror nuclei in the internal region, where they are the most
accurate, to correctly predict the ratio of the resonance widths and ANCs for mirror nuclei, which determine
the amplitudes of the tails of the overlap functions. If the microscopic overlap functions are not available one
can express the Wronskians for the resonances and mirror bound states in terms of the corresponding mirror
two-body potential-model wave functions. A further simplification of the Wronskian ratio leads to the equation
for the ratio of the resonance widths and mirror ANCs, which is expressed in terms of the ratio of the two-
body Coulomb scattering wave functions at the resonance energy and at the binding energy [N. K. Timofeyuk,
R. C. Johnson, and A. M. Mukhamedzhanov, Phys. Rev. Lett. 91, 232501 (2003)]. Calculations of the ratios
of resonance widths and mirror ANCs for different nuclei are presented. From this ratio one can determine the
resonance width if the mirror ANC is known and vice versa. Comparisons with available experimental ratios are
done.
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I. INTRODUCTION24

The asymptotic normalization coefficient (ANC) is a fun-25

damental nuclear characteristic of bound states [1,2], playing26

an important role in nuclear reaction and structure physics.27

The ANCs determine the normalization of the peripheral part28

of transfer reaction amplitudes [1,2] and overall normaliza-29

tion of the peripheral radiative capture processes [3–6]. In30

the R-matrix approach the ANC determines the normaliza-31

tion of the external nonresonant radiative capture amplitude32

and the channel radiative reduced width amplitude [7–9]. In33

Refs. [10,11] relationships between mirror proton and neutron34

ANCs were obtained.35

Pairs of nuclei B1 and B2 are mirror nuclei if the number of36

protons Z1 of nucleus B1 equals the number of neutrons N2 of37

B2 and the number of protons of B2, Z2, equals the number of38

neutrons N1 of B1, such that the mass number of both nuclei39

is the same (A = N1 + Z1 = N2 + Z2). The experimental data40

from mirror nuclei show charge symmetry of the nuclear41

force. It is assumed that charge symmetry rather than full42

charge independence is involved because mirror nuclei have43

the same number of p-n pairs.44

However, the ANCs are important characteristics not only45

of the bound states but also of the resonances (see Ref. [9]).46

The width of a narrow resonance can be expressed in terms47

of the ANC of the Gamow wave function or of the R-matrix48

resonant outgoing wave. That is why the relationship between49

the ANCs of mirror bound states [10,11] can be extended to50

the relationship between resonance widths and ANCs of the51

mirror nuclei. The calculated resonance widths and the ANCs52

themselves depend strongly on the choice of the nucleon- 53

nucleon (NN) force but the ratios of the resonance widths and 54

the ANCs for mirror pairs should not depend on the choice 55

of the NN force. This observation is based thus far entirely 56

on the calculations using detailed models of nuclear structure. 57

It follows naturally as a consequence of the charge symmetry 58

of nuclear forces. Mirror nuclei have the same quantum num- 59

bers of mirror states (for more detailed discussion of mirror 60

symmetry see Ref. [12]). 61

Another important feature of the mirror nuclei for the 62

present paper is a similarity of the internal mirror wave 63

functions. Let us consider a mirror pair in a two-body potential 64

model, which is used in the present paper: B1 = (a1A1) in the 65

resonance state and the loosely bound nucleus B2 = (a2A2). 66

The mirror resonance state is obtained by the replacement 67

of one of the neutrons by a proton. The additional Coulomb 68

interaction pushes the bound-state level into a resonance level. 69

The resonance and binding energy of the mirror states are 70

significantly smaller than the depth of the nuclear potential. 71

The Coulomb interaction is almost a constant in the nuclear 72

interior. Hence, in the nuclear interior, where all that matters 73

is to determine the ratio of the resonance width and the ANC 74

of the mirror state, the radial behavior of the mirror wave 75

functions is very similar and they differ only by normalization. 76

In the external region the resonant and bound-state wave 77

functions differ. 78

The first attempt to relate the resonance width and the ANC 79

of the mirror nuclei was done in Ref. [10]. In this paper, 80

the relationship between the resonance widths and the ANCs 81

is established based on the Pinkston-Satchler equation used 82
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in Ref. [11] for the ANCs of the mirror bound states. The83

obtained ratio of the resonance width and the ANC of the84

mirror bound state is expressed in terms of the ratio of the85

Wronskians containing the overlap functions of the mirror86

resonance and bound states in the internal region where the87

radial behavior of the mirror overlap functions is very similar88

and can be calculated quite accurately using an ab initio89

approach. If these overlap functions are not available, as an90

approximation they can be replaced by the mirror resonance91

and bound-state wave functions calculated using the two-body92

potential model with the same potentials for the resonance93

and bound states. Assuming that the radial behavior of the94

mirror resonant and bound-state wave functions is identical in95

the nuclear interior one can replace the Wronskian ratio for96

the resonance width and the ANC of the mirror bound state97

by the equation derived in Ref. [10], which does not require98

a knowledge of the internal resonant and bound-state wave99

functions.100

Connection between the ANC and the resonance width101

of the mirror resonance state provides a powerful indirect102

method to obtain information which is unavailable directly.103

If, for instance, the resonance width is unknown it can be104

determined through the known ANC of the mirror state and105

vice versa. For example, near the edge of the stability valley,106

neutron binding energies become so small that the mirror107

proton states are resonances. Using the relationship between108

the mirror resonance width and the ANC the resonance width109

can be determined. Also loosely bound states α + A become110

resonances in the mirror nucleus α + B, where charge ZBe >111

ZAe. Using the method developed here one can find one of112

the missing quantities, the resonance width of the narrow113

resonance state or the mirror ANC. In what follows the system114

of units in which h̄ = c = 1 is used throughout the paper.115

II. ANC AND RESONANCE WIDTH116

A. ANC as residue of S matrix117

The ANC enters the theory in two ways [1]. In the scat-118

tering theory the residue at the poles of the elastic scattering119

S matrix corresponding to bound states can be expressed in120

terms of the ANC:121

SJB
lB jB;lB jB

kaA→kbs
aA−−−−→ AlB jB

k − i κaA
(1)

with the residue122

AJB
lB jB

= −i2 lB+1 ei π ηbs
aA

(
CB

aA lB jB JB

)2
. (2)

Here, CB
aA lB jB JB

is the ANC for the virtual decay of the bound123

state B(aA) in the channel with the relative orbital angular124

momentum lB of a and A, the total angular momentum jB of125

a, and total angular momentum JB of the system a + A; kaA is126

the relative momentum of particles a and A. Here127

ηbs
aA = Za ZA e2 µaA

κaA
(3)

is the Coulomb parameter for the bound state B = (a A),128

κaA =
√

2 µaA εaA is the bound-state wave number, εB = ma +129

mA − mB is the binding energy for the virtual decay B →130

a + A, Zi e and mi are the charge and mass of particle i, and131

µaA is the reduced mass of a and A. Note that singling out the 132

factor ei π ηbs
aA in the residue makes the ANC for bound states 133

real. 134

Equations (1) and (2), which were proved for the bound 135

states in Refs. [13–18], can be extended for resonance states. 136

B. Connection between ANC and resonance width 137

The proof of the connection between the residue in the 138

resonance pole of the elastic scattering S matrix and the 139

ANC of the resonance state is not trivial. In this section a 140

general proof is presented of the connection of the residue 141

in the pole of the SlB (kaA) matrix element with the ANC, 142

which is valid for both the bound states and resonances. The 143

potential is given by the sum of the short-range nuclear plus 144

the long-range Coulomb potentials. Taking into account that 145

the residue of the elastic scattering S matrix in the resonance 146

pole is expressed in terms of the resonance width, one can 147

obtain a connection between the ANC and the resonance 148

width. 149

One considers two spinless particles a and A with relative 150

momentum k2
aA = 2 µaA EaA, relative energy EaA, and the re- 151

duced mass µaA in the partial wave lB at which the system 152

B = a + A has a resonance or a bound state. The radial wave 153

function ψkaAlB (r) = ukaAlB (r)
r satisfies the Schrödinger equation 154

in the partial wave lB: 155

∂2ukaAlB (r)
∂r2

+
[

k2
aA − 2µaAV (r) − lB(lB + 1)

r2

]
ukaAlB (r) = 0.

(4)

Here V (r) = V N (r) + V C (r), V N (r) is the short-range nuclear 156

potential, and V C (r) is the long-range Coulomb one. For 157

potentials satisfying the condition limr→0 r2 V (r) → 0, 158

ukaAlB (r) ∼ rlB+1, r → 0. (5)

Now one should take the derivative over kaA from the 159

left-hand side of Eq. (4), multiply the result by ukaAlB (r), 160

and subtract from it Eq. (4) multiplied by ∂ukaAlB (r)/∂kaA. 161

Integrating the obtained expression from r = 0 until r = R 162

and taking into account Eq. (5) one gets 163

∫ R

0
dr u2

kaAlB (r) = 1
2kaA

[
∂ukaAlB (R)

∂kaA

∂ukaAlB (R)
∂R

− ukaAlB (R)
∂2ukaAlB (R)
∂kaA ∂R

]
. (6)

Taking R so large that ukaAlB (R) can be replaced by its 164

leading asymptotic term, one gets the elastic scattering wave 165

function 166

ukaAlB (R) ≈ C̃lB

[
eiρ − (−1)lB S−1

lB
(kaA)e−iρ]

, (7)

where ρ = kaAR − ηaA ln 2kaAR, ηaA = Za ZA e2 µaA
kaA

is the 167

Coulomb parameter of the a + A system, 168

SlB (kaA) = e2 i [σC
lB

(kaA )+δCN
lB

(kaA )] (8)

is the elastic scattering S-matrix element, σC
lB (kaA) and 169

δCN
lB (kaA) are the Coulomb and Coulomb-modified nuclear 170

scattering phase shifts in the lBth partial wave, and C̃lB is a 171
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constant, which is in the pole of the S-matrix and is related172

to the corresponding ANC ClB [see Eqs. (14) and (15) below].173

Note that the scattering wave function ukaAlB at large R at real174

momentum kaA contains ingoing and outgoing waves and is175

not normalizable in the entire space.176

Assume that the elastic scattering SlB (kaA)-matrix element177

has a first order pole at kaA = kp with the residue AlB cor-178

responding to the bound state kp = i κaA or to the resonance179

kp = kaA(R) = kaA (0) − ImkaA (R), where kaA (0) = RekaA (R):180

SlB (kaA) = AlB

kaA − kp
+ glB (kaA), (9)

where glB (kaA) is a regular function at kaA = kp.181

Substituting Eqs. (7) and (9) into the right-hand side of182

Eq. (6) and performing the differentiation over kaA and R and183

taking kaA = kp one gets184

∫ R

0
dr u2

kplB (r) = i (−1)lB+1C̃2
lB/AlB − i

2 kp
e2 i ρp . (10)

Here ρp = kpR − ηp ln(2kp R). On the left-hand side under185

the integral sign one has the function u2
kplB (r), which is regular186

at r = 0 [see Eq. (5)].187

Note that at the pole kaA = kp, S−1
lB

(kp) = 0, and one can188

see from Eq. (7) that in the external region the wave function189

ukplB (R) satisfies the radiation condition190

ukplB (r) r→∞= C̃lB eiρp . (11)

For the bound state kp = i κaA and191

ui κaAlB (r) r> RN= ClB W−ηbs
aA, lB+1/2(2 kp r)

r→∞
≈ ClB e−κaA r−ηbs

aA ln(2 κaA r), (12)

where RN is the a − A nuclear interaction radius. For the192

resonance state kp = kaA(R) and ukaA(R)lB (r) is the resonance193

Gamow wave function with the resonance energy EaA(R):194

ukaA(R)lB (r) r> RN= ClB W−i η(R)
aA , lB+1/2(−2 i kaA(R) r)

r→∞
≈ e−π η(R)

aA /2 ClB ei kaA(R) r−i η(R)
aA ln(2 kaA(R) r)

= C̃lB ei kaA(R) r−i η(R)
aA ln(2 kaA(R) r). (13)

Here, η(R)
aA = Za ZA e2 µaA

kaA(R)
is the a + A Coulomb parameter of195

the resonance.196

The constant C̃lB is related to the ANC ClB as C̃lB =197

e−π ηp/2 ClB , where ηp = Za ZA e2 µaA
kp

. For the resonances one has198

C̃lB = e−π ηR
aA/2 ClB (14)

and for the bound states199

C̃lB = ei π ηbs
aA/2 ClB . (15)

Note that ClB , which is real for the bound states, is the standard200

definition of the ANC for the bound states and is used in this201

paper for the bound states.202

For the bound states the asymptotic of the bound-state203

wave function is exponentially decaying and the bound-204

state wave function can be normalized. The Gamow wave205

function of the resonance state asymptotically oscillates and 206

is exponentially increasing. To normalize the Gamow wave 207

function one can use the Zel’dovich regularization procedure 208

[17], which is a particular case of the more general Abel 209

regularization: 210

lim
β→+0

∫ ∞

0
dre−β r2

u2
kaA(R)lB (r) = 1. (16)

For the bound state one can take under the integral sign 211

β = 0 and obtain the usual normalization procedure. For the 212

resonance state one can take the limit β → 0 only after per- 213

forming the integration over r. Note that Zel’dovich normal- 214

ization was introduced for exponentially decaying potentials. 215

In the Appendix it is shown that the Zel’dovich regularization 216

procedure works even for the Coulomb potentials. 217

For any finite R one can rewrite Eq. (16) as 218

∫ R

0
dr u2

kaA(R)lB (r) + lim
β→+0

∫ ∞

R
dre−β r2

u2
kaA(R)lB (r) = 1.

(17)

Assume that R is so large that one can use the asymptotic 219

expression (11) and Eq. (A6) of the Appendix. It leads to 220

∫ R

0
dr u2

kaA(R)lB (r) = 1 − i
2 kaA(R)

C̃2
lB e2 i ρp . (18)

Comparing Eqs. (10) and (18) one arrives at the final 221

equation, which expresses the residue in the pole of the elastic 222

scattering S-matrix in terms of the ANC: 223

AlB = −i2 lB+1 C̃2
lB . (19)

Equation (19) is universal and valid for bound-state poles and 224

resonances. In terms of the standard ANC ClB the residue in 225

the resonance pole is 226

AlB = −i2 lB+1 e−π η(R)
aA C2

lB (20)

and for the bound state it is given by Eq. (2). 227

Now it is shown how to relate the ANC C̃lB to the resonance 228

width ,aA. Here the following definitions are used: 229

EaA(R) = k2
aA(R)/(2 µaA) = EaA(0) − i ,aA/2,

EaA(0) =
[
k2

aA(0) − (ImkaA(R) )2]/(2 µaA),

,aA = 2 kaA(0) ImkaA(R)/µaA. (21)

One can write 230

SlB (kaA) = e2 i δpot
lB

(kaA + kp)(kaA − k∗
p)

(kaA − kp)(kaA + k∗
p)

, (22)

where δ
pot
lB

is the nonresonant scattering phase shift. At kp = 231

kaA(R) and at kaA → kaA(R) 232

AlB (kaA) = − 2 i kaA(R) γ [(1 + γ 2)1/4 + (1 + γ 2)−1/4]−1

× ei[2 δ
pot
lB

(kaA(R) )−1/2 arctan(γ )]
, (23)

γ = ,aA
2 EaA(0)

. Equation (23) expresses the residue of the S- 233

matrix elastic scattering element in terms of the resonance 234

energy and the resonance width for broad resonances. 235
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Recovering now all the quantum numbers one gets for a236

narrow resonance (γ ≪ 1) up to terms of order ∼γ237

(
C̃B

aA lB jB JB

)2 = i−2 lB ei 2 δ
p
lB jB JB

(kaA(0) ) µaA ,aA lB jB JB

kaA(0)
, (24)

where ,aA lB jB JB is the resonance width and δ
p
lB jB JB

(k0
aA) is the238

potential (nonresonance) scattering phase shift at the real res-239

onance relative momentum kaA (0). This equation is the desired240

equation, which relates the ANC of the narrow resonance to241

the resonance width.242

The residue in the resonance pole with all the quantum243

numbers recovered is244

AJB
lB jB

= −i2 lB+1 (
C̃B

aA lB jB JB

)2
. (25)

For the Breit-Wigner resonance (ImkaA (R) ≪ RekaA (R) =245

kaA (0)), Eq. (25) takes the form246

AJB
lB jB

= −i2 lB+1 e− π ηaA(0)
(
CB

aA lB jB JB

)2 = −i2 lB+1 (C̃B
aA lB jB JB

)2,

(26)

where ηaA(0) = Za ZA e2 µaA/kaA (0). In terms of the resonance247

width the residue of the elastic scattering S-matrix element in248

the resonance pole is249

AJB
lB jB

= − ie2 i δp
lB jB JB

(k0
aA ) µaA

kaA (0)
,aA lB jBJB . (27)

III. ANCs AND OVERLAP FUNCTIONS250

Equations obtained in the previous section, which express251

the residues of the S-matrix elastic element in terms of the252

ANCs of the bound states and resonances, provide the most253

general and model-independent definition of the ANCs. From254

other side, in the Schrödinger formalism of the wave functions255

the ANC is defined as the amplitude of the tail of the overlap256

function of the bound-state wave functions of B, A, and a. The257

overlap function is given by258

IaA(raA) = ⟨ψc|ϕB(ξA, ξa, raA)⟩

=
∑

lBmlB jBmjB

⟨JAMA jBmjB |JBMB⟩⟨JaMa lBmlB | jBmjB⟩

×YlBmlB
(̂raA) IaA lB jB JB (raA). (28)

Here259

ψc =
∑

mjB mlB MAMa

⟨JAMA jBmjB |JBMB⟩⟨JaMa lBmlB | jBmjB⟩

× ÂaA{ϕA(ξA) ϕa(ξa)YlB mlB
(̂raA)} (29)

is the two-body a + A channel wave function in the j j260

coupling scheme, ⟨ j1 m1 j2 m2| j m⟩ is the Clebsch-Gordan261

coefficient, ÂaA is the antisymmetrization operator between262

the nucleons of nuclei a and A, ϕi(ξi ) represents the fully263

antisymmetrized bound-state wave function of nucleus i with264

ξi being a set of the internal coordinates including spin-isospin265

variables, and Ji and Mi are the spin and its projection of266

nucleus i. Also raA is the radius vector connecting the centers267

of mass of nuclei a and A, r̂aA = raA/raA, YlB mlB
(r̂Aa) is the268

spherical harmonics, and IaA lB jBJB (rAa) is the radial overlap269

function. Notations of the spins and angular momenta are270

given in Sec. II A. The summation over lB and jB is carried 271

out over the values allowed by the angular momentum and 272

parity conservation in the virtual process B → A + a. 273

The radial overlap function is given by 274

IaA lB jB JB (raA)

=
〈
ÂaA

{
ϕA(ξA) ϕa(ξa)YlB mlB

(̂raA)
}∣∣ϕB(ξA, ξa; raA)

〉

=
(

A
a

) 1
2 〈

ϕA(ξA) ϕa(ξa)YlB mlB
(̂raA)

∣∣ ϕB(ξA, ξa; raA)
〉
.

(30)

Equation (30) follows from a trivial observation that, because 275

ϕB is fully antisymmetrized, the antisymmetrization operator 276

ÂaA can be replaced by the factor (A
a)

1
2 . In what follows, in 277

contrast to Blokhintsev et al. [1], I absorb this factor into the 278

radial overlap function. 279

The tail of the radial overlap function (raA > RaA) in the 280

case of the normal asymptotic behavior is given by 281

IaA lB jB JB (raA) = CB
aA lB jB JB

W−ηbs
aA, lB+1/2(2 κaAraA)

raA

raA→∞−−−−→ CB
aA lB jBJB

e−κaAraA−ηbs
aA ln(2 κaAraA )

raA
. (31)

Formally the radial resonance overlap function for the 282

Breit-Wigner resonance in the external region (raA > RaA) can 283

be obtained from Eq. (31) by the substitution κaA = −i kaA (R): 284

IaA lB jB JB (kaA(R), raA)

= CB
aA lB jB JB

W−i η(R)
aA , lB+1/2(−2 i kaA (R)raA)

raA
(32)

raA→∞−−−−→ CB
aA lB jBJB

ei kaA (R) raA− i η(R)
aA ln(−2 i kaA (R) raA )

raA

= C̃B
aA lB jBJB

ei kaA (R) raA− i η(R)
aA ln(2 kaA (R) raA )

raA
. (33)

This asymptotic behavior agrees with the asymptotic behavior 285

of the resonant Gamow wave function given by Eq. (13). 286

IV. R-MATRIX WAVE FUNCTIONS 287

Because the microscopic overlap functions for mirror res- 288

onances and bound states are not available, in this paper I use 289

internal resonance and bound-state wave functions calculated 290

in the the potential model. If the mirror symmetry holds, 291

the bound-state and resonance wave functions of the mirror 292

states should be very similar in the internal region where the 293

resonance wave functions are real. However, both wave func- 294

tions differ in the external region where the bound-state wave 295

functions exponentially decrease while the resonance wave 296

functions at the resonance energies exponentially increase 297

(see Sec. III). In the Wronskian method, which is developed 298

in this paper, one needs the wave functions in the internal 299

region in which it is very convenient to use the R-matrix 300

method. In the R-matrix method the resonant wave functions 301

are normalized to unity in the internal region. The border 302

of this region is determined by the point at which the radial 303
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derivative of the internal resonant wave function is equal to304

zero. If the resonant wave function has a few nodes, the border305

of the internal region is determined by the last point at which306

the radial derivative of the resonant wave function vanishes.307

To make the bound-state wave functions close to the resonant308

wave functions the former are also renormalized to unity in309

the internal region.310

In the R-matrix approach the resonant wave function is311

considered at the real part of the resonance energy EaA (0). In312

this approach the internal wave function at real energies is real313

and behaves similarly to the bound-state wave function of the314

mirror state. At the R-matrix channel radius Rch and EaA =315

EaA(0) the internal wave function coincides with the external316

one and is proportional to the outgoing wave OlB (kaA(0), Rch ).317

Below I present the internal and external R-matrix wave318

functions considering the single-level, single-channel case.319

Again, for simplicity, the particles are assumed to be spinless.320

I start from the external R-matrix wave function at the321

partial wave lB, which is given by [11,19]322

X (ext)(+)
lB

(kaA, raA) = ilB+1 2 π

kaA raA
Y ∗

lB mlB
(k̂aA)YlB mlB

(r̂aA)

×
[
IlB − SlB OlB (kaA, raA)

]
, (34)

where323

SlB = e−2 i [δhs
lB

−σC
lB

]

(

1 + i ,lB

ER − EaA − i ,lB
2

)

(35)

is the elastic scattering S matrix at EaA near the real resonance324

energy EaA(0). σC
lB is the Coulomb scattering phase shift and325

δhs
lB is the R-matrix hard-sphere scattering phase shift:326

e−2i δhs
lB = GlB (kaA, Rch ) − i FlB (kaA, Rch )

GlB (kaA, Rch ) + i FlB (kaA, Rch )
, (36)

FlB (kaA, raA) and GlB (kaA, raA) are the regular and singular327

Coulomb solutions, and Rch is the R-matrix channel radius.328

The outgoing wave is given by329

OlB (kaA, raA) =
(
GlB (kaA, raA) + i FlB (kaA, raA)

)
e−i σC

lB . (37)

At ra = Rch330

OlB (kaA, Rch ) = ei [δhs
lB

−σC
lB

]
√

F 2
lB

(kaA, Rch ) + G2
lB

(kaA, Rch ).

(38)

OlB (kaA, raA) can be expressed it terms of the Whittaker331

function:332

OlB (kaA, raA) = i−lB eπ ηaA/2 W−iηaA,lB+1/2(−2 i kaA raA). (39)

At raA = Rch and EaA = EaA(0) 333

X (ext)(+)
lB

(kaA(0), Rch ) = ilB+1 4 π

kaA(0) Rch
e−2 i [δhs

lB
−σC

lB
] Y ∗

lB mlB

×(k̂aA(0) )YlB mlB
(R̂ch ) OlB (kaA(0), Rch ).

(40)

The R-matrix internal resonant wave function in the partial 334

wave lB, in which the resonant is present, at energy EaA near 335

the resonance is given by 336

X (int)(+)
lB

(kaA, raA) = ilB 2 π

kaA raA

√
kaA

µaA
e−i [δhs

lB
−σC

lB
] Y ∗

lB mlB
(k̂aA)

×YlB mlB
(r̂aA)

,
1/2
lB

ER − EaA − i ,lB
2

×φ(int)
lB

(kaA, raA). (41)

The R-matrix internal resonant wave function 337

φ(int)
lB

(kaA, raA) can be found as a solution of the Schrödinger 338

equation with the two-body Woods-Saxon VaA potential. 339

The R-matrix method is used below for mirror resonance 340

and bound states. I consider the loosely bound states which 341

become the mirror resonances by replacing one of the 342

neutrons by a proton. The considered binding energies 343

and real energies of the mirror resonances are significantly 344

smaller than the depth of the potential. That is why both 345

mirror solutions of the Schrödinger equation should be very 346

similar in the internal region where both solutions are real. 347

At raA = Rch and EaA = EaA(0) [see Eq. A(10); from 348

Ref. [11] in which the reduced width amplitude should be 349

expressed in terms of the resonance width] it follows that 350

φ(int)
lB

(kaA(0), Rch ) =
√

µaA ,lB

kaA(0)
e−i [δhs

lB
−σC

lB
] OlB (kaA(0), Rch ).

(42)

Thus at the real part of the resonance energy EaA = EaA(0) 1351

and raA = Rch the internal radial wave function φ(int)
lB

(Rch ) is 352

proportional to the outgoing wave OlB (kaA(0), Rch ). Equation 353

(42) also follows from the matching of the internal and 354

external wave radial wave function (see below). 355

Taking into account Eq. (24) and that in the R-matrix 356

approach the potential scattering phase shift is δlB = −(δhs
lB − 357

δC
lB ) one gets 358

φ(int)
lB

(kaA(0), Rch ) = ClB W−iηaA(0),lB+1/2(−2 i kaA(0) Rch ), (43)

ηaA(0) = Za ZA e2 µaA
kaA(0)

. 359

At raA = Rch and EaA = EaA(0) one gets 360

X (int)(+)
lB

(kaA(0), Rch ) = ilB+1 4 π

kaA raA
e−2 i [δhs

lB
−σC

lB
]

× Y ∗
lB mlB

(k̂aA)YlB mlB
(R̂ch )

× OlB (kaA(0), Rch ). (44)
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Thus at raA = Rch and EaA = EaA(0) one gets matching of361

the internal and external R-matrix wave functions,362

X (ext)(+)
lB

kaA(0), Rch ) = X (int)(+)(kaA(0), Rch ), (45)

and both wave functions are proportional to the outgoing wave363

OlB (kaA, Rch ).364

One can write the radial overlap function365

IaA lB jB JB (kaA(0), Rch ) in terms of the outgoing wave366

OlB (kaA(0), Rch ) and the Whittaker function:367

IaA lB jB JB (kaA(0), Rch )

= C̃B
aA lB jB JB

ilB OlB (kaA(0), Rch )
Rch

=
√

µaA

kaA(0)
,aA lB jBJB e− i [δhs

lB
−σC

lB
] OlB (kaA(0), Rch )

Rch

= CB
aA lB jB JB

W−iηaA(0),lB+1/2(kaA(0), Rch )
Rch

= i−lB e− i [δhs
lB

−σC
lB

] eπ ηaA(0)/2
√

µaA

kaA(0)
,aA lB jBJB

×
W−iηaA(0),lB+1/2(kaA(0)Rch )

Rch
. (46)

As one can see, the resonant radial overlap function calcu-368

lated in the R-matrix at the channel radius raA = Rch and369

EaA = EaA(0) is proportional to the the square root of the370

resonance width. It is convenient to use the R-matrix method371

to determine the ratio of the resonance width and the bound-372

state ANC of the mirror states using the Wronskian method373

developed below.374

V. CONNECTION BETWEEN BREIT-WIGNER375

RESONANCE WIDTH AND ANC OF MIRROR376

RESONANCE AND BOUND STATES FROM377

PINKSTON-SATCHLER EQUATION378

A. ANC and Pinkston-Satchler equation379

In Ref. [11] the relationship between the mirror proton380

and neutron ANCs was derived using the Pinkston-Satchler381

equation [20,21]. Here I extend this derivation to obtain the382

ratio for the resonance width and the ANC of the mirror bound 383

state in terms of the Wronskians, which follows from the 384

Pinkston-Satchler equation. 385

First, using Pinkston-Satchler equation I derive the equa- 386

tion for the ANC of the narrow resonance state, which con- 387

tains the source term [6,22]. This derivation is valid for both 388

bound and resonance states. That is why following [11] I start 389

from the Schrödinger equation for the resonance scattering 390

wave function at the real part EaA(0) of the resonance energy: 391

(E(0) − T̂A − T̂a − T̂aA − Va − VA − VaA)1(ξA, ξa; raA) = 0.
(47)

Here, T̂i is the internal motion kinetic energy operator of 392

nucleus i, T̂aA is the kinetic energy operator of the relative 393

motion of nuclei a and A, Vi is the internal potential of nucleus 394

i and VaA is the interaction potential between a and A, and 395

E(0) = EaA(0) − εa − εA is the total energy of the system a + A 396

in the continuum. The operator E(0) − T̂A − T̂a − T̂aA − Va − 397

VA − VaA in Eq. (47) is symmetric over the interchange of 398

nucleons of a and A, while 1(ξa, ξA; raA) is antisymmetric, 399

and εi is the total binding energy of nucleus i. Hence, by 400

multiplying the Schrödinger equation (47) from the left by 401

(
A
a

)1/2 ∑

mjB mlB MAMa

〈
JAMA jBmjB

∣∣JBMB
〉

×
〈
JaMa lBmlB

∣∣ jBmjB

〉
Y ∗

lBmlB
(̂raA) ϕA(ξA) ϕa(ξa), (48)

where the antisymmetrization operator ÂaA in Eq. (48) is 402

replaced by (A
a)1/2, one gets the equation for the radial overlap 403

function with the source term QlB jBJaJAJB (raA) [22]: 404

(
EaA(0) − T̂raA − V centr

lB − UC
aA

)
IB
aA lB jB JB

(raA)

= QlB jBJaJAJB (raA). (49)

Here T̂raA is the radial relative kinetic energy operator of the 405

particles a and A, and V centr
lB is the centrifugal barrier for the 406

relative motion of a and A with the orbital momentum lB. For 407

charged particles it is convenient to single out the channel 408

Coulomb interaction UC
aA(raA) between the centers of mass of 409

nuclei a and A. 410

The source term is given by 411

QlB jBJaJAJB (raA) =
∑

mjB mlB MAMa

〈
JAMA jBmjB

∣∣JBMB
〉〈

JaMa lBmlB

∣∣ jBmjB

〉

×
(

A
a

)1/2 ∫
d2raA

〈
ϕa(ξa) ϕA(ξA)

∣∣VaA − UC
aA

∣∣Y ∗
lBmlB

(̂raA)1(ξa, ξA; raA)
〉
. (50)

The integration in the matrix element ⟨ϕa(ξa) ϕA(ξA)|VaA − UC
aA|Y ∗

lBmlB
(̂raA)1(ξa, ξA; raA)⟩ in Eq. (50) is carried out over all the 412

internal coordinates of nuclei a and A. 413

Owing to the presence of the short-range potential operator VaA − UC
aA (potential VaA is the sum of the nuclear V N

aA and the 414

Coulomb V C
aA potentials and subtraction of UC

aA removes the long-range Coulomb term from VaA) the source term is also a 415

short-range function. Then Eq. (49) for the radial overlap function can be rewritten as 416

IaA lB jB JB (kaA(0), raA) = 1
RaA

∫ RaA

0
dr′

aA r′
aA GC

lB (raA, r′
aA; EaA(0) ) QlB jBJaJAJB (r′

aA), (51)
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where RaA is the a − A nuclear interaction radius. In the R-matrix approach RaA can be replaced by the channel radius Rch, which417

can be varied.418

Equation (51) is of fundamental importance because it allows one to express the radial overlap function in terms of the internal419

wave function of the nucleus B.420

The partial Coulomb two-body Green function is given by [23]421

GC
lB (raA, r′

aA; EaA) = −2 µaA
ϕC

lB (kaA, raA < ) f C(+)
lB

(kaA, raA > )

LC(+)
lB

, (52)

where raA < = min {raA, r′
aA} and raA > = max {raA, r′

aA}. The Coulomb regular solution ϕC
lB (kaA, raA) of the partial Schrödinger422

equation at real momentum kaA is423

ϕC
lB (kaA, raA) = 1

2 i kaA

[
LC(−)

lB
(kaA) f C(+)

lB
(kaA, raA) − LC(+)

lB
(kaA) f C(−)

lB
(kaA, raA)

]

= rlB+1
aA ei kaA raA

1F1(lB + 1 + iηaA, 2 lB + 2; −2 i kaA raA)

= e−i π lB/2 LC(+)
lB

(kaA)
ei σC

lB FlB (kaA, raA)
kaA

, (53)

where424

ei σC
lB FlB (kaA, raA) = e−π ηaA/2 ,(lB + 1 + i ηaA)

2 ,(2 lB + 2)
(2 kaA raA)lB+1 ei kaA raA

1F1(lB + 1 + i ηaA, 2 lB + 2; −i 2 kaA raA), (54)

σC
lB is the Coulomb scattering phase shift. Also425

f C(± )
lB

(kaA, raA) = eπ ηaA/2 W∓ i ηaA, lB+1/2(∓ 2 ikaA raA) (55)

are the Jost solutions (singular at the origin raA = 0),426

LC(± )
lB

(kaA) = 1
(2 kaA)lB

eπ ηaA/2 e± i π lB/2 ,(2 lB + 2)
,(lB + 1 ± i ηaA)

(56)

are the Jost functions.427

It is convenient to introduce the modified Coulomb wave function428

ϕ̃C
lB (kaA, raA) =

ϕC
lB (kaA, raA)

LC(+)
lB

(kaA)
, (57)

which will be used from now on instead of ϕC
lB (kaA, raA).429

Let me use now the R-matrix method in which I replace RaA by Rch. Then assuming in Eq. (51) raA = Rch + i0 and taking430

into account Eqs. (46) and (55) one gets431

C̃lB = i−lB e− i [δhs
lB

−σC
lB

]
√

µaA

kaA(0)
,aA lB jBJB = 2 µaA

∫ Rch

0
dr′

aA r′
aA ϕ̃C

lB (kaA(0), r′
aA) QlB jBJaJAJB (r′

aA). (58)

Using Eqs. (53) and (57) one gets432

e− i δhs
lB

√
µaA

kaA(0)
,aA lB jBJB = 2

µaA

kaA(0)

∫ Rch

0
dr′

aA r′
aA FlB (kaA(0), r′

aA) QlB jBJaJAJB (r′
aA). (59)

This equation provides the ANC or resonance width of the narrow resonance, which may depend on the channel radius Rch.433

Here I am interested in the ratio of the resonance width and the square of the ANC of the mirror resonant and bound state. The434

sensitivity of this ratio to the variation of the channel radius is checked below.435

B. ANC in terms of Wronskian436

The advantage of Eq. (59) is that to calculate the ANC one needs to know the microscopic resonant wave functions only437

in the nuclear interior where the ab initio methods like the no-core shell model [24–26] and the coupled-cluster method [27]438

are more accurate than in the external region. That is why Eq. (59) is so important if microscopic resonant wave functions are439

available. Now I show that the radial integral in Eq. (59) can be transformed into the Wronskian at raA = RaA. The philosophy440

of this transformation is the same as in the surface integral formalism [5,11].441
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First, let us rewrite442

VaA − UC
aA = V + V centr

lB − Va − VA − V centr
lB − UC

aA (60)

and take into account the equations443

(EaA(0) − T̂a − T̂A − T̂raA ) ϕ̃C
lB (kaA(0), raA) ϕa(ξa) ϕA(ξA) =

(
UC

aA + V centr
lB + Va + VA

)
ϕ̃C

lB (kaA(0), raA) ϕ̃a(ξa) ϕA(ξA) (61)

and444

(EaA(0) − T̂a − T̂A − T̂raA )
〈
YlBmlB

(̂raA)
∣∣1(ξa, ξA; raA⟩ =

(
VaA + Va + VA + V centr

lB

) 〈
YlBmlB

(̂raA)
∣∣1(ξa, ξA; raA

〉
, (62)

where T̂raA is the radial kinetic energy operator.445

Then we get446

C̃B
aA lB jB JB

≈ − 2 µaA

∫ RaA

0
draA raA ϕ̃C

lB (kaA(0), raA) QlB jBJaJAJB (raA)

= − 2 µaA

∑

mjB mlB MAMa

〈
JAMA jBmjB

∣∣JBMB
〉〈

JaMa lBmlB

∣∣ jBmjB

〉 (A
a

)1/2 ∫ RaA

0
draA raA ϕ̃C

lB (kaA(0), raA)

×
∫

d 2rraA

〈
ϕa(ξa) ϕA(ξA)

∣∣←−̂T raA +
←−̂
T a +

←−̂
T A −

−→̂
T a −

−→̂
T A −

−→̂
T raA

∣∣Y ∗
lBmlB

(̂raA) 1(ξa, ξA; raA)
〉

= − 2 µaA

∑

mjB mlB MAMa

〈
JAMA jBmjB

∣∣JBMB
〉〈

JaMa lBmlB

∣∣ jBmjB

〉

×
(

A
a

)1/2 ∫ RaA

0
draA raA ϕ̃C

lB (kaA(0), raA)
∫

d 2raA

〈
ϕa(ξa) ϕA(ξA)

∣∣←−̂T raA −
−→̂
T raA

∣∣Y ∗
lBmlB

(̂raA)1(ξa, ξA; raA)
〉

= − 2 µaA

∫ RaA

0
draA raA ϕ̃C

lB (kaA(0), raA)
(←−̂

T raA −
−→̂
T raA

)
IaA lB jB JB (kaA(0), raA). (63)

Here RaA is the a − A nuclear interaction radius. In the R-matrix approach RaA can be replaced by the channel radius Rch which447

can be varied.448

Taking into account that449

f (x)

⎛

⎝
←−
d

2

dx2
−

−→
d

2

dx2

⎞

⎠g(x = d
dx

(
g(x)

df (x)
dx

− f (x)
dg(x)

dx

)
(64)

we arrive at the final expression for the ANC of the resonance state in terms of the Wronskian:450

C̃B
aA lB jB JB

= W
[
IaA lB jB JB (kaA(0), raA), ϕ̃C

lB (kaA(0), raA)
]∣∣

raA=Rch
, (65)

where the Wronskian451

W
[

IaA lB jB JB (raA), ϕ̃C
lB (kaA(0), raA)

]

= IaA lB jB JB (kaA(0), raA)
dϕ̃C

lB (kaA(0), raA)

draA
− ϕ̃C

lB (kaA(0), raA)
dIaA lB jB JB (kaA(0), raA)

draA
. (66)

I would like to underscore that Eq. (65) was derived by transforming the internal integral into the Wronskian at the channel radius452

Rch. Note that at too small radii Rch the Wronskian W[ IaA lB jB JB (raA), ϕ̃C
lB (kaA(0), raA)] depends on the radius but the sensitivity453

to the radius decreases as Rch increases.454

There is another more direct derivation of Eq. (65). We know that the Wronskian calculated for two independent solutions of455

the Schrödinger equation is a constant [23]. In the R-matrix approach the internal radial overlap function IaA lB jB JB (kaA(0), raA) at456

raA → Rch behaves like the Whittaker function [see Eq. (46)] and is given by457

IaA lB jB JB (kaA(0), raA) = C̃B
aA lB jB JB

f C(+)
lB

(kaA(0), raA)

Rch
. (67)
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This Whittaker function is a singular solution of the 458

radial Schrödinger equation. ϕ̃C
lB (kaA(0), raA) is an inde- 459

pendent regular solution of the same equation. Taking 460

into account that W[ f C(+)
lB

(kaA(0), raA), f C(−)
lB

(kaA(0), raA)] = 461

−2 i kaA(0) and Eq. (53) one gets at raA = Rch 462

W
[
IaA lB jB JB (kaA(0), raA), ϕ̃C

lB (kaA(0), raA)
]∣∣

raA=Rch
= C̃B

aA lB jB JB
.

(68)

Note that the constancy of the Wronskian only applies to local 463

potentials. But here one needs this only at large distances, 464

where zero potentials are local anyway. 465

I demonstrate that the Wronskian W[IaA lB jB JB 466

(kaA(0), raA), ϕ̃C
lB (kaA(0), raA)]|

raA=RaA
depends on Rch and 467

reaches a constant value, which is equal to the ANC of the 468

resonance state, when Rch increases. 469

My idea is to use Eq. (65) to calculate the Wronskian 470

W[IaA lB jB JB (kaA(0), raA), ϕ̃C
lB (kaA(0), raA)]|

raA=RaA
at the chan- 471

nel radii which are smaller than the radius of nucleus B = 472

(aA), and gradually increase Rch until the Wronskian reaches 473

its constant value. In the nuclear interior the contemporary 474

microscopic models can provide quite accurate overlap func- 475

tions. The sensitivity to the variation of the channel radius 476

of the ratio of the ANCs of the resonance and mirror bound 477

state is significantly weaker than that of the individual ANCs 478

(or, equivalently, of the resonance width and the bound-state 479

ANC) of the mirror states. 480

VI. RATIO OF RESONANCE WIDTH AND ANC OF 481

MIRROR BOUND STATE 482

A. Three different equations 483

In this part three different equations for the ratio of the 484

resonance width and the ANC of the mirror bound state 485

are presented. Let B1 = (a1 A1) and B2 = (a2 A2) be mirror 486

nuclei. Then the quantum numbers in both nuclei are the 487

same. We also assume that the channel radius Rch is the 488

same for both mirror nuclei. The ratio of the ANCs of the 489

mirror resonance and bound states is given by the ratio of the 490

corresponding Wronskians. Taking into account Eq. (65) one 491

gets for the ratio of the resonance width and the bound state 492

ANC for mirror states 493

,a1A1 lB jB JB(
CB2

a2 A2 lB jB JB

)2 =
√

2 Ea1A1(0)

µa1A1

∣∣W
[
Ia1A1 lB jB JB

(
ka1A1(0), ra1A1

)
, ϕ̃C

lB

(
ka1A1(0), ra1A1

)]∣∣2 ∣∣
ra1A1 =Rch

(
W

[
Ia2A2 lB jB JB

(
κa2A2 , ra2A2

)
, ϕ̃C

lB

(
iκa2A2 , ra2A2

)])2 ∣∣
ra2A2 =Rch

, (69)

where Ea1A1(0) and µaA are expressed in MeV. Equation (69) allows one to determine the resonance width if the ANC of the 494

mirror bound state is known and vice versa. 495

To calculate the ratio
,

B1
a1A1 lB jB JB

(CB2
a2 A2 lB jB JB

)2
one needs the microscopic radial overlap functions. If these radial overlap functions are not 496

available then one can use a standard approximation for the overlap functions: 497

Ia1A1 lB jB JB

(
ka1A1(0), raA

)
≈ S1/2

a1A1
ϕa1A1 lB jB JB

(
ka1A1(0), ra1A1

)
, (70)

Ia2A2 lB jB JB

(
κa2A2 , raA

)
≈ S1/2

a2A2
ϕa2A2 lB jB JB

(
κa2A2 , ra2A2

)
, (71)

where Sa1A1 and Sa2A2 are the spectroscopic factors of the mirror resonance and bound states (a1A1) and (a2A2), respectively. 498

ϕa1A1 lB jB JB (ka1A1(0), ra1A1 ) is a real internal resonant wave function calculated in the two-body model (a1 A1) using some 499

phenomenological potential, for example, a Woods-Saxon one, which supports the resonance state under consideration. 500

ϕa2A2 lB jB JB (κa2A2 , ra2A2 ) is the two-body bound-state wave function of the bound state (a2 A2), which is also calculated using 501

the same nuclear potential as the mirror resonance state. If the mirror symmetry holds then Sa1A1 ≈ Sa2A2 and one gets an 502

approximated ,a1A1 lB jB JB

(CB2
a2 A2 lB jB JB

)2
ratio in terms of the Wronskians, which does not contain the overlap functions: 503

,a1A1 lB jB JB(
CB2

a2 A2 lB jB JB

)2 ≈
√

2 Ea1A1(0)

µa1A1

∣∣W
[
ϕa1A1 lB jB JB

(
ka1A1(0), ra1A1

)
, ϕ̃C

lB

(
ka1A1(0), ra1A1

)]∣∣2 ∣∣
ra1A1 =Rch

(
W

[
ϕa2A2 lB jB JB

(
κa2A2 , ra2A2

)
, ϕ̃C

lB

(
i κa2A2 , ra2A2

)])2 ∣∣
ra2A2 =Rch

. (72)

Meanwhile in Ref. [10] another expression for the mirror nucleon ANCs ratio was obtained which provides the easiest way 504

to determine ,a1A1 lB jB JB

(CB2
a2 A2 lB jB JB

)2
. I show here a simple way of the derivation of the ratio ,a1A1 lB jB JB

(CB2
a2 A2 lB jB JB

)2
from Ref. [10]. First, as it was 505

pointed out in Ref. [10], in the nuclear interior the Coulomb interaction varies very little in the nuclear interior and its effect 506

leads only to shifting of the energy of the bound state to the continuum. Hence, it can be assumed that ϕ̃C
lB (ka1A1(0), ra1A1 ) and 507

ϕ̃C
lB (i κa2A2 ra2A2 ) behave similarly in the nuclear interior except for the overall normalization; that is, 508

ϕ̃C
lB

(
ka1A1(0), raA

)
=

ϕ̃C
lB

(
ka1A1(0), Rch

)

ϕ̃C
lB

(
i κa2A2 , Rch

) ϕ̃C
lB

(
i κa2A2 , ra2A2

)
. (73)
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Then 509

,a1A1 lB jB JB(
CB2

a2 A2 lB jB JB

)2 ≈
√

2 Ea1A1(0)

µa1A1

(
ϕ̃C

lB

(
ka1A1(0), Rch

ϕ̃C
lB

(
i κa2A2 , Rch

)
)2

∣∣W
[
ϕa1A1 lB jB JB

(
ka1A1(0), ra1A1

)
, ϕ̃C

lB

(
i κa2A2 , ra2A2

)
]
∣∣2 ∣∣

ra1A1 , ra2A2 =Rch
(
W

[
ϕa2A2 lB jB JB

(
κa2A2 , ra2A2

)
, ϕ̃C

lB

(
i κa2A2 , ra2A2

)])2 ∣∣
ra2A2 =Rch

. (74)

Neglecting further the difference between the mirror wave functions ϕa1A1 lB jB JB (ka1A1(0), ra1A1 ) and ϕa2A2 lB jB JB (κa2A2 , ra2A2 ) in 510

the nuclear interior we obtain the approximate expression for ,a1A1 lB jB JB

(CB2
a2 A2 lB jB JB

)2
from Ref. [10] (in the notations of the current paper): 511

,a1A1 lB jB JB(
CB2

a2 A2 lB jB JB

)2 ≈
√

2 Ea1A1(0)

µa1A1

(
ϕ̃C

lB

(
ka1A1(0), Rch

)

ϕ̃C
lB

(
i κa2A2 , Rch

)
)2

. (75)

In descending accuracy, Eq. (69) is ranked as the most 512

accurate. Taking into account that the microscopic overlap 513

functions (calculated in the no-core shell model [24–26] 514

or oscillator shell model [28]) are accurate in the nu- 515

clear interior, using Eq. (69) one can determine the ratio 516

,a1A1 lB jB JB

(CB2
a2 A2 lB jB JB

)2
quite accurately. Then follows Eq. (72) and fi- 517

nally Eq. (75). Note that Eq. (75) is valid only in the re- 518

gion where the mirror resonant and bound-state wave func- 519

tions do coincide or are very close. The advantage of this 520

equation is that it allows one to calculate the ratio without 521

using the mirror wave functions and it is extremely simple 522

to use. 523

Because for the cases under consideration the internal 524

microscopic resonance wave functions are not available, in 525

this paper the ,a1A1 lB jB JB

(CB2
a2 A2 lB jB JB

)2
ratio is calculated using Eqs. (72) 526

and (75). It allows one to determine the accuracy of both 527

equations. 528

Note that the dimension of the ratio ,a1A1 lB jB JB

(CB2
a2 A2 lB jB JB

)2
is deter- 529

mined by the ratio 2 Ea1A1 (0)

µa1A1
. To make it dimensionless I assume 530

that the reduced mass µa1A1 and the real part of the resonance 531

energy Ea1A1(0) are expressed in MeV. 532

B. R-matrix wave function 533

Because the microscopic overlap functions for mirror reso- 534

nances are not available, in this paper I use internal resonance 535

and bound-state wave functions calculated in the potential 536

model at real energies. In the developed Wronskian method 537

one needs the wave functions in the internal region in which it 538

is very convenient to use the R-matrix method. In the R-matrix 539

approach the resonant wave function is considered at the real 540

part of the resonance energy EaA (0) and is real in the internal 541

region. If the mirror symmetry holds, the bound-state and 542

resonance wave functions of the mirror states should be very 543

similar in the internal region. The R-matrix resonant wave 544

function is normalized to unity in the internal region. The 545

border of this region is determined by the point at which 546

the radial derivative of the internal resonant wave function is 547

equal to zero. If the resonant wave function has a few nodes, 548

the border of the internal region is determined by the last point 549

at which the radial derivative of the resonant wave function 550

vanishes. The bound-state wave function is normalized to 551

unity in the whole coordinate space. To make the bound- 552

state wave function close to the resonant wave function the 553

former is also renormalized to unity in the internal region. 554

The advantage of the Wronskian method is that to calculate 555

the ratio of the resonance width and the ANC of the mirror 556

states one can use the internal real resonant and bound-state 557

wave functions. 558

VII. COMPARISON OF RESONANCE WIDTHS AND ANCS 559

OF MIRROR STATES 560

In this section a few examples of the application of 561

Eqs. (72) and (75) are presented. To simplify the notations 562

from now on the quantum numbers in the notations for the res- 563

onance width and the ANC are dropped and just use simplified 564

notations, ,a1A1 and Ca2 A2 . Equation (72) gives ,a1A1/(Ca2 A2 )2
565

in terms of the ratio of the Wronskians and provides an exact 566

value for given two-body mirror resonant and bound-state 567

wave functions. Equation (75) gives the ,a1A1/(Ca2 A2 )2 ratio 568

in terms of the Coulomb scattering wave functions at the real 569

resonance momentum ka1A1(0) and the imaginary momentum 570

of the bound state i κa2A2 at the channel radius Rch. Hence, 571

to determine the ratio ,a1A1/(Ca2 A2 )2 using Eq. (75) one does 572

not need to know the mirror resonant and bound-state wave 573

functions. However, to use this equation one should check 574

whether the mirror wave functions are close. In calculations 575

I deliberately increase the channel radius Rch to demonstrate 576

the convergence of the calculated ratio ,a1A1/(Ca2 A2 )2 as Rch 577

increases. 578

A. Comparison of resonance width for 579

13N(2s1/2 ) → 12C(0.0 MeV) + p and mirror ANC for virtual 580

decay 13C(2s1/2 ) → 12C(0.0 MeV) + n 581

I begin from the analysis of the isobaric analog states 582

2s1/2 in the mirror nuclei 13N and 13C. The resonance en- 583

ergy of 13N(2s1/2) is Ep12C(0) = 0.421 MeV with the res- 584

onance width of ,p12C = 0.0317 ± 0.0008 MeV [29]. The 585

neutron binding energy of the mirror state 13C(2s1/2) is 586

εn12C = 1.8574 MeV with the experimental ANC C2
n12C

= 587

3.65 fm−1 [30,31]. The experimental ratio ,p12C/(Cn12C)2 = 588

(4.40 ± 0.57) × 10−5 allows us to check the accuracy of both 589

used equations. Because the dimension of the bound-state 590

ANC is fm−1/2 to get the dimensionless ratio I calculated 591

,p12C/[h̄ c(Cn12C)2]. 592
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FIG. 1. Solid red line, the radial wave function of the (p12C)2s+1/2

resonance state; dashed blue line, the radial wave function of the
mirror (n12C)2s+1/2

bound state. r is the distance between N , where

N = p, n, and the c.m. of 12C.

In Fig. 1 are shown the radial wave functions of the mirror593

states. Following the R-matrix procedure, both wave functions594

are normalized to unity over the internal volume with the595

radius Rch = 4.0 fm. We see that the mirror wave functions596

are very close at distances !4.0 fm, which confirms the mirror597

symmetry of (p12C)2s+
1/2

and (n12C)2s+
1/2

systems.598

In Fig. 2 are shown the
,p 12C

(Cn 12C )2 ratios, which are calculated599

using Eqs. (72) and (75). These calculated ratios are compared600

with the experimental one. We see that the calculations exceed601

the experimental value. The
,p 12C

(Cn 12C )2 ratio calculated using the602

simplified Eq. (75) shows the Rch dependence and is equal to603

10.13 × 10−5 at the peak at Rch = 5.22 fm.604

Equation (72) provides the
,p 12C

(Cn 12C )2 ratio in terms of the605

ratio of the Wronskians. Each Wronskian contains the two-606

body wave function and its radial derivative of the system607

(N 12C)2s+
1/2

, N = p, n. Each two-body wave function has one608

node at r ≈ 2.13 fm and a minimum at r ≈ 4.0 fm. Hence, at609

some point r the Wronskian in the denominator of Eq. (72)610

vanishes causing a discontinuity in the ratio
,p 12C

(Cn 12C )2 . I assume611

that in the nuclear interior the mirror two-body wave functions612

are correct (as it should be for the mirror microscopic overlap613

functions) and calculate the ratio at Ech " 4 fm. At r = 4 fm614
,p 12C

(Cn 12C )2 = 8.1 × 10−5 while the correct value of this ratio615

obtained at large Rch is 9.8 × 10−5, which is close to the peak616

value of the ratio obtained using Eq. (75).617

Both used equations provide the values of the
,p 12C

(Cn 12C )2618

ratio, which exceed the experimental one. It means that more619

accurate internal overlap functions are required and the two-620

body wave functions used here demonstrate the accuracy of621

the Wronskian method. However, there is another important622

FIG. 2. The grey band is the experimental
,

p 12C

(C
n 12C

)2 ratio of the

resonance width of the resonance state 13N(2s+
1/2) and the ANC of

the mirror bound state 13C(2s+
1/2); the red dash-dot-dotted line and the

red dash-dotted lines are the low and upper limits of this experimental

ratio; the solid red line is the
,

p 12C

(C
n 12C

)2 ratio as a function of Rch

calculated using Eq. (72); the blue dotted line is the
,

p 12C

(C
n 12C

)2 ratio

calculated as a function of Rch using Eq. (75).

conclusion: the simple Eq. (75) in the peak gives the same 623

result as the asymptotic ratio given by Eq. (72). 624

B. Comparison of resonance width for 625

13N(1d5/2 ) → 12C(0.0 MeV) + p and mirror ANC for virtual 626

decay 13C(1d5/2 ) → 12C(0.0 MeV) + n 627

As the second example I consider the isobaric analog 628

states 1d5/2 in the mirror nuclei 13N and 13C. The reso- 629

nance energy of 13N(1d5/2) is Ep12C(0) = 1.6065 MeV with 630

the resonance width of ,p 12C = 0.047 ± 0.0008 MeV [29]. 631

The neutron binding energy of the mirror state 13C(1d5/2) 632

is εn12C = 1.09635 MeV with the experimental ANC C2
n12C

= 633

0.0225 fm−1 [30]. The experimental ratio is ,p 12C/C2
n 12C

= 634

(1.1 ± 0.2) × 10−2. 635

In Fig. 3 are shown the radial wave functions of the mirror 636

states. Following the R-matrix procedure, both wave functions 637

are normalized to unity over the internal volume with the 638

radius Rch = 3 fm. We see that the mirror wave functions are 639

very close at distances r ! 4 fm, which confirms the mirror 640

symmetry of (p12C)1d+
5/2

and (n12C)1d+
5/2

systems. In Fig. 4 are 641

shown the
,p 12C

(Cn 12C )2 ratios calculated using Eqs. (72) and (75), 642

which are compared with the experimental ratio. We see that 643

the calculated ratios are closer to the experimental ratio than 644

in the previous case and both equations give quite reason- 645

able results. The
,p 12C

(Cn 12C )2 ratio calculated using the simplified 646

Eq. (75) shows the Rch dependence and is equal to 0.0141 at 647

the peak at Rch = 3.95 fm. In the case under consideration the 648

bound-state wave function does not have nodes at r > 0. That 649
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FIG. 3. Solid red line, the radial wave function of the (p12C)1d+
5/2

resonance state; dashed blue line, the radial wave function of the
mirror (n12C)1d+

5/2
bound state. r is the distance between N , where

N = p, n, and the c.m. of 12C.

is why the
,p 12C

(Cn 12C )2 ratio calculated using Eq. (72) is a smooth650

function of Rch. This equation gives
,p 12C

(Cn 12C )2 = 0.0135 at Rch =651

4 fm, which differs very little from its correct asymptotic value652

of 0.0143. Again, as in the previous case, our calculations653

FIG. 4. The grey band is the experimental
,

p 12C

(C
n 12C

)2 ratio of the

resonance width of the resonance state 13N(1d+
5/2) and the ANC of the

mirror bound state 13C(1d+
5/2); the red dash-dot-dotted line and the

red dash-dotted lines are the low and upper limits of this experimental
ratio; the green dotted line is the adopted experimental value of the

ratio
,

p 12C

(C
n 12C

)2 = (1.1 ± 0.2) × 10−2; the solid red line is the
,

p 12C

(C
n 12C

)2

ratio as a function of Rch calculated using Eq. (72); and the blue

dotted line is the
,

p 12C

(C
n 12C

)2 ratio calculated as a function of Rch using

Eq. (75).

FIG. 5. Solid red line, the radial wave function of the (p14O)1d5/2

resonance state; dashed blue line, the radial wave function of the
mirror (n14C)1d5/2 bound state. r is the distance between the nucleon
and the c.m. of the nucleus.

show that the simple Eq. (75) can give the results close to the 654

Wronskian method. 655

C. Comparison of resonance width for 656

15F(1d5/2 ) → 14 O(0.0 MeV) + p and mirror ANC for virtual 657

decay 15C(1d5/2 ) → 14 C(0.0 MeV) + n 658

In this section I determine the ratio ,p 14O/C2
n 14C

for the 659

mirror states 15F(1d5/2) and 15C(1d5/2). The resonance en- 660

ergy and the resonance width of 15F(1d5/2) are Ep14O(0) = 661

2.77 MeV and ,p 14O = 0.24 ± 0.03 MeV [32]. The binding 662

energy and the ANC of the bound state 15C(1d5/2) are εn14C = 663

0.478 MeV and C2
n14C

= (3.6 ± 0.8) × 10−3 fm−1. The exper- 664

imental ratio ,p 14O/C2
n 14C

= 0.338 ± 0.001. 665

This is the most difficult case because the resonance state 666

is not potential. It is clear from Fig. 5. 667

The mirror wave functions are normalized in the internal 668

region r ! 3.2 fm. They begin to deviate at r > 3.0 fm. Be- 669

cause the resonance width in the case under consideration 670

is much wider than in the previous cases, the resonant wave 671

function calculated in the potential model in the external 672

region differs significantly from the tail of the bound-state 673

wave function. That is why the Wronskian ratio does not 674

have an asymptote at large r. But the idea of the Wronskian 675

method is to determine the ,p 14C/C2
n 14C

ratio using the mirror 676

wave functions in the internal region where they practically 677

coincide. 678

In Fig. 6 is shown the ,p 14O/C2
n 14C

ratio calculated using 679

the Wronskian method and the simplified Eq. (75). The Wron- 680

skian ratio at 4.0 fm is 0.32 while Eq. (75) gives 0.31. Both 681

values are very close to the experimental ratio. 682
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FIG. 6. The grey band is the experimental
,

p 14O

(C
n 14C

)2 ratio for the

resonance state 15F(1d+
5/2) and the mirror bound state 15C(1d+

5/2); the

solid red line is the
,

p 14O

(C
n 14C

)2 ratio as a function of Rch calculated using

Eq. (72); and the blue dashed line is the
,

p 14O

(C
n 14C

)2 ratio calculated as a

function of Rch using Eq. (75).

D. Comparison of resonance width for683

18Ne(1−) → 14 O(0.0 MeV) + α and mirror ANC for virtual684

decay 18O(1−) → 14 C(0.0 MeV) + α685

In this section I determine the ratio ,α 14O/C2
α 14C

for the686

mirror states 18Ne(1−) and 18O(1−). The resonance energy is687

Eα14O(0) = 1.038 MeV. The binding energy of the bound state688

18O(1−) is εα14C = 0.027 MeV. The resonance width and the689

ANC of the mirror states are unknown.690

The purpose of this section is to show that the ratio691

,α 14O/C2
α 14C

does not depend on the number of the nodes of692

the mirror wave functions. The potential model search showed693

that for the given resonance energy and binding energy for694

l = 1 the mirror wave functions have at r > 0 the number695

of nodes N = 4 or 6. The normalization region of the mirror696

wave functions is r ! 7.2 fm for N = 6 and r ! 6.73 fm for697

N = 4. In Figs. 7 and 8 are shown the radial wave functions698

and the ratio ,α 14O/C2
α 14C

for the number of nodes N = 4699

and 6.700

One can see that the mirror wave functions practically701

coincide up to r = 15 fm. It means that the simplified Eq. (75)702

can be used up to 15 fm. The ratio ,α 14O/C2
α 14C

calculated703

using Eq. (72) is the same for N = 4 and 6. Because the704

mirror wave functions are practically identical in the external705

region the ratio ,α 14O/C2
α 14C

calculated using the Wronskian706

method [Eq. (72)] has an asymptote. The calculated ratio for707

N = 4, 6 reaches its asymptotic value at Rch = 7.5 fm which708

is ,α 14O/C2
α 14C

= 3.48 × 1052. The maximum of ,α 14O/C2
α 14C

709

calculated using Eq. (75) at Rch = 9 fm is 3.42 × 1052. This710

comparison demonstrates again that in the absence of the711

microscopic internal overlap functions both the Wronskian712

FIG. 7. (a) The mirror radial wave functions for N = 6: the solid
red line is the (α14O)1− resonance wave function, and the dashed blue
line is the radial wave function of the mirror (α14C)1− bound state. r
is the distance between the α particle and the c.m. of the nucleus. (b)
Notations are the same as in (a) but for N = 4.

and the simplified method given by Eq. (75) can be used and 713

give very close results. 714

E. Comparison of resonance width for 715

17F(s1/2 ) → 13N(0.0 MeV) + α and mirror ANC for virtual 716

decay 17O(s1/2 ) → 13C(0.0 MeV) + α 717

The last case that I consider is the determination of the ratio 718
,

α 13N

(C
α 13C )2 of the resonance state 17F(1/2+) and the mirror bound 719

FIG. 8. (a) The
,

α 14O
(C

α 14C
)2 ratio for the resonance state 18Ne(1−) and

the mirror bound state 18O(1−) for N = 6: the solid red line is the
,

α 14O
(C

α 14C
)2 ratio as a function of Rch calculated using Eq. (72), and the

blue dashed line is the
,

α 14O
(C

α 14C
)2 ratio calculated as a function of Rch

using Eq. (75). (b) Notations are the same as in (a) but for N = 4.
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FIG. 9. The solid red line is the (α13N)1/2+ resonance wave
function, and the dashed blue line is the radial wave function of the
mirror (α13C)1/2+ bound state. r is the distance between the α particle
and the c.m. of the nucleus.

state 17O(1/2+). The orbital momentum of the mirror states720

is l = 1 and the resonance energy is Eα 13N(0) = 0.7371 MeV721

[32]. The location of the state 17O(1/2+) is questionable. The722

excitation energy Ex of the state 17O(1/2+) is 6356 ± 8 keV723

[32]. Taking into account that the α-13C threshold is located724

at 6359.2 keV one finds that this 1/2+ level is the located at725

Eα 13C = −3 ± 8 keV; that is, it can be a subthreshold bound726

state or a resonance [32]. This location of the level 17O(1/2+)727

was adopted in the previous analyses of the direct measure-728

ments including the latest one in Ref. [33]. If this level is the729

subthreshold bound state, then its reduced width is related to730

the ANC of this level. However, in a recent paper [34] it was731

determined that this level is actually a resonance located at732

Eα13C = 4.7 ± 3 keV. Because the possible subthreshold state733

and near threshold resonance are located very close to each734

other the reduced widths corresponding to these two levels are735

very close. Here in the analysis I still assume that 17O(1/2+)736

is the bound state with the binding energy of −3 keV. I adopt737

the ANC of this subthreshold state C2
α13C

= 4.4 × 10169 fm−1
738

[35].739

The calculated mirror resonance and bound-state wave740

functions are shown in Fig. 9. They are normalized in the in-741

ternal region r ! 5.2 fm. Both wave functions are practically742

identical up to Rch ! 15 fm.743

In Fig. 10 the
,

α 13N

(C
α 13C )2 ratio is calculated using the Wron-744

skian Eq. (72) and the simple Eq. (75). The asymptotic value745

of the ratio is
,

α 13N

(C
α 13C )2 = 4.48 × 10−178. The value of the746

,
α 13N

(C
α 13C )2 at the border of the internal region Rch = 5.2 fm is very747

close to its asymptotic value. Equation (75) gives
,

α 13N

(C
α 13C )2 =748

4.55 × 10−178. Taking into account the adopted value of749

the ANC Cα 13C and the experimental ratio
,

α 13N

(C
α 13C )2 = 4.48 ×750

FIG. 10. The
,

α 13N
(C

α 13C
)2 ratio for the resonance state 17F(1/2+) and

the mirror bound state 17O(1/2+): the solid red line is the
,

α 13N
(C

α 13C
)2

ratio as a function of Rch calculated using Eq. (72), and the blue
dashed line is the

,
α 13N

(C
α 13C

)2 ratio calculated as a function of Rch using

Eq. (75).

10−178 one obtains from the Wronskian ratio the resonance 751

width ,α 13N = 4.48 × 10−178 × 4.4 × 10169 × h̄ c = 3.9 eV. 752
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APPENDIX 757

In this Appendix it is shown that the Zel’dovich regulariza- 758

tion procedure can be used for normalization of the resonance 759

wave function ukplB (r) both for exponentially decaying poten- 760

tials and potentials with the Coulomb tail. The normalization 761

of the resonance wave function depends on its tail. Taking into 762

account Eq. (13) it is enough to consider the integral 763

I (β, ν, z) =
∫ ∞

0
dr e−β r2

ez r rν . (A1)

Here, z = 2 i kaA(R) r = 2 i kaA(0) r + 2 ImkaA(R) r. It is as- 764

sumed that kaA(0) > ImkaA(R), as it should be for physical 765

resonances. Then Rez2 < 0. Also 766

ν = − 2 i η(R)
aA = −2i

γ

kaA(0) − i Im kaA(R)

= − 2 i
γ kaA(0)

k2
aA(0) + (ImkaA(R) )2

+ 2
γ ImkaA(R)

k2
aA(0) + (ImkaA(R) )2

,

(A2)

γ = Za ZA µaA/137. Thus, one can see that for the repul- 767

sive Coulomb potential Reν > 0 using Eq. (3.462.1) from 768
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Ref. [36] one gets769

I (β, ν, z) = ,(ν + 1) (2 β )−(ν+1)/2 ez2/(8 β ) D−ν−1(−z/
√

2 β ).
(A3)

Here Dσ (x) is the parabolic cylinder function. For Rez2 < 0770

using Eq. (9.246.1) from Ref. [36] one gets771

I (0, ν, z) = lim
β→+0

I (β, ν, z) = ,(ν + 1) (−z)−ν−1. (A4)

Thus, the regularization procedure used by Zel’dovich is ap-772

plicable and for the physical resonances kaA(0) > ImkaA(R) the773

integral in Eq. (A1) does exist and converges in lim β → +0.774

Let me consider now the integral 775

IR(β, ν, z) =
∫ ∞

R
dr e−β r2

ez r rν . (A5)

Integrating it by parts one gets 776

lim
β→+0

IR(β, ν, z) = −Rν

z
ez R

[
1 − ν

z R
+ O

(
1

z2 R2

)]
. (A6)
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