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Asymptotic normalization coefficients (ANCs) are fundamental nuclear constants that play an important role
in nuclear reactions, nuclear structure, and nuclear astrophysics. In this paper a connection between ANCs and
resonance widths of the mirror states is established. Using the Pinkston-Satchler equation the ratio for resonance
widths and ANCs of mirror nuclei is obtained in terms of the Wronskians from the radial overlap functions
and regular solutions of the two-body Schrodinger equation with the short-range interaction excluded. This ratio
allows one to use microscopic overlap functions for mirror nuclei in the internal region, where they are the most
accurate, to correctly predict the ratio of the resonance widths and ANCs for mirror nuclei, which determine
the amplitudes of the tails of the overlap functions. If the microscopic overlap functions are not available one
can express the Wronskians for the resonances and mirror bound states in terms of the corresponding mirror
two-body potential-model wave functions. A further simplification of the Wronskian ratio leads to the equation
for the ratio of the resonance widths and mirror ANCs, which is expressed in terms of the ratio of the two-
body Coulomb scattering wave functions at the resonance energy and at the binding energy [N. K. Timofeyuk,
R. C. Johnson, and A. M. Mukhamedzhanov, Phys. Rev. Lett. 91, 232501 (2003)]. Calculations of the ratios
of resonance widths and mirror ANCs for different nuclei are presented. From this ratio one can determine the
resonance width if the mirror ANC is known and vice versa. Comparisons with available experimental ratios are

done.

DOI: 10.1103/PhysRevC.00.004300

I. INTRODUCTION

The asymptotic normalization coefficient (ANC) is a fun-
damental nuclear characteristic of bound states [1,2], playing
an important role in nuclear reaction and structure physics.
The ANCs determine the normalization of the peripheral part
of transfer reaction amplitudes [1,2] and overall normaliza-
tion of the peripheral radiative capture processes [3—6]. In
the R-matrix approach the ANC determines the normaliza-
tion of the external nonresonant radiative capture amplitude
and the channel radiative reduced width amplitude [7-9]. In
Refs. [10,11] relationships between mirror proton and neutron
ANCs were obtained.

Pairs of nuclei By and B, are mirror nuclei if the number of
protons Z; of nucleus B; equals the number of neutrons N, of
B; and the number of protons of B;, Z,, equals the number of
neutrons N; of Bj, such that the mass number of both nuclei
is the same (A = N; 4+ Z; = N, + Z,). The experimental data
from mirror nuclei show charge symmetry of the nuclear
force. It is assumed that charge symmetry rather than full
charge independence is involved because mirror nuclei have
the same number of p-n pairs.

However, the ANCs are important characteristics not only
of the bound states but also of the resonances (see Ref. [9]).
The width of a narrow resonance can be expressed in terms
of the ANC of the Gamow wave function or of the R-matrix
resonant outgoing wave. That is why the relationship between
the ANCs of mirror bound states [10,11] can be extended to
the relationship between resonance widths and ANCs of the
mirror nuclei. The calculated resonance widths and the ANCs
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themselves depend strongly on the choice of the nucleon-
nucleon (NN) force but the ratios of the resonance widths and
the ANCs for mirror pairs should not depend on the choice
of the NN force. This observation is based thus far entirely
on the calculations using detailed models of nuclear structure.
It follows naturally as a consequence of the charge symmetry
of nuclear forces. Mirror nuclei have the same quantum num-
bers of mirror states (for more detailed discussion of mirror
symmetry see Ref. [12]).

Another important feature of the mirror nuclei for the
present paper is a similarity of the internal mirror wave
functions. Let us consider a mirror pair in a two-body potential
model, which is used in the present paper: B; = (a1A) in the
resonance state and the loosely bound nucleus B, = (a»A»).
The mirror resonance state is obtained by the replacement
of one of the neutrons by a proton. The additional Coulomb
interaction pushes the bound-state level into a resonance level.
The resonance and binding energy of the mirror states are
significantly smaller than the depth of the nuclear potential.
The Coulomb interaction is almost a constant in the nuclear
interior. Hence, in the nuclear interior, where all that matters
is to determine the ratio of the resonance width and the ANC
of the mirror state, the radial behavior of the mirror wave
functions is very similar and they differ only by normalization.
In the external region the resonant and bound-state wave
functions differ.

The first attempt to relate the resonance width and the ANC
of the mirror nuclei was done in Ref. [10]. In this paper,
the relationship between the resonance widths and the ANCs
is established based on the Pinkston-Satchler equation used

©2019 American Physical Society
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in Ref. [11] for the ANCs of the mirror bound states. The
obtained ratio of the resonance width and the ANC of the
mirror bound state is expressed in terms of the ratio of the
Wronskians containing the overlap functions of the mirror
resonance and bound states in the internal region where the
radial behavior of the mirror overlap functions is very similar
and can be calculated quite accurately using an ab initio
approach. If these overlap functions are not available, as an
approximation they can be replaced by the mirror resonance
and bound-state wave functions calculated using the two-body
potential model with the same potentials for the resonance
and bound states. Assuming that the radial behavior of the
mirror resonant and bound-state wave functions is identical in
the nuclear interior one can replace the Wronskian ratio for
the resonance width and the ANC of the mirror bound state
by the equation derived in Ref. [10], which does not require
a knowledge of the internal resonant and bound-state wave
functions.

Connection between the ANC and the resonance width
of the mirror resonance state provides a powerful indirect
method to obtain information which is unavailable directly.
If, for instance, the resonance width is unknown it can be
determined through the known ANC of the mirror state and
vice versa. For example, near the edge of the stability valley,
neutron binding energies become so small that the mirror
proton states are resonances. Using the relationship between
the mirror resonance width and the ANC the resonance width
can be determined. Also loosely bound states & + A become
resonances in the mirror nucleus « + B, where charge Zge >
Zpe. Using the method developed here one can find one of
the missing quantities, the resonance width of the narrow
resonance state or the mirror ANC. In what follows the system
of units in which /i = ¢ = 1 is used throughout the paper.

II. ANC AND RESONANCE WIDTH
A. ANC as residue of S matrix

The ANC enters the theory in two ways [1]. In the scat-
tering theory the residue at the poles of the elastic scattering
S matrix corresponding to bound states can be expressed in
terms of the ANC:

bs .
Js kaa—> Koy Alg JjB (1)
I jBilp jB k— ik
with the residue
Jg o _ __2Ig+1 Limnl (B 2
Alm = —i e (CaAIBjBJB) . 2)

Here, C2, i»s 18 the ANC for the virtual decay of the bound
state B(aA) in the channel with the relative orbital angular
momentum /g of a and A, the total angular momentum jp of
a, and total angular momentum Jg of the system a + A; k4 is
the relative momentum of particles a and A. Here

s ZaZa € Waa

=ZetAt Ta 3
NaA Kan ( )

is the Coulomb parameter for the bound state B = (aA),
Kaa = /2 [Laa Eaa 18 the bound-state wave number, eg = m,, +
my — mp is the binding energy for the virtual decay B —
a+ A, Z; e and m; are the charge and mass of particle i, and

Waa 1s the reduced mass of a and A. Note that singling out the
factor /™ 1 in the residue makes the ANC for bound states
real.

Equations (1) and (2), which were proved for the bound
states in Refs. [13—18], can be extended for resonance states.

B. Connection between ANC and resonance width

The proof of the connection between the residue in the
resonance pole of the elastic scattering S matrix and the
ANC of the resonance state is not trivial. In this section a
general proof is presented of the connection of the residue
in the pole of the Sj,(k,4) matrix element with the ANC,
which is valid for both the bound states and resonances. The
potential is given by the sum of the short-range nuclear plus
the long-range Coulomb potentials. Taking into account that
the residue of the elastic scattering S matrix in the resonance
pole is expressed in terms of the resonance width, one can
obtain a connection between the ANC and the resonance
width.

One considers two spinless particles a and A with relative
momentum kgA = 2 tqa Eqa, relative energy E,q, and the re-
duced mass pg4 in the partial wave [z at which the system
B = a + A has a resonance or a bound state. The radial wave
function ¥y, (r) = ”k+5(r) satisfies the Schrodinger equation
in the partial wave Ip:

02Uk, 01, (r)
T uy,,1,(r) = 0.

“4)

Here V(r) = VN (r) + VC(r), VN (r) is the short-range nuclear
potential, and VC(r) is the long-range Coulomb one. For
potentials satisfying the condition lim,_.o 7>V (r) — 0,

r— 0. (5)

Is(ls + 1
+ [kgA —2uaaV(r) — B(B—;r)}
.

Iy+1
Wity (r) ~ rPHL

Now one should take the derivative over k,4 from the
left-hand side of Eq. (4), multiply the result by uy,,, (1),
and subtract from it Eq. (4) multiplied by duy,,;,(r)/0kaa.
Integrating the obtained expression from r = 0 until » = R
and taking into account Eq. (5) one gets

k 1 [ Oug,,1, (R) ug,,1, (R)
/ i) = 3 [ i, IR
0 aA aA

U1, (R)
ks OR

Taking R so large that u,;,(R) can be replaced by its
leading asymptotic term, one gets the elastic scattering wave
function

— Uk,u15(R) (6)

MkaAIB(R) _Z Clﬂ[eiﬂ _ (_1)13 S[;l(kaA)e—ip]’ (7)
where p = ksaR — 144 In2kgaR,  naa = Z“Zf;(iﬂaA s the
Coulomb parameter of the a 4+ A system,

Sy, (kan) = 2110 (kan )+ (o)) ®
B a. _

is the elastic scattering S-matrix element, Gzi(kaA) and
(SICBN(kaA) are the Coulomb and Coulomb-modified nuclear
scattering phase shifts in the Izth partial wave, and Cj, is a
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constant, which is in the pole of the S-matrix and is related
to the corresponding ANC Cj, [see Egs. (14) and (15) below].
Note that the scattering wave function u,;, at large R at real
momentum k.4 contains ingoing and outgoing waves and is
not normalizable in the entire space.

Assume that the elastic scattering S;, (kq4 )-matrix element
has a first order pole at k,4 = k, with the residue A;, cor-
responding to the bound state k, = i k44 or to the resonance
kp = kaiar) = kaa 0) — Imkaa (r), where ks 0) = Rekua (r):

Sip(kaa) = + 81, (kaa), 9

Ay,
koa — kp
where g, (ka4 ) is a regular function at k.4 = k.

Substituting Egs. (7) and (9) into the right-hand side of
Eq. (6) and performing the differentiation over k,4 and R and
taking k.4 = k, one gets

R .
/ dr u]%plﬁ(r) = i(_l)lBJrlCli/AlB b eirn. (10)
0

2k,
Here p, = k,R — n, In(2k, R). On the left-hand side under
the integral sign one has the function u,%p s (r), which is regular
at r = 0 [see Eq. (5)].
Note that at the pole k.4 = k), Slgl(kp) =0, and one can
see from Eq. (7) that in the external region the wave function
uy,1, (R) satisfies the radiation condition

uy, 13(7) > Gy e (1T)
For the bound state k, = i k.4 and
r>R,
Uity (1) =" Gy, W 151122 kp 1)
"Q’O G e Ko r=n% In(2kqa 1) (12)
B ’

where Ry is the a — A nuclear interaction radius. For the

resonance state k, = kqar) and u,, 1, (r) is the resonance

Gamow wave function with the resonance energy E 4(r):

r>RN

Wkl (T) Cis Wiy 1s12(=2 1 kaary 1)

r—00 R) . .
e ™ n /2 Clgel kaary r—i 1% In2 kaacwy 1)

o . R
— CIB ¢ kaar) r—i 130 1n(2 kaary r). (13)

2 .
ZuZa¢ Mar s the a + A Coulomb parameter of

R) _
Here, Naa kaA(R)
the resonance.

The constant €, is related to the ANC C;, as Cj, =

ZaZp & pan
kp

e ™ M/2Cy,, where n, = . For the resonances one has

G, =e "2 C, (14)
and for the bound states
C, ="/ C,. (15)

Note that C,, which is real for the bound states, is the standard
definition of the ANC for the bound states and is used in this
paper for the bound states.

For the bound states the asymptotic of the bound-state
wave function is exponentially decaying and the bound-
state wave function can be normalized. The Gamow wave

function of the resonance state asymptotically oscillates and
is exponentially increasing. To normalize the Gamow wave
function one can use the Zel’dovich regularization procedure
[17], which is a particular case of the more general Abel
regularization:

o0

lim dre " u,%aA(R)ZB =1 (16)

B—>+0 Jo
For the bound state one can take under the integral sign
B = 0 and obtain the usual normalization procedure. For the
resonance state one can take the limit B — O only after per-
forming the integration over r. Note that Zel’dovich normal-
ization was introduced for exponentially decaying potentials.
In the Appendix it is shown that the Zel’dovich regularization
procedure works even for the Coulomb potentials.
For any finite R one can rewrite Eq. (16) as

R 00
2 : -2 2 _
/0 dr g, 1,1+ ﬁlirgo /}; dre Uiyl () =1
an

Assume that R is so large that one can use the asymptotic
expression (11) and Eq. (A6) of the Appendix. It leads to

R
2 _
'/(; dr ukaA(R)lB(r) -

Comparing Egs. (10) and (18) one arrives at the final
equation, which expresses the residue in the pole of the elastic
scattering S-matrix in terms of the ANC:

C2 21,0[,

(18)
T2 kaA(R)

20+ 2
Al = —1 Clg'

B

19)

Equation (19) is universal and valid for bound-state poles and
resonances. In terms of the standard ANC C;, the residue in
the resonance pole is

R T C2
B lg

(20)

and for the bound state it is given by Eq. (2).
Now it is shown how to relate the ANC C,, to the resonance
width "' ,4. Here the following definitions are used:

Eaa®) = koag)/ (2 tar) = Earoy — iTaa/2,
Eaa0) = [kczzA(O) — (Imkaar))*]/(2 tan),

LCaa = 2 kaao) Imkaar)y/ taa- (21)
One can write
ot (kga + kp)kga — k%)
Siyhan) = 210 LT P (22)

(kan — kp)(kar +K3)’

where (Sp is the nonresonant scattering phase shift. At k, =
kaA(R) and at kyq — kaA(R)

Al (k) = = 2ikaary v [A +yHY* + (1 4+ y*H) 74!

ei[z 5;;" (kaa(ry)—1/2 arctan(y )], (23)

Y =3 EaA(O Equation (23) expresses the residue of the S-

matrix elastic scattering element in terms of the resonance
energy and the resonance width for broad resonances.
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Recovering now all the quantum numbers one gets for a
narrow resonance (y < 1) up to terms of order ~y

- o sp r ;
(CB . )2 = 7218 o120y jy sy Karo)) Hat ~ alyjply 24)
aAlg jpJp k AQ) )
a.

Where'FaA I js Jg 18 the resonance width and (Sl’; in s (kBA) is the
potential (nonresonance) scattering phase shift at the real res-
onance relative momentum kg4 (o). This equation is the desired
equation, which relates the ANC of the narrow resonance to
the resonance width.

The residue in the resonance pole with all the quantum
numbers recovered is

Jg _ _ 2Ip+l (B 2
AlBjB =1 (CﬂA[BjBJB) .

(25)

For the Breit-Wigner resonance (Imkg4 (r) < Rekga () =
kaa (0)), Eq. (25) takes the form

Jp

— _2l+1 —m, B 2 2ip+l B 2
Ig jB = e o (C ) i (Ca ):

- aAlg jgJg) Alg jgJg

(26)

where 1ga0) = Za Za €* ttaa/kaa (0)- In terms of the resonance
width the residue of the elastic scattering S-matrix element in
the resonance pole is

B e,

) ie2 100y iy ap Kkan) _Haa
Ipjp

Caatyjpis- 27)

kaa ()

III. ANCs AND OVERLAP FUNCTIONS

Equations obtained in the previous section, which express
the residues of the S-matrix elastic element in terms of the
ANC:s of the bound states and resonances, provide the most
general and model-independent definition of the ANCs. From
other side, in the Schrodinger formalism of the wave functions
the ANC is defined as the amplitude of the tail of the overlap
function of the bound-state wave functions of B, A, and a. The
overlap function is given by

IaA(raA) = (1//‘0|§0B(€Av Sav raA))
= D (aMa jom, | sMp)(JuMy Lgmy,| jsm;,)

lgmyy jemjg

X Yle,B (FaA ) IaA Igjp Jg(raA ) (28)
Here
Yo = Z (JaMy jpm,|JeMp){J M, lgmy, | jpm )

ijmIBMAM”

X Aar{9a(En) @aEa) Yigm, Fun)}

is the two-body a + A channel wave function in the jj
coupling scheme, (jim; jama|jm) is the Clebsch-Gordan
coefficient, A,4 is the antisymmetrization operator between
the nucleons of nuclei a and A, ¢;(&;) represents the fully
antisymmetrized bound-state wave function of nucleus i with
&, being a set of the internal coordinates including spin-isospin
variables, and J; and M; are the spin and its projection of
nucleus i. Also r,4 is the radius vector connecting the centers
of mass of nuclei a and A, T4 = Taa/Vua, Yiym, (fpq) is the
spherical harmonics, and I, 4,7, (ras) is the radial overlap
function. Notations of the spins and angular momenta are

(29)

given in Sec. I A. The summation over /g and jp is carried
out over the values allowed by the angular momentum and
parity conservation in the virtual process B — A + a.

The radial overlap function is given by

Laa 137535 (Faa)

= <AaA {QDA(SA)(Pa(Ea)YIBm,B (faA)H (/)B(?;:A’ Ea; raA))

= (12) 2 ((pA (EA) (pa(ga) Ylg myy (faA)| QOB(SA, Sa; raA))-
(30)

Equation (30) follows from a trivial observation that, because
op is fully antisymmetrized, the antisymmetrization operator

A

Aua can be replaced by the factor (’2)%. In what follows, in
contrast to Blokhintsev ef al. [1], I absorb this factor into the
radial overlap function.

The tail of the radial overlap function (r,4 > R,4) in the
case of the normal asymptotic behavior is given by

W_, s

—nl, 13+1/2(2 KaATaA)

B
Laa 1y ju g5 (Tan) = Cap ity ju 1 p
aA

bs
—KaATar— In(2 kqar,
Fan—> 00 e KarTar = Ngy (2 kaaTan)

= Ca

IpjpJB Fad €2))

Formally the radial resonance overlap function for the
Breit-Wigner resonance in the external region (7,4 > R,4) can
be obtained from Eq. (31) by the substitution k4 = —i kua (Rr):

Laa 1y jy 7y (KaA(R)s Tan)

W*”I;?q lB+1/2(_2 i kaa (R)raA)

_ B
- CaA g jgJp (32)
TaA

ik raa—in In(=2ik, Far)

raa—> 0 B e kaa (R) Taa—= i1 4A(R) TaA
aAlgjp]
5B Far
B el karR) Taa— i ﬂyj) In(2 kaa (R) Tar)

= Canlyjsls (33)

TaA

This asymptotic behavior agrees with the asymptotic behavior
of the resonant Gamow wave function given by Eq. (13).

IV. R-MATRIX WAVE FUNCTIONS

Because the microscopic overlap functions for mirror res-
onances and bound states are not available, in this paper I use
internal resonance and bound-state wave functions calculated
in the the potential model. If the mirror symmetry holds,
the bound-state and resonance wave functions of the mirror
states should be very similar in the internal region where the
resonance wave functions are real. However, both wave func-
tions differ in the external region where the bound-state wave
functions exponentially decrease while the resonance wave
functions at the resonance energies exponentially increase
(see Sec. III). In the Wronskian method, which is developed
in this paper, one needs the wave functions in the internal
region in which it is very convenient to use the R-matrix
method. In the R-matrix method the resonant wave functions
are normalized to unity in the internal region. The border
of this region is determined by the point at which the radial
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derivative of the internal resonant wave function is equal to
zero. If the resonant wave function has a few nodes, the border
of the internal region is determined by the last point at which
the radial derivative of the resonant wave function vanishes.
To make the bound-state wave functions close to the resonant
wave functions the former are also renormalized to unity in
the internal region.

In the R-matrix approach the resonant wave function is
considered at the real part of the resonance energy Eq (o). In
this approach the internal wave function at real energies is real
and behaves similarly to the bound-state wave function of the
mirror state. At the R-matrix channel radius Ry, and E 4 =
E,4( the internal wave function coincides with the external
one and is proportional to the outgoing wave O, (kaa(0), Ren)-
Below I present the internal and external R-matrix wave
functions considering the single-level, single-channel case.
Again, for simplicity, the particles are assumed to be spinless.

I start from the external R-matrix wave function at the
partial wave /g, which is given by [11,19]

.l A ~
Xl;em)(+)(kaA’ raA) =1 stl _— YI:mIB (kuA) YIB miy (raA)

kaa Tan

X [, = Si, Ot (kan, ran)]. (34)

where

S, = e 2l [ 1 4+ Lr (35)

is the elastic scattering S matrix at E, 4 near the real resonance
energy Eqa)- O’Ig is the Coulomb scattering phase shift and

81};5 is the R-matrix hard-sphere scattering phase shift:

o200 Gy (kaa, Ren) — i Fiy(kaa, Ren)

= . , (36)
GZB (ka s Rch) + lFlB (ka s Rch)

Fiy(kaa, raa) and Gy, (kaa, rqa) are the regular and singular
Coulomb solutions, and R, is the R-matrix channel radius.
The outgoing wave is given by

Oty (kaa, Tan) = (Giy Ghats ran) + i Fiy (kans ran)) € . (37)

Atr, = Ry

i[8hs —g€
Oy (ko Re) = ¢ ’B]\/Bﬁ(kaA,Rch)+G%B(ka , Ren).
(38)

Oy, (kaa, rqa) can be expressed it terms of the Whittaker
function:

O, (kaas Tapn) = i7" ™2 W_ 11 0(—2i kaa Tan). (39)

Atrga =Ry, and E y = EaA(())

4

XD (kaa0) Rep) =i+ ————
s “ ka0) Ren

672 ' [(Slht; 7012] Yl: my
x (Kaa0)) Yiy m,E(ﬁch) Oy, (kaa(0), Ren)-
(40)

The R-matrix internal resonant wave function in the partial
wave Ig, in which the resonant is present, at energy E 4 near
the resonance is given by

i 27 k. A 18hs _5C N
+ J —i[§h—
le:m)( )(kuAs raA) =i* k A T MaA e il 8 G,B] Yl:ng (kaA)
a. a. a.
12
A FIE
X Y/gm,B (raA) T,
ER — EaA — ITB
X @™ (kan Tan). (41)
The R-matrix internal resonant wave function

¢>l(;m)(kaA, 7a4) can be found as a solution of the Schrédinger
equation with the two-body Woods-Saxon V,4 potential.
The R-matrix method is used below for mirror resonance
and bound states. I consider the loosely bound states which
become the mirror resonances by replacing one of the
neutrons by a proton. The considered binding energies
and real energies of the mirror resonances are significantly
smaller than the depth of the potential. That is why both
mirror solutions of the Schrédinger equation should be very
similar in the internal region where both solutions are real.
At rsa =Rey and Eg = Egu) [see Eq. A(10); from
Ref. [11] in which the reduced width amplitude should be
expressed in terms of the resonance width] it follows that

. Maa U, _jsis_oc
¢ (kar o), Ren) = N # ™ %! Oy, (kaa(0) Ren)-
aA(0)

42)

Thus at the real part of the resonance energy E,4 = Eqa()

and r,4 = Ry, the internal radial wave function d)l(;"t)(RCh) is
proportional to the outgoing wave Oy, (kua(0), Reh). Equation
(42) also follows from the matching of the internal and
external wave radial wave function (see below).

Taking into account Eq. (24) and that in the R-matrix
approach the potential scattering phase shift is §;, = —(8;}: -

85 one gets

¢l(;m)(kaA(0)7 Ren) = Ciy W_inyonds+172(=2 i kaaoy Ren),  (43)

_ ZiZpé pan
NaA©0) = kaac0)

At rsa = Ren and Egy = Eq4(0) One gets

4 o200t
kaA YaA
" N A
X Y]B my, (kaA) YIB my (Rch)

x O, (kaa0)> Ren)-

X (Kgp0), Rep) =i

(44)
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Thus at r,4 = Ren and E 4 = Ez4(¢0) one gets matching of
the internal and external R-matrix wave functions,

X Pka0), Ren) = X ™ P ka0, Rap). (45)

and both wave functions are proportional to the outgoing wave
OIB (kaa,s Ren).

One can the radial overlap function
Lo 1 jy 75 (kaa), Ren) in terms of the outgoing wave
Oy, (kaa(0), Ren) and the Whittaker function:

write

Lia 1y s 15 (kaa0ys Ren)
Oy, (kaa0), Ren)

_ (B :lp
- CLIA g jJp ! Rch
Tan —itst—o] Oty (Kaa0)> Ren)
= k FaA lgjg./g e B B R
aA(0) ch
_ b Wit s+172(Kaay, Ren)
— “aAlg jeJs R
ch
. — [ —o€ Haa
= 78 o7 1P o Nu0/2 Coatyjuts
kaa)

W inanoy la+172(kaa0)Ren)
Rch '

As one can see, the resonant radial overlap function calcu-
lated in the R-matrix at the channel radius r,4 = R, and
Eqn = Euu is proportional to the the square root of the
resonance width. It is convenient to use the R-matrix method
to determine the ratio of the resonance width and the bound-
state ANC of the mirror states using the Wronskian method
developed below.

(46)

V. CONNECTION BETWEEN BREIT-WIGNER
RESONANCE WIDTH AND ANC OF MIRROR
RESONANCE AND BOUND STATES FROM
PINKSTON-SATCHLER EQUATION

A. ANC and Pinkston-Satchler equation

In Ref. [11] the relationship between the mirror proton
and neutron ANCs was derived using the Pinkston-Satchler
equation [20,21]. Here I extend this derivation to obtain the

J

The source term is given by

2

mjmy MaM,

QlBjBJaJAJB (raA) =

1/2
X (2) / dQI‘uA (‘pa(éa) wA(EA)|VuA - U[Sq |Yl:m’B (FaA)\I'l(%‘a’ EA; raA)>-

The integration in the matrix element {(¢,(&,) a(4)|Vaa — U, aCA|

internal coordinates of nuclei ¢ and A.

Owing to the presence of the short-range potential operator V4 —

Y*

lgmyy

ratio for the resonance width and the ANC of the mirror bound
state in terms of the Wronskians, which follows from the
Pinkston-Satchler equation.

First, using Pinkston-Satchler equation I derive the equa-
tion for the ANC of the narrow resonance state, which con-
tains the source term [6,22]. This derivation is valid for both
bound and resonance states. That is why following [11] I start
from the Schrodinger equation for the resonance scattering
wave function at the real part E,4(o) of the resonance energy:

(E(O) — L —T,—Tiu—Va—Va— VaA)\I](%-Ay éa; Taa) = 0.
47)

Here, T, is_the internal motion kinetic energy operator of
nucleus i, T,4 is the kinetic energy operator of the relative
motion of nuclei a and A, V; is the internal potential of nucleus
i and V4 is the interaction potential between a and A, and
Ey = Equ0) — €4 — €4 15 the total energy of t/l\le systema + A
in the continuum. The operator Eqy — Ty — Ty, — Tya — Vo —
Vi — Vua in Eq. (47) is symmetric over the interchange of
nucleons of a and A, while W(&,, §4;1,44) 1S antisymmetric,
and ¢; is the total binding energy of nucleus i. Hence, by
multiplying the Schrodinger equation (47) from the left by

>

Mg mip MaM,

X (JuMy lgmy, ‘ Jjmj,) Yl:m:B (Taa) @a(6a) a(&a),

(JaMa jpm;,|JsMi)

(48)

where the antisymmetrization operator A, in Eq. (48) is
replaced by (1)!/2, one gets the equation for the radial overlap
function with the source term Qy, j, .75 (Taa) [22]:

. . c\ B
(EaA(O) -1, - Vl;entr - UaA) La Ig js Jp (raa)

= Ol jpluists (Tad)- (49)

Here T, , is the radial relative kinetic energy operator of the
particles a and A, and V,Ze“” is the centrifugal barrier for the
relative motion of a and A with the orbital momentum /. For
charged particles it is convenient to single out the channel
Coulomb interaction U(g,(raA) between the centers of mass of
nuclei @ and A.

(JAMA ijjB |JBMB>(JuMa lelg |j3m<i8>

(50)

(Taa)W(E,, Ea5T04)) in Eq. (50) is carried out over all the

US, (potential V4 is the sum of the nuclear VY and the

Coulomb VS potentials and subtraction of US removes the long-range Coulomb term from V,4) the source term is also a
short-range function. Then Eq. (49) for the radial overlap function can be rewritten as

Laa 1y jy 1y (Kaa0) Tar) =
RaA

Raa
c )
/ drup Toa Gi (Faas Toas Eaa)) Qi jssndnds (Top)»
0

(G
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where R4 is the a — A nuclear interaction radius. In the R-matrix approach R 4 can be replaced by the channel radius R.,, which
can be varied.

Equation (51) is of fundamental importance because it allows one to express the radial overlap function in terms of the internal
wave function of the nucleus B.

The partial Coulomb two-body Green function is given by [23]

C
%i(ka ’ raA<)le(+)(ka ’ raA>)
7€ ’

Ip

Glct;(raAv r(/lA;EaA) = —2 laa (52)

where 744 < = min {rga, 7/} and r,4~ = max {ra, r,,}. The Coulomb regular solution <pICB (kga, raa) of the partial Schrodinger
equation at real momentum k.4 is

1 _ _
@y (kan- Tar) = T (L3 7 han) £, kans 1an) = L (kan) fi5 7 hans ran)]

=yl gikanrin B (Ip 14 inaa, 21p + 25 21 Kot Taa)

i ~C
1l Flg(ka B raA)

— o iTis/2 LIC(-‘r)(kuA) ¢ , (53)
s kaA
where
o€ _ L+ 1+ inam) ; ) )
s Fiy (kaas Tan) = € 710/ =2 L (D ke rgn) BT R By Ly 1 i, 215 4 25 —i 2 kaa Tan), 54
e 1s(Kaas Tan) = € T2l 12) Qkaaraa)*™ e 1Fillg + 1+ in4, 210 + i2kap Tan) (54
oli is the Coulomb scattering phase shift. Also
f,f(i)(ka cTaa) = €N Wain 112 (F2 ika Tan) (55)
are the Jost solutions (singular at the origin r,4 = 0),
LEBE () = o granf2 grinta2 TRl +2) (56)
s (2kan)'e Ll +1£in.,)
are the Jost functions.
It is convenient to introduce the modified Coulomb wave function
c
~ (pg(ka ) VaA)
5 (kans Tan) = — (57)

Ly P (kan)

which will be used from now on instead of <pli (kaa, Tan).
Let me use now the R-matrix method in which I replace R,4 by Ry. Then assuming in Eq. (51) r,4 = Ry + 0 and taking
into account Egs. (46) and (55) one gets

Ren
~ Iy —i[8—oC MaA ~C
G, =i e %! | fro Catlyjnly = 2 Haa /0 droy o @ (kaa)s Tan) Qiyjudadain (Faa)- (58)
a.

Using Eqgs. (53) and (57) one gets

—is MaA ) MaA

e FaA lgjgdp —

Rch
/ dr Vo Fiy (kaao)s Top) Oy jstaiass (Fua)- (59)
0

kaa(0) kaa(0)

This equation provides the ANC or resonance width of the narrow resonance, which may depend on the channel radius R.
Here I am interested in the ratio of the resonance width and the square of the ANC of the mirror resonant and bound state. The
sensitivity of this ratio to the variation of the channel radius is checked below.

B. ANC in terms of Wronskian

The advantage of Eq. (59) is that to calculate the ANC one needs to know the microscopic resonant wave functions only
in the nuclear interior where the ab initio methods like the no-core shell model [24-26] and the coupled-cluster method [27]
are more accurate than in the external region. That is why Eq. (59) is so important if microscopic resonant wave functions are
available. Now I show that the radial integral in Eq. (59) can be transformed into the Wronskian at r,4 = R,4. The philosophy
of this transformation is the same as in the surface integral formalism [5,11].

004300-7
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First, let us rewrite

VaA _ Ucfax =V 4+ V[;entr _ Va _ VA _ Vl;entr _ UaC/:l (60)

and take into account the equations

(Earoy — To — Ta — T,,) @, (kancoy, Tan) @aa) 9aEn) = (UG + VE™ + Vi + Vi) @5, (kaaoys Tan) @a(€a) 0a(En) (61)

and

(Earoy — To = Tx = T,) (Yigm, Fan) [ W (Ear €4 Tan) = (Vaa + Va4 Va + V™) (Vigm, Fat) | W(Ear £n5 Taa),  (62)

where f}aA is the radial kinetic energy operator.
Then we get

RaA
=B ~ ~C
Carty jyay = — 2 an [0 draa raa @1, (Kaa©ys Taa) Oy jsdodpds(Taa)

1/2 rRu
. . A ~
=— 2 laa E (JaMy jomy, |JsMp)(JuMo Ipmy,| jsm;,) (a) / dran ran @5, (Kaa0)s Tar)
m,-BrmBMAM,z 0

< < < = =
x /dszrm (0 paGO| T 1y + Tut Ta=T o= Ta— T, Y, Fur) V0 5a3Tw))

== 2kar Z (JaMy jomj, |JsMp)(JuMo lpmy,| jsm;,)

mjpmg MaM,
A7 (R < 0z
X ((l) / draA TaA @lﬁ (kuA(O)y raA) / d QrL,A <(pa(€a) (PA(SA)| T TaA T TaA |Y1:m,B (r\uA)\Ij(‘i:uv éA; raA))
0
Raa c <« —
=— 2 daa / draa raa @y (kaa©ys Taa) (T vy = T 11) Laa 1y jysn (Kar0ys Taa)- (63)
0

Here R4 is the a — A nuclear interaction radius. In the R-matrix approach R,4 can be replaced by the channel radius R, which
can be varied.
Taking into account that

«2 2
f@ | o5 - % gl = % (g(x) d’;(;) - f dff;”) (64)
we arrive at the final expression for the ANC of the resonance state in terms of the Wronskian:
Cortyints = Wan 15 js 15 kan0)s Tan): @5, (kan(0)» raA)]|,.aA:RCha (65)
where the Wronskian
W[ Laa 1y ju 1y (ran)s @5, (kan)» )]
Lot G o) M 5 Ghantos 7an) dlat ty jo 3n Kar), Tar) 66)

draA draA

I would like to underscore that Eq. (65) was derived by transforming the internal integral into the Wronskian at the channel radius
Rch. Note that at too small radii R, the Wronskian W[ Lua 1, j, 7, (Taa), (7),2 (kaa(0)> 7a4)] depends on the radius but the sensitivity
to the radius decreases as R, increases.

There is another more direct derivation of Eq. (65). We know that the Wronskian calculated for two independent solutions of
the Schrodinger equation is a constant [23]. In the R-matrix approach the internal radial overlap function Iu4 y, j, 7, (kaa(0), 7aa) at
r.a — Ren behaves like the Whittaker function [see Eq. (46)] and is given by

c+
f;B( ) (kaa0)» Tar)

R (67)

~B
Laa 1y jy 15 (kan©)s Tan) = Couiy jy 1y

004300-8
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This Whittaker function is a singular solution of the
radial Schrodinger equation. <7)lc(kaA(0), rga) 1is an inde-
pendent regular solutlon of the same ec%uatlon Taking
into account that W[ fz +)(kaA(o), Tad), sz (kaa(ys Tan)l =
—2i ka0 and Eq. (53) one gets at r,4 = Ren

= CIfA g jpJp"

(68)

W[ Laa 1y s 15 Kar0)s Tan) ‘Z’Ii (kar0)s ran)]|

TaA=Rcn

Note that the constancy of the Wronskian only applies to local
potentials. But here one needs this only at large distances,
where zero potentials are local anyway.

I demonstrate that the Wronskian

(Ka(0)+ Tar), @, (kanoys Ta)ll
reaches a constant value, Wthh is equal to the ANC of the
resonance state, when R, increases.

My idea is to use Eq. (65) to calculate the Wronskian
Wllaa 15 jis 15 (Kar0)> Tar)> @5, (Kaao)» ra)ll _, at the chan-
nel radii which are smaller than the radlus of nucleus B =

(aA), and gradually increase R, until the Wronskian reaches
its constant value. In the nuclear interior the contemporary

J

W[[(IA 13 jB JB
depends on R and

FalAl s jaJB

2Ea1A1(O) |W[IIIIA1 lujufu(kalAl(O)’ rﬂlAl)’ §01C( a1A1(0)» ra]A]) |2

ssamicroscopic models can provide quite accurate overlap func-

sstions. The sensitivity to the variation of the channel radius

460f the ratio of the ANCs of the resonance and mirror bound

ssstate is significantly weaker than that of the individual ANCs

ssfor, equivalently, of the resonance width and the bound-state
ANC) of the mirror states.

VI. RATIO OF RESONANCE WIDTH AND ANC OF
463 MIRROR BOUND STATE
464

A. Three different equations
465

s In this part three different equations for the ratio of the
L, Tesonance width and the ANC of the mirror bound state

are presented. Let B; = (a1 A;) and B, = (a; A;) be mirror
“huclei. Then the quantum numbers in both nuclei are the
“*same. We also assume that the channel radius R, is the
“%ame for both mirror nuclei. The ratio of the ANCs of the
““mirror resonance and bound states is given by the ratio of the
areorresponding Wronskians. Taking into account Eq. (65) one
argets for the ratio of the resonance width and the bound state
47ANC for mirror states

TajAy =Rcn

B> 2
(CazAz Ig jB JB) Haia,

(W [quAz g jpJ (KazAz ’ ra2Az) QDIC (lKuzAz ’ rdzt%)])

; , (69)

TayA, =Ren

where E, 4,0y and pqa are expressed in MeV. Equation (69) allows one to determine the resonance width if the ANC of the

mirror bound state is known and vice versa.
To calculate the ratio M
¢12A2 Igjp '/b‘

one needs the microscopic radial overlap functions. If these radial overlap functions are not

available then one can use a standard approximation for the overlap functions:

Ly, 1y jis 7 (Kay4,0)> Tan) &

Luss 1y ju 7 (Kasas s Tan)

12
Salx, Py 1y js s (Kayas0)» Faudy )

ol
~ Sa2A2 ParA; g js Tp (KazAz ’ rtlez) ’

(70)

(71)

where S;,4, and S,,4, are the spectroscopic factors of the mirror resonance and bound states (a;A;) and (a2A), respectively.
©arA 1y js s (Kara,0)s Taya,) 18 a real internal resonant wave function calculated in the two-body model (a;A;) using some
phenomenological potential, for example, a Woods-Saxon one, which supports the resonance state under consideration.
ards 1y js Js Kardy s Tara,) 18 the two-body bound-state wave function of the bound state (a; A2), which is also calculated using
the same nuclear potential as the mirror resonance state. If the mirror symmetry holds then S;4, & Sg,4, and one gets an

“lAl Ig jpJp

approximated ratio in terms of the Wronskians, which does not contain the overlap functions:

“zAz U323

2Ea]A](O) |W[(palAl lBjBJB(kalAI(O)’ ralAl)’ (;bli(ka]Al(O)’ rtllAl)]|2

FalAl Is jJB Taya =Ren

(72)
:ualAl

(szzAz I jB JB)2 (W[wuzAz g jpJB (KazAz ’ ra2Az) > @Ii (l KayAs ruzAg)])z Fayty =Re

Meanwhile in Ref. [10] another expression for the mirror nucleon ANCs ratio was obtained which provides the easiest way
ﬂ1A1 BB

. )2
a2A7 Ig jpJp ”2A2 Ip H?JR
pointed out in Ref. [10], in the nuclear interior the Coulomb interaction varies very little in the nuclear interior and its effect
leads only to shifting of the energy of the bound state to the continuum. Hence, it can be assumed that cZJlCB (Kay4,(0)> ¥aya,) and

"1A1 g jpJB

to determine I show here a simple way of the derivation of the ratio ~ from Ref. [10]. First, as it was

§7’1CB (i Kapa, Tapa,) behave similarly in the nuclear interior except for the overall normalization; that is,

@5 (kayay 0 Ren) -

' ' 73
(pli ( i Ktlez 5 RCh) (plB (l KazAz ) VazAz) ( )

@i (ka1 0)s Tan) =
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Then

|W[¢01A1 g jg JB (kalAl(O)’ ra1A1)7 ipli (l KayAy s razAz)] |2

TajAy s TayAy =Ren

2
~C
FﬁllAl lsjgls 2 EalAl(O) < b, (kalAl(o)’ Ren )
B, 2 “‘/ ~C (:
(Caz-Az Ig js JB) Haia, Py (l Karho» RCh)

(W[wazf\z lg jg JB (KﬂzAz ’ razAz)’ (Z)li (l KayAy > razAz)])z

(74)

TayA, =Ren

Neglecting further the difference between the mirror wave functions @4, 4, 1, j J; (kay4,0)> Yaa,) a0 Qar4, 1 5 7y Karas s Tara,) IN

the nuclear interior we obtain the approximate expression for

'11A1 g iBJB

a Az BB

5 from Ref. [10] (in the notations of the current paper):

(75)

~C 2
Uaa iy Jsls 2E111A1(0) (q)lﬂ (k‘llAl(O)’ RCh))
B 27y =C (; :
(Ca22A2 Ig js JB) Haa; (plB (l Kaya, RCh)

In descending accuracy, Eq. (69) is ranked as the most
accurate. Taking into account that the microscopic overlap
functions (calculated in the no-core shell model [24-26]
or oscillator shell model [28]) are accurate in the nu-

clear interior, using Eq. (69) one can determine the ratio

(Clw,ﬁ'z"”#“)z quite accurately. Then follows Eq. (72) and fi-

ap Ay lg jpJ,
nalzl)i %EB (75). Note that Eq. (75) is valid only in the re-
gion where the mirror resonant and bound-state wave func-
tions do coincide or are very close. The advantage of this
equation is that it allows one to calculate the ratio without
using the mirror wave functions and it is extremely simple
to use.

Because for the cases under consideration the internal
microscopic resonance wave functions are not available, in

‘llAl 'Bip/B

(C

ayAy lg jp -]B
and (75). It allows one to determine the accuracy of both

equations.

this paper the ~ ratio is calculated using Eqgs. (72)

Vajay 1pigsp

c? )2

ayAy I jp B

Note that the dimension of the ratio is deter-

ulA] )

mined by the ratio 2 . To make it dimensionless I assume

that the reduced mass /La] 4, and the real part of the resonance
energy E, 4, ) are expressed in MeV.

B. R-matrix wave function

Because the microscopic overlap functions for mirror reso-
nances are not available, in this paper I use internal resonance
and bound-state wave functions calculated in the potential
model at real energies. In the developed Wronskian method
one needs the wave functions in the internal region in which it
is very convenient to use the R-matrix method. In the R-matrix
approach the resonant wave function is considered at the real
part of the resonance energy E,4 (o) and is real in the internal
region. If the mirror symmetry holds, the bound-state and
resonance wave functions of the mirror states should be very
similar in the internal region. The R-matrix resonant wave
function is normalized to unity in the internal region. The
border of this region is determined by the point at which
the radial derivative of the internal resonant wave function is
equal to zero. If the resonant wave function has a few nodes,
the border of the internal region is determined by the last point
at which the radial derivative of the resonant wave function
vanishes. The bound-state wave function is normalized to

(

sianity in the whole coordinate space. To make the bound-
sistate wave function close to the resonant wave function the
ssiformer is also renormalized to unity in the internal region.
sisThe advantage of the Wronskian method is that to calculate
sithe ratio of the resonance width and the ANC of the mirror
sistates one can use the internal real resonant and bound-state

wave functions.
518

ZZVH. COMPARISON OF RESONANCE WIDTHS AND ANCS
OF MIRROR STATES

521

52 In this section a few examples of the application of
s2Eqs. (72) and (75) are presented. To simplify the notations
s2from now on the quantum numbers in the notations for the res-
sepnance width and the ANC are dropped and just use simplified
sefotations, I, 4, and C,, 4,. Equation (72) gives 'y 4, /(Cy, a,)*
in terms of the ratio of the Wronskians and provides an exact
**Value for given two-body mirror resonant and bound-state
*wave functions. Equation (75) gives the T'44,/(Cqa, 4, )? ratio
*4n terms of the Coulomb scattering wave functions at the real
resonance momentum kg 4,0y and the imaginary momentum
39f the bound state i Ka4, at the channel radius Rq,. Hence,
%to determine the ratio 'y 4, /(Cq, 4, )? using Eq. (75) one does
%hot need to know the mirror resonant and bound-state wave
functions. However, to use this equation one should check
whether the mirror wave functions are close. In calculations
3] deliberately increase the channel radius R, to demonstrate
ssthe convergence of the calculated ratio I'y 4, /(Cq, A2)2 as Ry,
ssdncreases.

536

537 A. Comparison of resonance width for
538 BN(2s1/,) = 2C(0.0MeV) + p and mirror ANC for virtual
539 decay PC(2s1/2) > 2C(0.0MeV) +n

R begin from the analysis of the isobaric analog states

12s1 , in the mirror nuclei ®N and '3C. The resonance en-
ergy of PN(2s15) is E s2c) = 0.421 MeV with the res-
onance width of I pl2c = 0.0317 & 0.0008 MeV [29]. The

gleutron binding energy of the mirror state *C(2s; 2) is
wEn2c = 1.8574MeV with the experimental ANC CZ12C =
53.65 fm~! [30,31]. The experimental ratio FPIZC/(CnIZC) =
s4(4.40 £ 0.57) x 1073 allows us to check the accuracy of both
saised equations. Because the dimension of the bound-state
ssANC is fm~!/2 to get the dimensionless ratio I calculated

551FPIZC/[FZ C(Cnlzc)z].
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Radial Wave Functions

r(fm)

FIG. 1. Solid red line, the radial wave function of the (1712C)2S1+/2

resonance state; dashed blue line, the radial wave function of the
mirror (rz‘2C)2S1+/2 bound state. r is the distance between N, where

N = p, n, and the c.m. of '>C.

In Fig. 1 are shown the radial wave functions of the mirror
states. Following the R-matrix procedure, both wave functions
are normalized to unity over the internal volume with the
radius R., = 4.0fm. We see that the mirror wave functions
are very close at distances <4.0 fm, which confirms the mirror
symmetry of (p'*C)yrand (n'°C)yg;  systems.

/ e /
(€120
using Eqgs. (72) and (75). These calculated ratios are compared
with the experimental one. Wersee that the calculations exceed
p12¢

(C’:IZC)Z
simplified Eq. (75) shows the R, dependence and is equal to
10.13 x 107 at the peak at Ry, = 5.22 fm.

r
Equation (72) provides the —2-<;
(C,120)

ratio of the Wronskians. Each Wronskian contains the two-
body wave function and its radial derivative of the system
(N lZC)231+/2, N = p, n. Each two-body wave function has one
node at r ~ 2.13fm and a minimum at r ~ 4.0 fm. Hence, at
some point r the Wronskian in the denominator of Eq. (72)

In Fig. 2 are shown the ratios, which are calculated

the experimental value. The ratio calculated using the

ratio in terms of the

L 12
—+2 € Tassume
(C,120)

that in the nuclear interior the mirror two-body wave functions
are correct (as it should be for the mirror microscopic overlap
fl;nctions) and calculate the ratio at E¢, > 4fm. At r = 4fm

12¢
(C,,Plzc)2
obtained at large R, is 9.8 x 1073, which is close to the peak
value of the ratio obtained using Eq. (75).

vanishes causing a discontinuity in the ratio

= 8.1 x 10~ while the correct value of this ratio

r »12¢
€, 1207
ratio, which exceed the experimental one. It means that more
accurate internal overlap functions are required and the two-
body wave functions used here demonstrate the accuracy of
the Wronskian method. However, there is another important

Both used equations provide the values of the

10° Tyec/(Coie)?

R, (fm)

F12c
(€, 12¢)
resonance width of the resonance state ”N(Zsf’/z) and the ANC of
the mirror bound state '*C(2s7),); the red dash-dot-dotted line and the

red dash-dotted lines are the low and upper limits of this experimental

FIG. 2. The grey band is the experimental > ratio of the

. . . . T 12 . .
ratio; the solid red line is the (C” ZC)Z ratio as a function of R,
nl2c
. . . I .
calculated using Eq. (72); the blue dotted line is the (C’ > C)z ratio
n'<C

calculated as a function of R, using Eq. (75).

conclusion: the simple Eq. (75) in the peak gives the same
result as the asymptotic ratio given by Eq. (72).

B. Comparison of resonance width for
BN(1ds;;) = 2C(0.0MeV) + p and mirror ANC for virtual
decay *C(1ds;) — *C(0.0MeV) +n

As the second example I consider the isobaric analog
states 1ds;, in the mirror nuclei 3N and 3C. The reso-
nance energy of 13N(1d5/2) is E,icq) = 1.6065MeV with
the resonance width of FPIZC = 0.047 £ 0.0008 MeV [29].
The neutron binding energy of the mirror state *C(1ds 2)
is £,2c = 1.09635 MeV with the experimental ANC Cj"c

0.0225 fm~" [30]. The experimental ratio is FPIZC/lezc =

(1.14+£0.2) x 1072,

In Fig. 3 are shown the radial wave functions of the mirror
states. Following the R-matrix procedure, both wave functions
are normalized to unity over the internal volume with the
radius R, = 3 fm. We see that the mirror wave functions are
very close at distances » < 4 fm, which confirms the mirror
symmetry of (pnC)ld;/2 and (nIZC)ld:ﬂ systems. In Fig. 4 are

r »12c
€, 1207
which are compared with the experimental ratio. We see that
the calculated ratios are closer to the experimental ratio than
in the previous case and both equations give quite reason-

ble results. The —2"C
aple results. c (CUIZC)Z

Eq. (75) shows the R, dependence and is equal to 0.0141 at
the peak at R, = 3.95 fm. In the case under consideration the
bound-state wave function does not have nodes at r > 0. That

shown the ratios calculated using Eqgs. (72) and (75),

ratio calculated using the simplified
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FIG. 3. Solid red line, the radial wave function of the (p'*C), a,

resonance state; dashed blue line, the radial wave function of the
mirror (n'2C), a3, bound state. r is the distance between N, where

N = p, n, and the c.m. of 2c,

p 2¢c
)2
function of Rch This equation gives

is why the

ratio calculated using Eq. (72) is a smooth

T = 0.0135at Ry, =

4 fm, which differs very little from its correct asymptotic value
of 0.0143. Again, as in the previous case, our calculations

0.020 T T T T T
0.018 E
0.016 B
- 0.014
~
&
= 0.012
S
E_) 0.010
L‘Q e o i
0.006 - E
0.004 B
0.002 - B
[ . 1 . 1 . 1 . 1 . 1 . ]
1 2 3 4 5 6 7

(fim)

ch

pl2c
2

FIG. 4. The grey band is the experlmental ratio of the

resonance width of the resonance state >N (14, /2) and the ANC of the
mirror bound state l%C(ldj/z), the red dash-dot-dotted line and the
red dash-dotted lines are the low and upper limits of this experimental

ratio; the green dotted line is the adopted experimental value of the
T 2e

r
" C)z = (1.14£0.2) x 1072; the solid red line is the o?

ratio as a functlon of R, calculated using Eq. (72); and the blue

ratio

. . T2
dotted line is the —2—
€, 120)"

Eq. (75).

ratio calculated as a function of R, using

FIG. 5. Solid red line, the radial wave function of the ( pMO)ld5 "
resonance state; dashed blue line, the radial wave function of the
mirror (n'4C)1d5 ,, bound state. r is the distance between the nucleon
and the c.m. of the nucleus.

show that the simple Eq. (75) can give the results close to the
Wronskian method.

C. Comparison of resonance width for
5F(1ds;;) = *0(0.0 MeV) + p and mirror ANC for virtual
decay *C(1ds;) — C(0.0MeV) +n

In this section I determine the ratio Fp140 /ij c for the

mirror states °F(1ds/,) and '>C(1ds/,). The resonance en-

ergy and the resonance width of 15F(lal5/2) are Ep”O(O) =
2.77MeV and Fpmo = 0.24 £ 0.03 MeV [32]. The binding

energy and the ANC of the bound state '>C(1ds ) are g,1uc =
0.478 MeV and Cr%MC = (3.6 £0.8) x 1073 fm~!. The exper-

imental ratio 1"1,140/C314C =0.338 £ 0.001.

This is the most difficult case because the resonance state
is not potential. It is clear from Fig. 5.

The mirror wave functions are normalized in the internal
region r < 3.2 fm. They begin to deviate at r > 3.0 fm. Be-
cause the resonance width in the case under consideration
is much wider than in the previous cases, the resonant wave
function calculated in the potential model in the external
region differs significantly from the tail of the bound-state
wave function. That is why the Wronskian ratio does not
have an asymptote at large r. But the idea of the Wronskian
method is to determine the ', 1s/C2,, , ratio using the mirror
wave functions in the internal region where they practically
coincide.

In Fig. 6 is shown the I' 11 /C 14~ Tatio calculated using
the Wronskian method and the 51mp11ﬁed Eq. (75). The Wron-
skian ratio at 4.0 fm is 0.32 while Eq. (75) gives 0.31. Both
values are very close to the experimental ratio.
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FIG. 6. The grey band is the experlmental ! ” 0)2 ratio for the
C

resonance state ISF(ldS /2) and the mirror bound state Scads, J2); the

]
solid red line is the 7)2 ratio as a function of Ry, calculated using
nl4c

Eq. (72); and the blue dashed line is the )2 ratio calculated as a

function of R, using Eq. (75).

D. Comparison of resonance width for
BNe(17) — *0(0.0 MeV) + o and mirror ANC for virtual
decay *0(17) > “C(0.0MeV) + «

In this section I determine the ratio I', g /Cj uc for the

mirror states '*Ne(17) and '®O(17). The resonance energy is
Ey11000) = 1.038 MeV. The binding energy of the bound state
BO(17) is g,11c = 0.027 MeV. The resonance width and the
ANC of the mirror states are unknown.

The purpose of this section is to show that the ratio
| T /Ci14 ¢ does not depend on the number of the nodes of
the mirror wave functions. The potential model search showed
that for the given resonance energy and binding energy for
[ =1 the mirror wave functions have at r > 0 the number
of nodes N = 4 or 6. The normalization region of the mirror
wave functions is ¥ < 7.2fm for N = 6 and r < 6.73 fm for
N = 4. In Figs. 7 and 8 are shown the radial wave functions
and the ratio I, 14O/C5 uc for the number of nodes N =4
and 6.

One can see that the mirror wave functions practically
coincide up to r = 15 fm. It means that the simplified Eq. (75)
can be used up to 15fm. The ratio 'y /Cozl14 ¢ calculated
using Eq. (72) is the same for N =4 and 6. Because the
mirror wave functions are practically identical in the external
region the ratio ', 11 /C 1sc Calculated using the Wronskian
method [Eq. (72)] has an asymptote. The calculated ratio for
N =4, 6 reaches its asymptotic value at R, = 7.5 fm which
isT, 14O/C§ ue = 3.48 x 10°2. The maximum of T 140/C214C
calculated using Eq. (75) at Ry, = 9fm is 3.42 x 10%2. This
comparison demonstrates again that in the absence of the
microscopic internal overlap functions both the Wronskian

1.2 T T T T
1ok 0.8 (b) —
0.8 0.6 [ —
2 &
0.6
~§ 'g 0.4 | E
2 o4l 2
= 2
) 002 7
< <
E 0.0 F E0.0 e
= )
o el
-0.2 —
S S0zt .
04 F u u ]
0.4 -
-0.6 | E U u
-0.8 L L 0.6 L .
0 5 10 15 0 5 10 15

r (fm) r (fm)

FIG. 7. (a) The mirror radial wave functions for N = 6: the solid
red line is the («'*O);- resonance wave function, and the dashed blue
line is the radial wave function of the mirror («'*C),- bound state. r
is the distance between the « particle and the c.m. of the nucleus. (b)
Notations are the same as in (a) but for N = 4.

and the simplified method given by Eq. (75) can be used and
give very close results.

E. Comparison of resonance width for
E(sy 52) = 13N (0.0 MeV) + o and mirror ANC for virtual
decay O(s12) — BC(0.0MeV) + «

The last case that I consider is the determination of the ratio

( C“I?N)2 of the resonance state '’F(1/2%) and the mirror bound
o '°C
5 T T T T T T T 5 T T T T T T
(a) (b)
4 4 . 4t g
o N L—-=—
P HL=\\ B =~
= 3
EN NEM \
= ’ -
= —H' - ; 2t h -
2 =
1 H . 1| .
0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
2 4 6 8 10 12 14 2 4 6 8 10 12 14
R, (fm) R, (fm)

FIG. 8. (a) The 40), ratio for the resonance state '*Ne(17) and
C

the mirror bound state 80(17) for N = 6: the solid red line is the
ratio as a function of R, calculated using Eq. (72), and the

<c1 >2

blue dashed line is the

c Ca14 0)2 ratio calculated as a function of R,
a ' *C
using Eq. (75). (b) Notations are the same as in (a) but for N = 4.
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o7 T T T 7

Radial wave functions

r (fm)

FIG. 9. The solid red line is the (a'*N), ,2+ resonance wave
function, and the dashed blue line is the radial wave function of the
mirror (o'*C), o+ bound state. r is the distance between the « particle
and the c.m. of the nucleus.

state 7O(1 /2%). The orbital momentum of the mirror states
is [ = 1 and the resonance energy is E, 13y, = 0.7371 MeV

[32]. The location of the state !’O(1/2%) is questionable. The
excitation energy E, of the state '7O(1/2%) is 6356 + 8keV
[32]. Taking into account that the a-13C threshold is located
at 6359.2keV one finds that this 1/27 level is the located at
E, 5. = —3 £ 8keV; that is, it can be a subthreshold bound
state or a resonance [32]. This location of the level '7O(1 /21)
was adopted in the previous analyses of the direct measure-
ments including the latest one in Ref. [33]. If this level is the
subthreshold bound state, then its reduced width is related to
the ANC of this level. However, in a recent paper [34] it was
determined that this level is actually a resonance located at
E, 5. = 4.7+ 3keV. Because the possible subthreshold state
and near threshold resonance are located very close to each
other the reduced widths corresponding to these two levels are
very close. Here in the analysis I still assume that '7O(1/2%)
is the bound state with the binding energy of —3 keV. I adopt
the ANC of this subthreshold state Cim o =44 x 10'%° fm~!
[35].

The calculated mirror resonance and bound-state wave
functions are shown in Fig. 9. They are normalized in the in-
ternal region r < 5.2 fm. Both wave functions are practically
identical up to Rep, < 15 fm.

. T i3y
In Fig. 10 the TR

skian Eq. (72) and tflecsimple Eq. (75). The asymptotic value

(g":N)z =4.48 x 10778, The value of the
o' °C

ratio is calculated using the Wron-

of the ratio is

r ) ' '
(C“:N)z at the border of the internal region R¢, = 5.2 fm is very
a'°C
i ; : . r
close to its asymptotic value. Equation (75) gives —< =

(C,130)
4.55 x 107!8. Taking into account the adopted value of

. . T
the ANC C, 5 and the experimental ratio ( C”]';N)z =4.48 x
a’C

60 T T T T T T T T
55 —
(o}
~~
&
3
Q 50 E
= |
~~
Z
= 45 - 1 ~
@ ! b S
S | S |
= 4.0 )/ | \
= ¢ | N
N\
35 F N T
N
30 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10
Rch(fm)
r .
FIG. 10. The ; C“II;N)Z ratio for the resonance state "F(1/2%) and
a'’C
. . . . r
the mirror bound state 7O(1/2%): the solid red line is the %
o 7C

ratio as a function of R, calculated using Eq. (72), and the blue
dashed line is the PIEN

(€ 130"
Eq. (75).

ratio calculated as a function of R, using

1078 one obtains from the Wronskian ratio the resonance
width T, sy = 4.48 x 107178 x 4.4 x 10'® x fic = 3.9eV.
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APPENDIX

In this Appendix it is shown that the Zel’dovich regulariza-
tion procedure can be used for normalization of the resonance
wave function u ;, (r) both for exponentially decaying poten-
tials and potentials with the Coulomb tail. The normalization
of the resonance wave function depends on its tail. Taking into
account Eq. (13) it is enough to consider the integral

o0
1(B,v,2) = / drePr ey, (A1)
0

Here, z=2ikur)r =2ikaao)r +2Imkoaryr. It is as-
sumed that kga(0) > Imkya(r), as it should be for physical
resonances. Then Rez? < 0. Also

. . Y
v:—Zln(R)z—Zl -
a kaa) — i Imkaacry
_ Y kaao) y Imka(r)
kgA(O) + (ImkaA(R))z kﬁA(O) + (ImkaA(R) )2 ’

(A2)

y =Z,Z4 piga/137. Thus, one can see that for the repul-
sive Coulomb potential Rev > 0 using Eq. (3.462.1) from
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Ref. [36] one gets

I(B,v,2) =T+ 1)2B)" "D2Z/CAO D | (—z//2B).
(A3)

Here D, (x) is the parabolic cylinder function. For Rez? < 0
using Eq. (9.246.1) from Ref. [36] one gets

10, v, 2) = ,slinlo IB. v, 2)=T+1)(-2)"""". (Ad)
Thus, the regularization procedure used by Zel’dovich is ap-

plicable and for the physical resonances kq4¢0) > Imkga(r) the
integral in Eq. (A1) does exist and converges in lim 8 — +O0.

Let me consider now the integral

IR(.Bv v, Z) = /
R

Integrating it by parts one gets

o0 2
dre B e,

(A5)

lim Ip(B.v.2) = — ZR[I v oL (A6)
V,7) = ——¢€° - — — .
pro KL 2 ¢ 2R
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