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Abstract

In this paper we propose a new approach to measuring ultrafast dynamics with free-electron

lasers (FELs). Ultrafast experiments are among the most promising avenues of research at x-ray

FELs, with potential to reveal the chemical dynamics of charge separation, conical intersection

crossing, and biologically mediated reactions. Pump-probe scanning is the standard approach to

measure dynamics at x-ray FELs, but at the shortest time scales, and particularly for x-ray pump,

x-ray probe experiments, the scans require challenging beam setups and can introduce systematic

errors. Here we propose an alternative approach using the randomness of the self-amplified spon-

taneous emission (SASE) process to drive many simultaneous pump-probe experiments on each

shot. Measuring the fluctuations in the incident beam’s time profile on a shot-to-shot basis enables

reconstruction of ultrafast dynamics down to the coherence length of the FEL without the need

for pump-probe scans. Due to similarity to ghost imaging, in which spatial properties are recon-

structed by measuring the incident probe’s transverse properties, we call this “pump-probe ghost

imaging” (PPGI). In this paper we describe the method and simulate an example experiment. We

also describe an alternative implementation that uses only spectral measurements, avoiding the

need for direct time-domain diagnostics, and extending the method to the attosecond regime.
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One of the most valuable qualities of x-ray free-electron lasers (XFELs) is the ability to

probe ultrafast dynamics down to the femtosecond (fs) scale. In the most common “pump-

probe” experiments, one photon “pumps” a sample into a non-equilibrium state, and a

second photon later “probes” the sample to measure the evolution of that state. Optical

pump, x-ray probe measurements are now routinely used to follow chemical reactions at

the femtosecond timescales intrinsic to molecular motion, an example of so-called “femto-

chemistry” [1]. An important sub-class of these experiments is the x-ray pump, x-ray probe

method, in which both photons are at x-ray energies. For example, a number of recent

works have exploited the interaction of soft x-ray pulses with core-level electrons to probe

excitations in gas phase molecular systems with atomic-site specificity [2–4]. X-ray pump,

x-ray probe setups are also relevant to nano-crystallography [5]; while such experiments

are ideally “damage-free” [6], careful studies have shown structural changes in proteins due

to radiation-induced rearrangements may survive, highlighting the need to measure x-ray

induced changes at sub-20 fs time-scales [7, 8].

Despite the success of x-ray pump-probe studies, these techniques still suffer from time-

intensive machine setups, challenging systematics, and resolution that rarely exceeds 10 fs.

To address these issues, here we propose a new method that exploits the chaotic nature

of self-amplified spontaneous emission (SASE) XFEL pulses to extract dynamics in the fs

regime. Because the SASE FEL process originates from shot-noise, each pulse consists of a

random train of uncorrelated spikes (see e.g. [9]). By measuring the random substructure

of individual shots in a sequence of SASE pulses, and correlating these to static sample

measurements, we demonstrate that it is possible to reconstruct the time-evolution of the

system at times scales as short as the SASE coherence length, typically much shorter than

the duration of the FEL pulse. We emphasize that this method can be implemented with

standard single-pulse operation modes, and requires no pump-probe scanning; the shot-to-

shot variation is provided entirely by the randomness inherent to the SASE process.

Our proposed approach is analogous to classical ghost imaging (GI). Typical GI setups

split an illumination beam into two arms, one passing through a sample to a bucket detector,

and a second “reference” arm measured by a pixelated detector. Correlating fluctuations in

the bucket detector to fluctuations at each pixel in the reference arm then reveals a “ghost”

image of the sample. (See e.g. [10–12] for examples of x-ray GI.) In the standard application,

the pixels represent transverse positions in the beam. However, by measuring fluctuations
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in power rather than position, GI can also reveal temporal properties of the sample [13].

Our proposal is similar, except that we measure fluctuations in delay, the relevant quantity

for pump-probe experiments. Consequently, we refer to this method as pump-probe ghost

imaging (PPGI).

It is instructive to compare PPGI to the wealth of ultrafast methods employed at FELs.

For example, the Linac Coherent Light Source (LCLS) has developed several two-pulse

pump-probe SASE modes [14–16], and equivalent methods exist for seeded FELs as well

[17, 18]. Recent advances have pushed individual pulse lengths to the sub-femtosecond

regime with hard x-rays [19, 20], and the enhanced-SASE (eSASE) method can reach similar

duration with soft x-rays [21]. We note each of these methods requires a potentially time-

intensive setup of a special operating mode, coupled with pump-probe scanning, which can

introduce systematic errors. At FLASH, an alternative method makes similar use of the

chaotic nature of SASE spikes to extract dynamics at time scales shorter than the pulse

length [22]. However, the FLASH technique still requires pump-probe scanning as well as a

split-and-delay line to create a replica pulse, a challenge in the x-ray regime. In contrast to

all of the above methods, PPGI measurements are single-pulse and passive, only requiring

non-invasive measurement of the incident x-ray beam. As a result PPGI is well suited

as a parasitic addition to standard FEL experiments, for example monitoring for damage

in nanoxtal studies, and as a complementary method for attosecond schemes. PPGI also

resembles the Hadamard transform method used at synchrotrons [23]. In the Hadamard

transform, a time pattern of the synchrotron is modulated with a predetermined pattern,

which is not feasible in the fs regime. By contrast, PPGI exploits the shot-to-shot variations

inherent to the SASE process.

We start by considering a two-photon experiment: a pump photon induces a non-

equilibrium process, and a probe photon arrives after a delay, τ , to measure some property of

the sample r(τ). For example, this modality can reveal dynamics of core-ionizied, gas-phase

molecules as follows: The pump step ejects a localized core-electron resulting in a highly

excited molecular cation. This highly-excited state decays via the Auger process, which

results in the population of multiple dicationic states, each with equilibrium structures that

differ from the initially occupied ground-state. Following the Auger process the molecular

structure starts to evolve, and a second x-ray photon with energy ~ω0 interacts with the

new time-dependent species and produces photoelectrons. Measuring the probe photoelec-
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trons’ kinetic energy, KE, reveals the core-level binding energy (EB = ~ω0 − KE ≡ r(τ))

as a function of the inter-pulse separation (τ). This time-resolved x-ray photoelectron spec-

troscopy (trXPS) has been shown to provide a sensitive probe of the dynamics in excited

state systems [24–26]. Similar x-ray pump-probe schemes have been used for a wide variety

of science at XFELs (see e.g. [27–29]), among them measuring time-dependent change in

electron density, i.e. damage, in nano-crystallography experiments [6].

Traditionally, pump-probe experiments have used two distinct “pulses,” short bursts of

radiation separated in time by τ . Here, we instead use a single pulse, varying in intensity over

time, which is responsible for both pump and probe signals, as shown in Fig. 1a. Effectively,

each pulse generates multiple, overlapping, pump-probe measurements at different delays.

In the simplest implementation, we make the following additional assumptions:

(a) (b)

FIG. 1. a) The simplest realization with a single SASE pulse: photons separated by different delays

(e.g. τ1, τ2, τ3) effectively drive independent pump-probe experiments within the same pulse. b)

More complicated setups are also possible, for example pumping with one wavelength (red dashed

line) and probing with another (blue solid line). In both cases, the temporal resolution of the

reconstruction is determined by the spike width or measurement resolution, not the pulse duration

as in a traditional pump-probe setup.

1. The probability of a pump photon inducing an excitation is proportional to the in-

stantaneous power.

2. The probability of a probe photon generating a measurable signal is proportional to

the instantaneous power.
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These conditions hold broadly for many XFEL experiments. We note that ‘excitation’

does not necessarily refer to electronic states, but could include, for example, a damage event

to a protein. While these assumptions allow a simple formulation of the problem, PPGI can

be applied even if one or both are violated.

We can then write the ensemble distribution of states s(t) at a time t in the “i-th” pulse

as

si(t) =

∫ t

−∞
pi(t

′) r(t− t′) dt′ . (1)

Here, t′ is the time at which an individual member in the population was excited, and pi(t)

is the power profile of the pulse. In atomic and molecular systems, r(τ) evolves over short

time scales, and we can only measure a time-averaged version of si(t), which we will call

mi. With the second assumption that the measured signal mi is proportional to the x-ray

power, we find

mi =

∫ ∞
−∞

pi(t) si(t) dt =

∫ ∞
0

ai(τ) r(τ)dτ , (2)

where we have used shorthand for the autocorrelation, ai(τ) ≡
∫∞
−∞ pi(t)pi(t − τ) dt. Our

goal is to recover r(τ) from the measurements mi and ai(τ).

In a practical implementation with Nm pulses and Nτ discretized delays, the autocorre-

lations form a matrix A ∈ RNm×Nτ . Likewise, the individual measurements mi comprise a

column vector m ∈ RNm . Then we may write

m = Ar , (3)

where r ∈ RNτ is the discretized version of r(τ). So long as we obtain sufficient pulses of

different power profiles, we may infer the underlying system dynamics r by solving this set

of linear equations. The experimental schematic is shown in Fig. 2.

The derivation of Eq. 2 implicitly assumes that pump and probe events are independent,

which is satisfied if the pump signal does not contribute to mi. For example, in the cation

experiment described earlier, photoelectrons from the initial pump event are separated by

many eV in energy from those from the probe cation, and the former can be excluded

from the bucket detector. However, even when this assumption is violated, PPGI can

still be applied; because the pump signal is proportional to the pulse energy rather than

the autocorrelation, the pump events will only contribute an uncorrelated noise term to

Eq. 3. The presence of additional background increases the number of examples needed for
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FIG. 2. Schematic of general PPGI scheme. Time (e.g. XTCAV) or frequency domain (e.g. single-

shot spectrometer, SSS) measurements record the auto-correlation on a shot-by-shot basis upstream

of the sample (lower left). In the terminology of ghost imaging, these reference measurements record

the fluctuations incident on the sample. “Bucket” measurements downstream of the sample, e.g.

photoelectron counts, contain no explicit time information (lower middle). Correlating shot-to-shot

variations in sample measurements with the corresponding measured SASE fluctuations reveals the

true sample dynamics (lower right).

convergence, but it does not affect the identifiability of Eq. 3. The same argument applies

to avoiding signal from multiple excitations.

In the traditional ghost imaging formalism, r is found by explicitly calculating the cor-

relation between m and A. An alternative compressed sensing formalism finds the most

likely solution r∗ by optimizing a cost function [30, 31], enabling the addition of arbitrary

priors to constrain the solution. For example, using L-2 regularized least-squares regression

(i.e. Tikhonov or ridge regression), we solve for an optimal solution r∗ from

r∗ = argmin r

(
||m−Ar||2 + λ||r||2

)
, (4)

with regularization parameter λ. Additional physically-inspired constraints e.g. non-

negativity, r∗ ≥ 0, or causality, r(τ < 0) = 0, can further improve the solution or reduce the

required number of measurements, Nm. Compressed sensing has been found to increase the
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convergence rate for ghost imaging, even allowing reconstruction with fewer samples than

pixels (see e.g. [32–36]).

For a typical ghost imaging setup, a beam-splitter upstream of the sample sends a portion

of the x-ray beam to a reference arm to measure the incident radiation pattern. Due to the

challenge of measuring the shot-to-shot power of an XFEL beam, it is easier to infer pi(t)

from the spent electron beam, e.g. with an x-band transverse cavity (XTCAV) [37] or with

an optical afterburner [38]. In this scenario, the electron beam plays the role of the reference

arm (Fig. 2). It may also be possible to directly measure the x-ray beam, for example by

angular streaking [39].

To this point, we have assumed it is possible to directly measure the power, p(t), e.g.

using an XTCAV. If temporal resolution of the power measurement limits the reconstruction

resolution, combining partial time-domain information with spectral measurements enables

refinement of p(t) using phase retrieval algorithms [40]. Alternatively, we may notice that

Eq. 3 requires only the second-order autocorrelation, and there is no need to explicitly

measure the power. By the Wiener-Khinchin theorem, the first-order autocorrelation can

be calculated directly from the spectral power. For arbitrary fields there is not a well-

determined relation between A and A(f), but for the special case of a SASE FEL, the

two quantities are highly correlated. In the SI we derive an analytical expression for this

correlation in the case of Gaussian wave packets, a common model for an FEL [9]. Fig. 3

shows the relation also holds in 1-D FEL simulations. Therefore if we simply treat A(f) as

a noisy version of A in Eq. 3, we still expect to recover features of r.

Spectral power measurements have several advantages. In general, spectral measurements

at XFELs are simpler than those in the time domain; for example, at LCLS the thin crystal

hard x-ray single-shot spectrometer (SSS) [41] provides high resolution spectra on a shot-

by-shot basis simultaneously with sample measurements. Spectrometers can also operate at

higher repetition rate compared to the XTCAV, which runs only at 120 Hz. Finally, the

autocorrelation resolution for the spectral approach is limited only by the fluctuations in ai,

determined by the SASE coherence length, tcoh. As an example, a hard x-ray FEL such as the

Linac Coherent Light-Source (LCLS) [42] lasing at 1.5 Å has tcoh ∼ 300 attoseconds, giving

sub-femtosecond resolution without the need for generating ultra-short pulses, pump-probe

scanning, or even relative timing of two pulses.

To illustrate the PPGI method, we simulate an experiment with r given by a line-out from
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FIG. 3. Fluctuations in A(f) and A are strongly correlated for delays tcoh � τ < T , with pulse

length T and coherence length tcoh. Figure shows the Pearson correlation between A(f) and A for

both an analytical model of Gaussian wave-packets (solid blue line, see SI) and 1D simulations of

a pre-saturation FEL with parameters of Table I (dashed red line).

the “Eggholder” function, a standard artificial landscape test function. We simulate the x-

ray pulses using a 1D FEL code [43] with parameters typical for LCLS soft x-ray operation,

and running without taper about 3 gainlengths past saturation, which we find empirically

results in the best reconstructions (see SI Sec. 1). From the power we calculate the true

autocorrelations, A∗, and true signal, m∗ = A∗ × r. To account for noise and instrument

resolution, ∆t, we apply Gaussian noise and blurring to A∗ to produce measurements A,

and add Gaussian noise to m∗ to produce measurements m. The reconstruction then uses

ridge (Eq. 4) with an additional non-negativity constraint. Table I summarizes the simulated

parameters and Fig. 4 shows the resulting reconstruction. The reconstruction converges to

the ground truth in the range tcoh <∼ τ <∼ T , with the resolution limited by the larger of the

SASE coherence length tcoh and the instrument resolution. For τ <∼ tcoh and τ >∼ T each

measurement ai is nearly identical, making A poorly conditioned, and we do not expect to

recover r in this range.

We also treat the same problem using the spectral approach. In this case, starting from

the simulated spectral power, we add Gaussian noise and blurring from the instrumental

resolution, ∆ν , and then calculate the Fourier transform, A(f). We shift and scale A(f) so
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FIG. 4. Illustration of PPGI using simulation parameters from Table I and measurements of either

power (time domain) or spectrum (frequency domain). Ground truth taken from the Eggholder

artificial landscape function.

that both the mean and mean fluctuation amplitudes match those of A, and use the result

in place of A in Eq. 4. We then scale the overall amplitude of r∗ to minimize mean squared

error (MSE). Because of the correlation between A(f) and A for FEL radiation, it is still

possible to recover a good approximation of r (Fig. 4). Whereas in the time domain case

instrumental resolution limits the reconstruction of sharp features, in the spectral version the

spectrometer resolution cuts off reconstruction at long delays, but preserves sharp features

in the range 2tc <∼ τ <∼ 3~/∆ν .

To this point, we have assumed each sample measurement is a single scalar. However,

XFEL experiments commonly measure a vector of parameters, mi(y), with multiple buckets,

Ny. Here the y dimension represents a measured experimental parameter, for example an

electron or x-ray spectrum emitted by the sample. In this case, m → M ∈ RNM×Ny and
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X-ray photon energy (eV) 500

X-ray FWHM pulse length, T (fs) 15

X-ray coherence length, tcoh (fs) 1.6

XTCAV FWHM resolution, ∆t (fs) 1 or 4

SSS FWHM resolution, ∆ν (meV) 200

Signal to noise ratio (FWHM) 10

Number of shots, Nm 100k

TABLE I. Parameters for simulations based on LCLS soft x-ray operation. Signal-to-noise is

relative to half-max of signal, and is added to M , A, and A(f).

(a) (b) (c) (d)

FIG. 5. Left, an example taken from the Eggholder artificial landscape function to represent r.

The x-axis corresponds to pump-probe delay, and the y-axis represents a sample measurement, for

example intensity of a measured x-ray or electron spectrum emitted by the sample. Reconstructions

assume LCLS soft x-ray parameters (Table I) and instrumental FWHM resolution of ∆t = 1 fs

(b) and ∆t = 4 fs (c) for power measurements, and ∆ν = 200 meV for spectral measurements (d).

MSE calculated over the range 4 to 11 fs.

r → R ∈ RNτ×Ny . In all other aspects the problem is identical, and R is still found by

solving Eq. 4. To demonstrate, Fig. 5 shows a simulation result with R a 2-D excerpt from

the Eggholder landscape function.

For simplicity, we have used a simple least squares solution. Though sufficient for the

example of Fig. 5, more sophisticated approaches may further improve results. For example,

we have significant errors on the independent variable, A 6= A∗, creating what is commonly

known as an “errors-in-variables” problem. Least squares solutions are sub-optimal, e.g.

due to regression dilution, compared to results from methods such as total least squares.
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Secondly, we have retrieved each row of R independently. Modern image analysis tools, for

example the alternating direction method of multipliers (ADMM) [44], enable simultaneous

reconstruction of the entire process, R. This permits the inclusion of additional priors, such

as smoothness in both time and energy, that can further improve estimates of R.

In this paper, we have introduced a new approach to extracting dynamics from XFEL

pump-probe experiments. While specialized techniques such as eSASE and nonlinear com-

pression have shown great promise to reach the attosecond regime, these methods require

complex setups [19] and dedicated hardware [20, 21], and involve pump-probe scans that

introduce systematic error and require precision timing measurements that limit the time

resolution. Moreover, the shortest sub-femtosecond operating modes [19] are not easily in-

corporated into pump-probe schemes. By contrast, the ghost imaging technique presented

here needs only a single x-ray pulse, can be performed at any XFEL without modification,

can reach sub-femtosecond resolution, is equally applicable to hard and soft x-rays, and does

not require any special beam tuning. As a passive scheme that does not rely on time scans,

PPGI is well suited as a parasitic measurement, e.g. for monitoring nano-crystallography

damage [6, 8]. With sufficient data, PPGI can recover the short-delay (and thus damage-

free) Bragg intensities. Spectral PPGI, though noisier and limited to linear systems, may be

the easiest to test experimentally as it requires only a spectrometer. It also may be possible

to improve the temporal resolution by reducing the FEL coherence length, e.g. using eSASE

[21] or the microbunching instability [45, 46].

While we have focused on the simplest case of a single pulse, the method is easily gen-

eralized to more complex setups including two-color x-ray schemes (e.g. [14, 15]) or even

optical-pump, x-ray probe [47] with the addition of a timing system [48] (Fig. 1b). Finally,

while we have assumed each sample has been pumped a single time, we can also relax that

assumption and allow for multiple interactions between the target and incident x-ray field

(complementing e.g. four-wave mixing protocols [49]). Given that multi-photon excitations

are inherently rare events, such schemes will benefit greatly from the increased brightness

of the superconducting XFEL facilities currently under development.

We would like to thank Zhirong Huang, Tim Maxwell, and Gordon Wetzstein for their

help. This work was supported by U.S. Department of Energy Office of Science under Con-

tract No. DE-AC02-76SF00515. JPC contribution is supported by U.S. Department of

Energy (DOE), Office of Science, Basic Energy Sciences (BES), Chemical Sciences, Geo-

11



sciences, and Biosciences Division.

[1] A. Zewail, “Femtochemistry: Atomic-scale dynamics of the chemical bond,” J. Phys. Chem.

A 104, 24 (2000).

[2] T. J. A. Wolf, R. H. Myhre, J. P. Cryan, S. Coriani, R. J. Squibb, A. Battistoni, N. Berrah,

C. Bostedt, P. Bucksbaum, G. Coslovich, R. Feifel, K. J. Gaffney, J. Grilj, T. J. Martinez,

S. Miyabe, S. P. Moeller, M. Mucke, A. Natan, R. Obaid, T. Osipov, O. Plekan, S. Wang,

H. Koch, and M. Guhr, “Probing ultrafast ππ ∗ /nπ∗ internal conversion in organic chro-

mophores via k-edge resonant absorption,” Nature Communications 8, 29 (2017).

[3] Andrew R. Attar, Aditi Bhattacherjee, C. D. Pemmaraju, Kirsten Schnorr, Kristina D.

Closser, David Prendergast, and Stephen R. Leone, “Femtosecond x-ray spectroscopy of

an electrocyclic ring-opening reaction,” Science 356, 6333 (2017).

[4] Yoann Pertot, Cedric Schmidt, Mary Matthews, Adrien Chauvet, Martin Huppert, Vit

Svoboda, Aaron von Conta, Andres Tehlar, Denitsa Baykusheva, Jean-Pierre Wolf, and

Hans Jakob Worner, “Time-resolved x-ray absorption spectroscopy with a water window high-

harmonic source,” Science 355, 6322 (2017).

[5] Henry N. Chapman, Petra Fromme, Anton Barty, Thomas A. White, Richard A. Kirian, An-

drew Aquila, Mark S. Hunter, Joachim Schulz, Daniel P. DePonte, Uwe Weierstall, R. Bruce

Doak, Filipe R. N. C. Maia, Andrew V. Martin, Ilme Schlichting, Lukas Lomb, Nicola Cop-

pola, Robert L. Shoeman, Sascha W. Epp, Robert Hartmann, Daniel Rolles, Artem Rudenko,

Lutz Foucar, Nils Kimmel, Georg Weidenspointner, Peter Holl, Mengning Liang, Miriam

Barthelmess, Carl Caleman, Sebastien Boutet, Michael J. Bogan, Jacek Krzywinski, Christoph

Bostedt, Sasa Bajt, Lars Gumprecht, Benedikt Rudek, Benjamin Erk, Carlo Schmidt, Andre

Homke, Christian Reich, Daniel Pietschner, Lothar Struder, Gunter Hauser, Hubert Gorke,

Joachim Ullrich, Sven Herrmann, Gerhard Schaller, Florian Schopper, Heike Soltau, Kai-

Uwe Kuhnel, Marc Messerschmidt, John D. Bozek, Stefan P. Hau-Riege, Matthias Frank,

Christina Y. Hampton, Raymond G. Sierra, Dmitri Starodub, Garth J. Williams, Janos Ha-

jdu, Nicusor Timneanu, M. Marvin Seibert, Jakob Andreasson, Andrea Rocker, Olof Jonsson,

Martin Svenda, Stephan Stern, Karol Nass, Robert Andritschke, Claus-Dieter Schroter, Faton

Krasniqi, Mario Bott, Kevin E. Schmidt, Xiaoyu Wang, Ingo Grotjohann, James M. Holton,

12



Thomas R. M. Barends, Richard Neutze, Stefano Marchesini, Raimund Fromme, Sebastian

Schorb, Daniela Rupp, Marcus Adolph, Tais Gorkhover, Inger Andersson, Helmut Hirsemann,

Guillaume Potdevin, Heinz Graafsma, Bjorn Nilsson, and John C. H. Spence, “Femtosecond

x-ray protein nanocrystallography,” Nature 470, 73–77 (2011).

[6] Anton Barty, Carl Caleman, Andrew Aquila, Nicusor Timneanu, Lukas Lomb, Thomas A.

White, Jakob Andreasson, David Arnlund, Sasa Bajt, Thomas R. M. Barends, Miriam

Barthelmess, Michael J. Bogan, Christoph Bostedt, John D. Bozek, Ryan Coffee, Nicola

Coppola, Jan Davidsson, Daniel P. DePonte, R. Bruce Doak, Tomas Ekeberg, Veit Elser,

Sascha W. Epp, Benjamin Erk, Holger Fleckenstein, Lutz Foucar, Petra Fromme, Heinz

Graafsma, Lars Gumprecht, Janos Hajdu, Christina Y. Hampton, Robert Hartmann, An-

dreas Hartmann, Gunter Hauser, Helmut Hirsemann, Peter Holl, Mark S. Hunter, Linda

Johansson, Stephan Kassemeyer, Nils Kimmel, Richard A. Kirian, Mengning Liang, Fil-

ipe R. N. C. Maia, Erik Malmerberg, Stefano Marchesini, Andrew V. Martin, Karol Nass,

Richard Neutze, Christian Reich, Daniel Rolles, Benedikt Rudek, Artem Rudenko, Howard

Scott, Ilme Schlichting, Joachim Schulz, M. Marvin Seibert, Robert L. Shoeman, Raymond G.

Sierra, Heike Soltau, John C. H. Spence, Francesco Stellato, Stephan Stern, Lothar Struder,

Joachim Ullrich, X. Wang, Georg Weidenspointner, Uwe Weierstall, Cornelia B. Wunderer,

and Henry N. Chapman, “Self-terminating diffraction gates femtosecond x-ray nanocrystal-

lography measurements,” Nature Photonics 6, 35–40 (2012).

[7] L. Galli, S.-K. Son, M. Klinge, S. Bajt, A. Barty, R. Bean, C. Betzel, K. R. Beyerlein,

C. Caleman, R. B. Doak, M. Duszenko, H. Fleckenstein, C. Gati, B. Hunt, R. A. Kirian,

M. Liang, M. H. Nanao, K. Nass, D. Oberthr, L. Redecke, R. Shoeman, F. Stellato, C. H.

Yoon, T. A. White, O. Yefanov, J. Spence, and H. N. Chapman, “Electronic damage in

s atoms in a native protein crystal induced by an intense x-ray free-electron laser pulse,”

Structural Dynamics 2, 041703 (2015).

[8] K. Nass, L. Foucar, T. R. M. Barends, E. Hartmann, S. Botha, R. L. Shoeman, R. B. Doak,

R. Alonso-Mori, A. Aquila, S. Bajt, A. Barty, R. Bean, K. R. Beyerlein, M. Bublitz, N. Drach-

mann, J. Gregersen, H. O. Jonsson, W. Kabsch, S. Kassemeyer, J. E. Koglin, M. Krumrey,

D. Mattle, M. Messerschmidt, P. Nissen, L. Reinhard, O. Sitsel, D. Sokaras, G. J. Williams,

S. Hau-Riege, N. Timneanu, C. Caleman, H. N. Chapman, S. Boutet, and I. Schlichting, “In-

dications of radiation damage in ferredoxin microcrystals using high-intensity x-fel beams,” J.

13



Synchrotron Rad. 22, 225 (2015).

[9] Kwang-Je Kim, Zhirong Huang, and Ryan Lindberg, Synchrotron radiation and free-electron

lasers (Cambridge University Press, 2017).

[10] D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental x-ray ghost

imaging,” Phys. Rev. Lett. 117, 113902 (2016).

[11] Hong Yu, Ronghua Lu, Shensheng Han, Honglan Xie, Guohao Du, Tiqiao Xiao, and Daming

Zhu, “Fourier-transform ghost imaging with hard x rays,” Phys. Rev. Lett. 117, 113901 (2016).

[12] Andrew. M. Kingston, Daniele Pelliccia, Alexander Rack, Margie P. Olbinado, Yin Cheng,

Glenn R. Myers, and David M. Paganin, “Ghost tomography,” Optica 5, 1516–1520 (2018).

[13] Piotr Ryczkowski, Margaux Barbier, Ari T. Friberg, John M. Dudley, and Goery Genty,

“Ghost imaging in the time domain,” Nature Photonics 10, 167 (2016).

[14] A. A. Lutman, R. Coffee, Y. Ding, Z. Huang, J. Krzywinski, T. Maxwell, M. Messerschmidt,

and H.-D. Nuhn, “Experimental demonstration of femtosecond two-color x-ray free-electron

lasers,” Phys. Rev. Lett. 110, 134801 (2013).

[15] A. Marinelli, D. Ratner, A. A. Lutman, J. Turner, J. Welch, F.-J. Decker, H. Loos, C. Behrens,

S. Gilevich, A. A. Miahnahri, S. Vetter, T.J. Maxwell, Y. Ding, R. Coffee, S. Wakatsuki, and

Z. Huang, “High intensity double pulse x-ray free-electron laser,” Nature Comm. 6, 6369

(2015).

[16] Alberto A. Lutman, Timothy J. Maxwell, James P. MacArthur, Marc W. Guetg, Nora Berrah,

Ryan N. Coffee, Yuantao Ding, Zhirong Huang, Agostino Marinelli, Stefan Moeller, and

Johann C. U. Zemella, “Fresh-slice multicolour x-ray free-electron lasers,” Nature Photonics

10, 745 (2016).

[17] E. Allaria, D. Castronovo, P. Cinquegrana, P. Craievich, M. Dal Forno, M. B. Danailov,

G. D’Auria, A. Demidovich, G. De Ninno, S. Di Mitri, B. Diviacco, W. M. Fawley, M. Fe-

rianis, E. Ferrari, L. Froehlich, G. Gaio, D. Gauthier, L. Giannessi, R. Ivanov, B. Mahieu,

N. Mahne, I. Nikolov, F. Parmigiani, G. Penco, L. Raimondi, C. Scafuri, C. Serpico, P. Siga-

lotti, S. Spampinati, C. Spezzani, M. Svandrlik, C. Svetina, M. Trovo, M. Veronese, D. Zan-

grando, and M. Zangrando, “Two-stage seeded soft-x-ray free-electron laser,” Nature Pho-

tonics 7, 913 (2013).

[18] David Gauthier, Primo Rebernik Ribic, Giovanni DeNinno, Enrico Allaria, Paolo Cinque-

grana, Miltcho Bojanov Danailov, Alexander Demidovich, Eugenio Ferrari, and Luca Gian-

14



nessi, “Generation of phase-locked pulses from a seeded free-electron laser,” Phys. Rev. Lett.

116, 024801 (2016).

[19] S. Huang, Y. Ding, Y. Feng, E. Hemsing, Z. Huang, J. Krzywinski, A. A. Lutman, A. Marinelli,

T. J. Maxwell, and D. Zhu, “Generating single-spike hard x-ray pulses with nonlinear bunch

compression in free-electron lasers,” Phys. Rev. Lett. 119, 154801 (2017).

[20] A. Marinelli, J. MacArthur, P. Emma, M. Guetg, C. Field, D. Kharakh, A. A. Lutman,

Y. Ding, and Z. Huang, “Experimental demonstration of a single-spike hard-x-ray free-electron

laser starting from noise,” Appl. Phys. Lett. 111, 151101 (2017).

[21] A. A. Zholents and W. M. Fawley, “Proposal for intense attosecond radiation from an x-ray

free-electron laser,” Phys. Rev. Lett. 92, 224801 (2004).

[22] Kristina Meyer, Christian Ott, Philipp Raith, Andreas Kaldun, Yuhai Jiang, Arne Senftleben,

Moritz Kurka, Robert Moshammer, Joachim Ullrich, and Thomas Pfeifer, “Noisy optical

pulses enhance the temporal resolution of pump-probe spectroscopy,” Phys. Rev. Lett 108,

098302 (2012).

[23] Briony A Yorke, Godfrey S Beddard, Robin L Owen, and Arwen R Pearson, “Time-resolved

crystallography using the hadamard transform,” Nature Methods 11, 1131 (2014).

[24] S Hellmann, C Sohrt, M Beye, T Rohwer, F Sorgenfrei, M Marczynski-Buhlow, M Kallane,

H Redlin, F Hennies, M Bauer, A Fohlisch, L Kipp, W Wurth, and K Rossnagel, “Time-

resolved x-ray photoelectron spectroscopy at FLASH,” New Journal of Physics 14, 013062

(2012).

[25] Andrey Shavorskiy, Amy Cordones, Josh Vura-Weis, Katrin Siefermann, Daniel Slaughter, Fe-

lix Sturm, Fabian Weise, Hendrik Bluhm, Matthew Strader, Hana Cho, Ming-Fu Lin, Camila

Bacellar, Champak Khurmi, Marcus Hertlein, Jinghua Guo, Tolek Tyliszczak, David Pren-

dergast, Giacomo Coslovich, Joseph Robinson, Robert A Kaindl, Robert W Schoenlein, Ali

Belkacem, Thorsten Weber, Daniel M Neumark, Stephen R Leone, Dennis Nordlund, Hi-

rohito Ogasawara, Anders R Nilsson, Oleg Krupin, Joshua J Turner, William F Schlotter,

Michael R Holmes, Philip A Heimann, Marc Messerschmidt, Michael P Minitti, Martin Beye,

Sheraz Gul, Jin Z Zhang, Nils Huse, and Oliver Gessner, “Time-resolved x-ray photoelectron

spectroscopy techniques for real-time studies of interfacial charge transfer dynamics,” AIP

Conference Proceedings 1525, 475 (2013).

[26] Chelsea E. Liekhus-Schmaltz, Ian Tenney, Timur Osipov, Alvaro Sanchez-Gonzalez, Nora

15



Berrah, Rebecca Boll, Cedric Bomme, Christoph Bostedt, John D. Bozek, Sebastian Carron,

Ryan Coffee, Julien Devin, Benjamin Erk, Ken R. Ferguson, Robert W. Field, Lutz Foucar,

Leszek J. Frasinski, James M. Glownia, Markus Guhr, Andrei Kamalov, Jacek Krzywinski,

Heng Li, Jonathan P. Marangos, Todd J. Martinez, Brian K. McFarland, Shungo Miyabe,

Brendan Murphy, Adi Natan, Daniel Rolles, Artem Rudenko, Marco Siano, Emma R. Simp-

son, Limor Spector, Michele Swiggers, Daniel Walke, Song Wang, Thorsten Weber, Philip H.

Bucksbaum, and Vladimir S. Petrovic, “Ultrafast isomerization initiated by x-ray core ion-

ization,” Nature Comm. 6, 8199 (2015).

[27] Ken R. Ferguson, Maximilian Bucher, Tais Gorkhover, Sébastien Boutet, Hironobu Fukuzawa,
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I. AUTOCORRELATION MATRIX QUALITY

The pump-probe ghost imaging method works generally with any SASE FEL configuration,

provided there is sufficient resolution to measure shot-by-shot fluctuations. However, we observe

empirically that untapered, post-saturation configurations produce better reconstructions compared

to an FEL in pre-saturation (Fig. 1). This is particularly surprising for the spectral approach

(Fig. 1b,d), given that the Pearson correlation between the field and power autocorrelations is

smaller for the post-saturation case (Section IV).

(a) (b)

(c) (d)

FIG. 1. Reconstructions for the four autocorrelations shown in Fig. 3. Top plots (a, b) are for pre-saturation,

and bottom plots (c, d) are for post-saturation. Left plots use power, 1fs resolution, and right plots use

spectrum, 200 meV resolution.

A partial explanation for the advantage at post-saturation is that shorter coherence lengths lead

to sharper features in the autocorrelation, and thus better time resolution in the reconstruction. The

saturated case has shorter coherence length: 1.57 fs for post-saturation vs. 1.82 fs for the pre-
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saturation case. However, even taking the larger coherence length into account, the pre-saturation

case still has somewhat worse reconstruction performance. To support this observation, we cal-

culate the singular value decomposition (SVD) to check the conditioning of each matrix. Fig. 2

plots the eigenvalues for four cases, using either pre- or post-saturation FELs, and using either

power or field autocorrelations. (As explained in the main paper, the field autocorrelation is used

in the spectral approach.) We find that the post-saturation matrices are better conditioned than

the pre-saturation matrices, and the power matrices are better conditioned than the field (spectral)

matrices. We also calculate the Gram matrices of the autocorrelations (Fig. 3), which give the

co-dependence of features. Fig. 1 shows the corresponding reconstructions for each of the four

cases in Figs. 2 and 3. It may be possible to further improve the conditioning by manipulating

the electron beam quality, e.g. by intentionally inducing the microbunching instability (MBI) [1]

to reduce the number of spikes. (Examples of the resulting distorted phase space can be found in

[2].) The high current spikes of an MBI-distorted beam also have the effect of reducing the FEL

coherence length [3], improving the theoretical limit for the temporal resolution of PPGI.

FIG. 2. SVD eigenvalues for the four cases: pre-saturation (red) vs. post-saturation (blue), and power

autocorrelations (solid lines) vs. field autocorrelations (dashed lines).
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(a) (b)

(c) (d)

FIG. 3. Gram matrices for FELs in pre-saturation (top) and post-saturation (bottom). Matrices are calculated

for the second order/power autocorrelation (left), and the first-order/field autocorrelation (right). A perfectly

independent matrix would only have non-zero entries on the diagonal. For both power and field cases, the

post-saturation regime (bottom plots) gives better-conditioned matrices.

II. THE FIRST VS. SECOND ORDER AUTOCORRELATION PROBLEM

For the remainder of the supplemental information, we calculate several relations between the

first and second order autocorrelations. In this section, we calculate the expectation value of first

and second order autocorrelations, and find a new relation that applies to fields with finite co-

herence lengths (Eq. 10). Section III calculates the variances for both the first and second order

correlations in a general case. Section IV applies the results to the special case of Gaussian wave

packets, a common model used to describe FEL pulses in the linear (pre-saturation) regime [4]. We

compare these results to 1-D FEL simulations and confirm that the analytical equations are good

3



Wednesday 13th February, 2019 06:34

approximations for FELs.

Let f (t) be a random process that has the following form

f (t) = e(t)w(t), (1)

where e (t) is a stationary complex-valued stochastic process [5], and w (t) denotes a (deterministic)

real window function (e.g. equal to 1 for 0 < t < T and zero otherwise). Related to the fluctuational

part of the field e (t) is a correlation function K (τ),

K (τ) = 〈e (t) e∗ (t − τ)〉 , (2)

where the angular brackets denote the ensemble average.

Following Ref. [4], we define

A( f )(τ) =

∫
dt f (t) f ∗(t − τ), A(p)(τ) =

∫
dt| f (t)|2| f (t − τ)|2, (3)

(here we ignore the normalization factor).

Let us calculate 〈|A( f )(τ)|2〉. We have

〈|A( f )(τ)|2〉 = 〈

∫
dt dt′ f (t) f ∗(t − τ) f ∗(t′) f (t′ − τ)〉

=

∫
dt dt′w(t)w(t − τ)w(t′)w(t′ − τ)〈e(t)e∗(t − τ)e∗(t′)e(t′ − τ)〉. (4)

The correlator in this equation can be easily calculated (see also Ref. [6]):

〈
e (t) e∗ (t − τ) e∗

(
t′
)

e
(
t′ − τ

)〉
= 〈e (t) e∗ (t − τ)〉

〈
e∗

(
t′
)

e
(
t′ − τ

)〉
+

〈
e (t) e∗

(
t′
)〉 〈

e∗ (t − τ) e
(
t′ − τ

)〉
= |K (τ)|2 +

∣∣∣K (
t − t′

)∣∣∣2 . (5)

Using this correlator we obtain

〈|A( f )(τ)|2〉 =

∫
dt dt′w(t)w(t − τ)w(t′)w(t′ − τ)

[
|K (τ)|2 +

∣∣∣K (
t − t′

)∣∣∣2] . (6)

We are interested in values of τ much larger than the correlation time, τ � τcorr. In this limit

K (τ)→ 0 and can be neglected. Changing the integration variable t′ = t − ξ we find

〈|A( f )(τ)|2〉 =

∫
dt dξw(t)w(t − τ)w(t − ξ)w(t − ξ − τ) |K(ξ)|2 . (7)

We now assume that w(t) is a broad function—it varies on the time scale much larger than τcorr.

We then can neglect ξ in the argument of w in this integral, because the dominant contribution to

4
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the integral comes from the region where ξ ∼ τcorr which by assumption is much smaller that the

time scale of function w. We obtain

〈|A( f )(τ)|2〉 =

(∫
dt w(t)2w(t − τ)2

) (∫
dξ |K(ξ)|2

)
. (8)

We now calculate 〈A( f )(τ)〉, again using the correlator (5):

〈A(p)(τ)〉 =

∫
dtw(t)2w(t − τ)2〈e(t)e∗(t)e(t − τ)e∗(t − τ)〉

=

∫
dtw(t)2w(t − τ)2

[
|K(τ)|2 + K2

0

]
≈ K2

0

∫
dtw(t)2w(t − τ)2, (9)

where K0 = |K(0)|. As above, we neglected the K(τ) term. After that, comparing the result with

Eq. (8) we conclude that

〈A(p)(τ)〉 =
M
T
〈|A( f )(τ)|2〉 (10)

where

M = T K2
0

(∫
dξ |K(ξ)|2

)−1

(11)

is the number of modes in the pulse.

III. VARIANCE AND CORRELATION

We will now calculate the variance of the two functions, Var(|A( f )(τ)|2) and Var(A(p)(τ)),

Var(|A( f )(τ)|2) = 〈|A( f )(τ)|4〉 − 〈|A( f )(τ)|2〉2, Var(A(p)(τ)) = 〈A(p)(τ)2〉 − 〈A(p)(τ)〉2 . (12)

Let us start with 〈|A( f )(τ)|4〉,

〈|A( f )(τ)|4〉 = = 〈

∫
dt dt′ dt′′ dt′′′ f (t) f ∗(t − τ) f ∗(t′) f (t′ − τ) f (t′′) f ∗(t′′ − τ) f ∗(t′′′) f (t′′′ − τ)〉

=

∫
dt dt′ dt′′ dt′′′w(t)w(t − τ)w(t′)w(t′ − τ)w(t′′)w(t′′ − τ)w(t′′′)w(t′′′ − τ)

× 〈e(t)e∗(t − τ)e∗(t′)e(t′ − τ)e(t′′)e∗(t′′ − τ)e∗(t′′′)e(t′′′ − τ)〉. (13)

Calculating the 8-correlator of the e field

〈e(t)e∗(t − τ)e∗(t′)e(t′ − τ)e(t′′)e∗(t′′ − τ)e∗(t′′′)e(t′′′ − τ)〉 (14)
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we will have 4!=24 terms. We can drop most of them because they give a result that is small by

the ratio τcorr/T , see Appendix A. Out of 24 only two terms should be kept:

|K(t − t′)|2|K(t′′ − t′′′)|2 + |K(t − t′′′)|2|K(t′ − t′′′)|2 . (15)

After putting these terms in Eq. (13) and integrating over times, each of these terms gives the same

contribution to 〈|A( f )(τ)|4〉, and one of them cancels 〈|A( f )(τ)|2〉2. We end with the following result

Var(|A( f )(τ)|2) = 〈|A( f )(τ)|2〉2, (16)

which means that the standard deviation of |A( f )(τ)|2 is equal to its average value squared. In

Appendix A we also calculate corrections to this expression of the order of τcorr/T that give a

better agreement with the simulations. These corrections are given by Eq. (A12).

For the variance Var(A(p)(τ)) we need to calculate 〈A(p)(τ)2〉

〈A(p)(τ)2〉 =

∫
dt dt′ w(t)2w(t − τ)2w(t′)2w(t′ − τ)2

× 〈e(t)e∗(t)e(t − τ)e∗(t − τ)e(t′)e∗(t′)e(t′ − τ)e∗(t′ − τ)〉 . (17)

This correlator is computed in Appendix B. The result is given by Eq. (B6).

Finally, we calculate the following correlation factor

corr = 〈(|A( f )(τ)|2 − 〈|A( f )(τ)|2〉)(A(p)(τ) − 〈A(p)(τ)〉)〉

= 〈|A( f )(τ)|2A(p)(τ)〉 − 〈|A( f )(τ)|2〉〈A(p)(τ)〉 . (18)

Let’s calculate the first term

〈|A( f )(τ)|2A(p)(τ)〉 =

∫
dt dt′ dt′′w(t)w(t − τ)w(t′)w(t′ − τ)w(t′′)2w(t′′ − τ)2

× 〈e(t)e∗(t − τ)e∗(t′)e(t′ − τ)e(t′′)e∗(t′′)e(t′′ − τ)e∗(t′′ − τ)〉 . (19)

We need to average

〈e(t)e∗(t − τ)e∗(t′)e(t′ − τ)e(t′′)e∗(t′′)e(t′′ − τ)e∗(t′′ − τ)〉. (20)

This term is calculated in Appendix C. The first term cancels the product of averaged values in

Eq. (18). The final result is given by Eq. (C28).

Finally, we want to calculate the Pearson correlation coefficient, Cp(τ), given by

Cp ≡
〈|A( f )(τ)|2A(p)(τ)〉

Var(|A( f )(τ)|2)Var(A(p)(τ))
. (21)
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IV. THE MODEL OF GAUSSIAN PULSES

We now take a specific case of Gaussian pulses that is a standard approximation for SASE FEL

pulses [? ]. Consider a random process where e(t) is a collection of random Gaussian pulses

e(t) =
∑

i

e−(t−ti)2/2σ2+iφi . (22)

where ti are random uncorrelated times uniformly distributed over the interval [0,T ] with the prob-

ability dti/T , coherence length σ, and φi are random phases. The correlation function (2) is

K(τ) =
∑

i, j

〈e−(t−ti)2/2σ2+iφie−(t−τ−t j)2/2σ2−iφ j〉 . (23)

Because the phases are not correlated, only terms with i = j survive,

K(τ) =
1
T

∑
i

∫ T

0
dtie−(t−ti)2/2σ2

e−(t−τ−ti)2/2σ2

≈
N
T

∫ ∞

−∞

dtie−(t−ti)2/2σ2
e−(t−τ−ti)2/2σ2

=
√
πνσe−τ

2/4σ2
, (24)

where ν is the number of pulses per unit time. We need the following integral∫ ∞

−∞

dξ |K(ξ)|2 = ν2πσ2
∫ ∞

−∞

dξe−τ
2/2σ2

= 21/2π3/2σ3ν2 . (25)

We then have from Eqs. (8) and (9)

〈|A( f )(τ)|2〉 = 21/2π3/2σ3ν2|T − τ|, 〈A(p)(τ)〉 = ν2πσ2|T − τ|. (26)

The number of modes (11) in the pulse is

M =
T
√

2πσ
. (27)

We now calculate M1 using Eq. (B7),

M1 = T |K0|
4
(∫

dξ |K(ξ)|4
)−1

= T
(∫

dξe−ξ
2/σ2

)−1

=
T

σ
√
π
. (28)

We have two equations for the variances:√
Var(|A( f )(τ)|2) = 〈|A( f )(τ)|2〉 = (T − τ)|K0|

2 T
M

(29)

7
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and

Var(A(p)(τ)) = |K0|
4T

[(
2
M

+
1

M1

)
(T − τ)h(T − τ) +

1
M1

(T − 2τ) h (T − 2τ)
]
. (30)

Let us calculate M2 for the correlation function given by Eq. (24),

T 2

M2
2

= K−3
0

∫
dξ1 dξ2K(ξ1)K(ξ2)K(−ξ1 − ξ2) =∫

dξ1 dξ2e−ξ
2
1/4σ

2
e−ξ

2
2/4σ

2
e−(ξ1+ξ2)2/4σ2

=
4πσ2

√
3

(31)

which gives

M2 =
31/4T
2
√
πσ

. (32)

For the number M3 we find

1
M3

3

= 4π3/2σ
3

T 3 . (33)

Plugging these results into the expressions for the correlators we compare to simulations of

Gaussian wavepackets in Figs. 4-6.

FIG. 4. Comparison of theory (Eq. 10) and simulations of an FEL in pre-saturation. Shaded areas show

standard deviation of fluctuations for the simulations.
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(a) (b)

(c) (d)

FIG. 5. Comparison of analytical expressions (solid blue line) with simulations of Gaussian wavepackets

(dashed red line). Plots show standard deviation of |A f |2 (top left), standard deviation of Ap (top right),

covariance of |A f |2 and Ap (bottom left), and pearson correlation coefficient of |A f |2 and Ap (bottom right).
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(a)

FIG. 6. Comparison of pearson correlation between |A f |2 and Ap for analytical expression (solid blue line)

and 1-D FEL simulations a in the pre-saturation (dot-dashed green line) and post-saturation (dashed red line)

regimes.

a 1-D FEL code used courtesy of Zhirong Huang
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Appendix A: Calculation of 〈|A( f )(τ)|4〉

In calculation of the correlators we need to pair e and e∗ in the product of the fields and add the

results. We show the pairing by lines connecting the corresponding terms.

Term 1:
e(t) e∗(t − τ) e∗(t′) e(t′ − τ) e(t′′) e∗(t′′ − τ) e∗(t′′′) e(t′′′ − τ)

This term is

|K(t − t′)|2|K(t′′ − t′′′)|2 (A1)

10
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After integration over all times in Eq. (13) this term gives a contribution of the order of

∼ K4
0T 2τ2

corr (A2)

This term will cancel 〈|A( f )(τ)|2〉2.

Term 2:

e(t) e∗(t − τ) e∗(t′) e(t′ − τ) e(t′′) e∗(t′′ − τ) e∗(t′′′) e(t′′′ − τ)

This term is equal to

K(t − t′)K(t′′ − t + τ)K(t′ − t′′′ − τ)K(t′′′ − t′′) (A3)

From the first and the last term it follows that |t − t′| . τcorr and |t′′′ − t′′| . τcorr. Introduce new

variables ξ1 = t − t′, ξ2 = t′′′ − t′′ and ξ3 = t′′ − t + τ, then the third argument is t′ − t′′′ − τ =

−(ξ1 + ξ2 + ξ3). Integration over each of the varibles ξ1, ξ2, ξ3 is limited by the interval τcorr,

integration over the fourth variable will go over the interval ∼ T . Hence the result will be of the

order of

K4
0Tτ3

corr (A4)

which is much smaller than (A2).

Term 3:

e(t) e∗(t − τ) e∗(t′) e(t′ − τ) e(t′′) e∗(t′′ − τ) e∗(t′′′) e(t′′′ − τ)

This term is equal to

K(t − t′)K(t′′′ − t)K(t′ − t′′)K(t′′ − t′′′) (A5)

This term will be of the order of K4
0Tτ3

corr.

Term 4:

e(t) e∗(t − τ) e∗(t′) e(t′ − τ) e(t′′) e∗(t′′ − τ) e∗(t′′′) e(t′′′ − τ)

This term is equal to

K(t − t′′ + τ)K(t′ − t)K(t′′′ − t′ − τ)K(t′′ − t′′′) (A6)

This term will be of the order of K4
0Tτ3

corr.

Term 5:

11
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e(t) e∗(t − τ) e∗(t′) e(t′ − τ) e(t′′) e∗(t′′ − τ) e∗(t′′′) e(t′′′ − τ)

This term is equal to

K(t − t′′ + τ)K(t′′ − t + τ)K(t′′′ − t′ − τ)K(t′ − t′′′ − τ) (A7)

This term is exponentially small and will be neglected.

Term 6:

e(t) e∗(t − τ) e∗(t′) e(t′ − τ) e(t′′) e∗(t′′ − τ) e∗(t′′′) e(t′′′ − τ)

This term is equal to

K(t − t′′ + τ)K(t′′′ − t)K(t′′ − t′)K(t′ − t′′′ − τ) (A8)

This term will be of the order of K4
0Tτ3

corr.

Term 7:

e(t) e∗(t − τ) e∗(t′) e(t′ − τ) e(t′′) e∗(t′′ − τ) e∗(t′′′) e(t′′′ − τ)

This term is equal to

K(t − t′′′)K(t′ − t)K(t′′ − t′)K(t′′′ − t′′) (A9)

This term will be of the order of K4
0Tτ3

corr.

Term 8:

e(t) e∗(t − τ) e∗(t′) e(t′ − τ) e(t′′) e∗(t′′ − τ) e∗(t′′′) e(t′′′ − τ)

This term is equal to

K(t − t′′′)K(t′′ − t + τ)K(t′′′ − t′ − τ)K(t′ − t′′) (A10)

This term will be of the order of K4
0Tτ3

corr.

Term 9:

e(t) e∗(t − τ) e∗(t′) e(t′ − τ) e(t′′) e∗(t′′ − τ) e∗(t′′′) e(t′′′ − τ)

This term is equal to

K(t − t′′′)K(t′′′ − t)K(t′′ − t′)K(t′ − t′′) = |K(t − t′′′)|2|K(t′ − t′′)|2 (A11)

12
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The terms 1 and 9 result in the expression (16). The terms 2, 3, 4, 6, 7 and 8 can also be

calculated. For the rectangular window function w(t) they give the following result

1
M3

3

K4
0T 3 [4(T − 2τ)h(T − 2τ) + 2(T − τ)h(T − τ)] , (A12)

where the number M3 is defined by the following equation

1
M3

3

=
1

K4
0T 3

∫
dξ1 dξ2 dξ3 K(ξ1)K(ξ2)K(ξ3)K(−ξ1 − ξ2 − ξ3). (A13)

Appendix B: Calculation of 〈A(p)(τ)2〉

To calculate this we need to correlate pairs of the field e and e∗ in different combinations. Let’s

start:
e(t) e∗(t) e(t − τ) e∗(t − τ) e(t′) e∗(t′) e(t′ − τ) e∗(t′ − τ) = |K(0)|4

e(t) e∗(t) e(t − τ) e∗(t − τ) e(t′) e∗(t′) e(t′ − τ) e∗(t′ − τ) = |K(0)|2|K(t − t′ − τ)|2

e(t) e∗(t) e(t − τ) e∗(t − τ) e(t′) e∗(t′) e(t′ − τ) e∗(t′ − τ) = |K(0)|2|K(t − t′)|2

e(t) e∗(t) e(t − τ) e∗(t − τ) e(t′) e∗(t′) e(t′ − τ) e∗(t′ − τ) = |K(0)|2|K(t − t′)|2

e(t) e∗(t) e(t − τ) e∗(t − τ) e(t′) e∗(t′) e(t′ − τ) e∗(t′ − τ) = |K(t − t′)|4

e(t) e∗(t) e(t − τ) e∗(t − τ) e(t′) e∗(t′) e(t′ − τ) e∗(t′ − τ) = [K(t − t′)]2K(t′ − t + τ)K(t′ − t − τ)

e(t) e∗(t) e(t − τ) e∗(t − τ) e(t′) e∗(t′) e(t′ − τ) e∗(t′ − τ) = [K(t′ − t)]2K(t − t′ + τ)K(t − t′ − τ)

e(t) e∗(t) e(t − τ) e∗(t − τ) e(t′) e∗(t′) e(t′ − τ) e∗(t′ − τ) = |K(0)|2|K(t − t′ + τ)|2

e(t) e∗(t) e(t − τ) e∗(t − τ) e(t′) e∗(t′) e(t′ − τ) e∗(t′ − τ) = |K(t − t′ + τ)|2|K(t − t′ − τ)|2

We do not show terms that turns out to be proportional to K(τ) and can be neglected right away

in the limit τ � τcorr.

The first term |K(0)|4 cancels 〈A(p)(τ)〉2, see Eq. (9).

The second term is |K(0)|2|K(t − t′ − τ)|2 which gives

K2
0

∫
dt dt′ w(t)2w(t − τ)2w(t′)2w(t′ − τ)2|K(t − t′ − τ)|2

≈ K2
0

∫
dt w(t)2w(t − τ)4w(t − 2τ)2

∫
dξ |K(ξ)|2 (B1)

13
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Then we have 2 terms |K(0)|2|K(t − t′)|2 which give

2K2
0

∫
dt dt′ w(t)2w(t − τ)2w(t′)2w(t′ − τ)2|K(t − t′)|2

≈ 2K2
0

∫
dt w(t)4w(t − τ)4

∫
dξ |K(ξ)|2 (B2)

Then we have |K(t − t′)|4 which gives∫
dt dt′ w(t)2w(t − τ)2w(t′)2w(t′ − τ)2|K(t − t′)|4

≈

∫
dt w(t)4w(t − τ)4

∫
dξ |K(ξ)|4 (B3)

The next two terms can be neglected.

The next term is |K(0)|2|K(t − t′ + τ)|2 which gives

K2
0

∫
dt dt′ w(t)2w(t − τ)2w(t′)2w(t′ − τ)2|K(t − t′ + τ)|2

≈ K2
0

∫
dt w(t)4w(t − τ)2w(t + τ)2

∫
dξ |K(ξ)|2 (B4)

And finally we have |K(t − t′ + τ)|2|K(t − t′ − τ)|2 which gives∫
dt dt′ w(t)2w(t − τ)2w(t′)2w(t′ − τ)2|K(t − t′ + τ)|2|K(t − t′ − τ)|2

≈

∫
dt w(t)4w(t − τ)2w(t + τ)2

∫
dξ |K(ξ)|2|K(ξ − 2τ)|2 (B5)

This term is small.

This will give the following expression for the rectangular function w(t)

Var(A(p)(τ)) = K4
0T

[(
2
M

+
1

M1

)
(T − τ)h(T − τ) +

2
M

(T − 2τ) h (T − 2τ)
]

(B6)

where

M1 = T |K0|
4
(∫

dξ |K(ξ)|4
)−1

(B7)

and h is the step function.

Appendix C: Calculation of 〈|A( f )(τ)|2A(p)(τ)〉

Term 1:

14
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e(t) e∗(t − τ) e∗(t′) e(t′ − τ) e(t′′) e∗(t′′) e(t′′ − τ) e∗(t′′ − τ)

This term is equal to

|K(t − t′)|2K2
0 (C1)

After integration over all times this term is of the order of

K4
0T 2τcorr (C2)

It is relatively large, but it will be canceled by 〈|A( f )(τ)|2〉〈A(p)(τ)〉, so we will need to keep terms

of a smaller order.

Term 2:
e(t) e∗(t − τ) e∗(t′) e(t′ − τ) e(t′′) e∗(t′′) e(t′′ − τ) e∗(t′′ − τ)

This term is equal to

K(t − t′)K(t′′ − t + τ)K(t′ − t′′ − τ)K0 (C3)

This term will be of the order of K4
0Tτ2

corr, we need to keep it.

Term 3:
e(t) e∗(t − τ) e∗(t′) e(t′ − τ) e(t′′) e∗(t′′) e(t′′ − τ) e∗(t′′ − τ)

This term is equal to

K(t − t′)K(t′′ − t)K(t′ − t′′)K0 (C4)

This term will be of the order of K4
0Tτ2

corr, so we need to keep it.

Term 4:

e(t) e∗(t − τ) e∗(t′) e(t′ − τ) e(t′′) e∗(t′′) e(t′′ − τ) e∗(t′′ − τ)

This term is equal to

K(t − t′′)K(t′ − t)K(t′′ − t′)K0 (C5)

This term will be of the order of K4
0Tτ2

corr, so we need to keep it.

Term 5:

e(t) e∗(t − τ) e∗(t′) e(t′ − τ) e(t′′) e∗(t′′) e(t′′ − τ) e∗(t′′ − τ)

15
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This term is equal to

K(t − t′′)K(t′′ − t + τ)K(t′′ − t′ − τ)K(t′ − t′′) (C6)

This term is negligible. When we introduce variables ξ1 = t − t′′ and ξ2 = t′ − t′′ it becomes

K(ξ1)K(−ξ1 + τ)K(−ξ2 − τ)K(ξ2) (C7)

Since |ξ1|, |ξ2| ∼ τcorr, the two middle terms are exponentially small.

Term 6:

e(t) e∗(t − τ) e∗(t′) e(t′ − τ) e(t′′) e∗(t′′) e(t′′ − τ) e∗(t′′ − τ)

This term is equal to

K(t − t′′)K(t′′ − t)K(t′′ − t′)K(t′ − t′′) = |K(t − t′′)|2|K(t′′ − t′)|2 (C8)

This term will be of the order of K4
0Tτ2

corr, so we keep it.

Term 7:

e(t) e∗(t − τ) e∗(t′) e(t′ − τ) e(t′′) e∗(t′′) e(t′′ − τ) e∗(t′′ − τ)

This term is equal to

K(t − t′′ + τ)K(t′ − t)K(t′′ − t′ − τ)K0 (C9)

This term will be of the order of K4
0Tτ2

corr, so we keep it.

Term 8:

e(t) e∗(t − τ) e∗(t′) e(t′ − τ) e(t′′) e∗(t′′) e(t′′ − τ) e∗(t′′ − τ)

This term is equal to

K(t − t′′ + τ)K(t′′ − t + τ)K(t′′ − t′ − τ)K(t′ − t′′ − τ) (C10)

This term is exponentially small, so we neglect it.

Term 9:

e(t) e∗(t − τ) e∗(t′) e(t′ − τ) e(t′′) e∗(t′′) e(t′′ − τ) e∗(t′′ − τ)

This term is equal to

K(t − t′′ + τ)K(t′′ − t)K(t′′ − t′)K(t′ − t′′ − τ) (C11)

16
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This term is exponentially small, so we neglect it.

We now finish the calculation by doing integrations over the time variables.

Term 2: ∫
dt dt′ dt′′w(t)w(t − τ)w(t′)w(t′ − τ)w(t′′)2w(t′′ − τ)2

× K(t − t′)K(t′′ − t + τ)K(t′ − t′′ − τ)K0 (C12)

Use new variables ξ1 = t − t′, ξ2 = t′′ − t + τ

≈ K0

∫
dt′ w(t′)2w(t′ − τ)4w(t′ − 2τ)2

∫
dξ1 dξ2K(ξ1)K(ξ2)K(−ξ1 − ξ2) (C13)

Term 3: ∫
dt dt′ dt′′w(t)w(t − τ)w(t′)w(t′ − τ)w(t′′)2w(t′′ − τ)2

× K(t − t′)K(t′′ − t)K(t′ − t′′)K0 (C14)

Use new variables ξ1 = t − t′, ξ2 = t′′ − t

≈ K0

∫
dt′ w(t′)4w(t′ − τ)4

∫
dξ1 dξ2K(ξ1)K(ξ2)K(−ξ1 − ξ2) (C15)

Term 4: ∫
dt dt′ dt′′w(t)w(t − τ)w(t′)w(t′ − τ)w(t′′)2w(t′′ − τ)2

× K(t − t′′)K(t′ − t)K(t′′ − t′)K0 (C16)

Use new variables ξ1 = t − t′′, ξ2 = t′ − t

K0

∫
dt′′w(t′′)4w(t′′ − τ)4

∫
dξ1 dξ2 K(ξ1)K(ξ2)K(−ξ1 − ξ2) (C17)

Term 6: ∫
dt dt′ dt′′w(t)w(t − τ)w(t′)w(t′ − τ)w(t′′)2w(t′′ − τ)2

× |K(t − t′′)|2|K(t′′ − t′)|2 (C18)

Use new variables ξ1 = t − t′′, ξ2 = t′′ − t′∫
dt′w(t′)4w(t′ − τ)4

∫
dξ1 dξ2|K(ξ1)|2|K(ξ2)|2 =

∫
dt′w(t′)4w(t′ − τ)4

(∫
dξ|K(ξ)|2

)2

(C19)

17
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Term 7: ∫
dt dt′ dt′′w(t)w(t − τ)w(t′)w(t′ − τ)w(t′′)2w(t′′ − τ)2

× K(t − t′′ + τ)K(t′ − t)K(t′′ − t′ − τ)K0 (C20)

Use new variables ξ1 = t − t′′ + τ, ξ2 = t′ − t

K0

∫
dt′′w(t′′)2w(t′′ − τ)4w(t′′ − 2τ)2

∫
dξ1 dξ2K(ξ1)K(ξ2)K(−ξ1 − ξ2) (C21)

We now introduce a new number M2

1
M2

2

=
1

K3
0T 2

∫
dξ1 dξ2K(ξ1)K(ξ2)K(−ξ1 − ξ2), (C22)

and continue calculations for the specific model of the window function w(t) = 1 when 0 < t < T

and zero outside. We have ∫
dt w(t)nw(t − τ)n = (T − τ)h(T − τ) (C23)

and ∫
dt w(t)2w(t − τ)4w(t − 2τ)2 = (T − 2τ)h(T − 2τ) (C24)

Terms 2 and 7 add up to

2K4
0T 2

M2
2

(T − 2τ)h(T − 2τ) (C25)

Terms 3 and 4 add up to

2K4
0T 2

M2
2

(T − τ)h(T − τ), (C26)

and terms 6 gives

K4
0T 2

M2 (T − τ)h(T − τ). (C27)

They combine into the following expression

〈|A( f )(τ)|2A(p)(τ)〉 = K4
0T 2

[(
1

M2 +
2

M2
2

)
(T − τ)h(T − τ) +

2
M2

2

(T − 2τ)h(T − 2τ)
]

(C28)
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