SAND2015- 4706

SANDIA REPORT

Unlimited Release
Printed

Fault Resilient Domain
Decomposition Preconditioner for
PDEs

Khachik Sargsyan, Francesco Rizzi, Paul Mycek, Cosmin Safta, Karla Morris,
Habib Najm, Olivier Le Maitre, Omar Knio, Bert Debusschere

Prepared by
Sandia National Laboratories
Albugquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov

Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov

Online ordering: http:/www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

Unlimited Release
Printed

Fault Resilient Domain Decomposition
Preconditioner for PDEs

Khachik Sargsyan * Francesco Rizzi | Paul Mycek *

Cosmin Safta 8 Karla Morris ¥ Habib Najm | Olivier Le Maitre **
Omar Knio 1 Bert Debusschere

Abstract

The move towards extreme-scale computing platforms challenges scientific simula-
tions in many ways. Given the recent tendencies in computer architecture development,
one needs to reformulate legacy codes in order to cope with large amounts of commu-
nication, system faults and requirements of low-memory usage per core.

In this work, we develop a novel framework for solving partial differential equa-
tions (PDEs) via domain decomposition that reformulates the solution as a state-of-
knowledge with a probabilistic interpretation. Such reformulation allows resiliency with
respect to potential faults without having to apply fault detection, avoids unnecessary
communication and is generally well-positioned for rigorous uncertainty quantification
studies that target improvements of predictive fidelity of scientific models. We demon-
strate our algorithm for one-dimensional PDE examples where artificial faults have
been implemented as bit-flips in the binary representation of subdomain solutions.

*Sandia National Laboratories, 7011 East Ave, MS 9051, Livermore, CA 94550 (ksargsy@sandia.gov).
fSandia National Laboratories, Livermore, CA (fnrizzi@sandia.gov).

'Duke University, Durham, NC (paul .mycek@duke . edu).

§Sandia National Laboratories, Livermore, CA (csafta@sandia.gov).

YSandia National Laboratories, Livermore, CA (knmorri@sandia.gov).

ISandia National Laboratories, Livermore, CA (hnnajm@sandia.gov).
**Laboratoire d’Informatique pour la Mécanique et les Sciences de I'Ingénieur, Orsay, France

(olm@limsi.fr).

" Duke University, Durham, NC (omar.knio@duke.edu).
#Sandia National Laboratories, Livermore, CA (bjdebus@sandia.gov).

3

Acknowledgment

This work is supported by the U.S. Department of Energy, Office of Science, Office of Ad-
vanced Scientific Computing Research, under Award Number 13-016717. Sandia National
Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of
Energy’s National Nuclear Security Administration under contract DE-AC04-94 AL85000.

Contents

1 Introduction
2 Algorithm formulation

2.1 General approach
2.2 Ome-dimensional preconditioner formulation
2.3 Surrogate boundary map construction L.
2.4 Surrogate range choice and solution state updating for non-linear problems . .

3 Numerical tests

3.1 Fault model.
3.2 Linear problem with analytical solution on subdomains
3.3 Non-linear problem with analytical solution on subdomains
3.4 Error propagation in the fixed-point system...........
3.5 Linear PDE with numerical solution on subdomains

4 Discussion and future work
References

Appendix

A Proof of linearity of boundary maps for linear PDEs

Figures

1 Workflow schematic of the approach for a 2-dimensional, 4 overlapping sub-
domain Case.

2 Schematic of one complete iteration of the algorithm.

3 Demonstration of the surrogate boundary map construction, on the example
of yhy = fE(Yr, ul).

4 (left) Illustration of Gaussian and Laplace distributions of the same variance,
(right) linear regressions with a single perturbed point, using both Gaussian
and Laplace likelihood.

5 Demonstration of 100 regression tests with Laplace (left column) and Gaussian
(right column) likelihoods, in the presence of random errors in one (top row)
or two (bottom row) randomly selected data values, out of M = 10 samples.
Plotted are inferred errors induced in the resulting coefficients and A (or o)
versus the size of random perturbations.

6 Illustration of the surrogate map intersection for a 2-subdomain test case.

The red points and lines correspond to yiesr = f1(Yrignt), While purple ones
correspond to Ypight = fo(Yiesr). Dashed lines correspond to true maps with
no perturbed points. Intersection of dashed lines is shown by green circles,
while the intersection of solid lines corresponds to blue stars.

5

14

22

23

10

11

12

13

14

Convergence for the linear problem (30), in two cases of initial range choice for
the internal boundaries. The initial solution states and ranges are illustrated
with red dots and errorbars. The precomputed true solution is shown with
black solid curve.

RMS error versus the iteration number for 100 different simulations of the
linear problem. The bit-flip probability is set to p = 0.003, while the other
parameters are at their default values, i.e. M = 15 samples, N = 5 subdo-
mains with overlap size h = 0.05 and the factor in the surrogate range choice
isset to f=0.1. ...

Solution of the fixed point problem y = Fy using the exact boundary-to-
boundary maps without surrogates.,

The results of the application of our approach to the non-linear problem. On
the left plot, the errorbars indicate the surrogate range for the corresponding
iteration. On the right, dashed line indicates the RMS average range chosen
at each iteration, i.e. the RMS average of the vector 7(;), while the dotted line
shows the RMS average of the computed residual vector according to Eq. (7).

The convergence results as the factor f in the surrogate range choice is varied.
The parameters are set to M = 15, p = 0.0, using linear surrogate maps
and N = 5 subdomains. The left plot shows the RMS error versus iteration
number across 100 identical simulations. On the right plot, a single simulation
is illustrated for each value of f, together with the corresponding dashed curve
that indicates how the RMS average of the surrogate range is evolving.

Convergence with the number of iterations for various sizes of domain overlaps
with the number of subdomains fixed at N = 5. The rest of the parameters
are set to M = 15, f = 0.1, p = 0.0, using linear surrogate maps. The left plot
shows the RMS error versus iteration number across 100 identical simulations.
On the right plot, a single simulation is illustrated for each value of h, together
with the corresponding dashed curve that indicates how the RMS average of
the surrogate range isevolving. i

Convergence with the number of iterations for various number of subdomains.
The parameters are set to M = 15, h = 0.5, f = 0.1, p = 0.0, using linear
surrogate maps. The left plot shows the RMS error versus iteration number
across 100 identical simulations. On the right plot, a single simulation is
illustrated for each value of N, together with the corresponding dashed curve
that indicates how the RMS average of the surrogate range is evolving.

The convergence results as the number of samples M for linear surrogate
construction is changed. The parameters are set to f = 0.1, p = 0.0 and
N = 5 subdomains. The left plot shows the RMS error versus iteration
number across 100 identical simulations. On the right plot, a single simulation
is illustrated for each value of M, together with the corresponding dashed
curve that indicates how the RMS average of the surrogate range is evolving.

31

32

34

35

15

16

17

18

19

Convergence with the surrogate order change. The parameters are set to
M =35 N =5, p=0.0 and f = 0.1. Note that we have used larger number
of training samples in order to achieve a well defined third-order surrogate con-
struction. The left plot shows the RMS error versus iteration number across
100 identical simulations. On the right plot, a single simulation is illustrated
for each value of the surrogate order, together with the corresponding dashed
curve that indicates how the RMS average of the surrogate range is evolving.
Convergence with the number of iterations with and without bit-flips. The
parameters are set to M = 15, N =5, f = 0.1, using linear surrogate maps.
The left plot shows the RMS error versus iteration number across 100 identical
simulations. On the right plot, a single simulation is illustrated for each value
of the bit-flip probability, together with the corresponding dashed curve that
indicates how the RMS average of the surrogate range is evolving.
The error propagation through one iteration of the surrogate map construction
and subsequent fixed point system solution. The plotted is the final RMS error
after a single iteration versus the initial RMS error. Four surrogate ranges are
chosen inducing four groupings of the associated surrogate map accuracies.
The precomputed solution of the diffusion equation (34), as well as the diffu-
sivity and source fields.
Convergence with the number of iterations with and without bit-flips for the
linear diffusion problem (34) for both Gaussian (top row) and Laplace (bottom
row) likelihoods. The parameters are set to M =8, N =5, f = 0.1, h = 0.05.
A total of 100 identical simulations are shown. The grid size for the discrete
solver is kept at 6 = 0.001 for both the reference and subdomain solutions.

The weight relaxation parameter for the IRLS-/; optimization is set to p = 0.9.

36

37

39

This page intentionally left blank.

1 Introduction

Given the trends in computer architecture development, scientific simulations on future
extreme- scale platforms will face many challenges such as the need to operate with relatively
low memory per core, cope with costly data movement, make use of heterogeneous hardware,
scale to very large numbers of cores, and deal with hardware and software faults, among many
other challenges [38]. Overcoming these challenges is essential for many science applications
in terms of enabling simulations on future extreme-scale architectures. The current paper
addresses the issue of resilience against system faults.

The term system faults covers a wide range of hardware and software faults, which can be
categorized as soft or hard faults [5]. Hard faults result in termination of the program that
is executed, e.g. due to a node crash. Soft faults, such as bit-flips in memory, do not cause
immediate program termination, but can lead to faulty results or a program crash further
down. Soft faults are often hard to detect, in which case they are labeled silent faults.

Fault tolerance in high performance computing has been the subject of research for almost
three decades, with increasing intensity as capability simulations are moving into the realm
of tens of thousands of processors where the system mean time to interrupt (MTTI) drops to
a mere couple of hours [9]. With increasing numbers of transistors per chip, error rates are
expected to grow significantly [32,37,39]. Various approaches have been developed to study
system reliability, ranging from graph-based analyses [36] to empirical fault injection [31].
The impact of system faults ranges from negligible to major, depending on the software and
the type of fault [31].

By far the most commonly used fault-tolerance approach is checkpointing, either onto
physical storage or diskless through checksums. While being conceptually straightforward
and robust, checkpointing does introduce a sizeable overhead and does not scale well with
the system and simulation size [4]. This scaling problem arises from the need for wide-range
(often global) aggregation of information to construct the checkpoint data and is, therefore,
an imminent limitation even if the current MTTI can be maintained for future computing
systems. With current technologies, the time to handle resilience is expected to exceed the
MTTT of top supercomputers in near future [8,31]. More recent work has focused on local,
rather than global, checkpointing and recovery [43]. Alternative, emerging approaches are
various forms of algorithm-based fault tolerance (ABFT) [4,15,18,20], effective use of state
machine replication [21] or process-level redundancy [39], and algorithmic error correction
code [33]. Many other approaches for resilience in High Performance Computing have been
developed. For a more comprehensive overview of the many sources of system faults and the
fast-growing body of research to achieve resilience, we refer the reader to the review papers
by Cappello et al. [9,10],

While the many developments in the community towards resilience against system faults
are promising, almost all of the approaches rely on being able to detect the faults in order
to mitigate them. This is particularly a problem for handling silent faults. Also, most
approaches are geared towards handling just one type of fault, e.g. resilience against soft

faults, but not hard faults. In this paper, we present a novel algorithmic approach towards
achieving resilience against both soft and hard faults, without the need to explicitly detect
them. Our algorithm is based on an overlapping domain decomposition framework. It
represents the solution as a state-of-knowledge, and updates this state in a fault-resilient
manner, based on samples of the solution on the subdomains.

Domain decomposition methods [28,41], besides being attractive from a parallel comput-
ing viewpoint, are very well positioned from a resiliency standpoint, as they localize faults,
perhaps with the exception of faults produced during communication. With the increased
emphasis on parallel computing, domain decomposition methods provide a convenient av-
enue to divide-and-conquer. However, while the scalability and convergence of such methods
have been extensively studied in both PDE [7,19,34,42,44] and linear solver [2,24-26] con-
texts, there are not — to the best of our knowledge — many studies considering fault resilience
specific to domain decomposition algorithms. Chen et al. [15] proposed an algorithm-based
recovery method for iterative system solvers to enable resilience to fail-stop failures based
on data partitioning tailored to the characteristics of the iterative scheme, while Larson et
al. [30] achieved fault tolerance by combining solutions on sparse grids. Both approaches
can in principle be reformulated in a domain decomposition paradigm, but with a distinct
flavor of fault-detection or redundancy present.

The approach presented in this paper iteratively advances the solution state by con-
structing maps that relate the solutions at the subdomain boundaries to each other, and
then solving a fixed point problem to get the updated solution at the subdomain bound-
aries. Resilience is obtained by relying on a novel — in this context — robust regression
approach to learn the mappings between the solution at the subdomain boundaries. In this
algorithm, failed runs due to node or software failures show up as missing data, and cor-
rupted data due to bit-flips or other silent errors shows up as data noise in the regression.
The local maps are parametrized as polynomial expansions, similar to the local Polynomial
Chaos method developed in [14]. Our approach, however, allows for nonlinear problems, and
tackles resilience against soft and hard faults as the primary objective.

The current paper focuses primarily on the formulation of the algorithm and demonstrates
its strong resilience to soft faults in the application to 1D linear and nonlinear differential
equations. In linear problems, convergence is reached in just one iteration, for almost all
cases. For non-linear problems, the number of iterations required to reach convergence
depends only very mildly on the error rate. The application of the algorithm to 2D problems
along with a demonstration of resilience against both hard and soft faults will be treated
in [35].

The paper is organized as follows. In Section 2 we develop the algorithm, focusing on the
one-dimensional case, while detailing and testing the fault-resilient boundary-to-boundary
map learning procedure. Then, Section 3 demonstrates the algorithm on both linear and non-
linear PDE test cases. We relegate conclusions and a discussion of potential generalizations
to Section 4.

10

2 Algorithm formulation

2.1 General approach

In this work, we reformulate PDE-based simulations in terms of a description of the current
state-of-knowledge about the true solution. In this context, the true solution is the solution
one would obtain with the chosen numerical method in the absence of any faults in the
system. Starting from a range around a reasonable mean value that captures the initial
knowledge about the solution, targeted simulations are used to refine the knowledge about
the solution until the state-of-knowledge converges to the true answer with sufficient confi-
dence. As such, there is no need to characterize all types of system faults that can occur in
a simulation; one focuses solely on the information that a simulation provides, and on using
it to reduce the uncertainty in the knowledge about the true solution. Our iterative solution
refinement approach relies on domain decomposition and combines information from subdo-
main PDE solutions that can be obtained with regular PDE solvers. As such, this approach
can be seen as a domain-decomposition preconditioner for the resilient solution of partial
differential equations (PDEs).

Local PDE samples ; .
P Bayesian inference of

surrogate maps

|

Fixed point
solver

Solution state

(@)

75\« Sampling rarige g update
o)
<

.............................
o

Figure 1. Workflow schematic of the approach for a 2-
dimensional, 4 overlapping subdomain case.

As an example of a generic elliptic PDE, consider the form

Ly(x) = h(x) (1)

with a differential operator £, and a given forcing function h(x), for & € Q C R™. Consider
the solution y () for a Dirichlet boundary condition y(x)|zer = yr on the boundary I" of the

11

problem domain 2. Generally, an overlapping domain decomposition consists of N subdo-
mains {Q; }¥, with corresponding boundaries {I';}}¥, such that UY,Q; = Q. The algorithm
relies on a representation of subdomain boundary conditions that captures a mean state-of-
knowledge and an uncertainty range around it. This representation is updated iteratively,
starting from an initial guess. In other words, the object of interest is the set of solution fields
Yi = yr, = Y(x)|zer, at each subdomain boundary, denoted by y = (y1, ¥z, ..., yn). With the
complete knowledge of the true value of y, denoted by g, a single solve per subdomain would
recover the full solution over the original domain 2. In order to keep the focus on the sub-
domain solution faults, we consider this last step fault-free and skip its consideration. Our
algorithm obtains iteratively improving, i.e. sequentially range-reducing, representations of
y. Each subdomain €2; will include, due to overlaps, a set of k; boundaries {I';};=;, ;. of
other subdomains, see Figure 1. Consider the k; maps from the boundary conditions on T
to boundaries of other subdomains that are internal to €);. These maps are induced by the
solution of the elliptic PDE on €2; with Dirichlet boundary conditions:

fini(yi) = yji for j =1,2,..., ks, (2)
where y;; denotes the restriction of y; to the part of the boundary I'; that is inside the
subdomain €2;. The system of such boundary maps for all subdomains ¢ = 1,2..., N, given

the global boundary conditions y()|zer can be written in a fixed-point form y = Fy
and is satisfied by the true solution y. Note that these boundary maps f;_,; are purely
on y-values and are simply restrictions of the subdomain solutions at the corresponding
boundaries. While general non-linear solvers can in principle solve the system, it would
require global communication and repeated online subdomain solutions in order to evaluate
fi—; for each iteration in the solution of this system. Instead, we construct surrogate maps,
i.e. approximations g,,; for each outer-to-inner boundary map fi-,; =~ g;—,;, employing
Bayesian techniques and a set of training solutions pertaining to each subdomain. For
linear PDEs, the boundary maps are linear as well, as shown in the Appendix, and linear
surrogate maps are exact. Thus one can view the surrogate construction simply as a learning
of the linear coefficients of the boundary maps. In general, for non-linear problems, the
introduction of linear surrogate maps will carry an additional source of discrepancy, due
to the linear approximation of a generally non-linear map. However, we will introduce an
iterative approach with systematic reduction of the range over which the surrogate map is
constructed, thus rendering linear surrogate increasingly more accurate.

The surrogate map is constructed with Bayesian machinery, using a number of training
runs. The surrogate range, i.e. the range of sampling of training runs, is chosen according
to a current state-of-knowledge representation that reflects the magnitude of the uncertainty
around the current state of the solution. The PDE is then solved on each subdomain for
sampled values of its current boundary condition distributions. The resulting subdomain
solution samples feed into a Bayesian inference of surrogates that relate the subdomain
boundary conditions to each other. Intersection of these surrogate maps, i.e. the solution
of the system {g,—;(y;) = ym}f:lllli, provides a new sample of the subdomain boundary
conditions that serves as an approximation of the true solution §y = {g;}i=1.. n. When sub-
domain solves fail (e.g. due to nodes crashing), the inference proceeds with fewer samples,

and the associated loss of information merely results in a locally higher uncertainty. Erro-

12

neous subdomain solves (e.g. due to random bit-flips) are either rejected by a properly chosen
prior distribution on the solution that strips away outrageously large errors, or accounted
for by the Bayesian noise model. The schematics shown in Figures 1 and 2 demonstrate the
workflow of the algorithm.

Surrogate map construction

Sample subdomain Solve PDE for Bayesian inference
boundaries each subdomain of surrogate maps
R /

Solution Fixed point
state update solver

Figure 2. Schematic of one complete iteration of the algo-
rithm.

To describe the algorithm from a different perspective, note that the goal is to solve the
fixed-point problem y = Fy constructed from the intersection of the maps that relate the
solutions at the subdomain boundaries to each other. While the general non-linear operator
F is hard to compute, we first ‘learn’ an approximation G) ~ F at the T-th iteration
that stems from surrogate maps, requiring M training, subdomain solves. Then, we find the
fixed-point solution using the simple surrogate y = GMy, in order to arrive at the solution
estimate yT*Y at the next iteration 7'+ 1. Next, we shrink the surrogate construction
range and obtain a more accurate surrogate map, G’ before repeating iteratively. With
this formulation, one could draw clear parallels to classical Schwarz algorithms [12,19, 41],
where the solution iterations y™*+Y) = Fy@) lead to the fixed point solution y without
explicitly computing F, or to Aitken-like acceleration techniques for linear operators [22,23],
where F is linear and easily found by two training subdomain solves in the 1D case. Our
formulation, however, provides a general framework for non-linear operators, and a resilient
way to construct the surrogate maps; it also embeds a state-of-knowledge, information-based
interpretation in the iteration scheme.

In this paper, for purposes of clarity, we focus on the one-dimensional implementation
of the algorithm as a proof-of-concept, and primarily consider the effects of soft faults. The
extension to 2D problems with both hard and soft faults will be covered in [35].

2.2 One-dimensional preconditioner formulation

In this section, we provide a detailed formulation for a one-dimensional system. Consider
N equal size subdomains with an overlap size h between two neighbors. The equal-size
requirement for both subdomains and overlaps is merely out of convenience and by no means

13

is a requirement in the algorithm. Denoting the full domain Q = [a, b], we can write
[a,0] = UL, [as, b (3)

where the i-th subdomain is €; = [a;,b;] with a; = a + (i — 1)(b — a)/N — h/2, b; =
a+i(b—a)/N+h/2, except a; = a and by = b. The boundaries for each subdomain consist
of two points only I'; = {a;,b;}. Each internal subdomain, i.e. for 1 < i < N, involves
two boundary conditions and contains two boundaries of other subdomains, while the first
and the last subdomain have one varying boundary condition and contain only one relevant
boundary of another subdomain. Therefore, we need to construct 2N — 2 maps, each one of
them from the boundary conditions on a subdomain to the internal boundaries of interest
in that subdomain

yy =)

R _ rL(, L , R
e J ZR(ylL,yzR) for1<i<N (4)
Yit1 = fi (yz » Yi)
R _ ¢L¢, L
yn_1 = fn(yy)
5.5
5.0 i1
| "
4.5 : ”0, E)
.
R 3
4.0 t "
} § Current solution state
3 e e BC samples, ¢, yf
) Solution curves, f# (y* y)
* * Solution samples, y/
3.

4.0 4.5 5.0 5}.{5 6.0 6.5 7.0

Figure 3. Demonstration of the surrogate boundary map
construction, on the example of yiL+1 = Ry, uf).

In the system of equations (4), fiL(R) denotes the map induced by the solution in the i-th
subdomain, evaluated at the left (right) internal boundary of interest. Figure 3 demonstrates
three sampled solutions and the output detected on the right-internal boundary of interest,
within a single subdomain. For convenience, we order the y-values at all internal boundaries
according to an increasing order of their corresponding x-locations, i.e.

y: (y§7y{%7y?€ay§7'"7y]l\lfayﬁ—l)' (5)

14

With appropriate reordering, the system (4) can now simply be written as

y = Fy, (6)

i.e. a fixed point problem, the solution y of which is the target we seek. Generally, the
operator F is nonlinear and not known explicitly, making the solution of the fixed point
problem problematic, since it would require PDE solves on each subdomain to evaluate F
at each iteration of the fixed point solver. Therefore, we construct surrogate approximations

iL (R) ~ fiL(R) leading to an approximate operator G ~ JF. As shown in the Appendix,
there is no approximation, i.e. G = F for linear PDEs. For nonlinear PDEs, we introduce
iterative solution update strategy that renders the approximation increasingly more accurate
as iterations progress. The solution of the fixed point problem y = Gy will be considerably
less expensive and intrusive, as it will only require evaluations of a priori found surrogate
functions giL) Note that for simplicity we dropped the iteration counter 7" — we set the
fixed point solution ¢ to be the best-knowledge solution at the next iteration y'*! = g,
and shrink the range of sampling so that the surrogate map G = G(*) is updated to a more
accurate one G = GT+Y for the next iteration (see Section 2.4).

(T

An important measure of the accuracy of the current solution y*) is the residual vector,

defined as
21 = FyT) — 4@ (7)

which can be computed by extra subdomain solves using boundary conditions defined by
the current solution y™, and subtracting the corresponding current solutions y*) from the
resulting values at all boundaries. It follows from the definition that the residual (7) vanishes
if the current solution y'™ is the exact solution we seek.

We build surrogates that have polynomial form, as detailed further in Section 2.3. These
surrogate maps are built over ranges centered at the current state of the solution y. The
vector of such ranges is denoted by r assuming the same ordering as in y, i.e.

r= (LB ek eE kR, (8)
Note that the pairs (y,r) essentially encapsulate the state-of-knowledge of the solution.
Indeed, y is the current solution state, while the surrogate range r is intended to be chosen
so that the true solution is within the range (y — r,y + r) or not too far outside of it. In
the latter case, the accuracy of the fixed point solver can be somewhat compromised due to
extrapolation issues, but this effect is not crucial particularly for linear surrogates, and as
the iteration counter marches on, the solution state still converges to the true solution.

For linear problems, the boundary maps are linear, and constructing a linear surrogate is
sufficient, producing no approximation error. Moreover, even for non-linear problems, most
often a linear surrogate will suffice, particularly because the ranges of inputs over which the
surrogate approximation is built, i.e. components of r, will be chosen to shrink — by an
appropriate solution state updating mechanism detailed in Section 2.4 — as one gets closer
to the true solution, thereby rendering linear approximations increasingly more accurate.
For these reasons, unless specifically mentioned otherwise, we will focus on linear surrogate
maps. The fixed point system (4) will thus take the form

15

vy = off 4+ yfyf
yP | = ol + BFyF + FyF
yh o = oft + BRyF + Ry R

yﬁf—l = a% = /BJ%T?JJ%

forl<i< N (9)

The coefficients Ozf(R), ﬁiL (R), %L () are found a priori by fitting the linear map (9) to a set of
training data obtained by solving the PDE on each subdomain for a sampled set of boundary
conditions. Casting ¢y as a column vector, the linear map G is written in a matrix-vector

form

y=Gy+h, where (10)
0 4% 0 0 0 0 0 0 alt
L0 0 4 0 0 0 0 ak
oo 0 A 0 0 0 0 all
0 0 B 0 0 A o0 0 o
G=|0 0 BF 0 0 A% 0 0 |, h=| of (11)
0 0 o 000 ok
0 0 Bvar 0 0 9wy Gepr—1
0 0 0 0 BL 0 ak

The linear system can therefore be solved by simple matrix algebra without having to
rely on a general-utility fixed-point solver. Denoting by I the identity matrix of size 2N — 2,
one arrives at the solution

g=T—-G)'h (12)

Garbey et. al. [23] presented the Aitken acceleration method for Schwarz iterations
of linear equations that makes use of Eq. (12). Specifically, the entries of G are learnt
by two solves per subdomain with unit boundary conditions. The latter is only possible
because of the linearity of the boundary-to-boundary maps. Furthermore, the authors in [23]
estimate h by simply marching one iteration forward with a single solution per subdomain
h =y — Gy, The algorithm described in the current paper is able to handle non-linear
problems via surrogate maps, and also offers fault resilience through the proper choice of
the regression approach to obtain the surrogate maps (as discussed in Section 2.3). The
workflow in the 1D setting is described in Algorithm 1.

16

Algorithm 1: A typical workflow of the method
Input:

e N overlapping subdomains [a;, b;] for i =1,..., N, where a1 = a,by = b,b; —aj1 =h
forj=1,...,N —1.

e Initial, uninformative knowledge of solution a vector of length 2N — 2,
y = (y&, ylt uk ylt oo yk, yR), and the uncertainty range r around that solution.

e Parameters M (number of samples per subdomain for surrogate map construction), ¢
(polynomial order of the surrogate map)

while Stopping criterion not met do

foreach Subdomain do
Boundary sampling: generate M samples distributed uniformly over the

current ranges r for both ends of the subdomain

Subdomain solver: solve the PDE using the sampled boundary conditions to
obtain M values at the boundaries of other subdomains, internal to the
current subdomain.

Surrogate map construction: using the M values found above, employ Bayesian
inference to obtain surrogate relationship for the boundary-to-boundary map.
end

Fized point solver: solve the system of all surrogate maps to obtain a solution at
all subdomain boundaries

foreach Subdomain do
Solution state update: Update the representation of the solution state at the

boundaries of this subdomain, i.e. generate new values for y and r.
end

end
Result: Final knowledge about the solution y.

The next two subsections detail key parts of the algorithm, i.e. the construction of
surrogate maps and the adaptive strategies for choosing the uncertainty ranges and solution
state update mechanisms, including appropriate stopping criteria.

2.3 Surrogate boundary map construction

A key feature that we seek in the surrogate map construction is resilience with respect to
faulty behavior, e.g. perturbed or missing values. To enable such resiliency, Bayesian tech-
niques will be invoked. The Bayesian approach is well-aligned with our paradigm. Indeed, it
operates with any given information content available, incorporating uncertainties associated
with missing or faulty data in a natural way [3,11,40].

To this end, polynomial regression is employed for the surrogate map construction in the
1D problem. Within a single subdomain, the boundary-to-boundary maps f;_,; have a form

17

Yin = f(yE, yT), where y©, y® are the boundary conditions on the left and right boundaries,
respectively, while y;, is the solution at an inner point of interest, as described in Eq. (4).
The goal is to approximate the function f(y,y) over ranges y* € [y(IZ’.) - ré),yé) + T(I;)]
and yf* € [yg) — rg),yg) — 7“5.‘)] using the state-of-knowledge (y(;),7(;)) at the current, i-th
iteration. We postulate a polynomial representation

L L R R
Yy _yi Yy _yi
Yin = E Ck‘Ifk(I B 7 ()> (13)
k F @)

(@)

with respect to scaled values of the boundary conditions (y“() — yégR)) A T’(I;SR) € [-1,1],in
terms of an expansion of orthogonal Legendre polynomials up to a given bivariate order q.
Note that while orthogonality is not employed directly, it helps to keep the coefficients stable
as one increases the order. Besides, most of the work shown here employs linear surrogates,
i.e. the basis set Wy(21, 22) {k=0,1,2) = {1, 21, 22}. To ‘learn’ the relationship f(-), we sample
the inputs M times and extract the corresponding output y;, for each sample by a single
subdomain solve per set of inputs. Given these training samples, we invoke Bayes rule to
infer polynomial coefficients ¢y,

p(c|D) o p(Dle)p(c) (14)

where the data set D refers to the training samples, and the likelihood function p(D|c)
essentially measures the goodness-of-fit of the polynomial representation to the data. Thus,
the prior probability distribution p(e) of the polynomial coefficient vector ¢ is updated,
yielding to a posterior distribution p(¢|D),

The likelihood function usually pertains to the discrepancy between the simplified poly-
nomial model and the actual solver results and is the key component of the Bayesian formu-
lation. In the following, we will describe the classical, Gaussian likelihood construction, and
we will argue that in presence of faults, it is far more resilient to utilize a Laplace likelihood
form instead of a Gaussian one.

Gaussian likelihood

For notational convenience, the output of the function f(-) will be denoted by u, and the
inputs will be denoted by v. In practice, v is the vector of boundary conditions corresponding
to a given subdomain, and u is the PDE solution evaluated at a given z-location of interest,
e.g. at locations that serve as boundaries of other subdomains. The goal is, given a data
set of training samples D = {(v;,u;)},, find the best fitting polynomial coefficients ¢ =
(coy...,CK—1), so that

=
o

ui = f(vi) =) _ cxVi(v;) = ge(vi) (15)

i

INote that the first and the last subdomains have one input. However, for clarity of presentation, and
without loss of generality, we describe the generic two-input case. In principle, even for those subdomains,
one can think of the global boundary values as the second input.

18

Consider the classical, Gaussian log-likelihood form assuming an i.i.d. Gaussian noise model
with a constant variance o for the discrepancy €; = u; — ge(v;):

Lp(e,0%) =logp(Dle) = —— log (2 — —1 v;) (16)
o 0 og (2mo? E (Vi)
D\Cs gp 9 g (%0 2 — ge(

Let us define the projection matrix P of size M x K by Py, = Uy (v;) for i =1,..., M and
k=0,...,K—1. Also, denote the vector of training outputs by w = (uy,...,uy). Now the
log-likelihood can be written in a more compact form

M 1

Lp(e,0%) = —710g (2mo?) — ﬁ(u Pc)'(u — Pc). (17)
o

We assume independent uniform priors for components of ¢ that are sufficiently wide, while

uninformative, Jeffrey’s prior [27] is used on o, i.e. p(o) ~ %, which we note is equivalent

to the commonly used p(0?) ~ % or p(logo) ~ 1. The latter is useful, since for practical

purposes, and for enforcing positivity, one often works with log o, assuming a uniform prior

for it.

According to Bayes rule, the posterior is proportional to the product of likelihood and
prior,

] 1 1
2
p(c,0°|D) x 37 &XP (—T‘Q(u Pc)'(u — Pc)) =t (18)
and, after standard mathematical rearranging, one can derive
2 1 1 Ty -1
p(clo”, D) SK P —ﬁ(c— p) X (c—p)),
19
clo®, D ~ MW\/((PTP) u, o’ (PTP)™Y), (19)
M >

which, after marginalization, results in an Inverse Gamma distribution for ¢? and a Multi-
variate Student-t distribution for ¢ [17,29]:

M—-K (I -P(P"P)"'P")u

—— ~~ e
a B
c|D ~ MST(/L,%E,QCK). (21)

Note that the Multivariate Student’s t-distribution has covariance %73, and it behaves very
similarly to a Gaussian distribution for large ov. The mean estimate, as well as the maximum
a posteriori (MAP) estimate p coincides with the well-known least-squares fit formula. The
likelihood (16) assumes an i.i.d. Gaussian error model for the discrepancy between surrogate
evaluations g.(v;) and true solutions u;. The magnitude of inferred o is associated with such

19

model discrepancy, i.e. the error produced due to polynomial approximation of the boundary

map, and provides insight about the committed error size due to polynomial approximation.

The marginal posterior mean for o is my2p = /(cv — 1), while the mode of the marginal

distribution is argmax p(c?|D) = B/(a + 1). Furthermore, the MAP estimate of the joint
2

posterior distribution of (e, 0?) is argmax p(e,0?|D) = /(o + 3/2). Generally, when the
52

number of samples exceeds the number of unknown coefficients by an order of magnitude,
both 8 and « are large leading to approximate relation o2 ~ 3/a.

Although the Gaussian likelihood offers simple analytical expressions for the posterior
distributions as described above, it is not resilient with respect to faulty training samples,
since the associated i.i.d. Gaussian error model does not capture the nature of the errors
produced by faulty samples. The next section will detail the deficiencies of the Gaussian
likelihood when dealing with potentially corrupt training samples.

Faulty data

In the situation where no accidental faults/bit-flips are present, the surrogate map can be
written in a matrix form
UZPCQ+61, (22)

where the vector ¢y is the best fitting parameter vector. The vector of residuals €; here
represents the misfit due to the non-polynomial character of the map f(+), i.e. it represents
the model error. This error is non-zero only for non-linear problems. In Section 2.4, we
discuss how we achieve negligible model discrepancy errors by shrinking the range over
which the surrogate map is constructed, therefore making the forward function f more and
more linear. In the following computations, this error term will be tracked, but we should
note that it vanishes for linear problems and can be made arbitrarily small for non-linear
problems.

Now let us assume the data is ‘faulty’, i.e. w is corrupted by an error vector 9:
u+0=Pcs+e (23)

The representation induces a different model error €;. The error made in the fitted param-
eters ¢, = ¢y — ¢ is then equal to

c. = (PTP)'P’s. (24)
and it obeys
0 =Pc.+ (€2 — €1). (25)
——

=€

Note that typically d is a vector of size M, typically 10 to 100, with at most one or
perhaps two non-zero elements, as this is the error made in data due to sporadic, relatively

20

rare bit-flips or faults. Due to basis orthonormality, we have PT P ~ MI Therefore, we can

estimate 5
ledle=0 (7) (26

where the scalar § = ||d]]» is the fault magnitude. Moreover, using (20) and o3 \p =
B/(a+ 3/2), one can estimate the best value of 02 to be

so(%) o

For completeness, note also that the posterior covariance width is O(c?/M) = O (6%/M?),
i.e. the ‘width’ of the multivariate posterior is O (§/M) and is of the order of the induced
coefficient error ||e.||2 according to (26). This means that a single perturbation of size &
induces an error in the coefficients of magnitude §/M, trying to balance the single large
misfit with many smaller ones. This is typical in least-squares based likelihoods, but is not
acceptable if one targets fault resilience. For that reason, we will employ Laplace likelihoods
for the surrogate map constructions. As discussed below, the Laplace likelihood avoids such
‘balancing’ issues and is much more robust with respect to the presence of a few number of
outliers.

Laplace likelihood

One of the key algorithmic advances in this work is the use of Laplace likelihoods for the
surrogate map construction. That is, we apply Bayesian inference of the parameters of
interest employing i.i.d. Laplace distributions for the discrepancies €; = u; — g.(v;), to get

M
1
Lp(e, A) =logp(Dle, N) = —Mlog (2)) — 5 > i = ge(wi)], (28)
i=1
which is closely related to the ¢;-norm of the discrepancy vector € = (ey, ..., €)), as opposed

to the fy-norm associated with the Gaussian likelihood.

This likelihood reflects the fact that most of the errors are very small with only a few
exceptions, which is consistent with the outputs of a solver that is most of the time exact,
except for the occasional fault. The left plot of Figure 4 illustrates both Gaussian and Laplace
probability distributions of unit variance, demonstrating the sharp peak near the 0-error
value and longer ‘tail’ for the Laplace distribution. The right plot of Figure 4 demonstrates
the fault-resilient property of the Laplace likelihood — the regression proceeds as if there
is no perturbed point, while the Gaussian likelihood induces a linear function that tries to
balance all the residual errors between M — 1 ‘good’ and a single ‘bad’ point.

Unlike the Gaussian likelihood demonstrated in Section 2.3, the Laplace likelihood does
not allow for an analytical solution, forcing us to use numerical studies to investigate the
effect of errors in data. Figure 5 demonstrates the result of such studies. We used a simple
linear, bivariate function to generate M = 10 samples, one (top row) or two (bottom row) of

21

o

® @ Data
— Laplace () : || — Gaussian likelihood
— Laplace likelihood

— Gaussian (l,)

2

3
'S
[&)]

b
o

L
o

o
o

=

o

o
i

e
o
Training outputs, u;
w
o

Discrepancy model PDF, p(e)

2.5
0.2] 2.0
0.1] 1.5
B = R B L5 =05 0.0 0.5 1.0
Discrepancy, e Training inputs, v,

Figure 4. (left) Illustration of Gaussian and Laplace distri-
butions of the same variance, (right) linear regressions with
a single perturbed point, using both Gaussian and Laplace
likelihood.

which are randomly selected and perturbed by a random amount, § or (dy,d2), respectively.
Then the Bayesian regression algorithm is employed with either the Laplace (left column)
or the Gaussian (right column) likelihood. This procedure is done for an ensemble of 100
random perturbations of the same case, and the norm of the error made in the polynomial
coefficients, as well as the inferred A or o are reported. Clearly, the Laplace likelihood almost
always produces the true linear function without any error in coefficients, while the inferred
value for A is proportional to the ¢;-norm of the error. In fact, A = §/M for the one-error
case and A = (|81 + |82|)/M for the two-error case®. Only for one of the 100 cases, in the
two-error scenario, did the regression with the Laplace likelihood fail to recover the true
coefficients. The Gaussian likelihood, shown in the right column, clearly produces errors
in the coefficients that are comparable to the perturbation size. In fact, the linear trend
is consistent with the proof-of-concept estimates derived in Section 2.3, i.e. the coefficient

error size is ||c.||o = O (6/M) and the inferred Gaussian width is 0 = O (5/\/ M)

Within the formulation of our 1D algorithm, the surrogate map construction proceeds
twice for each internal subdomain and once for the boundary subdomains. Figure 6 demon-
strates the advantage of the Laplace likelihood versus the Gaussian likelihood, for a linear
problem, in the simplest, two-subdomain case, where each subdomain involves a surrogate
construction for the map from the y-value at its boundary to the y-value at the internal
boundary of the other subdomain. The fixed point, i.e. the intersection, of the maps
Yieft — Yright and Yrigne — Yiepe is the solution we seek. Clearly, with perturbed points, the
surrogate map stays exact in the Laplace likelihood case, producing no error in the final
fixed-point answer.

We note that while the general surrogate construction has been introduced within a

2In fact it can be proven, by taking the derivative of the likelihood with respect to A, that when the true
coefficients are recovered, the best value for A is indeed }_, |d¢[/M.

22

0.1 0.4
e e C(Coeff. error e e C(Coeff. error ®
*“{ 0.35 P b
008l * * Inferred X\ * % Inferred o A
0.30 ® a
° *
0.06 0.25 o’ :** k
0.20 R g ox
0.04 ' o © *
' 0.15 L1 — *"O’"Jx
° x x T o®
L **o: il
0.02 0.10 o wg.}. P f
0.05 o o ®
0.008 EeaaERad CIEEBIEERilnagld a3aEED D E&d *. ®
0.0088

0.00 0.02 0.06 08 0.10
Perturbatlon size, ||4]|; /M

(a) Laplace likelihood, 1/10 faulty sample

0.00 0.02 0.04 0.06 0.10
Perturbation size, ||4][, /M

(b) Gaussian likelihood, 1/10 faulty sample

0.2 0.8
* ®
e e Coeff. error & e e C(Coeff. error ®
0.7
* * Inferred \ * * % Inferred o ®
0.15
f 0.6 % e
0 %
0.5 {]
[|
0.10| 0.4 '. ei [] *
¢ e ¥
® [} i***
0.3 ® [W)
[@, ~~
0.05 * - o]
i***] iﬁ ®e °
0.1 ® e ®
* ° “ o 0%, ®
0.00} - oo - cono CHCIES GNDHENENIIDNGOEND - @ @d 0 B ® °
0.00 0.05 0.10 0.20 0.00 0.02 0.04 0.06 0.08 0.12 0.14

Perturbation size, J|5H /M

(c) Laplace likelihood, 2/10 faulty samples

Figure 5.

Perturbation size, \]6“ /M '

(d) Gaussian likelihood, 2/10 faulty samples

Demonstration of 100 regression tests with

Laplace (left column) and Gaussian (right column) likeli-
hoods, in the presence of random errors in one (top row)
or two (bottom row) randomly selected data values, out of
M = 10 samples. Plotted are inferred errors induced in the
resulting coefficients and A (or o) versus the size of random
perturbations.

Bayesian framework, here and in the subsequent tests we are mainly interested in the MAP
value, with an understanding that the posterior width is narrow for a reasonably large number
of sampled points. The MAP value is found by employing optimization via Limited-Memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm [6]. In practice, the optimization

23

4 4
3.5 3.5
3.0 y 3.0
. i
2.5 $25
= =
® ®
2.0 o/ 2.0
P []
1.5 & 1.5
r. — Left fit to corrupted data
& — Right fit t ted dat
W05 —15 20 25 30 35 40 {ght fit fo corruptec data 1,

@ @ Intersection for no bitflips 0 L5 20 yz.'s 3.0 35 4.0
right

% % Intersection with bitflips

(a) Gaussian likelihood (b) Laplace likelihood

Yri ght

Figure 6. Illustration of the surrogate map intersection
for a 2-subdomain test case. The red points and lines corre-
spond to yiert = f1(Yright), while purple ones correspond to
Yright = f2(Yieft). Dashed lines correspond to true maps with
no perturbed points. Intersection of dashed lines is shown by
green circles, while the intersection of solid lines corresponds
to blue stars.

problem is challenged by the Laplace likelihoods due to discontinuous derivatives. To allevi-
ate this issue, we use a hyperbolic-tangent approximation, in which tanh(z/¢€) replaces the
derivative of |z| instead of the sign function sign(z). Correspondingly, the antiderivative of
tanh(z/e€), [z| + eln (1 + e /<) is employed to replace |z|. The ‘smoothing’ constant e is
set to 10714,

2.4 Surrogate range choice and solution state updating for non-
linear problems

For linear differential equations, the boundary-to-boundary maps are linear, therefore a
linear surrogate will be exact, and the fixed point problem will recover the true solution in
a single iteration®. The situation is different when the underlying problem is non-linear, in
which case the linear surrogate approximation will impact the result of the fixed point solver,
thus leading to an approximate answer within a single iteration/update. The accuracy of the
surrogate approximation is directly affected by the size of the range over which the surrogate

3Note that in an extremely unlikely case of two faults per single subdomain sampling set there is a
considerable chance of not recovering the true solution. Nevertheless, another iteration will find the true
solution, assuming negligible likelihood of more than one faults for two iterations in a row.

24

is constructed: the smaller the range, the more accurate the linear map is. However, the
range needs to be large enough to avoid errors due to extrapolation. Ideally, the surrogate
range r(; of the given subdomain boundary at the i-th iteration should be chosen adaptively
according to some measure of distance from the true solution. Below we detail three different
approaches,

e MAP: In this case, the range is driven by the MAP value A\MAF from the previous it-
eration. Indeed, in the surrogate construction, we assumed a Laplace noise model and
the MAP value of the noise magnitude parameter A is a good indicator of the size of
error in the data. Inspired by the linear case best estimate AMAY = 3~ £ 1051/M, we set
re) = fM Al(\f)AP, with a ‘safety’ factor f. We found f = 5 to work well generally in all
tests. The MAP value AMAP also can be interpreted as a lower bound on the posterior
predictive standard deviation. In fact, if one has sufficiently many samples, the poste-
rior itself is narrow enough making A the sole contributor to the posterior predictive
variance. However, this approach requires surrogate construction with the inference of
both the surrogate coefficients and A, which is generally expensive computationally as

it requires many iterations to converge to the best values of both surrogate coefficients
and .

e Surrogate error: One can instead employ a fixed A for the surrogate construction in
order to gain computational efficiency. The fixed value of A is not relevant if one only
is interested in the best, MAP values of the surrogate coefficients. In this case, the ¢,
error between the surrogate and the true map evaluated at M sample points is a good
indicator of the overall committed error, and can be used to inform the range choice
7@ = f|lu — Pemapl|1, again within a ‘safety’ factor f. Here, too, a value of f =5
was found to work well in general.

e Solution difference: While constructing the surrogate with fixed A, the range may also
be chosen according to the difference in the solution of the two current and previous
iterations: r(; = f|y() —y-1)|- This approach, while more empirical than the previous
two, is more resilient to faults since the surrogate range now is not getting corrupted
by errors that are due to bit-flips. A somewhat heuristic justification is that if the
convergence is expected to be exponential with respect to the number of iterations,
then the committed error should be proportional to the difference of the errors in two
previous iterations. If these latter errors have the same sign, then their difference is
exactly the difference in solutions |y —y(—1)|. While recognizing that f will generally
be problem dependent, we have found f = 0.1 to work the best in a variety of test cases.
This approach of surrogate range choice has shown at least as good a convergence as
the previous two, and better computational efficiency. In all of the tests further in this
work, we therefore employ this rule for selecting the surrogate range.

On a conceptual level, our approach starts out with a (mean,range)=(y,r) representation
of the state-of-knowledge about the problem solution, and then updates this representation,
the solution state, with information gathered from computations on the subdomains. At
the i-th iteration, the solution state consists of the solution value itself y(; and the range

25

7(;) over which we construct the surrogate map, for each subdomain boundary. The initial
representation (Yo, 7)) can be obtained in a variety of ways, such as expert opinion (e.g.
the solution of an elliptic problem without forcing terms should be between the boundary
condition values), or informed by a set of coarse grained solutions. Again, we emphasize
that the surrogate range choice becomes relevant only for non-linear problems.

The next section details experiments with a few test problems, both linear and non-linear,
to help demonstrate the algorithm developed so far in this paper.

26

3 Numerical tests

3.1 Fault model

In this work we adopt a synthetic algorithm for fault generation. This algorithm employs
random bit-flips of binary representations of solution values selected at random, with pre-
scribed probability. Specifically, the entries that are selected are then converted to a 64-bit
binary format according to the IEEE 754 Standard [1]. Once in binary format, one of the 64
bits is picked at random and its state is flipped between 0 and 1 with a given probability p.
The binary representations are then converted back to base 10 and the simulation is allowed
to proceed forward. Depending on the bit-flip location, in the mantissa, exponent, or the
sign bit, the faulty value may sometimes be only slightly different from the original value or
it can be modified by orders of magnitude or have an opposite sign.

In the tests below, bit-flips are applied to the results that return from the subdomain
solves. As such, they can be interpreted as a crude model for all faults that might happen
during a subdomain solve. Another interpretation is that the subdomain solves rely on a
different resilience approach to mitigate the effects of faults, and the fault model applied
here then represents the faults that potentially occur during transmission of data from the
subdomain solver back to the entity that builds the surrogate maps. For purposes of illus-
trating the algorithmic approach, the actual interpretation of the fault model is not crucial.
Rather, it should be seen as a way to perturb the data. Given the wide range of values that
can result from single bit-flips in a given number, the current fault model is quite powerful
for testing the algorithms.

Further note that in the implementation here, faults are assumed to only happen during
the subdomain solves. As these solves are likely to be the most time-consuming parts of
a production simulation on a large-scale platform, this assumption is reasonable, albeit
not completely robust. For complete robustness, the current algorithm would need to be
implemented in a framework with selected reliability, e.g. some nodes can be considered safe
while others are prone to errors [5]. The use of more refined fault models will be illustrated
in [35].

3.2 Linear problem with analytical solution on subdomains

As a test case with an analytically available solution, consider the linear problem

yv'+ 2y +y=mxcosx (29)

with boundary conditions y(a) = y, and y(b) = y,. This differential equation has a solution
1

y(z) = Ce ™+ Dze " + %sinx =5 (sinx — cosx). (30)

We set a = 3, b =8, y, = 5, yp, = 4, which uniquely define the values for constants C' and
D. This solution is depicted in Figure 7 with a solid black line.

27

In this first set of tests, for the purposes of illustrating the algorithm, we make use of the
analytical solution to determine y on each of the subdomains. This means that the solution
samples used to construct the boundary map surrogates are exact. Since for linear problems,
the boundary maps are linear, the linear surrogates constructed are also exact. Therefore, no
matter what the initial non-zero surrogate range is, the solution state is expected to converge
to the true answer in a single iteration, with a potential exception in case of bad conditioning
of the regression problem. Figure 7 demonstrates the convergence for two cases where the
initial solution ranges have been set to ry = 0.3 and 7y = 2.5 for the internal boundaries.
Clearly, after a single iteration, the mean solution state coincides with the true solution,
while the range takes an extra iteration to reach nearly vanishing values by construction.
The ranges at the global endpoints are chosen to be equal to zero by definition. The overlap
size is set to h = 0.05, the number of subdomains is N = 10, while the number of samples
per subdomain boundary is set to M = 15.

— True solution — True solution
{ ¢ Iteration # 0 7 Iteration # 0
{ t Iteration # 1 Iteration # 1
K

o O

6 Iteration # 2 6 Iteration # 2
> 5 > 5
4 4 i
2 2
3 4 5 6 7 8 3 4 5 6 7 8
X X
(a)) = 0.3 (b)) = 2.5

Figure 7. Convergence for the linear problem (30), in two
cases of initial range choice for the internal boundaries. The
initial solution states and ranges are illustrated with red dots
and errorbars. The precomputed true solution is shown with
black solid curve.

To test the resilience with respect to system faults, we introduce the bit-flip scenario
detailed in the beginning of Section 2.3. Figure 8 illustrates the convergence performance
with or without bit-flips for two options of the surrogate map likelihood, Gaussian and
Laplace, detailed in Section 2.3. Clearly, the presence of bit-flips deteriorates the convergence
if the surrogates are built with Gaussian likelihoods, while the Laplace likelihood leads to
a fault-resilient formulation. Note that even though the true solution was reached in one
iteration, the algorithm was run for 10 iterations to better illustrate the resilience of the
algorithm under the continual occurrence of bit-flips.

28

3.3 Non-linear problem with analytical solution on subdomains

Next, we study a non-linear 1D problem with an analytically available solution to test our
algorithm. Consider the non-linear differential equation

(y*)" = Bsin(az), (31)

100 —4 M
10°
4
§ 10
-6 /
5 10 A
wn 10-8 \ ‘.'.
10-10, i
10~12 L
10-14
1076 1016
o 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Iteration Iteration
(a) Gaussian likelihood, no bit-flips (b) Gaussian likelihood, with bit-flips
10° — 10°
10-2 i : i 10-2
10" : 10%
8. & 8 &
£ 10 £ 10
i s
v 10° v 10°®
10»10 10-10
1012 10712
1014 s 10
10-16 10-16
o 1 2 3 4 5 6 7 8 9 10 o 1 2 3 4 5 6 7 8 9 10
Iteration Iteration
(c) Laplace likelihood, no bit-flips (d) Laplace likelihood, with bit-flips

Figure 8. RMS error versus the iteration number for 100
different simulations of the linear problem. The bit-flip prob-
ability is set to p = 0.003, while the other parameters are
at their default values, 7.e. M = 15 samples, N = 5 sub-
domains with overlap size h = 0.05 and the factor in the
surrogate range choice is set to f = 0.1.

29

for some constant parameters «, 3, on the domain Q2 = [a, b]. It clearly has the general form
Ly(x) = h(x) with a non-linear operator £. The solution of (31) has the form

y(z) = (-% sin(ax) + Cz + D) " , (32)

for appropriate values of C' and D found by matching the boundary conditions y(a) = y,
and y(b) = yp. The default values for the tests illustrated in this work are:

=5, =130 g=1,b=4 Yo =2, = 3. (33)

The global solution for the selected boundary conditions is depicted in Figure 9(a) with a
solid black line. To begin with, we test the boundary map intersection idea without invoking
the surrogate approximation. This means, the fixed point problem y = Fy is solved directly
and the components of the operator F, the boundary-to-boundary maps, are computed in
each iteration of the fixed point solver. This entails subdomain solves at each inner iteration
of the fixed point solver. Clearly, a single application of the fixed point solver finds the true
solution, as illustrated in Figure 9. We note that the fixed point solver required 25 iterations
in a 5-subdomain case, and 50 iterations in a 10 subdomain case. While this exercise shows
that conceptually the fixed-point methodology works, the fixed point solver iterations involve
large amounts of communication between subdomains and certainly do not meet our goals of
scalability and fault resilience. Surrogate maps are therefore constructed a priori and used
in place of the exact boundary-to-boundary maps as described in Section 2.3.

3.0 — True solution 10°
{ ¢ Iteration # 0 102 \
2.8} } Tteration #1 | \

10"
8
2.6 E 10-5 \
>52 i L1 £ 10-8 \
' 10710 \
2.2 107 \
10-14
2.0 -16
0 15 20 25 30 35 4.0 10 0 T 2.3 Z 5
X Iteration
(a) One iteration of solution with exact maps (b) RMS error versus iteration number

Figure 9. Solution of the fixed point problem y = Fy using
the exact boundary-to-boundary maps without surrogates.

Figure 10 demonstrates the results of the algorithm for the default scenario, i.e. linear
surrogate maps constructed with M = 15 samples (i.e. as many PDE solver invocations

30

per subdomain per iteration) and N = 5 subdomains. The dashed line on the right plot
indicates the ranges averaged in a root-mean-square (RMS) sense over the internal subdomain
boundaries, chosen according to the solution difference approach, i.e. ruy = flyu) — yu-1)|
for the i-th iteration, with f = 0.1.

3-0"— True solution 107 |- — RMS error

{ ¢ Iteration # 0 f/ 103} \ | === RMS surrogate range
2.8} { Iteration # 1 5 \ e RMS residual

t { Iteration # 2) 5 10 \
2.6 £ 107

Y % 107 t
' e ' \\
2.2 ;

10713 ,,
1015) . 0 T T B e
2.0 : IR .
0 15 20 25 3.0 35 40 10"=0~T1 2 3 4 5.6 7 8 9 10
X Iteration
(a) Three iterations for the non-linear problem (b) RMS error, surrogate range and residual

Figure 10. The results of the application of our approach
to the non-linear problem. On the left plot, the errorbars
indicate the surrogate range for the corresponding iteration.
On the right, dashed line indicates the RMS average range
chosen at each iteration, i.e. the RMS average of the vector
7(;), while the dotted line shows the RMS average of the
computed residual vector according to Eq. (7).

Furthermore, we analyze the dependence of the convergence on the factor f that helps
define the surrogate range by ru) = f|yu) — yu-1)|- Figure 11 illustrates the fact that large
values of f lead to much slower convergence. This is due to the fact that larger surrogate
ranges lead to larger errors in the linear approximation of the boundary maps over the
surrogate range. As a default value we choose f = 0.1, which seems to ensure that the
chosen range at each step encompasses the true RMS error between the mean solution
and the exact one. While smaller f leads to slightly faster convergence for this particular
problem, we chose a more conservative default value f = 0.1 to reduce the potential need of
extrapolating for general problems less-than-ideal initial solution states, as well as to reduce
the impact of nonlinearities and faults in case they are activated. Also the RMS-average of
the residual vector, computed from (7), is shown in Figure 10(b). The residual is at least a
couple of orders of magnitude smaller than the actual error committed.

The dependence of the convergence on the size of the overlap between subdomains is
demonstrated in Figure 12. Note that a smaller overlap size makes the convergence somewhat
slower and raises the final error level. The final error is higher due to worse conditioning of

31

10°
102 H r=o0.01
H f£=0.05

10 H r=01
;é 106 I—' f:0.5
/M 10°
n
510-10

10712

101 S ma

1016

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 0 10
Iteration Iteration
(a) Median and 25, 75% quantiles over 100 runs (b) Single run (solid) and RMS surrogate range (dashed)

Figure 11. The convergence results as the factor f in the
surrogate range choice is varied. The parameters are set to
M = 15, p = 0.0, using linear surrogate maps and N =
5 subdomains. The left plot shows the RMS error versus
iteration number across 100 identical simulations. On the
right plot, a single simulation is illustrated for each value of f,
together with the corresponding dashed curve that indicates
how the RMS average of the surrogate range is evolving.

32

10° 10°

107 102

10" 10
5 10° 5 10°
m 10® w 10%
0 %]
=101 S0
~ ~

10712 1012

10714 1014

1016 1076 i

0o 1 2 3 4 5 6 7 8 9 10 0o 1 2 3 4 5 6 7 8 9 10
Iteration Iteration
(a) Median and 25, 75% quantiles over 100 runs (b) Single run (solid) and RMS surrogate range (dashed)

Figure 12. Convergence with the number of iterations for
various sizes of domain overlaps with the number of subdo-
mains fixed at N = 5. The rest of the parameters are set
to M = 15, f = 0.1, p = 0.0, using linear surrogate maps.
The left plot shows the RMS error versus iteration number
across 100 identical simulations. On the right plot, a single
simulation is illustrated for each value of h, together with
the corresponding dashed curve that indicates how the RMS
average of the surrogate range is evolving.

the fixed-point solver due to weaker dependence built in the boundary-to-boundary maps.
On the other hand, a larger overlap size would enhance the non-linearity of the boundary-
to-boundary maps, resulting in less accurate linear surrogates. Besides, in these tests, larger
overlaps result in larger subdomains, and would therefore become more computationally
expensive if a discrete solver were used to compute the solutions on each subdomain. We
have selected h = 0.05 as a reasonable default choice based on these tests.

Next, we illustrate the dependence on the number of subdomains. As Figure 13 clearly
indicates, the larger the number of subdomains, the slower the convergence. The intuitive
justification for this is that as the number of subdomains increases, it takes more iterations
for the information to travel across the computational domain. Note that this behavior is
very similar to the slow-down of the convergence of iterative PDE solvers as the number of
grid points increases for a given computational domain.

Figure 14 demonstrates the convergence with respect to the number of samples used
in the surrogate map construction. Clearly, the results remain the same for all the tested
values of M, indicating that M > 10 is sufficient to accurately construct a two-variate linear
surrogate that has three parameters.

Dependence of the results on the surrogate order is illustrated in Figure 15. We have

33

10° 10°
5 N=2 5 N=2
10 N=3 10 N=3
10* N=5 10 N=5
5 10°® N=T7 5 10°® N=7
N=10 N=10
M 10° , M 108
g 10 g 10
10 10
~ ~
10—12 1O~12
10—14 10414
10416 10-16 e
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Iteration Iteration

(a) Median and 25, 75% quantiles over 100 runs (b) Single run (solid) and RMS surrogate range (dashed)

Figure 13. Convergence with the number of iterations for
various number of subdomains. The parameters are set to
M =15, h = 0.5, f = 0.1, p = 0.0, using linear surrogate
maps. The left plot shows the RMS error versus iteration
number across 100 identical simulations. On the right plot, a
single simulation is illustrated for each value of N, together
with the corresponding dashed curve that indicates how the
RMS average of the surrogate range is evolving.

chosen M = 35 for all cases to ensure that cubic polynomial surrogate construction is well-
defined and is not affected by the sample-to-sample variability. The third-order polynomial
surrogate includes 10 terms, and M = 15 was found to be insufficient to accurately find the
third order fit with small enough ensemble-driven variability. It is clear that higher-order
surrogates allow more accurate capture of the true boundary maps and therefore accelerate
the convergence. Higher order cases, however, naturally require more samples in order to
ensure little variability in the polynomial coefficients. While this demonstration serves as a
proof-of-concept, we use linear surrogates primarily.

Finally, we demonstrate results with respect to errors in the subdomain solution results.
For preliminary tests, we have implemented artificial fault generation by flipping a single,
randomly selected bit in binary representations of a small fraction p of the outcomes of
subdomain solves. An additional outlier detection is currently invoked on returned solutions
that discards samples outside a range of [—5, 15], which is a wide range of plausible output
samples given that the boundary conditions are y, = 2 and y, = 3. Such outlier detection
causes an effect similar to missing samples and is well-handled by the Bayesian surrogate
construction. Figure 16 illustrates the convergence of the root-mean-square error for cases
with and without artificial bit-flip injection. At each iteration, there are N = 5 subdomains
and M = 15 boundary-pair samples, therefore 75 subdomain solves. With bit-flip probability
p and two internal boundaries per subdomain, this leads to 150p bit-flips per iteration on
average. However, as the error bars suggest, the bit-flips do not deteriorate the convergence.

34

10° 10°

107 102

10" 10
5 10° 5 10°
m 10® w 10%
0 %)
510710 510'10

1012 1012

1014 1014

1016 1016

0o 1 2 3 4 5 6 7 8 9 10 0o 1 2 3 4 5 6 7 8 9 10
Iteration Iteration
(a) Median and 25, 75% quantiles over 100 runs (b) Single run (solid) and RMS surrogate range (dashed)

Figure 14. The convergence results as the number of sam-
ples M for linear surrogate construction is changed. The
parameters are set to f = 0.1, p = 0.0 and N = 5 subdo-
mains. The left plot shows the RMS error versus iteration
number across 100 identical simulations. On the right plot, a
single simulation is illustrated for each value of M, together
with the corresponding dashed curve that indicates how the
RMS average of the surrogate range is evolving.

Even with the largest value of the bit-flip probability, i.e. p = 0.01, when one expects at least
one bit-flip per iteration, the convergence curve shows error reduction and is fully resilient
showing nearly no dependence on bit-flip probability.

3.4 Error propagation in the fixed-point system

In this section we study the impact of the subdomain surrogate accuracy on the fixed point
solution for the non-linear problem. Within each iteration, the goal is to bring the current
solution state y closer to the true solution g of the fixed point system (6). The magnitude
of the error reduction in each iteration is limited, however, by the approximation error of
the linear surrogate maps G. Consequently, we study the effect of the current error and the
surrogate error on the final error, within one iteration. The current, or initial, error is the
RMS average of the vector y) — 9, and the final error is defined as the RMS average of
Y1) —Y, while the surrogate error is the RMS average of the error between the true boundary-
to-boundary map and its linear surrogate. We present the results using the nonlinear example
from Section 3.3 merely as an illustration of the error propagation through the fixed-point
machinery Fy ~ y. Note that for linear problems, the analogous tests lead to trivial results
as the final error is always expected to be near machine precision, and the surrogates are
exact, no matter how far away the initial guess is from the true solution.

35

10° 10°

2 F Order=1 2 — Order=1
10 - Order=2 10 — Order=2
10 F Order=3 10" —— Order=3
5 10° 5 10°
m 10® w 10%
0 %]
=101 S0
~ ~
10712 1012
1014 et 10714
1016 HOE L RS VOO WA . DUONE. S i
0o 1 2 3 4 5 6 7 8 9 10 0o 1 2 3 4 5 6 7 8 9 10
Iteration Iteration
(a) Median and 25, 75% quantiles over 100 runs (b) Single run (solid) and RMS surrogate range (dashed)

Figure 15. Convergence with the surrogate order change.
The parameters are set to M = 35, N = 5, p = 0.0 and
f = 0.1. Note that we have used larger number of training
samples in order to achieve a well defined third-order surro-
gate construction. The left plot shows the RMS error versus
iteration number across 100 identical simulations. On the
right plot, a single simulation is illustrated for each value of
the surrogate order, together with the corresponding dashed
curve that indicates how the RMS average of the surrogate
range is evolving.

We have generated a random selection of initial conditions y), and have chosen four
different values for the surrogate range, resulting in four different amounts of surrogate error.
The results, shown in Figure 17, suggest that both the initial error and the surrogate error
impact the limiting behavior of the final error. In other words, if one starts far away from
the true solution, i.e. with large initial errors, then the surrogate accuracy has no impact,
while if the initial error is small, then the surrogate error directly impacts the magnitude of
the final error. The same logic applies with respect to the surrogate error itself, that is, the
final error converges with respect to the reduction of the initial error, but the convergence
is limited by the error committed in the surrogate construction. In pretty much all cases
explored, however, the error in the solution was reduced by several orders of magnitude in
one iteration.

3.5 Linear PDE with numerical solution on subdomains
Our final test case is a linear PDE
0 dy)
- (m)%) — f@) Q=01 (34)

36

10° 10°

102 102

10 10"

5 10° Ho10®

m 10° o 108

wn wn

>101° S0

~ ~

10—12 1O~12

10—14 10414

1016 1016 &

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Iteration Iteration

(a) Median and 25, 75% quantiles over 100 runs (b) Single run (solid) and RMS surrogate range (dashed)

Figure 16. Convergence with the number of iterations with
and without bit-flips. The parameters are set to M = 15,
N =5, f = 0.1, using linear surrogate maps. The left plot
shows the RMS error versus iteration number across 100 iden-
tical simulations. On the right plot, a single simulation is
illustrated for each value of the bit-flip probability, together
with the corresponding dashed curve that indicates how the
RMS average of the surrogate range is evolving.

where the diffusivity and source terms are defined as

() = eep {tanh <10 (x - %))] , #(x) = sin(5ra), (35)

respectively, with BCs set to y(0) = 0 and y(1) = 1. In this case, a numerical solver is used
to solve the PDE on each subdomain. Figure 18 shows the solution over the full domain,
precomputed numerically using a dense grid.

As this is a linear PDE, linear surrogates are exact and a single iteration reaches the true
solution. Figure 19 illustrates the convergence with or without bit-flips for 100 identical sim-
ulations. Both the subdomain solutions and the predefined, true solution are computed on
the same grid of size = 0.001 explaining the convergence to nearly machine precision even
on a finite grid. The regression with Laplace likelihoods is computed using the Iteratively
Reweighted Least Squares (IRLS) algorithm that provides an accurate and efficient approx-
imation of the Laplace-likelihood objective function [13,16]. This study clearly illustrates
the advantage of using the Laplace likelihood as opposed to the Gaussian likelihood in the
regression in order to be fault-resilient.

37

Final error
_= _
o o

i S

e e Surrogate error ~107? £10%

1013}/ @ e Surrogate error ~107" £10%

e e Surrogate error ~107" +10%

10 -
e e Surrogate error ~10"** £10%
10—15
10 1073 10* 10° 10°®

Initial error

107

Figure 17. The error propagation through one iteration of
the surrogate map construction and subsequent fixed point
system solution. The plotted is the final RMS error after a
single iteration versus the initial RMS error. Four surrogate
ranges are chosen inducing four groupings of the associated

surrogate map accuracies.

1 T T 3
— Precomputed solution
— Diffusivity field -1 25
0.8 |~ - - Source field 1
0.6 - -1 1.5
g - ¥ S
= l' \\ " ‘\ \\
04 |- | , " 105
! l‘ " \‘ ad O
0.2 B ‘\ 'l ‘\ l’
o 5 - W - -0.5
0 I“ g 1 * 2| -1
0 0.25 0.5 0.75 1

k(x), f(x)

Figure 18. The precomputed solution of the diffusion equa-
tion (34), as well as the diffusivity and source fields.

38

10°
102
10

~

-6
S 10

4] 10-8
%10-10
1012
1014
1016

10°
107
10"
10°
10°®

RMS Error

1010
1012
1O~14
10»16

4 5 6
Iteration

(a) Gaussian likelihood, no bit-flips

0 1 2 3

4 5 6 7 8 9 10
Iteration

(¢) Laplace likelihood, no bit-flips

10°
107

10*
g 10°

53]

o 10°
510.10, |

10—12 -

10-14

1016

4 5 6
Iteration

(b) Gaussian likelihood, with bit-flips

10°
102

10
10°®

RMS Error

1010

10-12 L

10414

\ p = 0.003

108

10-16

0o 1 2 3 7 8 9 10

4 5 6
Iteration

(d) Laplace likelihood, with bit-flips

Figure 19. Convergence with the number of iterations with
and without bit-flips for the linear diffusion problem (34) for
both Gaussian (top row) and Laplace (bottom row) likeli-
hoods. The parameters are set to M =8, N =5, f = 0.1,
h = 0.05. A total of 100 identical simulations are shown.
The grid size for the discrete solver is kept at 6 = 0.001
for both the reference and subdomain solutions. The weight
relaxation parameter for the IRLS-¢; optimization is set to

p=0.9.

39

4 Discussion and future work

In this work, we developed and demonstrated a novel algorithmic approach for solving PDEs
that is resilient to multiple soft and hard faults. The approach relies on an overlapping
domain decomposition similar to accelerated additive Schwarz methods. At any point in the
iterative solution process, the current state of knowledge about the solution is represented
as the best current estimate for the solution plus a range within which the fully converged
solution is believed to reside. Using targeted solves of the PDE on the subdomains, for
sampled values of their boundary conditions, maps are constructed that relate the solutions at
the subdomain boundaries to each other. The intersection of these boundary maps produces
an updated solution state, which is refined in successive iterations until a fully converged
solution is obtained. The approach is applicable to both linear and non-linear PDEs.

The construction of the subdomain boundary solution maps relies on Bayesian inference,
with a Laplace likelihood function that is very well suited to filter out outliers caused by
data corruption in the results of subdomain solves. This makes the approach very resilient
to faults in the subdomain solves without needing to explicitly detect the occurrence of such
faults.

We have demonstrated the algorithm on one-dimensional synthetic PDEs with Dirichlet
boundary conditions and with artificial fault injection in the form of bit-flips applied with
a specified probability to the results of the subdomain solves. For linear problems, the
approach converged to the true numerical solution of the PDE in one iteration, even in the
presence of data corruption through bit-flips. For non-linear problems, the algorithm shows
good convergence properties along with robustness against data corruption in the subdomain
solves.

The approach is currently being extended to multi-dimensional PDEs [35], and to PDEs
with uncertain coefficients, which will be reported on elsewhere.

40

1]

2]

[10]

[11]

12

[13]

References

IEEE Standard for Floating-Point Arithmetic. Technical report, Microprocessor Stan-
dards Committee of the IEEE Computer Society, 2008.

Michele Benzi, Andreas Frommer, Reinhard Nabben, and Daniel B Szyld. Algebraic the-
ory of multiplicative schwarz methods. Numerische Mathematik, 89(4):605-639, 2001.

J.M. Bernardo and A.F.M. Smith. Bayesian Theory. Wiley Series in Probability and
Statistics. John Wiley & Sons Ld, Chichester, England, 2000.

George Bosilca, Remi Delmas, Jack Dongarra, and Julien Langou. Algorithm-based fault
tolerance applied to high performance computing. Journal of Parallel and Distributed
Computing, 69(4):410-416, Apr 2009.

Patrick G Bridges, Kurt B Ferreira, Michael A Heroux, and Mark Hoemmen. Fault-
tolerant linear solvers via selective reliability. arXiv.org, June 2012.

Richard H Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A limited memory
algorithm for bound constrained optimization. SIAM Journal on Scientific Computing,
16(5):1190-1208, 1995.

X.-C. Cai. A family of overlapping Schwarz algorithms for nonsymmetric and indefinite
elliptic problems. In D. Keyes, Y. Saad, and D. Truhlar, editors, Domain-based par-
allelism and problem decomposition methods in computational science and engineering.
SIAM, Providence, RI, 1994.

F Cappello, A Geist, B Gropp, L Kale, B Kramer, and M Snir. Toward Exascale Re-
silience. International Journal of High Performance Computing Applications, 23(4):374—
388, oct 2009.

Franck Cappello. Fault Tolerance in Petascale/ Exascale Systems: Current Knowledge,
Challenges and Research Opportunities. International Journal of High Performance
Computing Applications, 23(3):212-226, 2009.

Franck Cappello, Al Geist, William Gropp, Sanjay Kale, Bill Kramer, and Marc Snir.
Toward exascale resilience: 2014 update. Supercomputing frontiers and innovations,
1(1), 2014.

B. P. Carlin and T. A. Louis. Bayesian Methods for Data Analysis. Chapman and
Hall/CRC, 2011.

X.-C. Cay. Additive Schwarz algorithms for parabolic convection-diffusion equations.
Numerische Matematik, 60(1):41-61, 1991.

Rick Chartrand and Wotao Yin. Iteratively reweighted algorithms for compressive sens-
ing. In Acoustics, speech and signal processing, 2008. ICASSP 2008. IEEFE international
conference on, pages 3869-3872. IEEE, 2008.

41

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21

[22]

[23]

[24]

[25]

[26]

Yi Chen, John Jakeman, Claude Gittelson, and Dongbin Xiu. Local Polynomial Chaos
Expansion for Linear Differentical Equations with High Dimensional Random Inputs.
SIAM Journal on Scientific Computing, 37(1):A79-A102, 2015.

Zizhong Chen. Algorithm-based recovery for iterative methods without checkpointing.

In Proceedings of the 20th international symposium on High performance distributed
computing, HPDC 11, pages 73-84, New York, NY, USA, 2011. ACM.

Ingrid Daubechies, Ronald DeVore, Massimo Fornasier, and C Sinan Giintiirk. Itera-
tively reweighted least squares minimization for sparse recovery. Communications on
Pure and Applied Mathematics, 63(1):1-38, 2010.

David Denison, Christopher Holmes, Bani Mallick, and Adrian Smith. Bayesian methods
for nonlinear classification and regression, volume 386. John Wiley & Sons, 2002.

Chong Ding, C. Karlsson, Hui Liu, T. Davies, and Zizhong Chen. Matrix multiplica-
tion on gpus with on-line fault tolerance. In Parallel and Distributed Processing with
Applications (ISPA), 2011 IEEE 9th International Symposium on, pages 311-317, 2011.

M. Dryja and O. Widlund. An additive variant of the Schwarz alternating method for
the case of many subregions. Technical Report 339, Dep-t of Comp. Science, Courant
Institute, 1987.

Peng Du, Aurelien Bouteiller, George Bosilca, Thomas Herault, and Jack Dongarra.
Algorithm-based fault tolerance for dense matrix factorizations. In Proceedings of the
17th ACM SIGPLAN symposium on Principles and Practice of Parallel Programming,
PPoPP ’12, pages 225-234, New York, NY, USA, 2012. ACM.

Kurt Ferreira, Jon Stearley, James H. Laros, I1I, Ron Oldfield, Kevin Pedretti, Ron
Brightwell, Rolf Riesen, Patrick G. Bridges, and Dorian Arnold. Evaluating the vi-
ability of process replication reliability for exascale systems. In Proceedings of 2011

International Conference for High Performance Computing, Networking, Storage and
Analysis, SC 11, pages 44:1-44:12, New York, NY, USA, 2011. ACM.

M. Garbey. Acceleration of the Schwarz method for elliptic problems. SIAM Journal
on Scientific Computing, 26(6):1871-1893, 2005.

M. Garbey and D. Tromeur-Dervout. On some Aitken-like acceleration of the Schwarz
method. International Journal for Numerical Methods in Fluids, 40:1493-1513, 2002.

Michael Griebel and Peter Oswald. On the abstract theory of additive and multiplicative
schwarz algorithms. Numerische Mathematik, 70(2):163-180, 1995.

Michael Griebel and Peter Oswald. Greedy and randomized versions of the multiplicative
schwarz method. Linear Algebra and its Applications, 437(7):1596-1610, 2012.

M. Holst. Algebraic Schwarz theory. Technical Report CRPC-994-10, California Insti-
tute of Technology, 1994.

42

[27]

[28]

[29]

[30]

[31]

[32]

[34]

[35]

[37]

[38]

E. T. Jaynes. Prior Probabilities. IEEE Transactions on Systems Science and Cyber-
netics, 4(3):227-241, 1968.

D. Keyes. How scalable is domain decomposition in practice? In Proceedings of the 11th
International Conference on Domain Decomposition methods, pages 286-297. Domain
Decomposition Press, 1999.

Samuel Kotz and Saralees Nadarajah. Multivariate t-distributions and their applications.
Cambridge University Press, 2004.

J W Larson, M Hegland, B Harding, S Roberts, L. Stals, A P Rendell, P Strazdins,
M M Ali, C Kowitz, R Nobes, J Southern, N Wilson, M Li, and Y Oishi. Fault-Tolerant
Grid-Based Solvers: Combining Concepts from Sparse Grids and MapReduce. Procedia
Computer Science, 18:130-139, 2013.

Dong Li, Jeffrey S. Vetter, and Weikuan Yu. Classifying soft error vulnerabilities in
extreme-scale scientific applications using a binary instrumentation tool. In Proceedings
of the International Conference on High Performance Computing, Networking, Storage
and Analysis, SC '12, pages 57:1-57:11, Los Alamitos, CA, USA, 2012. IEEE Computer
Society Press.

Man-Lap Li, Pradeep Ramachandran, Swarup Kumar Sahoo, Sarita V. Adve, Vikram S.
Adve, and Yuanyuan Zhou. Understanding the propagation of hard errors to software
and implications for resilient system design. SIGOPS Oper. Syst. Rev., 42(2):265-276,
March 2008.

K. Malkowski, P. Raghavan, and M. Kandemir. Analyzing the soft error resilience of
linear solvers on multicore multiprocessors. In Parallel Distributed Processing (IPDPS),
2010 IEEFE International Symposium on, pages 1-12, 2010.

A. Quarteroni and A. Valli. Domain Decomposition Methods for Partial Differential
Fquations. Numerical mathematics and scientific computation. Clarendon Press, 1999.

F. Rizzi, K. Morris, K. Sargsyan, P. Mycek, C. Safta, B.J. Debusschere, O. Le Maitre,
H.N. Najm, and O.M. Knio. Partial differential equations solver resilient to soft and
hard faults. in preparation, 2015.

A. Savino, S.D. Carlo, G. Politano, A. Benso, A. Bosio, and G. Di Natale. Statistical
reliability estimation of microprocessor-based systems. Computers, IEEE Transactions
on, 61(11):1521-1534, 2012.

B. Schroeder and G.A. Gibson. A large-scale study of failures in high-performance com-
puting systems. Dependable and Secure Computing, IEEE Transactions on, 7(4):337—
350, Oct 2010.

John Shalf, Sudip Dosanjh, and John Morrison. Exascale Computing Technology Chal-
lenges. Technical report, 2011.

43

[39]

[40]
[41]

[42]

[43]

[44]

A. Shye, T. Moseley, V.J. Reddi, J. Blomstedt, and D.A. Connors. Using process-level
redundancy to exploit multiple cores for transient fault tolerance. In Dependable Systems
and Networks, 2007. DSN '07. 37th Annual IEEE/IFIP International Conference on,
pages 297-306, 2007.

D.S. Sivia. Data Analysis: A Bayesian Tutorial. Oxford Science, 1996.

Barry F. Smith. Domain decomposition methods for partial differential equations. In
Proceedings of ICASE/LaRC Workshop on Parallel Numerical Algorithms. Univ. Press,
1995.

Kian H Tan and Mart JA Borsboom. On generalized Schwarz coupling applied to
advection-dominated problems. Contemporary Mathematics, 180:125-125, 1994.

Keita Teranishi and Michael A Heroux. Toward Local Failure Local Recovery Resilience
Model using MPI-ULFM. In the 21st European MPI Users’ Group Meeting, pages 51-56,
New York, New York, USA, 2014. ACM Press.

A. Toselli and O.B. Widlund. Domain Decomposition Methods - Algorithms and Theory.
Springer Series in Computational Mathematics. Springer, 2005.

11

A Proof of linearity of boundary maps for linear
PDEs

Consider a linear PDE Ly(x) = h(x) with Dirichlet boundary condition y(x)|zer = yr on
the boundary I' of the problem domain 2. Now perturb the boundary condition by Ayr,
i.e. set up a new problem Ly(x) = h(x) with boundary condition y(x)|zer = yr + Ayr.
Denoting the differences between the solutions of the original PDE and the perturbed one
by Ay(z), we note that due to linearity of the operator £, the function Ay(x) satisfies the
homogeneous PDE LAy(x) = 0 with a Dirichlet boundary condition Ay(@)|zer = Ayr. Due
to homogeneity, for each fixed point &, Ay(x) is proportional to the perturbation magnitude
Ayr and does not depend on yr itself. One can then write Ay(x)/Ayr = A(x) thus proving
the linearity of the map yr — y(x) for each fixed x.

45

DISTRIBUTION:

G U (L G VA T G S

MS
MS
MS
MS
MS
MS
MS
MS

9051
9051
9051
9051
9051
9159
9051
0899

Chris Shaddix, 8351

Khachik Sargsyan, 8351

Bert Debusschere, 8351

Habib Najm, 8351

Francesco Rizzi, 8351

Cosmin Safta, 8954

Karla Morris, 8956

Technical Library, 8944 (electronic copy)

46

v1.38

@ Sandia National Laboratories

