skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Leveraging a Fundamental Understanding of Fracture Flow, Dynamic Permeability Enhancement, and Induced Seismicity to Improve Geothermal Energy Production

Technical Report ·
DOI:https://doi.org/10.2172/1494557· OSTI ID:1494557

This project focused on assessment and discovery of fluid-rock interaction in geothermal reservoirs. We accomplished work in four main areas: 1) fracture formation and the relationship between fluid flow and shear failure, 2) assessment of fracture geometry and fluid permeability using novel acoustic measurements, 3) an improved understanding of how drilling, injection and geothermal production influence local seismicity, and 4) development of process based models for using induced seismicity to assess the critical stress-state in Earth’s crust. The majority of the work involved laboratory experiments and analysis of laboratory and numerical results. We created shear fractures under true triaxial stresses designed to mimic the stress state of a geothermal reservoir and we measured fracture permeability as a function of stress state and fluid pressure under these conditions. Our work shows that fracture permeability can be altered by transient changes in stress and fluid flow. We find that fluid pressure has an unexpectedly larger impact on permeability than does applied stress and we interpret that result in terms of fracture contact area and the law of effective stress. We employ elastic waves to image fractures in the lab and develop the theory to apply our work to geothermal reservoir scale. Our work documents changes in elastic wave speed prior to earthquake-like failure in the lab and we show how the frequency magnitude distribution of microseismic lab earthquakes can be used to assess the critical stress state around faults prior to failure.

Research Organization:
Pennsylvania State Univ., University Park, PA (United States)
Sponsoring Organization:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Renewable Power Office. Geothermal Technologies Office
DOE Contract Number:
EE0006762
OSTI ID:
1494557
Report Number(s):
DOE-PennState-DE_EE0006762
Resource Relation:
Related Information: geothermaldata.org
Country of Publication:
United States
Language:
English

Similar Records

Penn State Lab Testing Fluid-Rock Interaction in Geothermal Reservoirs
Dataset · Mon Jan 01 00:00:00 EST 2018 · OSTI ID:1494557

Geomechanics-Based Stochastic Analysis of Injection- Induced Seismicity
Technical Report · Mon Aug 21 00:00:00 EDT 2017 · OSTI ID:1494557

Characterization of EGS Fracture Network Lifecycles
Technical Report · Mon Mar 31 00:00:00 EDT 2008 · OSTI ID:1494557