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Motivation

Tracers in atmospheric modeling
@ Typically tracers are chemical species transported
with the flow
@ In current atmospheric dynamical cores tracer

advection accounts for 50% of total cost with 26
tracers

@ More detailed biogeochemistry requires 100-1000
tracers
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Motivation

Tracers in atmospheric modeling

@ Typically tracers are chemical species transported
with the flow

@ In current atmospheric dynamical cores tracer
advection accounts for 50% of total cost with 26
tracers

@ More detailed biogeochemistry requires 100-1000
tracers

Objective:

@ Develop computationally efficent tracer advection
algorithms that

@ enforce physical tracer bounds

@ exploit the fact that we will be transporting
hundreds of species

@ work on unstructured grids
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Transport Problem

A tracer, represented by its mixing ratio ¢ and mass pq, is transported
in the flow with velocity u

dp

g—f—V'pU—O Dq
9pq Dt~ °
o VP

Solution methods should satisfy
@ conservation of pq
@ monotonicity or bounds preservation of ¢
@ consistency between ¢ and p (free stream preserving)
@ preservation of linear correlations between tracers (g1 = aq> + b)
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Incremental Remap for Transport

Given a partition C(Q) into cells ¢;,i =1, ...C

@ cell mass m; =/ o(x,t)dV

Ci

@ cell area y; :/ av

m;

@ cell average density p; =

@ cell average tracer concentration
L e )g(x, t)dV
T e tyav

/ p(x, t)q(X, t)dV = miq;

7

Dukowicz and Baumgardner (2000) JCP

C(L(0)

For a Lagrangian volume, V7,

d
= ,t)dV =0
pr VLP(X )

d

2 ,)p(x,8)dV =0
i, a0
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Incremental Remap for Transport

C(L)

C(Q(t+A

@ Project arrival grid to departure grid: C(Q(t + At)) — C(Q(t))
@ Remap: p(t) — A(t). a(t) — q(t)

© Lagrangian update:

mi(t + At)

mat+ AL = mi(t), it AD) = o

qi(t + At) = Gi(t)

Dukowicz and Baumgardner (2000) JCP
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Density and Tracer Remap

Given mean density and tracer values p;, g; on the old grid cells ¢;,
find accurate approximations for m; and g; on the new cells ¢; such
that:

@ Total mass and tracer mass are conserved:

C C C C
Zﬁlizzmi:M Zﬁ’h&zzzmzqzzQ
i=1 i=1 1=1 =1

@ Mean density and tracer approximations on the new cells, p; = ”ﬁl and
g; satisfy the local bounds

pglingﬁigp;nax7 ’L':].,...,C7

max

" <G <, i=1,...,0,
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Optimization-Based Remap

Objective

|u —u

c<Cu<C

desired physical properties
viewed as constraints on the
state

TH 8tuT — LhaT
stable and accurate solution,
not required to possess all
desired physical properties

minimize the distance
between the solution and a
suitable target

Advantages
@ Solution is globally optimal with respect to the target and desired
physical properties
@ Decouples accuracy from enforcement of physical properties

Bochev, Ridzal, Shashkov (2013) JCP
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Density Formulation

i = [p@adv o+ (fp@)dV — [ pla)dv)
= m; + Uj

. 1
@ Objective EIIU—UTHZ

@ Target ul = / P (x)dV —/ P (x)dV
C .

@ Constraints Y ; =0, p""ji; < m; < p"* fi;
i=1

Bocheyv, Ridzal, Shashkov (2013) JCP
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Tracer Formulation

%= Iz, p(x)dv

o 1
® Objective §||q—qT||%2

+Js pM(@)d (@)dV
b - = oM (@)dv
C
@ Constraints Zﬁbﬁi =Q, ¢ <G < g
=1

@ Target
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OBR Algorithm

. L~ T2 ; . Lo T2 ;
minimize Ellu —u' ||z, subjectto minimize Ellq —q'|lz, subjectto
@ ) c .
> w=0, mI"<m;+ i < mi > G =Q, q"" <&@ < g™
i=1 i=1

Singly linearly constrained quadratic programs with simple bounds

@ Solve related separable problem (without mass constraint) first,
cost O(C)

@ Satisfy the mass conservation constraint in a few secant
iterations
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Density and Tracer Reconstructions

P(x)|e; = pi + 87 (x —by)
" X)|e; = ¢ + 87 (x—c;)

@ Approximate gradients (g ~ Vp, g! ~ V¢) computed using
least-squares fit with five point stencil

[ xav
@ Cell barycenter b; = “——
Hi
fq xpi(x)dV
m;
@ Mean preserving by construction

@ Cellcenterof mass «c¢; =

1 h 1 h h
i Cip (x)dV =p o /Cip (x)¢"(x)dV =g¢q
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Swept Area Approximation

Fi{)s:/ p?/s(az)dv

15

Fo = [ ol@)d @)y

18

o0 P,
(1) q,(0)

TNE: p
U; ~ F1is

S
o ~ qi(t)mi(t) + 32, Fi
’ mi(t) +u]

(A0
(1)
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Cubed Sphere Grid ) .

@ Six faces of cube projected onto surface of
sphere

@ Equiangular gnomonic projection with
central angles, «, 8 € [—7/4,7/4]

@ Local coordinates
r=atana,y =atanff p=1,...,6

1
/dV:—/ L
v avl—l—Iz'I‘

1
/de:—/ Y i : : :
v 8v1+x21"

1
/ ydV = —dx
Vv ov' T

r=+1+22+y2fora=1

See Ullrich et al. (2009) Monthly Weather Review, Lauritzen et al.(2010) JCP.
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Convergence Test - Solid Body Rotation

@ Initial density distribution set to one
everywhere

@ Initial tracer distribution two smooth
Gaussian hills centered at
(A1,61) = (57/6,0) and
(A2,62) = (77 /6,0)

@ Nondivergent rotational flow field,
a=m/4

u(A, 0) = 27 (cos(0) cos(ar) + cos(A) sin(0) sin(c))
v(A, 0) = 27 sin(\) sin(a)
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Convergence Test - Solid Body Rotation

t=20

OBT* Unlimited
mesh  steps [ loo > loo
3.0° 600 0.0145 0.0338 0.0120 0.0185

1.5° 1200  0.00247 0.00934 0.00203 0.00296
0.75° 2400 0.000486 0.00308 0.000412 0.000412
0.375° 4800 0.000108 0.000997 0.0000958 0.000127 T

Rate  2.36 1.68 2.43 2.51

* Optimization-based transport
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Convergence Test - Deformational Flow

@ |Initial density distribution set to one
everywhere

@ Initial tracer distribution two smooth
Guassian hills centered at
()\1, 91) = (571'/67 0) and
()\2,92) = (77‘(’/6, 0)

@ Nondivergent deformational flow
field, T'=5:

u(X, 0,t) = 2sin? (A — 2wt/ T) sin(26) cos (wt/T) + 27 cos(8) /T
v(A, 0,t) = 2sin (2(X — 27t/T)) cos(8) cos (wt/T)
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Convergence Test - Deformational Flow

t=20

OBT* Unlimited
mesh steps I loo l> loo
3.0° 600 0.386 0.465 0.368 0.425
1.5° 1200 0.182 0.268 0.172 0.225
0.75° 2400 0.0626 0.113 0.0559 0.0843
0.375° 4800 0.0167 0.0425 0.0144 0.0233
Rate 1.51 1.16 1.56 1.40

* Optimization-based transport
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Discontinuous Tracer Test

@ Initial density distribution set to one
everywhere

@ |Initial tracer distribution two notched
cylinders centered at
(A1,61) = (57/6,0) and
()\2, 92) = (771‘/6, 0)

@ Nondivergent deformational flow
field, T'=5:

(X, 0,t) = 2sin? (A — 2wt/ T) sin(26) cos (wt/T) + 27 cos(8) /T
v(A, 0,t) = 2sin (2(\ — 27t/T)) cos(8) cos (wt/T)
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Discontinuous Tracer Test

Initial OBT Unlimited
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Discontinuous Tracer Test

Initial OBT Slope Limited
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Linear Tracer Correlation Test

@ Initial density distribution set to one

@ |Initial tracer distributions two cosine
bells centered at (A1, 61) = (57/6,0)
and ()\2, 92) = (771’/6, 0)

@ ¢; hasmin=0.1 and max = 1.0 os

@ ¢ =-08q 4009 e

@ Nondivergent deformational flow

q2

q Q Correlation att = 2.5
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Locality Test - Initial Conditions

Tracer (g
0.75°
log(q —0.1)
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Locality Test - Deformational Flow

Tracer (q)
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Locality Test - Deformational Flow

Tracer (q
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Locality Test - Solid Body Rotation

Tracer (q)
1.5° 0.75°

=AU ==

log(q —0.1)
1.5°
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Locality Test - Solid Body Rotation

Tracer (q)
1.5° 0.75°

log(q —0.1)
1.5° 0.75°
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Conclusions

@ Optimization-based transport using incremental remapping
offers a robust and flexible alternative to standard transport
techniques

@ Solution is globally mass conserving and bounds preserving

@ Optimization algorithm is efficient and computationally competitive
with standard slope limiting

@ Swept area integrals are computed once per time step are used
for multiple tracers

@ Future work
@ Continue to investigate the behavior of algorithm in regards to
global versus local mass conservation
@ Developing optimization-based limiting for nodal spectral element
semi-Lagrangian tracer transport
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