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Motivation

Tracers in atmospheric modeling
Typically tracers are chemical species transported
with the flow

In current atmospheric dynamical cores tracer
advection accounts for 50% of total cost with 26
tracers

More detailed biogeochemistry requires 100-1000
tracers

Objective:
Develop computationally efficent tracer advection
algorithms that

enforce physical tracer bounds
exploit the fact that we will be transporting
hundreds of species
work on unstructured grids
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Transport Problem

A tracer, represented by its mixing ratio q and mass ρq, is transported
in the flow with velocity u

∂ρ

∂t
+∇ · ρu = 0

∂ρq

∂t
+∇ · ρqu = 0

 → Dq

Dt
= 0

Solution methods should satisfy
conservation of ρq

monotonicity or bounds preservation of q

consistency between q and ρ (free stream preserving)

preservation of linear correlations between tracers (q1 = aq2 + b)
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Incremental Remap for Transport

Given a partition C(Ω) into cells ci, i = 1, ...C

cell mass mi =

Z
ci

ρ(x, t)dV

cell area µi =

Z
ci

dV

cell average density ρi =
mi

µi

cell average tracer concentration

qi =

R
ci

ρ(x, t)q(x, t)dVR
ci

ρ(x, t)dVZ
ci

ρ(x, t)q(x, t)dV = miqi

!C(!(t))

C(!(t))

!i (t)
qi (t)

!!i (t)
!qi (t)

!i (t +!t)
qi (t +!t)

C(!(t +"t))

For a Lagrangian volume, VL

d

dt

Z
VL

ρ(x, t)dV = 0

d

dt

Z
VL

q(x, t)ρ(x, t)dV = 0

Dukowicz and Baumgardner (2000) JCP
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Incremental Remap for Transport

!C(!(t))

C(!(t))

!i (t)
qi (t)

!!i (t)
!qi (t)

!i (t +!t)
qi (t +!t)

C(!(t +"t))

1 Project arrival grid to departure grid: C(Ω(t + ∆t)) 7→ eC(Ω(t))

2 Remap: ρ(t) 7→ ρ̃(t), q(t) 7→ eq(t)
3 Lagrangian update:

mi(t + ∆t) = m̃i(t), ρi(t + ∆t) =
mi(t + ∆t)

µi(t + ∆t)
, qi(t + ∆t) = q̃i(t)

Dukowicz and Baumgardner (2000) JCP
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Density and Tracer Remap

Given mean density and tracer values ρi, qi on the old grid cells ci,
find accurate approximations for m̃i and q̃i on the new cells c̃i such
that:

Total mass and tracer mass are conserved:

CX
i=1

emi =
CX

i=1

mi = M
CX

i=1

emieqi =
CX

i=1

miqi = Q .

Mean density and tracer approximations on the new cells, eρi = emieµi
andeqi satisfy the local bounds

ρmin
i ≤ eρi ≤ ρmax

i , i = 1, . . . , C ,

qmin
i ≤ eqi ≤ qmax

i , i = 1, . . . , C ,
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Optimization-Based Remap

Objective
‖ũ− uT ‖

minimize the distance
between the solution and a

suitable target

Target
∂tu

T = LhuT

stable and accurate solution,
not required to possess all
desired physical properties

Constraints
C ≤ Cũ ≤ C

desired physical properties
viewed as constraints on the

state

Advantages
Solution is globally optimal with respect to the target and desired
physical properties
Decouples accuracy from enforcement of physical properties

Bochev, Ridzal, Shashkov (2013) JCP
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Density Formulation

m̃i =
∫
ci

ρ(x)dV +
(∫eci

ρ(x)dV −
∫
ci

ρ(x)dV
)

= mi + ui

Objective
1

2
‖ũ− uT‖2

`2

Target uT
i :=

∫
eci

ρh(x)dV −
∫

ci

ρh(x)dV

Constraints
C∑

i=1

ũi = 0, ρmin
i µ̃i ≤ m̃i ≤ ρmax

i µ̃i

Bochev, Ridzal, Shashkov (2013) JCP
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Tracer Formulation

q̃i =

∫eci
ρ(x)q(x)dV∫eci

ρ(x)dV

Objective
1

2
‖q̃ − qT‖2

`2

Target qT
i :=

∫eci
ρh(x)qh(x)dV∫eci

ρh(x)dV

Constraints
C∑

i=1

m̃iq̃i = Q, qmin
i ≤ q̃i ≤ qmax

i
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OBR Algorithm

8>>><>>>:
minimize

1

2
‖eu− uT‖2

`2
subject to

CX
i=1

eui = 0, mmin
i ≤ mi + eui ≤ mmax

i

8>>><>>>:
minimize

1

2
‖eq − qT‖2

`2
subject to

CX
i=1

emieqi = Q, qmin
i ≤ eqi ≤ qmax

i

Singly linearly constrained quadratic programs with simple bounds

Solve related separable problem (without mass constraint) first,
cost O(C)

Satisfy the mass conservation constraint in a few secant
iterations
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Density and Tracer Reconstructions

ρh(x)|ci = ρi + gρ
i · (x− bi)

qh(x)|ci = qi + gq
i · (x− ci)

Approximate gradients (gρ
i ≈ ∇ρ, gq

i ≈ ∇q) computed using
least-squares fit with five point stencil

Cell barycenter bi =

∫
ci

xdV

µi

Cell center of mass ci =

∫
ci

xρi(x)dV

mi

Mean preserving by construction

1

µi

∫
ci

ρh(x)dV = ρi
1

mi

∫
ci

ρh(x)qh(x)dV = qi
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Swept Area Approximation

!i (t)
qi (t)

!m (t)
qm (t)

! im

!i (t)
qi (t)

!l (t)
ql (t)

! il

!i (t)
qi (t)

!i (t)
qi (t)

! j (t)
qj (t)! ij

!i (t)
qi (t)

!k (t)
qk (t)

! ik

F ρ
is =

∫
σis

ρh
i/s(x)dV

F q
is =

∫
σis

ρh
i/s(x)qh

i/s(x)dV

uT
i ≈

∑
s

F ρ
is

qT
i ≈

qi(t)mi(t) +
∑

s F q
is

mi(t) + uT
i
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Cubed Sphere Grid

Six faces of cube projected onto surface of
sphere

Equiangular gnomonic projection with
central angles, α, β ∈ [−π/4, π/4]

Local coordinates
x = a tan α, y = a tan β p = 1, ..., 6Z

V
dV = −

Z
∂V

1

1 + x2

y

r
dx

Z
V

xdV = −
Z

∂V

1

1 + x2

xy

r
dx

Z
V

ydV =

Z
∂V

1

r
dx

r =
p

1 + x2 + y2 for a = 1

See Ullrich et al. (2009) Monthly Weather Review, Lauritzen et al.(2010) JCP.
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Convergence Test - Solid Body Rotation

Initial density distribution set to one
everywhere

Initial tracer distribution two smooth
Gaussian hills centered at
(λ1, θ1) = (5π/6, 0) and
(λ2, θ2) = (7π/6, 0)

Nondivergent rotational flow field,
α = π/4:

u(λ, θ) = 2π (cos(θ) cos(α) + cos(λ) sin(θ) sin(α))

v(λ, θ) = 2π sin(λ) sin(α)
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Convergence Test - Solid Body Rotation

t = 0 t = 2.5 t = 5

OBT∗ Unlimited
mesh steps l2 l∞ l2 l∞

3.0◦ 600 0.0145 0.0338 0.0120 0.0185
1.5◦ 1200 0.00247 0.00934 0.00203 0.00296
0.75◦ 2400 0.000486 0.00308 0.000412 0.000412
0.375◦ 4800 0.000108 0.000997 0.0000958 0.000127

Rate 2.36 1.68 2.43 2.51
3 1.5 0.75 0.375

10−5

10−4

10−3

10−2

10−1

 

 
l
2
 OBT

l∞ OBT

l
2
 Unlim

l∞ Unlim

2nd Order

∗ Optimization-based transport
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Convergence Test - Deformational Flow

Initial density distribution set to one
everywhere

Initial tracer distribution two smooth
Guassian hills centered at
(λ1, θ1) = (5π/6, 0) and
(λ2, θ2) = (7π/6, 0)

Nondivergent deformational flow
field, T = 5:

u(λ, θ, t) = 2 sin2 (λ− 2πt/T ) sin(2θ) cos (πt/T ) + 2π cos(θ)/T

v(λ, θ, t) = 2 sin (2 (λ− 2πt/T )) cos(θ) cos (πt/T )
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Convergence Test - Deformational Flow

t = 0 t = 2.5 t = 5

OBT∗ Unlimited
mesh steps l2 l∞ l2 l∞

3.0◦ 600 0.386 0.465 0.368 0.425
1.5◦ 1200 0.182 0.268 0.172 0.225
0.75◦ 2400 0.0626 0.113 0.0559 0.0843
0.375◦ 4800 0.0167 0.0425 0.0144 0.0233

Rate 1.51 1.16 1.56 1.40
3 1.5 0.75 0.375

10−3

10−2

10−1

100

 

 
l
2
 OBT

l∞ OBT

l
2
 Unlim

l∞ Unlim

2nd Order

∗ Optimization-based transport
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Discontinuous Tracer Test

Initial density distribution set to one
everywhere

Initial tracer distribution two notched
cylinders centered at
(λ1, θ1) = (5π/6, 0) and
(λ2, θ2) = (7π/6, 0)

Nondivergent deformational flow
field, T = 5:

u(λ, θ, t) = 2 sin2 (λ− 2πt/T ) sin(2θ) cos (πt/T ) + 2π cos(θ)/T

v(λ, θ, t) = 2 sin (2 (λ− 2πt/T )) cos(θ) cos (πt/T )
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Discontinuous Tracer Test

Initial OBT Unlimited

min = 0.1 min = 0.10 min = -0.020
max = 1.0 max = 1.00 max = 1.14
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Discontinuous Tracer Test

Initial OBT Slope Limited

min = 0.1 min = 0.10 min = 0.078
max = 1.0 max = 1.00 max = 1.030
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Linear Tracer Correlation Test

Initial density distribution set to one

Initial tracer distributions two cosine
bells centered at (λ1, θ1) = (5π/6, 0)
and (λ2, θ2) = (7π/6, 0)

q1 has min = 0.1 and max = 1.0

q2 = −0.8q1 + 0.9

Nondivergent deformational flow

q1 q2

q1 q2 Correlation at t = 2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

q
1

q 2
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Locality Test - Initial Conditions
Tracer (q)

1.5◦ 0.75◦

log(q − 0.1)
1.5◦ 0.75◦
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Locality Test - Deformational Flow
Tracer (q)

1.5◦ 0.75◦

log(q − 0.1)
1.5◦ 0.75◦
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Locality Test - Solid Body Rotation
Tracer (q)

1.5◦ 0.75◦

log(q − 0.1)
1.5◦ 0.75◦
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Conclusions

Optimization-based transport using incremental remapping
offers a robust and flexible alternative to standard transport
techniques

Solution is globally mass conserving and bounds preserving
Optimization algorithm is efficient and computationally competitive
with standard slope limiting
Swept area integrals are computed once per time step are used
for multiple tracers

Future work
Continue to investigate the behavior of algorithm in regards to
global versus local mass conservation
Developing optimization-based limiting for nodal spectral element
semi-Lagrangian tracer transport
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