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Execution Space 
 Execution Space Instance 
 Hardware resources (e.g., cores, hyperthreads) in which functions execute 
 Functions may execute concurrently on those resources 
 Concurrently executing functions have coherent view to memory 
 Degree of potential concurrency determined at runtime 
 Number of execution space instances determined at runtime 

 Execution Space Type 
 Functions compiled to execute on an instance of a specified type 
 Types determined at configure/compile time 

 Host Space 
 The main process and its functions execute in the Host Space 
 One type, one instance, and is serial (potential concurrency == 1) 
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Memory Spaces 
 Memory Space Types 
 The type of memory is defined with respect to an execution space type 
 Anticipated types, identified by their dominant usage 
 Primary: (default) space with allocable memory (e.g., can malloc/free) 
 Performant : best performing space (e.g., GDDR) 
 Capacity : largest capacity space (e.g., DDR) 
 Contemporary system: Primary == Performant == Capacity 

 Scratch : non-allocable and maximum performance 
 Persistent : usage can persist between process executions (e.g., NVRAM) 

 
 Memory Space Instance 
 Has relationship with execution space instances (more later) 
 Directly addressable by functions in that execution space 
 Contiguous range of addresses 
 Has bounded capacity 
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Examples of Execution and Memory Spaces 
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Default Execution and Memory Spaces 
for Simple Applications & Libraries 
 Default Execution Space 
 One type selected at configure/build 
 One instance of that type selected at initialization 
 When an execution space is not specified the default is assumed 

 
 Execution Space’s Default (Primary) Memory Space 
 Execution space instance has one default allocable memory space instance 
 Allocable memory space has one preferred execution space instance 

 
 Omission Assumes Default 
 Omitting an execution space assumes the default 
 Given an execution space, omitting a memory space assumes the default 
 Omitting a memory space assumes the default execution & memory space 
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Execution / Memory Space Relationships 
 ( Execution Space , Memory Space , Memory Access Traits ) 
 Accessibility : functions can/cannot access memory space 
 E.g., Host functions can never access GPU scratch memory 
 E.g., GPU functions can access Host capacity memory only if it is pinned 
 E.g., Host functions can access GPU performant memory only if it is UVM 

 Readable / Writeable 
 E.g., GPU performant memory using texture cache is read-only 

 Bandwidth : potential rate at which concurrent instructions can read or write 
 Capacity for views to (allocable) data 

 Memory Access Traits (extension point) potential examples: 
 read-only, write-only, volatile/atomic, random, streaming, ... 
 Converting between “views” with same space and different traits 
 Default is simple readable/writeable – no special traits 

 Future opportunity 
 Execution space accesses remote memory space (similar to MPI 1-sided) 
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Views and Defaults 
 typedef View< ArrayType , Layout , Space , Traits >  view_type ; 
 Omit Traits : no special compile-time defined access traits 
 Omit Space : default execution space’s default memory space 
 Omit Layout : allocable memory space’s default layout 
 default everything:  View< ArrayType > 

 
 view_type a( optional_traits , N0 , N1 , ... ); 
 optional_traits : a collection of optional runtime defined traits 
 label trait : string used in error and warning messages, default none 
 initialize trait : default parallel_for(N0,[=](int i){ a(i,...) = 0 ; }) 
 Default uses memory space’s preferred execution space with static scheduling 
 Common override is to not initialize after allocating 
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Execution Policy 
 How Potentially Concurrent Functions are Executed 
 Where : in what execution space (instance & type) 
 Parallel Work: current capabilities [0..N) or (#teams, #thread/team) 
 Scheduling : currently static scheduling of data parallel work 
 Map work function calls onto resources of the execution space 
 E.g., contiguous spans of [0..N) to a CPU thread for contiguous access pattern 
 E.g., strided subsets of [0..N) to GPU threads for coalesced access pattern 

 Compose Pattern & Policy : parallel_for( policy , functor ); 
 Policy::execution_space to replace Functor::device_type 
 Allows functor to be a C++11 lambda (more on this later) 

 Default Policy and Space for Simple Functors 
 Policy ‘size_t N’ is [0..N) with static scheduling and default execution space 
 E.g., parallel_for( N , [=]( int i ) { /* lambda-function body */ } ); 
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Execution Policies, Patterns, and Defaults 
 Patterns: parallel_for, parallel_reduce, parallel_scan 
 parallel_pattern( policy , functor ); 
 Execute on policy’s execution space according to policy’s scheduling 
 functor API requirements defined by pattern and policy 
 functor API omissions have defaults 

 parallel_reduce functor API requirements and defaults 
 functor::init( value_type & update ); // { new( & update ) value_type(); } 
 functor::join( volatile value_type & update ,  
                             volatile const value_type & in ) const ; // { update += in ; } 
 functor::final( value_type & update ) const ; // {;} 

 Dot product becomes simple with C++11 lambda and defaults 
double dot( View<double*> x , View<double*> y ) { 
  double d = 0 ; 
  parallel_reduce( x.dimension_0() , [=](int i, double & v) { v += x(i) * y(i); } , d ); 
  return d ; 
} 
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Execution Policy 
 Policy calls functor’s work function in parallel 
 PolicyType<ExecSpace>::index_type // data parallel work index type 

void FunctorType::operator()( PolicyType<...>::index_type ) const ; 

 Range policy example 
 parallel_for( Range<ExecSpace>(0,N) , functor ); 

void FunctorType::operator()( integer_type i ) const ; 

 Thread team policy example 
 parallel_for( Team<ExecSpace>(#teams,thread/team) , functor ); 

void FunctorType::operator()( Team<ExecSpace>::index_type team ) const ; 
 Replaces “device” interface 

 Extension point for new policies 
 Multi-indices  [0..M)x[0..N), index sets, ... 
 Static partitioning with chunk bounds, work stealing, ... 
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Execution Policy, multi-function Functors 
 Allow functors to have multiple parallel work functions 
 typedef PolicyType< ExecSpace , TagType > p_type ; 
 parallel_pattern( p_type(...) , functor ); 

void FunctorType::operator()( const TagType &, p_type::index_type ) const ; 
 Parallel work functions differentiated by ‘TagType’ 
 TagType used instead of method name 

 Motivations 
 Algorithm with multiple parallel passes using the same data  
 miniFENL sparse matrix graph construction from FEM connectivity  

 Common need in LAMMPS, allow LAMMPS to remove “wrapper functors” 

 Examples: 
 parallel_for( Range<ExecSpace,TagType>(0,N) , functor ); 
 parallel_for( Team<ExecSpace,TagType>(#teams,thread/team) , functor ); 
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Execution Policy for Task Parallelism 
 Kokkos/Qthreads LDRD 
 TaskManager< ExecSpace > execution policy 
 Policy object shared by potentially concurrent tasks 

TaskManager<...> tm( exec_space , ... ); 
Future<> fa = spawn( tm , task_functor_a ); // single-thread task 
Future<> fb = spawn( tm , task_functor_b ); 

 Tasks may be data parallel 
Future<> fc = spawn_for( tm.range(0..N) , functor_c );  
Future<value_type> fd = spawn_reduce( tm.team(N,M) , functor_d ); 
wait( tm ); // wait for all tasks to complete 

 Destruction of task manager object waits for concurrent tasks to complete 

 Task Managers 
 Define a scope for a collection of potentially concurrent tasks 
 Have configuration options for task management and scheduling 
 Manage resources for scheduling queue 
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Execution Policy for Task Parallelism 
 Tasks’ execution dependences 
 Start a task only after other specified tasks have completed 

Future<> array_of_dep[ M ] = { /* future for other specified tasks */ }; 
 Single threaded task: 

Future<> fx = spawn( tm.depend(M,array_of_dep) , task_functor_x  ); 
 Data parallel task: 

spawn_for( tm.depend(M,array_of_dep).range(0..N) , task_functor_y ); 
 Tasks and dependences define a directed acyclic graph (dag) 

 

 At most one active task manager on an execution space 
 Well-defined scope and lifetime for collection of potentially current tasks 
 Don’t consume resources when not in use 
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