Sandia
National
Laboratories

Exceptional
service

in the

national

interest

SAND2014- 15946P

Kokkos Path Forward:
Spaces, Policies, Defaults, C++11,
and Tasks

Kokkos Path Forward Review; July 16, 2014

SAND2014-####P (Unlimited Release)

Ly
Fusy U.5. DEPARTMENT OF i ¥ " ‘\Qa‘
-] o
{(0)ENERGY VIS
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Execution Space) e,

Laboratories

= Execution Space Instance
= Hardware resources (e.g., cores, hyperthreads) in which functions execute
= Functions may execute concurrently on those resources
= Concurrently executing functions have coherent view to memory
= Degree of potential concurrency determined at runtime
= Number of execution space instances determined at runtime

= Execution Space Type
= Functions compiled to execute on an instance of a specified type
= Types determined at configure/compile time

= Host Space
= The main process and its functions execute in the Host Space

= One type, one instance, and is serial (potential concurrency == 1)

Memory Spaces) e,

Laboratories

= Memory Space Types

= The type of memory is defined with respect to an execution space type

Anticipated types, identified by their dominant usage

Primary: (default) space with allocable memory (e.g., can malloc/free)
= Performant : best performing space (e.g., GDDR)

= Capacity : largest capacity space (e.g., DDR)
= Contemporary system: Primary == Performant == Capacity

Scratch : non-allocable and maximum performance

Persistent : usage can persist between process executions (e.g., NVRAM)

= Memory Space Instance
= Has relationship with execution space instances (more later)
= Directly addressable by functions in that execution space
= Contiguous range of addresses
= Has bounded capacity

Examples of Execution and Memory Spaces) e,

Compute Node

Multicore | primary

Socket .

Laboratories

Attached Accelerator
GPU _
DDR Erlmarz l
shared GDDR
deep_copy

Compute Node /

Multicore | primary

Socket g

DDR

GPU::capacit

<

A

(via pinned)

Attached Acch

GPU

shared

Erlmarx » GDDR

perform

—

GPU::perform
(via UVM)

Sandia

Default Execution and Memory Spaces rh) o
for Simple Applications & Libraries

= Default Execution Space
= One type selected at configure/build
= One instance of that type selected at initialization
= When an execution space is not specified the default is assumed

= Execution Space’s Default (Primary) Memory Space
= Execution space instance has one default allocable memory space instance
= Allocable memory space has one preferred execution space instance

= Omission Assumes Default
= Omitting an execution space assumes the default
= Given an execution space, omitting a memory space assumes the default
= Omitting a memory space assumes the default execution & memory space

Execution / Memory Space Relationships) o

Laboratories

= (Execution Space , Memory Space , Memory Access Traits)

= Accessibility : functions can/cannot access memory space
= E.g., Host functions can never access GPU scratch memory
= E.g., GPU functions can access Host capacity memory only if it is pinned
= E.g., Host functions can access GPU performant memory only if it is UVM
= Readable / Writeable
= E.g., GPU performant memory using texture cache is read-only
= Bandwidth : potential rate at which concurrent instructions can read or write
= Capacity for views to (allocable) data

= Memory Access Traits (extension point) potential examples:
= read-only, write-only, volatile/atomic, random, streaming, ...
= Converting between “views” with same space and different traits
> Default is simple readable/writeable — no special traits
= Future opportunity
= Execution space accesses remote memory space (similar to MPI 1-sided)

Views and Defaults i) i,

Laboratories

= typedef View< ArrayType, Layout , Space, Traits > view_type;
= Omit Traits : no special compile-time defined access traits
= Omit Space : default execution space’s default memory space
= Omit Layout : allocable memory space’s default layout
= default everything: View< ArrayType >

= view_type a(optional_traits , NO, N1, ...);
= optional_traits : a collection of optional runtime defined traits
= |abel trait : string used in error and warning messages, default none
" jnitialize trait : default parallel_for(NO,[=](int i){ a(i,...) =0 })
= Default uses memory space’s preferred execution space with static scheduling

= Common override is to not initialize after allocating

Execution Policy) i,

Laboratories

= How Potentially Concurrent Functions are Executed
= Where : in what execution space (instance & type)
= Parallel Work: current capabilities [0..N) or (#teams, #thread/team)
= Scheduling : currently static scheduling of data parallel work

= Map work function calls onto resources of the execution space
= E.g., contiguous spans of [0..N) to a CPU thread for contiguous access pattern
= E.g., strided subsets of [0..N) to GPU threads for coalesced access pattern

= Compose Pattern & Policy : parallel_for(policy, functor);
= Policy::execution_space to replace Functor::device_type
= Allows functor to be a C++11 lambda (more on this later)

» Default Policy and Space for Simple Functors

= Policy ‘size_t N’ is [0..N) with static scheduling and default execution space
= E.g., parallel_for(N, [=](inti) { /* lambda-function body */ });

Execution Policies, Patterns, and Defaults) o

Laboratories

= Patterns: parallel_for, parallel_reduce, parallel_scan

= parallel_pattern(policy, functor);
= Execute on policy’s execution space according to policy’s scheduling
= functor APl requirements defined by pattern and policy
= functor APl omissions have defaults

= parallel_reduce functor API requirements and defaults
= functor::init(value_type & update); // { new(& update) value_type(); }

= functor::join(volatile value_type & update,
volatile const value_type & in) const ; // { update +=in; }

= functor::final(value_type & update) const; // {;}

= Dot product becomes simple with C++11 lambda and defaults
double dot(View<double*> x , View<double*> y) {
doubled=0;
parallel_reduce(x.dimension_0() , [=](int i, double & v) { v += x(i) * y(i); }, d);
returnd;

)
B

Execution Policy) i,

Laboratories

= Policy calls functor’s work function in parallel
= PolicyType<ExecSpace>::index_type // data parallel work index type
void FunctorType::operator()(PolicyType<...>::index_type) const;
= Range policy example
= parallel_for(Range<ExecSpace>(0,N), functor);
void FunctorType::operator()(integer_type i) const;
= Thread team policy example
= parallel_for(Team<ExecSpace>(#teams,thread/team), functor);
void FunctorType::operator()(Team<ExecSpace>::index_type team) const ;
= Replaces “device” interface
= Extension point for new policies
= Multi-indices [0..M)x[0..N), index sets, ...
= Static partitioning with chunk bounds, work stealing, ...

Execution Policy, multi-function Functors | e

Laboratories

= Allow functors to have multiple parallel work functions
= typedef PolicyType< ExecSpace , TagType > p_type;
= parallel_pattern(p_type(...) , functor);

void FunctorType::operator()(const TagType &, p_type::index_type) const;
= Parallel work functions differentiated by ‘TagType’

= TagType used instead of method name
= Motivations

= Algorithm with multiple parallel passes using the same data

= miniFENL sparse matrix graph construction from FEM connectivity
= Common need in LAMMPS, allow LAMMPS to remove “wrapper functors”
= Examples:

= parallel_for(Range<ExecSpace,TagType>(0,N), functor);
= parallel_for(Team<ExecSpace,TagType>(#teams,thread/team), functor);

Execution Policy for Task Parallelism) e,

= Kokkos/Qthreads LDRD

= TaskManager< ExecSpace > execution policy
= Policy object shared by potentially concurrent tasks

TaskManager<...> tm(exec_space, ...);
Future<> fa = spawn(tm, task_functor_a); // single-thread task
Future<> fb = spawn(tm, task_functor_b);

= Tasks may be data parallel
Future<> fc = spawn_for(tm.range(0..N), functor_c);
Future<value_type> fd = spawn_reduce(tm.team(N,M), functor_d);
wait(tm); // wait for all tasks to complete

= Destruction of task manager object waits for concurrent tasks to complete

= Task Managers
= Define a scope for a collection of potentially concurrent tasks
= Have configuration options for task management and scheduling
= Manage resources for scheduling queue

Execution Policy for Task Parallelism) e,

Laboratories

= Tasks’ execution dependences
= Start a task only after other specified tasks have completed
Future<> array_of dep[M] = { /* future for other specified tasks */ };
= Single threaded task:
Future<> fx = spawn(tm.depend(M,array_of _dep), task_functor_x);
= Data parallel task:
spawn_for(tm.depend(M,array_of dep).range(0..N), task_functor_y);
= Tasks and dependences define a directed acyclic graph (dag)

= At most one active task manager on an execution space
= Well-defined scope and lifetime for collection of potentially current tasks

= Don’t consume resources when not in use

	Kokkos Path Forward:�Spaces, Policies, Defaults, C++11, and Tasks
	Execution Space
	Memory Spaces
	Examples of Execution and Memory Spaces
	Default Execution and Memory Spaces�for Simple Applications & Libraries
	Execution / Memory Space Relationships
	Views and Defaults
	Execution Policy
	Execution Policies, Patterns, and Defaults
	Execution Policy
	Execution Policy, multi-function Functors
	Execution Policy for Task Parallelism
	Execution Policy for Task Parallelism

