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Outline

 Z – DMP (Dynamic Material Properties) experiments
 Planar

 Cylindrical

 Velocimetry
 VISAR (Velocimetry interferometry for any reflector)

 PDV (Photonic Doppler velocimetry)

 Streaked Visible Spectroscopy (SVS)
 Pyrometry (emission)

 Reflectance

 X-ray
 Radiography

 XRTS (X-ray Thomson scattering)

 Future developments

2



Z – Planar experiments

 Coaxial load1

 Cathode stalk surrounded 
by anode panels

 Dual pressures possible on 
north and south panels

 Enclosed magnetic fields

 More sample locations

 Optimal for (flyer plate) 
shock compression
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 Stripline load2

 Identical pressure on both 
cathode and anode panels

 Higher current density and 
pressure

 Open magnetic fields

 Optimal for high-pressure 
ramp compression
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1M. D. Knudson et al., J. Appl. Phys. 94, 4420 (2003) 2R. W. Lemke et al., Int. J. Impact Eng. 38, 480 (2011)



Z – Cylindrical experiments

 Cylindrical implosion reaches extreme pressure states1

 Current pulse shaping creates ramp-wave compression

 Quasi-isentropic compression to 20 Mbar
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 Diagnostics are challenging
 Limited space

 Miniature probes

 Velocities well beyond 10 km/s

1R. W. Lemke et al., AIP Conf. Proc. 1426, 47 (2012)



VISAR
(Velocimetry Interferometry System for Any Reflector1)

 Doppler shifted light from a moving target split along two different paths
 i.e. reference leg and delay leg of interferometer

 Measured signal2:

 Fringe shift directly proportional to target velocity:
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 Details of operation
 Sensitive to intensity variations 

of reflected target light

 Requires additional system to 
resolve fringe jump ambiguities

1L. M. Barker and R. E. Hollenbach, J. Appl. Phys. 43, 4669 (1972) 2D. H. Dolan, SAND2006-1950 (2007)



VISAR capabilities on Z

 Two VISAR systems (fast push-pull1)
 Each system dual VPF: (0.229 – 11.28) km/s/f; (0.932 – 14.52) km/s/f

 Total of 38 channels, 3 GHz detectors

 Agilent digitizers: 8 GHz, 40 GS/s (25 ps resolution)

 Timing characterization 

 < 200 ps uncertainty between VISAR channels

 ~ 200 ps uncertainty to machine time

 Pulsed laser: 532 nm, 5 us, ~20 kW
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1B. Marshall,  NSTec-STL (2004)



VISAR is the primary and most established 
diagnostic for Z – DMP experiments

 Push-pull VISAR1,2

 4-channels: D1A, D1B; D2A, D2B
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1W. F. Hemsing, Rev. Sci. Instrum. 50, 73 (1979)
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Z2547 – Al drive



PDV 
(Photonic Doppler Velocimetry1)
 Doppler shifted light from a moving target combined with unshifted light

 “Heterodyne velocimetry”

 Measured signal2:

 Beat frequency proportional to velocity: 
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s(t)  aIR (t)  bIT (t)  2 abIR (t)IC (t) cos (ti) 4
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 Details of operation
 Readily available components

 Infrared fiber-based (1550 nm)

 Fast detectors; GHz digitizers

 Insensitive to intensity variations 
of reflected target light

 Resolve multiple velocities

 Simple assembly and operation

 Lack of intrinsic delay time
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1O. T. Strand et al., Rev. Sci. Instrum. 77, 083108 (2006) 2D. H. Dolan et al., Rev. Sci. Instrum. 81, 053905 (2006)



PDV capabilities on Z

 Electrical bandwidth
 Eight 20 GHz Miteq detectors 

 Two (4 channel) 25 GHz Agilent digitizers 
at 80 GS/s (12.5 ps resolution)

 Covers up to 19.4 km/s 

 Fiber lasers (1550 nm, CW)
 One amplified laser at fixed wavelength

 Tunable seed + EDFA  or 2 W system

 Several adjustable reference lasers

 25-50 mW output

 Fast tuning over 1550-1551 nm

 Other
 Wavelength monitoring to ~ 0.1 pm 

 Timing characterization

 < 100 ps uncertainty between PDV 
channels

 ~ 200 ps uncertainty to machine time
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Velocity-frequency mapping of PDV

 Conventional PDV
 No motion, no beating

 Not currently used at Z

 Velocity limited by bandwidth 

 1 km/s requires 1.29 GHz at 1550 nm

 40 km/s requires 51.6 GHz!

 Frequency shifting PDV1

 Red reference

 Unambiguous mapping

 Preferred configuration

 Blue reference

 Greater coverage

 Issues near f=0

 May require precise wavelength 
monitoring
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1T. Ao et al., Rev. Sci. Instrum. 82, 023907 (2011)



PDV acquired high fidelity EOS data of GDP
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 Glow Discharge Polymer (GDP) EOS critical for ICF capsule design

PDV probe

GDP

Al flyer
quartz
windows

Z2661, PDV

Z2582, VISAR

 Velocities based on beat frequency shift from 
offset frequency (35.148 GHz)
 Flyer velocity: 25.4 km/s (2.44 GHz)

 Quartz velocity: 32.9 km/s (7.2 GHz)

 GDP velocity: 37.6 km/s (13.4 GHz)

 Previous measurements insufficiently accurate (10%)1

 GDP absorbs VISAR 532 nm light

 PDV 1550 nm light penetrates GDP

 Enables 1.5% accurate measurements at 4 Mbar

1M. A. Barrios et al., J. Appl. Phys. 111, 093515 (2012)



PDV measured implosions of cylindrical liners1
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 Multi-point design evaluated symmetry 
 Measurement every 60 degrees

 Al drive of Ta liner

 7.3 Mbar peak pressure
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peak velocity = 11.5 km/s

1D. H. Dolan et al., Rev. Sci. Instrum. 84, 055102 (2013)  



PDV measured shock wave of liquid deuterium 
filled in hollow liner
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 Be liner filled with liquid D2 (4 K)
 PDV probe immersed in liquid

 Survived condensation

 Magnetic drive launches ramp wave 
in liner which becomes shock wave 
in liquid
 Liner reflection

 Shock reflection (initially weak)

 Shock grows stronger and its 
reflectance increases
 Eventually light cannot reach liner

 Window corrections are complicated
 Ambient refractive index unknown

 No steady state



SVS
(Streaked Visible Spectroscopy1)

 Time-resolved optical spectroscopy
 Fiber probe collects sample radiation

 Spectrometer disperses light horizontally

 Streak camera disperses line image vertically

 Photons -> electrons -> photons

 Another round of conversion at MCP

 Detector acquires 2D image

 Wavelength vs time

 Image intensity controlled by items in red

 Opening slits degrades resolution

 Increasing gain adds image noise
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SVS capabilities on Z

 SVS1 and SVS2
 Two EG&G streak cameras

 Time window:  < 100 – 500 ns sweep

 Two McPherson (2061) spectrometers

 Spectral range: 425 – 750 nm

 Gratings: 150, 300, 600, 1200 gr/mm

 Film coupled

 SVS3
 Optronis (SC-10) streak camera

 Time window: < 100 – 2000 ns sweep

 Spectral Products (DK240) spectrometer

 Spectral range: 425 – 850 nm

 Gratings: 50, 150, 300, 600 gr/mm

 CCD coupled
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SVS pyrometry1

 Temperature inferred from 
measured radiance and emissivity

 Three general domains
 High: >12,000 K (several eV)

 Medium: 5000-10,000 K

 Low: < 5000 K 
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 Al flyer impact of quartz gas cell 
(Z2295)
 Ethane-xenon gas mixture

 Calibrated against quartz standard

 Plenty of light

 Absolute calibration needed

 Emissivity important

1G. A. Lyzenga et al., J. Chem. Phys. 76, 6282 (1982)



SVS reflectance thermometry1

 Better suited for ramp wave 
measurements (<1000 K) 

 Optical properties change with 
temperature
 Reflectance spectrum changes indicate 

temperature shift

 Signal levels controlled by light 
source, not sample temperature
 Can operate at very low temperatures 

(<100 C) with ns resolution

 Embedded gold film serves as a 
standard gauge
 Thin film (300 nm) provides quick thermal 

equilibrium

 Chemically stable

17

1D. H. Dolan et al., SAND2013-8203 (2013)



Z-Backlighter Laser
Facility (986)

Z-accelerator
Facility (983)

X-ray capabilities on Z

 Z-Backlighter Laser (ZBL)1

 Housed in building next to Z Facility

 Beam transported ~ 200 feet to Z center section

 2 (527 nm) light, ~ 1012 W 

 Multi-kJ beams: up to 4 kJ in 4 ns

 X-ray radiography
 2-frames of ZBL to irradiate metal foils

 Si: 1.865 keV, Mn: 6.151 keV

 Up to 20 ns separation

 Monochromatic crystal imaging

 X-ray Thomson scattering
 Single frame of ZBL to irradiate a metal foil

 Mn: 6.181 keV

 Focusing spectrometer with spatial resolution2
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1P. K. Rambo et al., Appl. Opt. 44, 2421 (2005)

ZBL 
optics 
bay 

2D. B. Sinars et al., J. Quant. Spec. Rad. Transf. 99, 595 (2006)



X-ray radiography
 2-frame 6.151 keV 

monochromatic backlighting1

 ZBL: Two ~1 kJ, 527 nm, 1 ns 
beams irradiated Mn targets
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1R. D. McBride et al., PRL 109, 135004 (2012)  

 Solid liner implosion for multi-Mbar 
shockless compression2

 Cylindrical Be liner

 900 m thick, 2.0 mm inner radius

 Ramp compression: 2.4 Mbar, 300 ns

2M. R. Martin et al., Phys. Plasma 19, 056310 (2012)  



XRTS
(X-ray Thomson Scattering1)
 3 key components to XRTS on Z-DMP experiments2

 ZBL produce quasi-monochromatic x-rays (6.181 keV)

 Z-DMP load generate warm dense matter state

 Detect x-rays with spectrometer (XRS3) 
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1S. H. Glenzer and R. Redmer, Rev. Mod. Phys. 81, 1625 (2009) 2T. Ao et al., J. Phys. Conf. Ser. 500, 082001 (2014)



Measured XRTS data from ambient & shocked 
TPX (CH2) foam, and Mn x-ray source

 Al flyer (25.4 km/s) impacted TPX foam 
(0.2 g/cc)
 Uniform, long-lived, well-defined shocked TPX 

foam (0.75 Mbar, 0.52 g/cc)

 In-situ comparison with ambient state

 Characterized Mn x-ray probe source 
spectrum for x-ray scattering comparison
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XRTS data with high spectral resolution
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Future developments

 Spatially-resolved velocimetry
 Line-VISAR or Line-imaging ORVIS

 Multiplex-PDV

 Time-resolved spectroscopy
 Wavelength-conversion of optical to infrared

 Phase identification
 X-ray diffraction

 Dielectric properties
 Ellipsometry


