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= Z - DMP (Dynamic Material Properties) experiments
= Planar
=  Cylindrical

= Velocimetry
= VISAR (Velocimetry interferometry for any reflector)
= PDV (Photonic Doppler velocimetry)

= Streaked Visible Spectroscopy (SVS)
= Pyrometry (emission)
= Reflectance
= X-ray
= Radiography
= XRTS (X-ray Thomson scattering)

= Future developments



Z — Planar experiments ) S,
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= Coaxial load’

= (Cathode stalk surrounded
by anode panels

= Dual pressures possible on
north and south panels JxB

= Enclosed magnetic fields
= More sample locations

= Optimal for (flyer plate) north  cathode  SOUth
shock compression ‘ anod

short circuit

= Stripline load?
= |dentical pressure on both
cathode and anode panels

= Higher current density and
pressure

= Open magnetic fields

= Optimal for high-pressure
ramp compression

anode cathode

M. D. Knudson et al., J. Appl. Phys. 94, 4420 (2003) ’R. W. Lemke et al., Int. J. Impact Eng. 38, 480 (2011)



Z — Cylindrical experiments ) S,
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= Cylindrical implosion reaches extreme pressure states’

= Current pulse shaping creates ramp-wave compression
= Quasi-isentropic compression to 20 Mbar

2
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R=1mm
Py~ 64 Mbar
probe
motion motion

= Diagnostics are challenging
= Limited space
= Miniature probes
= Velocities well beyond 10 km/s
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IR. W. Lemke et al., AIP Conf. Proc. 1426, 47 (2012)



VISAR )

(Velocimetry Interferometry System for Any Reflector?) oo

= Doppler shifted light from a moving target split along two different paths

= j.e. reference leg and delay leg of interferometer

= Measured signal?: s(t)=al,(t)+bl,(?)+ 2\/ablA(t)IB(t) cos[2mF ()]

D(t)— D,
= Fringe shift directly proportional to target velocity: F(¢)= ()= ,(1) ~

2T K
target
= Details of operation
. : : . < - input
= Sensitive to intensity variations
of reflected target light
path A
—
= Requires additional system to > > output
resolve fringe jump ambiguities >
path B
X

L. M. Barker and R. E. Hollenbach, J. Appl. Phys. 43, 4669 (1972) 2D. H. Dolan, SAND2006-1950 (2007)



VISAR capabilities on Z ) e,
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= Two VISAR systems (fast push-pull’)
= Each system dual VPF: (0.229 — 11.28) km/s/f; (0.932 — 14.52) km/s/f
= Total of 38 channels, 3 GHz detectors
= Agilent digitizers: 8 GHz, 40 GS/s (25 ps resolution)

= Timing characterization
= < 200 ps uncertainty between VISAR channels
=~ 200 ps uncertainty to machine time

= Pulsed laser: 532 nm, 5 us, ~20 kW

Agllent
digitizers

'B. Marshall, NSTec-STL (2004)



VISAR is the primary and most established ) i
diagnostic for Z — DMP experiments

= Push-pull VISAR™?2
= 4-channels: D1A, D1B; D2A, D2B
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'W. F. Hemsing, Rev. Sci. Instrum. 50, 73 (1979)

2D. H. Dolan, SAND2006-1950 (2007)
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(Photonic Doppler Velocimetry?)

= Doppler shifted light from a moving target combined with unshifted light

= “Heterodyne velocimetry”

= Measured signal?: s(t) = al, () + bl (£)+ 2+/abl, (t)I.(?) co{cp(ti” . x(f); x(t,)

20
A0

0

= Beat frequency proportional to velocity: B =

= Details of operation target

= Readily available components
= Infrared fiber-based (1550 nm)
= Fast detectors; GHz digitizers

» |nsensitive to intensity variations
of reflected target light

= Resolve multiple velocities
=  Simple assembly and operation
= Lack of intrinsic delay time

- input

reference light -
output

target light

r

10. T. Strand et al., Rev. Sci. Instrum. 77, 083108 (2006) ’D. H. Dolan et al., Rev. Sci. Instrum. 81, 053905 (2006)
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= Electrical bandwidth
= Eight 20 GHz Miteq detectors

= Two (4 channel) 25 GHz Agilent digitizers
at 80 GS/s (12.5 ps resolution)

= Covers up to 19.4 km/s
= Fiberlasers (1550 nm, CW)

= One amplified laser at fixed wavelength
= Tunable seed + EDFA or 2 W system

= Several adjustable reference lasers
= 25-50 mW output
= Fast tuning over 1550-1551 nm

= QOther

=  Wavelength monitoring to ~ 0.1 pm

= Timing characterization

= <100 ps uncertainty between PDV
channels

=~ 200 ps uncertainty to machine time




Velocity-frequency mapping of PDV

Conventional PDV
= No motion, no beating 2

Not currently used at Z

= Velocity limited by bandwidth

1 km/s requires 1.29 GHz at 1550 nm
40 km/s requires 51.6 GHZz!

Frequency shifting PDV?
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I'T. Ao et al., Rev. Sci. Instrum. 82, 023907 (2011)




PDV acquired high fidelity EOS data of GDP ()
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= Glow Discharge Polymer (GDP) EOS critical for ICF capsule design

= Previous measurements insufficiently accurate (10%)’

= GDP absorbs VISAR 532 nm light ~__GDP
= PDV 1550 nm light penetrates GDP
= Enables 1.5% accurate measurements at 4 Mbar «—>
.y . PDV probe
= Velocities based on beat frequency shift from
offset frequency (35.148 GHz) - e
= Flyer velocity: 25.4 km/s (2.44 GHz) Aflyer  indows

= Quartz velocity: 32.9 km/s (7.2 GHz)
=  GDP velocity: 37.6 km/s (13.4 GHz)
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'M. A. Barrios et al., J. Appl. Phys. 111, 093515 (2012)



PDV measured implosions of cylindrical liners? () i

Laboratories

= Multi-point design evaluated symmetry peak velocity = 11.5 km/s
240 degrees 300 degrees
= Measurement every 60 degrees % - T
= Al drive of Ta liner
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'D. H. Dolan et al., Rev. Sci. Instrum. 84, 055102 (2013)



PDV measured shock wave of liquid deuterium g s,
filled in hollow liner

Laboratories

= Be liner filled with liquid D, (4 K)

= PDV probe immersed in liquid
= Survived condensation

= Magnetic drive launches ramp wave
in liner which becomes shock wave
in liquid
= Liner reflection
= Shock reflection (initially weak)

= Shock grows stronger and its
reflectance increases 4
= Eventually light cannot reach liner

= Window corrections are complicated
=  Ambient refractive index unknown
= No steady state

Beat Frequency [GHz]




SVS ) e
(Streaked Visible Spectroscopy’)

= Time-resolved optical spectroscopy

i ot Flyer
= Fiber probe collects sample radiation yer Sample

=  Spectrometer disperses light horizontally l__ I Therma,

= Streak camera disperses line image vertically E""“'°"
= Photons -> electrons -> photons 0;;::"
= Another round of conversion at MCP !

= Detector acquires 2D image I

= Wavelength vs time
Image intensity controlled by items in red Streak Camera

= Opening slits degrades resolution

= Increasing gain adds image noise

probe,
fiber(s), _ slit MCP
input slit Input sii Streak
spectrometer
calibration

source(s)




SVS capabilities on Z ) e,
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= SVS1 and SVS2

I
_McPherson

= Two EG&G streak cameras | EG&G S T % Spectrometer
* streak camera =

= Time window: < 100 — 500 ns sweep

= Two McPherson (2061) spectrometers
= Spectral range: 425 — 750 nm
= Gratings: 150, 300, 600, 1200 gr/mm

= Film coupled

= SVS3
=  Optronis (SC-10) streak camera
= Time window: < 100 — 2000 ns sweep
= Spectral Products (DK240) spectrometer (i utsnr .
= Spectral range: 425 — 850 nm spectrometer

= Gratings: 50, 150, 300, 600 gr/mm
= CCD coupled

-

SVS3




SVS pyrometry’ i) e,
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= Temperature inferred from = Al flyer impact of quartz gas cell

measured radiance and emissivity (£2295)

dL 2hc? = Ethane-xenon gas mixture

ﬁ —€ex AP (ehc/)\k;T _ 1) = Calibrated against quartz standard

= Plenty of light
" Three general domains = Absolute calibration needed
= High: >12,000 K (several eV) = Emissivity important

= Medium: 5000-10,000 K
= Low: <5000 K
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IG. A. Lyzenga et al., J. Chem. Phys. 76, 6282 (1982)



SVS reflectance thermometry’

= Better suited for ramp wave
measurements (<1000 K)

= Qptical properties change with
temperature

= Reflectance spectrum changes indicate
temperature shift

= Signal levels controlled by light
source, not sample temperature

= Can operate at very low temperatures
(<100 C) with ns resolution

= Embedded gold film serves as a
standard gauge

= Thin film (300 nm) provides quick thermal
equilibrium
= Chemically stable
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'D. H. Dolan et al., SAND2013-8203 (2013)



X-ray capabilities on Z ) e,
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= Z-Backlighter Laser (ZBL)"

= Housed in building next to Z Facility

= Beam transported ~ 200 feet to Z center section
= 2w (527 nm) light, ~ 1012 W

=  Multi-kJ beams: up to 4 kd in 4 ns

= X-ray radiOg raphy Z-accelerator

= 2-frames of ZBL to irradiate metal foils | Facility (983)
= Si: 1.865 keV, Mn: 6.151 keV
= Up to 20 ns separation

= Monochromatic crystal imaging

= X-ray Thomson scattering

= Single frame of ZBL to irradiate a metal foil P
= Mn: 6.181 keV. /-’

= Focusing spectrometer with spatial resolution?

Z-Backlighter Laser
Facility (986)

18

IP. K. Rambo et al., Appl. Opt. 44, 2421 (2005) ’D. B. Sinars et al., J. Quant. Spec. Rad. Transf. 99, 595 (2006)



X-ray radiography ) S,
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= 2-frame 6.151 keV =  Solid liner implosion for multi-Mbar
monochromatic backlighting’ shockless compression?
= ZBL: Two ~1 kJ, 527 nm, 1 ns = Cylindrical Be liner
beams irradiated Mn targets = 900 um thick, 2.0 mm inner radius
= Ramp compression: 2.4 Mbar, 300 ns
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IR. D. McBride et al., PRL 109, 135004 (2012) M. R. Martin et al., Phys. Plasma 19, 056310 (2012)



XRTS
(X-ray Thomson Scattering?)

= 3 key components to XRTS on Z-DMP experiments?
= ZBL produce quasi-monochromatic x-rays (6.181 keV)
= Z-DMP load generate warm dense matter state

= Detect x-rays with spectrometer (XRS3)

XRS3

Ge 422
crystal

load XRS3

Sandia
|I1 National
Laboratories
ZBL
Beamlet
incident
. X-rays
debris y
mitigation
ZBL ( \
baffle
plates
aperture scattered
block X-rays
DMP
coaxial

IS. H. Glenzer and R. Redmer, Rev. Mod. Phys. 81, 1625 (2009)

°T. Ao et al., J. Phys. Conf. Ser. 500, 082001 (2014)



Measured XRTS data from ambient & shocked

TPX (CH,) foam, and Mn x-ray source

= Al flyer (25.4 km/s) impacted TPX foam
(0.2 g/cc)
= Uniform, long-lived, well-defined shocked TPX
foam (0.75 Mbar, 0.52 g/cc)
= |n-situ comparison with ambient state

= Characterized Mn x-ray probe source
spectrum for x-ray scattering comparison

Front view

Z2661 — XRTS of CH2 foam (0.75 Mbar, 0.52 g/cc)

. TPX
foam

Mn foil
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XRTS data with high spectral resolution ) S
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Z2661 — XRS3, low pass filter Z2661 — shocked TPX
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Future developments

Spatially-resolved velocimetry
= Line-VISAR or Line-imaging ORVIS
= Multiplex-PDV

= Time-resolved spectroscopy
=  Wavelength-conversion of optical to infrared

Phase identification
= X-ray diffraction

Dielectric properties
= Ellipsometry
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