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A new approach to high =
performance computing

Laboratories
= Instead of ... Evolutionary
architecture approach:

10TB/s

10TB/s Network

= Design around limited (network
and memory) interconnect
bandwidth (<< 1 bit per

Photonic Layer —|
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Resonant silicon micro-photonics ) .

= Why resonant silicon photonics?

= Small size (<4 um dia.)

= Resonant frequency 2 DWDM modulators & mux/demux

= Benefits
" Low energy (= 1fl/bit) Tungsen
= High bandwidth density (= 1 Tb/s/line) [l

Si-Microdisk

= Resonant Variations S i
= Manufacturing Variations 1
= Temperature Variations el
= QOptical Power (1s density) :g 0.6}
= Aging? %0.4_
= Requirements: a 0 ol

= Resolution: +/-0.25° C (1 dB Laser penalt AT=5°C

= Range:0-85" C(depending) e -Esequency%hift(GH;O -




Effect of temperature on loss budget g
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Filter allowable temperature drift. @e

Lahoratories

Optical Filter Response (dB)
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A Stability: Difterential temperature
differences
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= Should we let the laser wavelength drift with temperature?

= Range requirements 0—85° C
= CWDM lasers (up to 10% efficient (0.7 —1.2 nm/° C)SiP~0.8 nm/° C)
= Lock laser to resonator (Oracle 2.5% - 5% efficient)

-6 -18
1.56 %10 - - - 610
—low — current
1.558¢ —high{ — 9 — improved ]
£ —SiP Z | - - delta=20 =TT
(= =, 4+ - .
< 1.556¢ at - -delta=20 | _--
5 z
g 8
@ 1.554; -
© 9 2t
= 3
1.552} |
. ‘ I I I I 0 . I, _— l I
195550 40 60 80 40 60 80
Temperature Temperature



Cyclical Channels

Example: 4 X 100GHz channel spacing

a) Designed alighnment

b) 13° Cheating — 130 GHz shift

c) 7° Ccontrolled heating to 200 GHz shift

Maximum heating = channel spacing / df/dT:
100GHz/10GHz/® C=10" C
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Circuit for DIWDM channel alignment

MOSIS: Ring Oscillator 1.21 nW/MHz/gate = 0.3 fJ/bit (45 nm)

mh

Sandia
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Inverter, | = 0.25 fJ/bit (1 fF/1V)
Logic Gate, L = 0.5 fJ/bit (2 fF/1V)
Mux, M = (Sc-1)*L; Sc= SA\ power of 2

Register, R = 10°L =5 f)/bit
Buffer fan-out, F=Se|

Back of envelope example: N=40, S=6
= 2N registers (humber of channels)
= 80 * 5 fJ/bit =400 fJ/‘word’
= FanoutofS
= 40 * 6 * 0.25f)/bit = 60 fJ/'word’
= N S:1 multiplexers

= 40 * (7) * 0.5f)/bit = 140 fJ/'word’
= Sum =600 fJ/’'word’ = 15 fl/bit
= SLOW circuitry

= Control of the shifter
= Extra laser channel

:
=




Resonant Wavelength Closed Loop g
Control

= Control Loop

In Out

= Measurement M+, V- Modulator

= Temperature Heater

= Power (shown) Z|S Monitor

* Phase (BHD, PDH)

= Bit errors Measurement | |
= Integration (PI Loop) /\/ err Stimulus
= Stimulus ’ ‘>

= Integral Heater (shown) Integrator

= Forward bias Reference

(heater/carriers)

= Reverse bias (carriers)




Resonant Wavelength Locking ).
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Modulator Filter (DeMux)
= Lock on side of resonance = Lock at minimum power
" Accuracy depends modulation = Accuracy depends on bandwidth
slope with wavelength of filter (0.25° C—1° ()
= Independent of Wavelength . Wavel h :
spacing avelength spacing
n Number Of Channe's_ u Number Of Channels
= |naccurate lock leads to power = |naccurate lock leads to crosstalk
penalty and power penalty




Temperature Sensor (Sandia) ).

= First attempt at resonant <>
wavelength control Ny A N | Fecdtack
By y
" Integral temperature W
sensors (diode) el S % Integrated
. Sensor Heater
= Sensor not independent Modulator = =
Heater-Sensor-Modulator gt T
of background § | ettt 0
temperature Z,*%’w\
: g NG
= More complex device "<
1 E-soo ‘E:(2)5 \
= Not measuring other il N

Temperature (Celsius)

wavelength shifting
affects

= Simple electronics (Pl

loop with P=k, 1=0) C. T. DeRose, et. al., CLEO 2011




Locking using Power Sensors

(MIT, Columbia, Rice, Orac
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Resonator with heater, without sensor
(Timurdogan et. al., CLEO 2012)
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Modulator with bias induced temperature
change (Padmaraju, OFC 2012)
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Locking using a dither signal (Columbia) ) S

Creates a signal that is anti-
symmetric (lock at zero)

More complex electrically
Simple optically

Some small degradation in the
optical performance with dither

Best for filter locking

Laboratories
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Modulator wavelength stabilization =

National
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using bit errors (Sandia)
= Direct measurement of the bit errors

= Requires high speed circuitry
= Most compact solution (no low pass filtering)

Input Light

W. A. Zortman et. al.,
IEEE Micro (2012)




Balanced Homodyne Detection 1) .

Optlcal Phase Shifter

50% DC Balanced Detector
<10‘V/' \ a; .__'

6)—-—» e(t)
Laser Sources Micro-resonator Q

l | >90fy\ Q \az a, !

Drop Port Splitter
y(t)

)
Filter OQuput

Tuning | L(s) \ |
» Filter or Modulator Signal Loop Filter

» Lock to zero: No calibration or reference level needed for locking

« Amplitude insensitive: Locking point not influenced by optical intensity

* Precision locking: Resonator is not disturbed

* Minimum circuit complexity: Power and area consumption of control
electronics is minimized

J.A. Cox, A.L. Lentine, D.C. Trotter and A.L. Starbuck, “Control of integrated micro-
resonator wavelength via balanced homodyne locking,” Opt. Express Vol. 22(9) (2014)




BHD Transfer Function ) i,
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Effect of Phase Imbalance

Signal (a.u.)

Signal (a.u.)
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Control Loop ) .

. ) i ) Op-Amp Integrator
= Simplest possible circuit for analog or Cr
| |
|

digital implementation on-chip
R
= Smallest component values critical for A
analog design on ASIC TIA Ve
= Dual voltage operation automatically 105 VIA ﬁx )
provides inverted feedback | —~ Heater
= Loop stable regardless of BHD polarity F
A BHD Error Vu
Signal GND
40 dB
Element | Value
% 1.6 MHz Cr 10 pF
‘é’ / Re 1 MQ
©
® <~ Ry 10 kQ
16 kHz

Frequency (kHz)




Sandia’s Silicon Photonics Process (=,

= Low energy modulators

= Fast (45 GHz) detectors

= Compact switch elements

= Wavelength tunable devices
= Sj, Siridge, SiN guides

Pad Opening =~

Metal Metal Metal

/

Nitride Optical _ Vertical Ridge Cut
Interconnect and off chip Junction

Silicon Handle Wafer

Sandia

Al

Ge\ W Via W Via
Si




Resonant locking of a DWDM filter .

, . 0 . __Lock Enabled
" Problem:locking on minimum power & .| :
level does not lend itself to a simple o | i

0 16 E2I0 3I0 4I0 5|0
control loop me
= Solution: Homodyne detection with "l
balanced detection gives optimal o0 ko a0 a0 s

locking solution

Through Power (WW)  Heater Command (V)
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Time (s)
(a) Output Monitor (b)

— DAC BHD Transfer Function
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Modulator Stabilization System ).

10 nm sweep (1532 1542 nm)

* Lock to zero: No calibration or
reference level needed for locking

« Amplitude insensitive: Locking
point not influenced by optical

Error Signal (V)
8

1.25 THz, 125C equivalent!

intensity % )
* Precision locking: Resonatorisnot ¢ |
disturbed s L
* Minimum circuit complexity: Power  °pww»
and area consumption of control ?_L, il
electronics is minimized 5

Time (s)

BHD Transfer Function

Filter Resonance

Fixed
Frequency
Laser
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0 20 40 60 80 100

Wavelength Detuning (GHz)

Voltage
Source




I\/Iodulator Design and Performance @
5 Gbit/s Modulation
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W. Zortman, A. Lentine, D. Trotter, and M. Watts, "Integrated CMOS Compatible Low Power 10Gbps
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Error Rate vs. Temperature ) .

* 5 GHz modulation applied

» Modulator locked, and phase
shifter adjusted once for
lowest BER.

 Wavelength held constant.
Chip temperature varied
from 5—60° C while locked.

Bit Error Rate

 Error free from 5—55° C ; ; ; ; ;
(215_1 bits) L SERPRE Error free over 120 < (2 o SRR

ror free over 120 s (2

» Error rate rises at 60° C due 102
to thermal phase imbalance
in interferometer

0 10 20 30 40 50 60
Temperature (°C)
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Design Considerations =

« Hpypothesis: Path length imbalance and thermal gradients from modulator

heater cause shift in locking point
« Test: Vary chip temperature while tuning heater to hold resonant wavelength

constant

_\‘\/’ ................................. i

15395 1539.6 1539.7 1539.8 1539.9 1540 1540.1

Wavelength (a.u.) Wavelength (nm)
I ———————

01 TR .




CMOS ASIC Design (currently in fab) @:.

= |BM 45 nm CMOS ASIC designed at Sandia

= Power consumption: 1.07 mW (steady-state); 0.27 mW (TIA) and 0.8 mW
(integrator) (30 — 100 fJ/bit @ 30Gbps-10Gbps) [1]

= Heater time constant = large integrator resistor and capacitor in loop filter
= Heater driver: Class-B “push-pull”
= Inverter implemented with analog switch network

81 um

<€ >

238 um
[1] recent result by X. Zheng (OpX 2014) 200uW, 2600 um? for ‘power meter’ control

-
25



Summary ) e,

=  BHD provides a scalable, robust method for resonant modulator and filter
wavelength stabilization
= Advantages
= Suitable for DWDM networks
= |nsensitive to laser intensity noise
= Arbitrary locking reference not required (lock to zero)
= Simple control circuitry for dense on-chip integration
= Precision locking for other micro-resonators application

01

0.05 ¢

0,

-0.05

o 20 4 e 8 10
J.A. Cox, A.L. Lentine, D.C. Trotter and A.L. Starbuck, “Control of integrated micro-
resonator wavelength via balanced homodyne locking,” Opt. Express Vol. 22(9) (2014)
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Balanced Homodyne Detection 1) .

Optlcal Phase Shifter

50cy DC Balanced Detector
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Optical Interconnects ) 2,
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50 ohm lines with ‘HIGH’ POWER DISSIPATION

Pre-emphasis & BETWEEN ELECTRONICS AND
Equalization

= Evolutionary (Modules)
= GbE and 10GbE Products

= 100 GbE modules soon w/
VCSELs and Si Photonics

= TbE modules on the horizon

PHOTONICS

IO Bandwidth has
Nothing to do with
optical interconnects
(3 Tb/s, 2005)

* Revolutionary (3DI)

— Higher bandwidth density OPTICS FOR DISTANCE
° DWDM is req u i red ! ! No 50 ohm terminations Ultra-small devices (100ks of them)
No pre-emphasis/EQ Low cap modulator
No encoders Low P compared to E driver
= . No High Power Drivers Low cap Photodiode
— D rastlc poten t’al power J Big voltage swing > direct to Logic.

reduction

* No 50 Q lines, pre-
emphasis or equalization

* Receiver has high

transimpedance, few gain DWDM for 100 Gois o bl
stages 1000 10 = 1 Pbys!
« Shared CDR (less delay
variation and jitter) OPTICS FOR LOW POWER, HIGH BANDWIDTH DENSITY,
COST, SIZE, WEIGHT, DISTANCE




