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Introduction

Increasing need for fast real-time diagnostics of optical signals, ranging from
communications to sensing and metrology.

Sub-microsecond measurements can be useful e.g., transients in communication
networks, and monitoring flows at the level of a few packets.

There are plenty of ~100 millisecond-scale multichannel power monitors.
Lack of comparable solutions at microsecond / nanosecond time-scales.
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Introduction

Increasing need for fast real-time diagnostics of optical signals, ranging from
communications to sensing and metrology.

Sub-microsecond measurements can be useful e.g., transients in communication
networks, and monitoring flows at the level of a few packets.

There are plenty of ~100 millisecond-scale multichannel power monitors.
Lack of comparable solutions at microsecond / nanosecond time-scales.

/Q: Is there a simple way to obtain fast, real-time, multi-channel spectral-domain\
measurements using silicon photonics?

If yes, then such a component can be integrated together with other silicon
photonic components in the future, for intelligent network components.
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MORDIA
Optical circuit-switched WDM network
hosted at UC San Diego
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Six nodes, four hosts per node
20-24 channels, 10 Gbps each
100-GHz ITU grid, C-band
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Functionality of OSA:

» OSA mainly used for power
monitoring (e.g. power drifts)

= Readout is slower than desirable; off-

the-shelf OSA is not an ideal solution

N. Farrington et al., IEEE Photon. Technol. Lett. 25, 1589 (2013)



Conventional approach

Det 8

Slice spectrum up and send to individual detectors (or sequentially scan)
Requires very sharp filter edges
High resolution requires narrow bandwidth, lots of detectors (or slow)

Our approach

Individual detectors see overlapping spectra; linear algebra dis-entangles
Relaxes fabrication constraints on device
Can handle flexible-grid signals more naturally (no change in speed)
Needs more signal processing (electronic hardware or software)



Channelized spectrum monitor

Tracks power levels of up to 24 WDM channels
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24-element filter bank — weakly coupled to common bus waveguide
168 rings total — graded in length, 34.5 - 34.9 um




* |n this presentation, we track the power levels of 24 DWDM channels.
= Light source: SFP+ transceivers, each @ 10 Gbps NRZ data
» Transceiver lineshape is known; power levels need to be tracked
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Intensity (dBm)

Example input spectrum

(vector of powers: P) Chip maps input spectrum into detector
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(1xn)
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Therefore,
P =M-1xD

= Moore-Penrose
pseudo- inverse
= SVD or QR factorization
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matrix describing chip:
optical-in to detector-out

S 0
Assume M has SVD UX V' where S =
detector-out | 00
) c1 | .
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Can show that

where z = VT P.
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Moore-Penrose
Inverse

To minimize error, set z; = S™1

Min. residual error = ||{*2||§ = |

c1, e, Poy =V Z =MD + Va2,

U"D|,

arbitrary

Lemma: If M is full rank, then there is no “V5” in the SVD.

11




Examples Bars: Stems:
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. e 4 channels
Track the power variations of attenuated 1 channel

multiple channels

held constant

~18 dB dynamic range
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Limitations at present:

= polarization instability of setup

= slow, sequential readout of
detectors (will be improved with 70!
on-chip detectors)
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To minimize error. set z; = S~ l¢;. ie.. Py =VZ =MD + Vo2o.
1 1 opt 2~2
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Min. residual error = ||C‘2||§ = |

|:> Lemma: If M is full rank, then there is no “V5”7 in the SVD.
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Conclusions UCSD
http://mnp.ucsd.edu

1. An on-chip silicon photonic reconfigurable channelized spectrum monitor
can be useful for designing “intelligent” network hardware

2. Our proposed architecture & method allows for:
arbitrary channel positioning
reconfigurable channel center wavelength (and width)
Architecture needs:
known spectrum (lineshape function of transceivers)

3. Full functionality of photonic chip requires integration with electronics for
processing detector readouts (linear algebra — either hardware or software)
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