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Flow Batteries in the Grid

• Potential for low cost
• Easy scalability
• Long cycle life
• Deep discharge 

capability
• Energy (kWh) and 

power (kW) scale 
independently 



• Wider voltage window

• Increased temperature range

• Diverse solubility profiles

• Wide variety of redox-active 
species

Bard, Inzelt, and Scholz, Electrochemical Dictionary, 2012.
Zanello, Fabrizi de Biani, and Nervi, Inorganic Electrochemistry: Theory, Practice and Application, 2012.

Aqueous vs. Non-Aqueous

Solvent Electrochemical Window/V

Water 1.3 V

Dichloromethane 3.7 V

Tetrahydrofuran 3.7 V

Acetonitrile 4.0 V

Dimethylformamide 4.3 V

V2+        V3+ + e–

VO2
+ + 2H+ + e– VO2+ + H2O

Open Circuit Potential (OCP) 1.26 V



Investigation of Non-Aqueous Chemistry

Industry is optimizing flow battery electrolytes via:
• Higher molarity of active species through ionic liquids, suspensions
• Organic, inorganic, and hybrid systems
• Compounds with many and/or multi-electron redox couples
• Increased stability of redox-active species



Hidden Potential of Ligands

Current paradigm of metal-based electrolytes uses metal as “redox center”

• Metal and Ligands can be isolated electronically

• stabilizes highly reduced and oxidized species

• multi-electron redox events possible

Depiction of Redox 
Activity with α–Diimine

Complex



Our strategy: use main group and 1st row transition elements as 
the central atom and diimines and related imino functionalities 
for ligand architecture

• Main group elements have less electronic orbital overlap 
with ligands, more efficiently isolating them from one 
another

• Imines are versatile and widely available; electronic 
structure is amenable to redox non-innocence

Two major goals:
• single potential, multielectron redox events
• increased cycling performance (long-term stability)

From Potential to Actual

Myers, T. W.; Kazem, N.; Stoll, S.; Britt, R. D.; Shanmugam, M.; Berben, L. A. J. Am. Chem. Soc. 2011, 133, 8662–8672.
Myers, T. W.; Berben, L. A. J. Am. Chem. Soc. 2011, 133, 11865–11867.



Electrochemistry of V(mnt)3
2-

V(mnt)3
2- OCV

Sproules, S., et al., Inorg. Chem. 2010 , 49 , 5241

Maximum Concentration is 0.90 M in CH3CN

mnt = maleonitriledithiolate



Electrochemistry of V(mnt)3
2-

V(mnt)3
2- OCV

mnt = maleonitriledithiolate Sproules, S., et al., Inorg. Chem. 2010 , 49 , 5241

1.1 V

2.3 V,
31 WhˑL-1

Maximum Concentration is 0.90 M in CH3CN



Effects of Ion-Pairing

 Hindered or “bulky” cations
cannot ion-pair with anionic 
complex efficiently, resulting in 
more negative reduction potential

 A method to take full advantage 
of entire solvent window; 
increasing voltage of cell without 
chemical augmentation



Effects of Ion-Pairing

 Hindered or “bulky” cations
cannot ion-pair with anionic 
complex efficiently, resulting in 
more negative reduction potential

 A method to take full advantage 
of entire solvent window; 
increasing voltage of cell without 
chemical augmentation

All with PF6 counterion



Solid-State Ion-Pairing
 Single-Crystal X-Ray Diffraction analysis shows that there is a significant 

difference in the ion-pairing between the NR4
+ and V(mnt)3

2- (6 nearest cations)

Avg. N-V distance: 6.4 Å 5.9 Å
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1 mM [NMe4]2[V(mnt)3]
0.2 M [NBu4][PF6], MeCN

Pt mesh WE
C felt CE

vs. Ag/AgCl

• EWE = 0.5 V, bulk oxidation

• EWE = -0.5 V, bulk reduction

• 75% SOC, 5 cycles

• Approaches 95% CE

• No decomposition observed

Half Cell Reaction (V(mnt)3
2- V(mnt)3

1-)
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• EWE = -1.2 V, bulk reduction

• EWE = -0.2 V, bulk oxidation

• 75% SOC, 5 cycles

• >90% CE

• No decomposition observed

1.5 mM [NMe4]2[V(mnt)3]
0.2 M [NBu4][PF6], MeCN

Pt mesh WE
C felt CE

vs. Ag/AgCl

Half Cell Reaction (V(mnt)3
3- V(mnt)3

2-)



Poor Initial Results from Static Cell Testing

 What is the origin of the gradual drop in 
discharge potential?

 Decomposition of V(mnt)3

 Membrane crossover
 Inefficient cell design
 Electrode degradation

Charge

Discharge

H-cell conditions:
• graphite electrodes (1cm2)
• microporous separator (Tonen)
• NBu4PF6 in MeCN
• 20 mM electrolyte



A Change to Li+
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Charged to 75%, discharged to 25% (cycling the 
middle 50% of total capacity)

Efficiencies decreased slightly but the performance 
overall has been incredibly improved!

H-cell conditions:
• graphite electrodes (1cm2)
• ionomer membrane (CEM)
• LiPF6 in MeCN
• 20 mM electrolyte



Proof of Concept Complete

• Published results earlier this year in Advanced Energy Materials, cover of issue as
well

• Invited talks at MRS Fall 2013 and 2014, 1st International Symposium on Energy
Challenges and Mechanics in Scotland (July 2014)

• External collaborations with Washington University, University of Pennsylvania

Cover of Jan. 1 issue of Adv. Energy Mater.



Analytical Techniques for Monitoring

• Our slow initial progress caused us to question our methods for analytical monitoring
• We want methods for in situ monitoring state of charge (SOC), electrolyte

identity/concentration, decomposition

• OCV (Nernst Equation) doesn’t work if cell becomes imbalanced; each half-cell’s
potentials should be monitored but this can be very difficult

• Conductivity, UV-Vis, and IR have all been proposed as alternatives but no real
chemical information is learned and concentrations have to be kept low

Raman is a very good method!
• Higher the concentration, the better the measurement
• Peaks are very responsive to changes in oxidation state
• Metal compounds are active in the UV/Vis region, can 

lead to resonance enhancement of Raman (specific 
enhancement over solvent or supporting electrolyte!)



Raman Spectra Changes During Redox

Cycled E to 1.5V
Back to 0
Cycled E to -1.5V
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Raman Spectra Changes During Redox

Cycled E to 1.5V
Back to 0
Cycled E to -1.5V
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Cycling Between 2- and 1- Ox. States

t0

t 45s

t 45 s

t 93 s

t0

t 45 s

t 90 s

[V(mnt)3]
2-  [V(mnt)3]

1- + e- [V(mnt)3]
1- + e-  [V(mnt)3]

2-

4 mM [NMe4][V(mnt)3]
0.2 M [NBu4][PF6]
MeCN
Pt wire WE/CE

20 mV/s scan rate



Cycling Between 2- and 1- Ox. States

Integrated area for regions from 296 to 334 cm-1 (315
cm-1) and from 343 to 413 cm-1 (380cm-1). The 22
spectra correspond to two complete CV cycles. Spectra
were background corrected and integrated using
CASAXPS.

t0

t 45 s

t 90 s

4 mM [NMe4][V(mnt)3]
0.2 M [NBu4][PF6]
MeCN
Pt wire WE/CE

20 mV/s scan rate



Cycling Between 2- and 3- Ox. States

t0

t 45s

t 45 s

t 85 s

t0

t 45 s

t 90 s

[V(mnt)3]
2- + e-  [V(mnt)3]

3- [V(mnt)3]
3-  [V(mnt)3]

2- + e-

4 mM [NMe4][V(mnt)3]
0.2 M [NBu4][PF6]
MeCN
Pt wire WE/CE

20 mV/s scan rate



Cycling Between 2- and 1- Ox. States

Integrated area for regions from 344 to 430 cm-1 (387
cm-1), 298 and 334 cm-1 (316 cm-1), 273 and 290 cm-1

(282 cm-1) and 198 and 244 cm-1 (221 cm-1). The 25
spectra correspond to two complete CV cycles. Spectra
were background corrected and integrated using
CASAXPS.

t0

t 45 s

t 90 s

4 mM [NMe4][V(mnt)3]
0.2 M [NBu4][PF6]
MeCN
Pt wire WE/CE

20 mV/s scan rate



New Candidates: Benzenedithiolates
Continuing on with new complex development, we have expanded to 
Benzenedithiolates for more anolyte materials

V(bddt)3
2-

THF/NBu4
+PF6

- (blue)
THF/BMIM+PF6

- (red)

A third, unknown, redox couple is present by using cation to “pull” reduction more positive



New Candidates: Nickel ONOs
The ONO (Oxygen-Nitrogen-Oxygen) ligand motif is versatile and robust; offers 
catecholate-type redox chemistry but with 3 binding atoms

Interesting electrochemical feature is the closely spaced pairs of redox events, why 
are they close and can we move them closer?



New Candidates: Main Group Bisimines
Logical design of multi-electron redox: interest in main group complexes comes 
from the lack of redox chemistry they exhibit; the barrier to MO interaction between 
ligands



• New strategy for NRFB electrolytes with
increased energy density

• Ion-pairing effects > 200 mV shift in OCP

• Half reactions for [V(mnt)]3
n-, 2-/1- and 2-/3-

are reversible, efficient

• Focus now on cell optimization and
elucidating other promising electrolytes

Summary

Cappillino, P. J.; Pratt, H. D., III; Hudak, N. S.; Tomson, N. 
C.; Anderson, T. M.*; Anstey, M. R.* Adv. Energy Mater.
2013, published on the Web.
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Cell Configuration

porous electrode

flow channelion exchange membrane

diffusion

co
n

d
u

ctio
n

higher surface 
area/porosity 
electrodes

surface 
treatment/electroc
atalysts

Why serpentine?



Examples

Metal Acetylacetonate (acac) Complexes (U. Michigan)
Metal Cell Potential
Vanadium 2.2 V
Manganese 1.1 V
Chromium 3.4 V

Solvent/Supporting Electrolyte:  acetonitrile/TEABF4

Semi-Solid Lithium Ion (MIT/24M)
Cathodes Anodes
LiCoO2 Li4Ti5O12

LiFePO4 graphite
LiNi0.5Mn1.5O4 Si



Iron-based Diimine Complex

Hess et. al. Angew. Chem. Int. Ed. 2009, 48, 3703.
Hess et. al. Angew. Chem. Int. Ed. 2010, 49, 5686.



0 V
Vs. NHE

-1 V -1.5 V-0.5 V0.5 V1 V

Chromium Anolyte and Electrolyte



Bipyridines and Imines

Myers, T. W.; Kazem, N.; Stoll, S.; Britt, R. D.; Shanmugam, M.; Berben, L. A. J. Am. Chem. Soc. 2011, 133, 8662–8672.
Myers, T. W.; Berben, L. A. J. Am. Chem. Soc. 2011, 133, 11865–11867.

These two redox couples have been characterized 
as 2-electron processes spaced roughly 2V apart 



Bipyridines and Imines

McDaniel, A. M.; Tseng, H.-W.; Damrauer, N. H.; Shores, M. P. Inorg Chem 2010, 49, 7981–7991.
McDaniel, A. M.; Tseng, H.-W.; Hill, E. A.; Damrauer, N. H.; Rappé, A. K.; Shores, M. P. Inorg Chem 2013, Advance Article.



Scalable, High Yield Synthesis

Davison, A., et al., J. Am. Chem. Soc. 1964 , 86 , 2799

~50% yield

Heyn, B., et al., Anorganische Synthesechemie: ein integriertes Praktikum, Springer-Verlag , Berlin, Germany 1990

Cappillino et al., Adv. Energy Mater. (2013), in press

>90% yield after 
recrystallization



Flow Cell Tester

assembly

Key Issues:
• Force fluid against gravity
• Avoid sharp turns
• Membrane material
• Carbon felt/membrane contact
• Wettability
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1.1 mM [NMe4]2[V(mnt)3]
0.2 M [NBu4][PF6], MeCN

Pt mesh WE
C felt CE

vs. Ag/AgCl

• EWE = -2.2 V, bulk reduction

• EWE = -1.4 V, bulk oxidation

• Lower SOC attained

• Low CE, gradually improves

• decomposition observed

V(mnt)3
2-

Half Cell Reaction (V(mnt)3
4- V(mnt)3

3-)



Determination of Concentration
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• Several features in visible region

• Use 568 nm to determine 
concentration

• Prepared [NEt4]2[V(mnt)3] standards 
between 0.05 and 0.2 mM

• Determined 568 = 4540 M-1cm-1

• Solutions of [NEt4] and [NMe4] salts 
of [V(mnt)3]

2- made, diluted to 
determine max concentration

• Plastic is good (polypropylene). 



Flow Battery
Energy storage technology utilizing redox states of 
various species for charge/discharge purposes

• Potential for low cost
• Easy scalability
• Long cycle life
• Deep discharge 

capability
• Energy (kWh) and 

power (kW) scale 
independently 



Early Development (Aqueous)

Fe3+ + e– Fe2+

Cr2+ Cr3+ + e–

Open Circuit Potential (OCP) 1.18 V

significant crossover

requires electrocatalyst

V2+        V3+ + e–

VO2
+ + 2H+ + e– VO2+ + H2O

Nafion® membrane 
(crossover is less of 
an issue)

temperature sensitivity

low vanadium 
concentration, low 
energy density

Open Circuit Potential (OCP) 1.26 V



Implications for the Static Cell Tests

Charge

Discharge What is the origin of the gradual drop in 
discharge potential?

 Decomposition of V(mnt)3

 Membrane crossover
 Inefficient cell design
 Electrode degradation H-cell conditions:

• graphite electrodes (1cm2)
• microporous separator (Tonen)
• NBu4PF6 in MeCN
• 20 mM electrolyte



Half Cell Reactions (V(mnt)3
3- V(mnt)3

4-)
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1.1 mM [NMe4]2[V(mnt)3]
0.2 M [NBu4][PF6], MeCN

Pt mesh WE
C felt CE

vs. Ag/AgCl

• EWE = -2.2 V, bulk reduction

• EWE = -1.4 V, bulk oxidation

• Lower SOC attained

• Low CE, gradually improves

• decomposition observed

Some suggestion of polymerization of 4- in literature…


