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• Non-intrusive, sampling-based, UQ methods have general utility
oBlack box handling of computational codes
o Independent embarrassingly parallel runs

• Polynomial Chaos (PC) non-intrusive Galerkin methods
oQuadrature-based numerical evaluation of projection integrals
oEach quadrature point is a computational sample

• High-dimensional setting (e.g. large # uncertain inputs)
oCare is required to minimize # requisite samples

Efficient sparse quadrature methods

Sparse Quadrature in PC UQSparse Quadrature in PC UQ

Relevance

Adaptive Sparse Quadrature and Collocation

• Avoid dense tensor product grid sampling
• Target sparse optimal set of points
• Use Leja sequences to greedily generate 1D 

points that are approximately optimal for 
weighted interpolation
oNon-isotropic, Adaptive

Relevance Relevance

• Many applications involve uncertain inputs/outputs that have
spatial or time dependence

• Such an uncertain function, represented probabilistically, is a 
random field/process. 
o It is a random variable at each space/time location
oGenerally with some correlation structure in space/time
oAn infinite-dimensional object

• The Karhunen Loeve expansion (KLE) provides an optimal 
representation of random fields, employing a (small) number of 
eigenmodes of its covariance function 

Fault-Tolerant Quadrature

• Quadrature relies on availability of all samples
• Investigate alternative integration methods 

with missing quadrature evaluations
oQuadrature reweighting 
oPolynomial regression
oGaussian process estimate of missing values

• Missing a single quadrature point reduces the quadrature 
formula accuracy (polynomial exactness) by a factor of two.

GP regression estimates the 
missing values with a similar 
accuracy as re-weighting, but also 
provides error-bars on the final 
answer

Evaluation of quantum chemistry integrals

• Developing sparse quadrature techniques 
for integration arising in 2nd-order
many-body perturbation theory (MP2)

• Enhancing sparse quadrature with 
spherical transformations

• BES partnership initiated with UIUC

• We wish to quantify uncertainty in predictions 
of sea level rise from ice-sheet melting.

• Friction between an ice sheet and the land 
mass is the first order uncertainty effecting 
predictions of sea level rise.

• The friction is a random field which can be 
represented using a KLE.

• Current study involves inferring friction B(x,y) 
from field measurements of surface velocities

• BER PISCEES partnership with UT

• Many physical models have a large # of uncertain inputs
• UQ in this high-dimensional setting is a major computational 

challenge – too many samples and/or large # PC modes
• Yet physical models typically exhibit sparsity
oA small number of inputs are important

• Seek sparse PC representation on input space
oSmall number of dominant terms

• Compressed sensing (CS) is useful for discovering sparsity 
in high dimensional models

• Identify terms that contribute most to model output variation
• Ideal for when data is limited

Basis selection

• Cardinality of total degree basis grows factorially with the 
number of uncertain inputs.

• Even for lower dimensional problems redundant basis terms 
can degrade accuracy

• To reduce redundancy and improve accuracy the PCE 
truncation can be chosen adaptively.

Set 1 Set 2
Set 3

Sparsity in Atmospheric Modeling

Random FieldsRandom Fields Compressed SensingCompressed Sensing

• We perform a KLE/PCA analysis of 
NOAA’s sea surface temperature data 
for the past three decades. 

• The figure to the right shows the 
magnitude of the first KL mode for the 
Fall months from 2000 – 2009. 

• This data set has ~106 dimensions

• Uncertain KLE given limited # of 
samples; Bayesian framework

• Compute principal directions of 
maximum variance

• Produce error bounds on the 
principal modes themselves

• The figure shows PCA modes in 
solid colored lines overlaid with 
the uncertainty: shaded regions. 

• Liquid cloud fraction models in 
CLUBB

• QOI : time averaged profile of 
ozone concentration

• 95 dimensional input space
• Adaptive: start with first order 

terms, successively adding 
higher order terms

• 2nd-order approximation
o25-150 terms
oFull 2nd-order: ~4500 terms

• BER Earth-system partnership 

Ice Sheet Basal Boundary Layer

Sea Surface Temperature

Bayesian PCA

Sensitivity indices for ozone at six 
different altitudes. Each color 
represents a different input 
parameter: reactants e.g. CO

More samples, less uncertainty
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