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Sparse Quadrature in PC UQ Random Fields Compressed Sensing
Relevance Relevance Relevance
« Non-intrusive, sampling-based, UQ methods have general utility * Many applications involve uncertain inputs/outputs that have * Many physical models have a large # of uncertain inputs
o Black box handling of computational codes spatial or time dependence » UQ in this high-dimensional setting is a major computational
o Independent embarrassingly parallel runs * Such an uncertain function, represented probabilistically, is a challenge — too many samples and/or large # PC modes
« Polynomial Chaos (PC) non-intrusive Galerkin methods random field/process. * Yet physical models typically exhibit sparsity
o Quadrature-based numerical evaluation of projection integrals o It is a random variable at each space/time location o A small number of inputs are important
o Each quadrature point is a computational sample o Generally with some correlation structure in space/time » Seek sparse PC representation on input space
* High-dimensional setting (e.g. large # uncertain inputs) o An infinite-dimensional object o Small number of dominant terms
o Care is required to minimize # requisite samples * The Karhunen Loeve expansion (KLE) provides an optimal » Compressed sensing (CS) is useful for discovering sparsity
> Efficient sparse quadrature methods representation of random fields, employing a (small) number of in high dimensional models
. . eigenmodes of its covariance function * Identify terms that contribute most to model output variation
Adaptive Sparse Quadrature and Collocation . Ideal for when data is limited

» Avoid dense tensor product grid sampling Ice Sheet Basal Boundary Layer

+ Target sparse optimal set of points . We wish to quantify uncertainty in predictions Basis selection
* Use Leja sequences to greedily generate 1D —— v —— of sea level rise from ice-sheet melting. . - - -
points that are approximately optimal for EVAVAAN . Eriction between an ice sheet and the land  Cardinality of total _de_gree basis grows factorially with the
weighted interpolation AVAINaN mass is the first order uncertainty effecting number of uncertain inputs. -
o Non-isotropic, Adaptive %y D _ » Even for lower dimensional problems redundant basis terms
A predictions of sea level rise. can degrade accuracy
* The friction is a random field which can be » To reduce redundancy and improve accuracy the PCE
Fault-Tolerant Quadrature represented using a KLE. o truncation can be chosen adaptively.
. L T— » Current study involves inferring friction B(x,y)
+ Quadrature relies on availability of all samples *1;: 3. ... 3 from field measurements of surface velocities e
. In.vestlgat.e alternative mtegratlop methods S A4 . BER PISCEES partnership with UT
with missing quadrature evaluations = | 55‘“1
o Quadrature reweighting .
o Polynomial regression Sea Surface Temperature 07
o Gaussian process estimate of missing values X . We perform a KLE/PCA analysis of
 Missing a single quadrature point reduces the quadrature NOAA's sea surface temperature data e 0 I
formula accuracy (polynomial exactness) by a factor of two. for the past three decades.
* The figure to the right shows the
GP regression estimates the magnitude of the first KL mode for the Sparsity in Atmospheric Modeling
ol NN missing values with a similar Fall months from 2000 — 2009.
= accuracy as re-weighting, but also  This data set has ~10° dimensions * Liquid cloud fraction models in
- remeintng | N\ provides error-bars on the final CLUBB 50
P ||e Gpregesson) answer , « QOI : time averaged profile of
T T Bayesian PCA ozone concentration &

N = 250 * 95 dimensional input space "
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Evaluation of quantum chemistry integrals
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» Developing sparse quadrature techniques » Compute principal directions of oo et 08 08 To *%o 02 oo 06 05 e higher order termsy J .

for integration arising in 2nd-order maximum variance 006 668 -~ N S N N

. 0.6 0.0 « 2"-order approximation

many-body perturbation theory (MP2) . Pr.odgce error bounds on the 05 083 95150 terms - |
. Enhapcing sparse qugdrature with pr|n0|.pal modes themselves QS o - Eull 2d-order- ~4500 terms ii?ff;?'et'r:/t't;’”'i?jéceis E);COthgﬁ) f\t SIX

spherical transfor.m_a!tlons | . Thg figure shqws PCA mpde§ In o o0 . BER Earth-system partnership epresents a different input
 BES partnership initiated with UIUC solid colored lines overlaid with o0 002 varameter: reactants e.q. CO
tf]EBlJr1CX3rTEi“1tyﬁ SSFHa(jEHj r13§]k3r15i. 00 02 04 06 08 1.0 00 02 04 06 08 1.0 ) I
More samples, less uncertainty




