

Exceptional
service
in the
national
interest

Development and Investigation of NMR Tools for Chiral Compound Identification

Exploration/Optimization of Enantiomer Identification
with Chiral Solvating Agents (CSAs) Using Organo-
Fluorophosphate (OFP) Analogs of Chemical Warfare
Agents (CWAs)

Vitaliy Dernov

Student Internship Program Presentation at SNL

7/31/14


Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXX

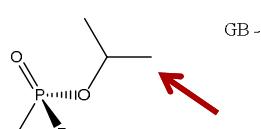
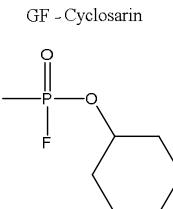
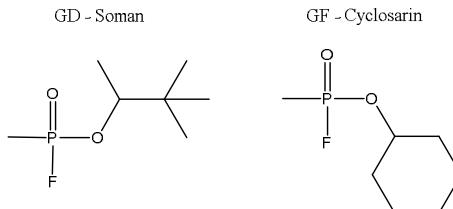
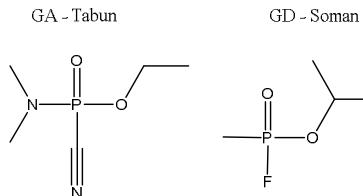
Goals

- Investigate NMR for identification of OFPs enantiomers
- Test several types of CSAs
 - Cyclodextrins
 - High diamagnetic anisotropy
- Electrostatic interactions, Van der Waals forces and H-bonding
- Characterize their binding by calculating $\Delta\delta$ ($\delta_{\text{free}} - \delta_{\text{complex}}$) and $\Delta\Delta\delta$ ($|\delta_{\text{R-S}}|$)

Motivation

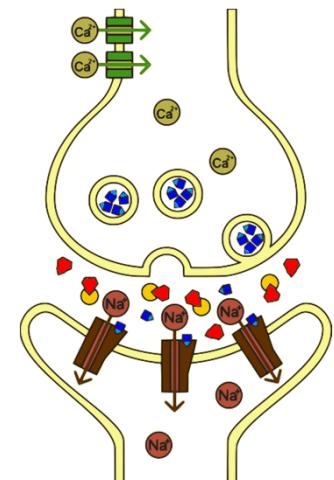
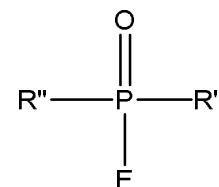
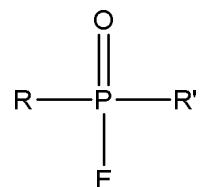
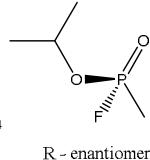
- Current major method for chiral recognition of OFPs/OPs is GC
- Chirasil Val Column and Carbowax Column
- Incomplete resolution – VX gas

- DECON optimizations in case of CWA attack
- Development of models correlating chiral compounds and CSA.

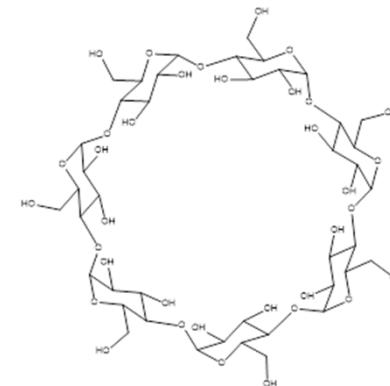
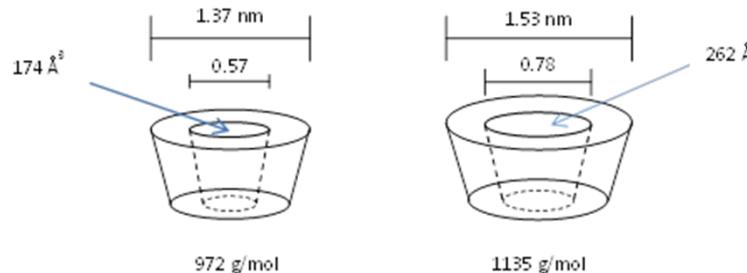




CWAs Background (Sarin)

Sarin:

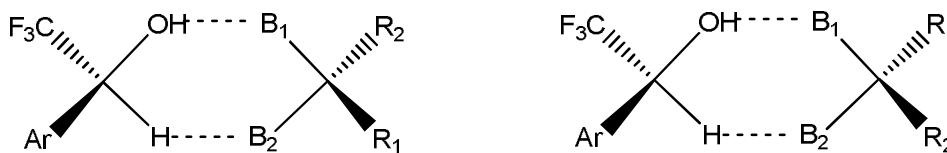
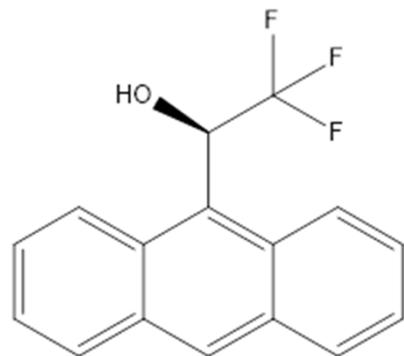
- Developed in Germany at IG Farben – looking for pesticides.
- Schrader, Ambros, Ritter and Linde
- Sarin is colorless and odorless in pure form.
- 26 times more deadly than cyanide
- Easy to synthesize – but racemic mixture.





Modus Operandi of G-Series CWAs:

- Acetylcholinesterase (AChE)
- Acetylcholine in CNS and PNS - excitatory role at neuromuscular junctions in CNS and PNS.

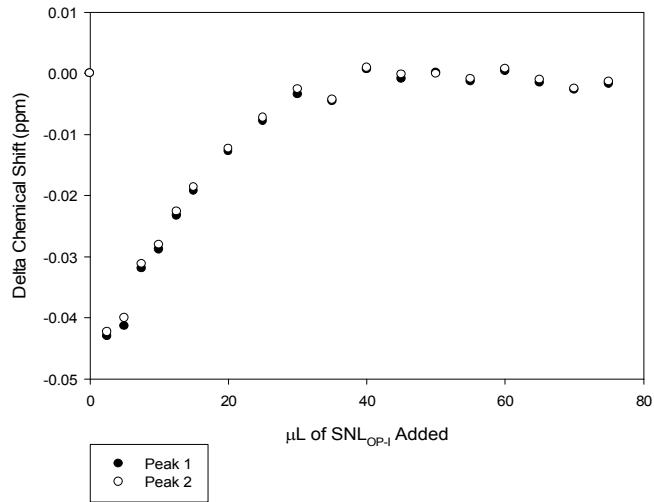


S - enantiomer

Inhibits AChE $\sim 10^4$ faster.

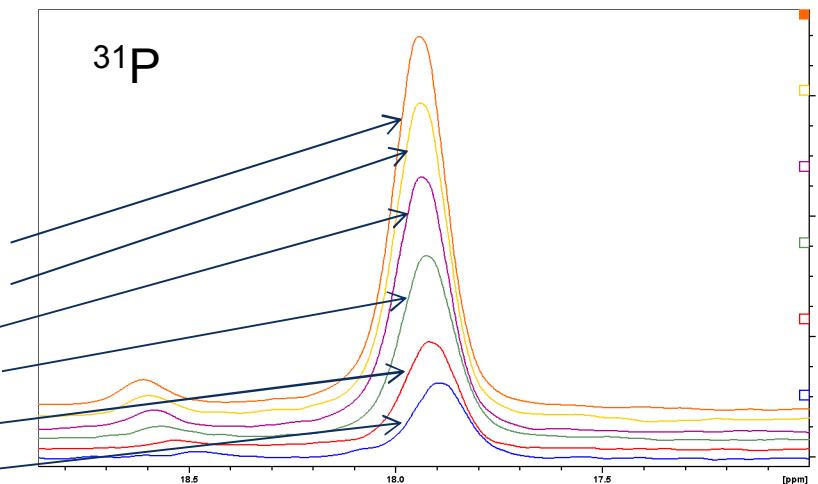
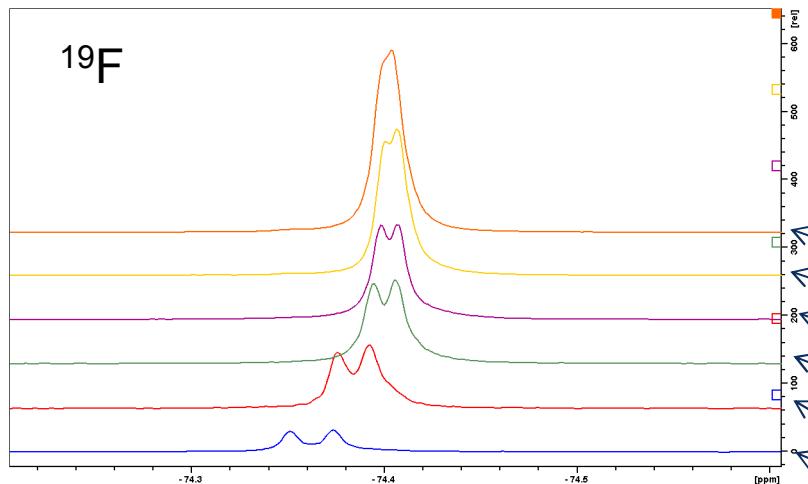
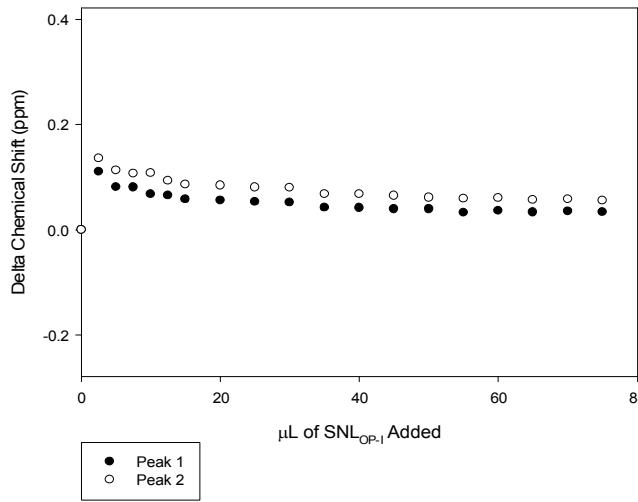


Cyclodextrins

- Discovered in 1891 by Villiers.
- Schardinger clarified bacterial strain as *Bacillus macerans* and knew there were two cyclodextrins.
- From 1911 to 1935, Pringsheim's main contribution was that CDs forms complexes.
- CD inclusion phenomena, pharmaceutical, etc.

- Cyclic oligosaccharides
- Host/guest complex – guest enters a “donut hole”.

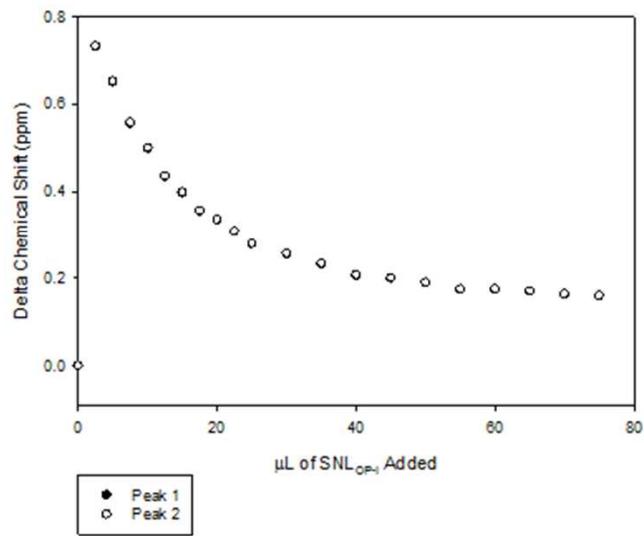

TFAE

- R-(-)-2,2,2-trifluoro-1-(9-anthryl)ethanol (TFAE)
- Use of TFAE as a CSA in NMR studies reported by Pirkle in 1960s.
- Different from CDs due to high diamagnetic anisotropy of anthracene and lack of CD-type cavity.
- Anisotropy allows for NMR differentiation of enantiomers by causing perturbations of their magnetic environment.

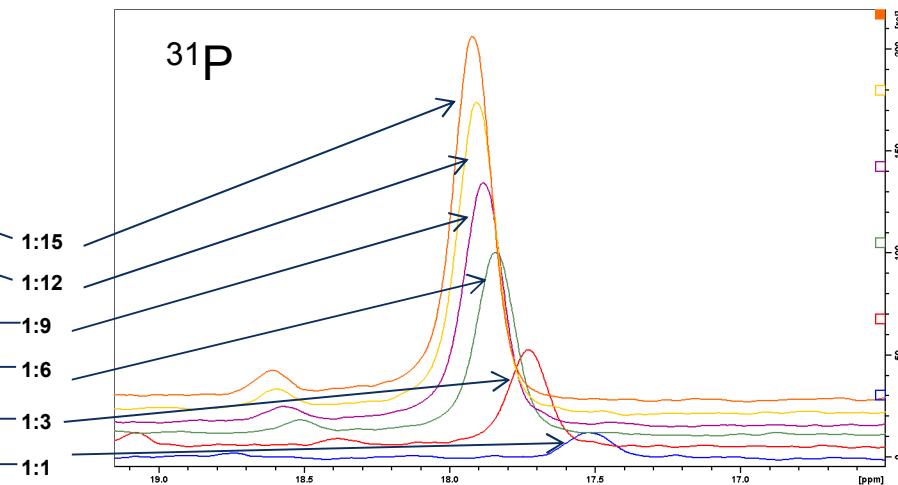
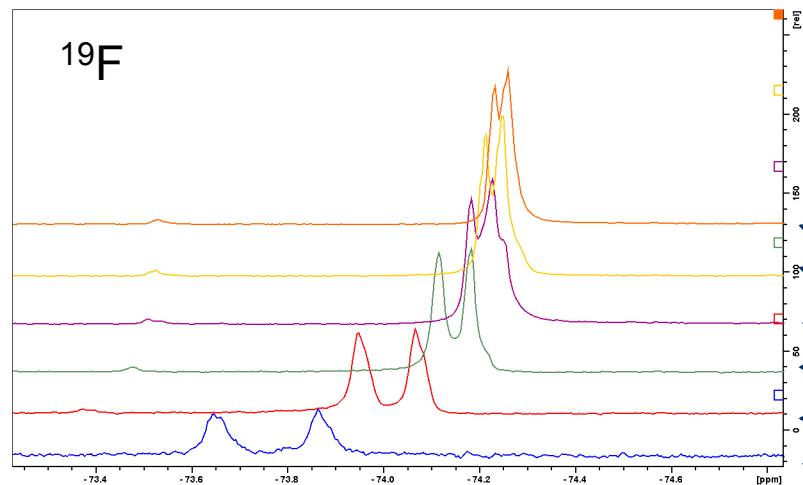
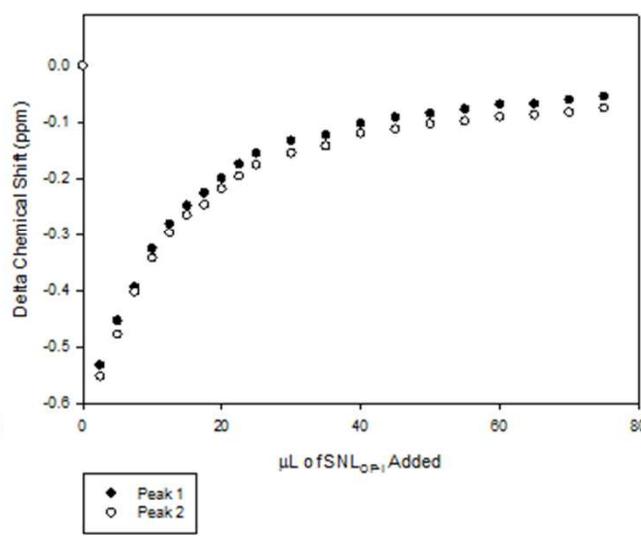




α -CD Results

^{19}F Peak Shifts with Addition of $\text{SNL}_{\text{OP-I}}$ to 5mM A-CD



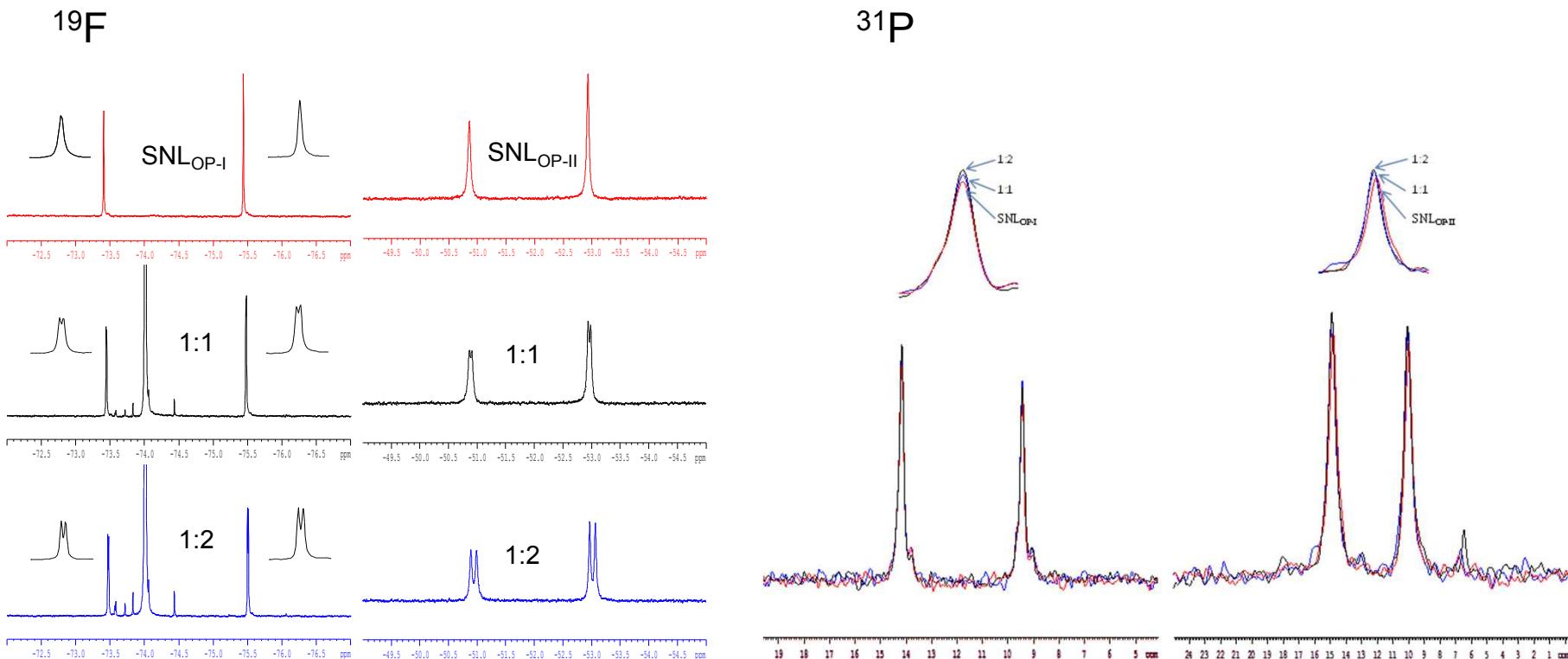
^{31}P Peak Shifts with Addition of $\text{SNL}_{\text{OP-I}}$ to 5mM A-CD

β -CD Results

^{19}F Peak Shifts with Addition of $\text{SNL}_{\text{OP}_\text{I}}$ to 5 mM B-CD

^{31}P Peak Shifts with Addition of $\text{SNL}_{\text{OP}_\text{I}}$ to 5 mM B-CD



α/β -CD Results

- $\Delta\Delta\delta$ could only be calculated from the ^{19}F NMR spectrum.
- Cavity sizes of α -CD (174 \AA^3) and β -CD (262 \AA^3) sufficient for a G/H interactions with $\text{SNL}_{\text{OP-I}}$.

					R-S separation		
Compound	CSA	$\Delta\delta^{19}\text{F}$ (ppm)	$\Delta\delta^{31}\text{P}$ (ppm)	$\Delta\delta^1\text{H}$ (ppm)	$\Delta\Delta\delta^{19}\text{F}$ (ppm)	$\Delta\Delta\delta^{31}\text{P}$ (ppm)	$\Delta\Delta\delta^1\text{H}$ (ppm)
$\text{SNL}_{\text{OP-I}}$	α -CD						
1:1		-0.0413	0.0809		0.0221	-	-
1:3		-0.0192	0.0575		0.0164	-	-
1:6		-0.0034	0.0515		0.0113	-	-
1:9		-0.0009	0.0390		0.0084	-	-
1:12		0.0004	0.0361		0.0060	-	-
1:15		-0.0017	0.0332		0.0042	-	-
$\text{SNL}_{\text{OP-I}}$	β -CD						
1:1		0.6496	-0.4537		0.2170	-	-
1:3		0.3970	-0.2485		0.1170	-	-
1:6		0.2552	-0.1334		0.0670	-	-
1:9		0.1993	-0.0917		0.0438	-	-
1:12		0.1736	-0.0687		0.0359	-	-
1:15		0.1587	-0.0544		0.0272	-	-

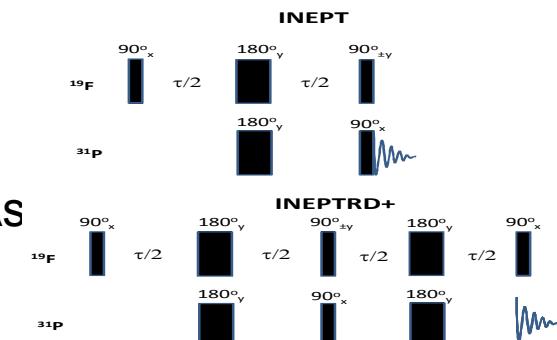
TFAE Results

- As with the cyclodextrins, peak splitting could only be seen within the ^{19}F NMR spectrum.
- The largest chemical shift for $\text{SNL}_{\text{OP-I}}$ with one equivalent TFAE was observed in the ^{19}F NMR spectrum.
- However, for $\text{SNL}_{\text{OP-II}}$ with one equivalent of TFAE, the largest chemical shift was observed in the ^{31}P NMR spectrum.
- For $^{31}\text{P} \Delta\delta$, less than a hundredth of a ppm for $\text{SNL}_{\text{OP-I}}$ and just under a tenth of a ppm for $\text{SNL}_{\text{OP-II}}$.

TFAE Results

- Overall, $\text{SNL}_{\text{OP-II}}$ with TFAE had more significant chemical shifts with the addition of a 2nd equivalent of TFAE – 1.7x versus 2.8x in the ¹⁹F NMR spectra and 1.5x versus 2.2x in the ¹H NMR spectra of $\text{SNL}_{\text{OP-I}}$ and $\text{SNL}_{\text{OP-II}}$, respectively.
- Indication of stronger intermolecular interactions between TFAE and $\text{SNL}_{\text{OP-II}}$.
 - Differences in R groups; steric effects.

					R-S separation		
Compound	CSA	$\Delta\delta$ ¹⁹ F (ppm)	$\Delta\delta$ ³¹ P (ppm)	$\Delta\delta$ ¹ H (ppm)	$\Delta\Delta\delta$ ¹⁹ F (ppm)	$\Delta\Delta\delta$ ³¹ P (ppm)	$\Delta\Delta\delta$ ¹ H (ppm)
$\text{SNL}_{\text{OP-I}}$	TFAE						
1:1		0.0396	-0.0085	0.0171	0.0074	-	-
1:2		0.0665	-0.0030	0.0252	0.0123	-	-
$\text{SNL}_{\text{OP-II}}$	TFAE						
1:1		0.0293	-0.0649	0.0270	0.0404	-	-
1:2		0.0834	-0.0838	0.0592	0.0994	-	-


Discussion/Future Endeavors

Discussion:

- Results show promising leads for future research on optimizing NMR chiral recognition of OFPs.
- Indications that peak splitting by CSAs should be monitored in the ^{19}F spectrum for enantiomeric discrimination.
- Chemical shifts serve as indicators of primary and secondary interactions between CSA and chiral molecule.

Future Endeavors:

- Molecular modeling for elucidation of primary and secondary interactions between our OFPs and CSAs
- Monitoring β -CD – catalyzed hydrolysis of OFPs.
- ^{19}F and ^{31}P INEPT NMR optimizations for ability to assist in the differentiation and quantification of enantiomers.
- Using novel OFPs and other CSA molecules (γ -CD and Mosher's Acid).

References

1. Benschop, H.P. and L.P.A. De Jong, *Nerve agent stereoisomers: analysis, isolation and toxicology*. Accounts of Chemical Research, 1988. **21**(10): p. 368-374.
2. Wenzel, T.J., *Discrimination of Chiral Compounds Using NMR Spectroscopy*. 2007, Hoboken: John Wiley & Sons.
3. CDC. *Facts About Sarin*. 2013 05-20-2013 [cited 2014]; Available from: <http://www.bt.cdc.gov/agent/sarin/basics/facts.asp>.
4. WHO, *Public Information on Biological and Chemical Threats*. 2003, World Health Organization - Eastern Mediterranean Regional Office: Geneva.
5. Szejtli, J., *Introduction and general overview of cyclodextrin chemistry*. Chemical reviews, 1998. **98**(5): p. 1743-1754.
6. Pirkle, W.H. and D.J. Hoover, *NMR Chiral Solvating Agents*, in *Topics in Stereochemistry*. 1982, John Wiley & Sons, Inc. p. 263-331.
7. Desire, B. and S. Saint-Andre, *Interaction of soman with B-cyclodextrin*. Toxicological Sciences, 1986. **7**(4): p. 646-657.
8. Murphy, Tommy. "Gas Chromatography." Wake Forest University, n.d. Web. 21 July 2014.