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Abstract

As cyber-security is becoming more and more important in systems development, engineers
have begun to recognize and understand the types of errors they can introduce through hurried

coding technique and design. This overall trend is certainly moving the software industry in
the right direction and can lead to developing higher quality software-centric systems. Un-

fortunately, we have barely begun to examine the results of poor architectural choices, nor do
we have much insight into what secure and securable architectures look like. In this paper,

based on the past 40 years of work identifying specific security principles, we create a taxon-
omy of principles that address the abstract cyber-security needs of systems. We then tie these

principles to studies of insecure systems architectures to demonstrate applicability. We close
the paper with a description of other cyber-security taxonomies, how they specifically differ

from this presented taxonomy, and add new principles to address gaps shown in taxonomic
comparisons.
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Introduction

Securing underlying architectures are vital to the development of secure systems. Without
appropriately securing the underlying foundation of a system, the developed system is relatively
easy to undermine. We see specific examples of this kind of compromise frequently, in a variety of
different types of systems including authentication protocols once used as the foundation of system
user identities [16].

In 2014, Santamarta presents a small overview of communication vulnerabilities in today's
satellite communication systems. He categorizes the severity of the problems they found, by ven-
dor, product, and service. While he presents possible attack scenarios that could compromise the
satellite communication equipment, he does not specifically release exploits [15].

Interestingly, his work does classify the possible exploits in a clear taxonomy. Overall, these
kinds of devices are remarkably insecure, the result of a variety of bugs and design decisions im-
pacting system confidentiality, integrity, and availability. Key design mistakes include hard-coded
credentials and backdoors, homegrown, undocumented, and insecure protocols, and weak native
security controls like password reset capabilities. These problems lead to attacker capabilities
including communication compromise, system denial-of-service, and system geolocatability.

Koscher et. al. go into detail on their methodology in testing two late-model cars for se-
curity vulnerabilities within the car computational plant. They open the paper going into detail
on why these networks exist in cars today, and how they originally were introduced. They then
show what kinds of Electronic Control Units (ECUs) exist in typical cars, how the Controller Area
Networks (CANs) interoperate, and how recent advances in customer focused computational inte-
gration are creating new exploitable attack surfaces for attackers. They then describe specific tools
they created to help with this work, the systems they were able to compromise, how they were
compromised, and how this compromise was verified [10].

These are specific examples of general problems today — we are beginning to understand how
to build secure software, but we are not very good at assembling that software into secured sys-
tems. These examples both show how neglecting specific architectural principles result in insecure
systems that may be running secure software. The first example shows how neglecting end-to-end
perspectives, not providing inclusive authentication and encryption, and not following open design
principles can result in easily compromised systems. The second shows how design pressures and
systemic misuse of trust results leads to similar results.

The remainder of this paper will cover the most significant work defining architectural security
principles. We will then organize the principles into a simplified taxonomy for easier application,
compare that taxonomy to other existing taxonomies, and add specific principles based on this
comparison that are currently un-addressed in the corpus describing cyber-security principles.
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Security Prinicples

Keep it Running

Know What You e Doing

Build it Right

Have Trust Issues

Manage Your Assets

Users Come First

Protect as Little as Necessary

Protect End-to-End

Keep it Simple

Be Flexible

Keep it Simple

Be Flexible

Figure 1: A possible taxonomy of security architectural principles. Here, we show the potential
categories without specific principles.
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Principles in Literature

Jerome Saltzer and Michael Schroeder wrote the first paper describing information protection
principles in 1975 [14]. This paper contains not only the principles they outline, but initial defini-
tions of terms in common security parlance today. They outline both ten principles for information
protection as well as many examples of how those principles could apply. While the examples
themselves are certainly dated by today's standards, the principles themselves have stood the test
of time and have influenced almost every engineer attempting to outline relevant security princi-
ples.

Rein Turn and Willis Ware wrote a similar paper in 1975 addressing security and privacy in
computer systems [1]. Here, Turn & Ware were more interested in how to secure and maintain the
privacy of stored information, protecting it from various white-collar criminals with an eye toward
fraud or embezzlement. They furthermore address the very real concern of privacy of personal
information maintained by government and large private enterprises from both a confidentiality
and privacy perspective, differentiating between the two.

Dorothy and Peter Denning identified the need to strongly secure data and data access in 1979
outlining the emerging threat to information from organizational insiders [7]. They correctly iden-
tified the growing future trend of online theft as well as it's large impact. They extended this think-
ing to identify and define groups of internal security mechanisms that could regulate cyber-system
internals, protecting stored objects, information flow, and inferred information, and demonstrate
the use of the proposed controls via specific hypothetical cases.

Charles and Shari Pfleeger's text Security in Computing was originally published in 1989 and
is currently in it's fourth edition [12]. This text marks the transition of principle development from
academia to more practically inclined audiences as previously developed principles become less
a subject of academic research and more a point of day-to-day system development. The overall
focus of this text is computer system security, and it covers subjects ranging from programs, to
cryptography, to computer networks. More of a general-purpose than a specific, specialized text,
Security in Computing still conveys a difficult subject well in some detail. The principles Pfleeger
& Pfleeger outline have a slightly different perspective from other principles however as they are
not system-centric, but rather take the perspectives of the attacker and defender into account.

Jerome Saltzer, the primary author of The Protection of Information in Computer Systems, and
M. Kaashoek wrote Principles of Computer System Design in 2009 [13]. Though primarily fo-
cused on general computer system design principles and concepts, the text still addresses security,
revisiting many of the original principles as well as introducing new ones.

In 2011 Richard Smith wrote Elementary Information Security to fully comply with NSTISSI-
4011, an at that time new standard for federal cyber-security education. The resulting text covers
topics ranging from file systems to identity management to networks and encryption [18]. In the
following year, Smith reviewed the principles he used in the text and compared them to Saltzer's
original list, also tangentally referencing some similar work from previous years [17]. The result-
ing list essentially adds a couple of principles to Saltzer's original list, and then contemporizes the
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original principles that still seem to have direct application today. He does however take the some-
what contradictory stance that certain principles, like complete mediation, that are not in current
use should be dropped even though they may contribute to other principles he does support, like
Defense in Depth.

Finally, in 2014, the IEEE released a report on Avoiding the Top 10 Software Security Design
Flaws [9]. Just released, this paper is the product of collaboration between industry and academia,
and was released late in the year. As opposed to much guidance in industry today that addresses
implementation, this report contains advice for system designers on how to design security into
systems. Furthermore, while many papers describing principles trace their legacy back to the
original Saltzer paper of 1975 [14], this collection of design points is more independent, though
doubtlessly still influenced to some extent.

Overall, these are the key contributions to the area. We have other potential sources, but they
generally parrot Saltzer's original work, with slight changes for context, and contributions from
Smith or other authors [3, 8]. Overall, this gives us a variety of potential principles we can adopt for
day-to-day use, but too many for realistic application. In fact, many of the principles themselves are
less principles and more tactics. For example, if a principle is an underlying truth of architectures
in general, it should be expressible in a variety of contexts in a variety of different ways. While
Pfleeger & Pfleeger's principle of the weakest link has multiple possible expressions in different
environments, from physical systems to cyber-systems, Turn & Ware's principle of Encryption
does not. In order for these ideas to have wider applicability, they need to be transformed into
something more memorable, more terse, and more clear.
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Figure 2: Taxonomy details, showing principle affiliations.
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Taxonomy

Our proposed taxonomy is just one possible way to organize these principles. In this particular
example, we've attempted to organize the principles by subject area. We have been able to partition
the principles into six specific categories, with six sub-categories, as shown in Figure 1. We have
mapped principles into these categories, and these mappings are shown in Figure 2.

Build It Right The first level of the taxonomy contains six primary elements. The first, Build
it Right, addresses all the principles that specifically address construction. These include any
principles describing how you should build systems to promote securability as well as how those
principles should be applied for maximum protection. The overall direction for this category is
to build systems that fail securely, have secure default settings, are as simple as possible, are able
to support transparent design processes, and can evolve and improve over time. It is also vital
that engineers understand how their systems can be attacked, and that the systems are able to
appropriately track and log events for auditing and future forensics.

It's vital that designers know what they are doing. Systems frequently suffer from compro-
mise because of adoption of ineffective controls or misapplication of otherwise secure encryption
algorithms [11, 9]. If system designers do not have a clear, in-depth understanding of encryption
and control application, they need to provision consulting that does. Encryption can frequently
be problematic as valid, strong encryption algorithms can be rendered useless because of weak
initialization vectors or pass phrases.

Simple systems are much easier to review, maintain, and understand than complex ones. They
can usually be updated more easily, and can be tested more quickly. Complex systems hide vulner-
abilities that can lie dormant for years prior to exploitation [5]. In order to keep systems simple,
engineers must design them to be simplified over time as technology advances.

Finally, systems must be designed to be flexible and to to be updated regularly. This not
only supports the ability to change the system functionally because of market pressures, but also
provides engineers with the ability to rapidly change system components in response to security
threats. After all, the security landscape can change rapidly and unpredictably, and systems need
to change just as rapidly in order to stay uncompromised.

Have Trust Issues Have Trust Issues deals, not surprisingly, with how trust is managed and
passed through systems. This category addresses how systems should extend, verify, and propagate
trust. Generally, systems need to have a strong basis for trust, through trustworthy authentication
and authorization primitives. They need to understand exactly what other components they should
trust and why, and be able to authenticate and authorize other agents, whether those agents be other
systems or users. Some of the approaches are contradictory, like Complete Mediation and Chain
of Control, but allow engineers to apply different types of trust in different situations. By and
large, this section advises designers to provide strong authenticaiton and authorization, to clearly
understand what should be trusted, why, and what should not, to provide extensive internal controls
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Effectiveness

Understand Attack Surfaces
Trustworthy Authentication

Never Assume Trust

Availability
Compromise Recording

Consider Your Users
Be Explicit

Access Controls
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Work Factor
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Continuous Improvement
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Design for Iteration
Complete Mediation

Reduce Sensitivity

Open Design
Least Astonishment

Authorize after Authentication
Appropriate Resources

Adequate Protection

Separation of Privilege
Reduce Exposure

Psychological Acceptability

Minimize Secrets

Timeliness
Least Common Mechanism

Inference Controls
Chain of Control
Anonymization

Event Distribution over Principles
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Figure 3: The distribution of events over the defined taxonomic principles.

rather than only perimeter defenses, and to clearly manage and minimize user privilege.

This category has two sub-elements. The first, Don't Tell the Whole Story, specifically ad-
dresses privilege minimization and common components. Users should be given the lowest level
of privilege possible, while still allowing them to fulfill their responsibilities. This way, users are
less likely to have privileges they can abuse to overreach their authorization. Likewise, if their
accounts are compromised, the damage those accounts can do is minimized. Multi-tenancy is
likewise risky. Shared infrastructure provides a vector through which attackers can impact other,
unexploited systems.

Engineers need to understand the different types of controls they can use when applying prin-
ciples like Complete Mediation or Defense in Depth. The general classes of controls identified in
literature include Access Controls, Flow Controls, and Inference Controls
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Manage Your Assets A large group of principles have been assembled over the past few decades
that address how you should manage and control information assets, ranging from single assets to
groups of data collected by an entire organization. Principles also address both data in storage
and data at rest. Essentially, these principles address minimizing the amount of data you pro-
tect, anonymizing, desensitizing, and encrypting that which you must retain, and validating and
partitioning all data flows. After all, the less you need to protect, the better you can protect it.

Users Come First Some common principles address user interaction and semantic acceptance.
Interestingly these principles are commonly used in user interface design as well. In this case,
they address not only user interfaces, but system interfaces of any type, including programming
interfaces or other system interfaces that are only expected to be used by external components.

The primary focus of these principles is to ensure that security services are aligned with user
preconceived expectations, and that they take very little effort, if any, to use. All users, whether
they are using the system or developing software that takes advantage of exposed APIs are under
pressure, short on time, and will cut corners. If security controls are too dificult to use, they will
simply circumvent them or not use the system rather than spend significant time configuring them
to work correctly. Security systems must be designed with this in mind, or they will be ignored or
marginalized.

Protect as Little as Necessary Realistically, sensitive information need only be protected while
it is sensitive. Likewise, it needs protection corresponding to its value. Providing protection to
information beyond its value is irresponsible and inefficient, using resources to protect assets that
need no protection when those resources could be better used to protect assets with real value.
Information assets should be protected only while they need protection, no more, no less.

Protect End-to-End A ship is only as water-tight as the least water-tight spot on its hull. Like-
wise, a system is only as secure as its least secure component. That component could be a database,
middleware, a client component, or communication system. A common problem is neglecting the
security of the so-called "last mile" of a distributed system [11]. In large-scale networks, this refers
to the last link prior to a networked location, like a home or a business. In distributed applications,
this refers to the last link (or some series of last links) with a termination at the consuming system.
The consumer could be a software component using an API, or a client accessing a system via a
browser. Granted, the severity of the breach can range from just exposing that user's information,
to exposing credentials that can be used to attack the core of the system itself, but in either case,
the security of the system as a whole is dependent on the security of this final link.

Taxonomic Validation

In mid-2015, we convened a group of subject matter experts to analyze the results of just under
400 events recorded from 65 separate red team engagement reports generated from work performed
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2%
• Consider Your Users
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• Adequate Protection

• Least Astonishment

• Psychological
Acceptability

Figure 4: The distribution of principles over the examined security events.

by Sandia National Laboratories since 2008. We looked closely at the recorded vulnerabilities and
risks found, and categorized them according to where the flaws fit within our proposed taxonomy.
Each event could be associated with zero or more elements from the taxonomy.

Figure 3 shows the distribution of event classification. Interestingly, of the top five principles,
four of them can be directly addressed via additional security education for engineers. Effective-
ness is directly related to the correct application of controls, in a way that specifically addresses a
possible vulnerability. Understanding Attack Surfaces is likewise a skill that comes from education
and experience. Trustworthy Authentication and Never Assume Trust stem from misunderstanding
how authentication should work in a computer system, and frequently arises from implementing
homegrown, non-standard, or standardized but weak authentication schemes. Trust assumption
problems, specifically, can arise when engineers assume successful authentication at a previous
step and as a result infer that authentication in a current step is no longer needed.

In Figure 4, a few principles clearly dominate all of the categorized security events. In the
Have Trust Issues category, three principles dominate the overall event distribution. Trustworthy
Authentication, Never Assume Trust, and Access Controls cumulatively cover 52% of the total
number of trust-related events. In the Build it Right category, 51% of the events fall into the Ef-
fectiveness, Understand Attack Surfaces, and Availability areas. Manage your Assets is dominated
by Manage Sensitive Data and Validate Information, for a cumulative total of 60% of all related
events. Finally, with respect to the remaining events, 51% of them stem from not considering users
appropriately, and another 31% of them from weakest link issues within a possible group of attack
paths.

During the validation process, we uncovered a potential new principle, Compromise Detection.
While closely related to Compromise Recording, there were several findings in which the recording

15



of an event was insufficient due to inadequate processes to uncover the event in the first place.
Detection would include both observing an event and providing an alert of its occurrence. We
found twelve events that related to this principle.

It is likely that the utilization of events found in red team engagements skewed the validation
results somewhat as well. For example, several of the principles deal with non-functional security
measures (e.g. Appropriate Resources, or Timeliness). A red team approaches an assignment with
the intent of finding functional security deficiencies, and does not usually uncover non-functional
defects unless they are discovered as a side effect. Cyber-security vulnerabilities that are not func-
tional, but rather related to attributes of protected resources or meta-attributes regarding security
posture, are not likely to be noted in most cases.

Other Principle Taxonomies

This taxonomy is a way to organize the past few decades of work defining principles for secure
cyber systems. It is not a detailed taxonomy of attacks, or security controls, or similar detailed
work. Our intention in assembling this was to organize these principles in a memorable way to
help other engineers to remember and apply them to systems they are building. Other organiza-
tions and authors have built extensive taxonomies at lower levels of detail. The National Institute
of Standards and Technology (NIST) has assembled an extensive taxonomy of potential security
controls for cyber-systems [2]. This taxonomy is immense, very detailed, and resonably flexible.
As it comes from NIST, it is also essentially a compliance requirement for federal civilian infor-
mation systems. Focused on security controls, the NIST taxonomy in Special Publication 800-53
does not apply well to principle organization.

In 2002, Chakrabarti and Manimaran assembled a taxonomy of internet infrastructure threats.
This taxonomy organizes typical internet infrastructure attacks, including categories like Denial
of Service and DNS Hacking. While an excellent way to organize attacks known at the time, this
particular taxonomy is very specific to the internet and, again, does not address specific overarching
cyber-security prinicples.

Simmons et al. established a more recent taxonomy of cyber attacks in 2014. While more rele-
vant that Chakrabarti's work, primarily because of it's more recent publication, it again categorizes
typical known cyber attacks. While complete and well focused, it does not address fundamental
cyber-security principles, our focus with this taxonomy.

In fact, developed taxonomies today address attacks [4], risks [6], or known flaws [4]. This
taxonomy addresses first principles that need consideration in systems, and does not specifically
address technologies. This provides a more flexible way to guide systems security thinking, and
one that is hopefully more flexible and applies in a variety of domains.

One other well known taxonomy for cyber-security controls exists; the common triple of Con-
fidentiality, Integrity, and Availability, sometimes paired with Non-repudiation and Authentication.
This simple group of principles is well suited to match against this taxonomy precisely because of
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its high level of abstraction.

Matching these security goals against our grouped principles, we see that confidentiality and
integrity are well represented. Many of the principles specifically address the need to maintain the
secrecy of sensitive information, and to ensure that data is validated prior to use. We also have
specific principles addressing authentication and authorization. Non-repudiation and availability
are less well represented, however.

Non-repudiation principles should be included in the Have Trust Issues category. A simple
principle of non-repudiation, Non-repudiation, would be sufficient. Availability could be included
in Build it Right, under a sub-category entitled Keep it Running, with two contained principles,
Availability and Appropriate Resources. The first principle, Availability, addresses the need to
keep critical functions of systems available under a hostile conditions, whether those conditions
are manufactured by attackers or other, more benign situations. This would address scalability
under heavy intermittent load, for example, as this is needed to handle spikes in use as well as
denial of service attacks. Just as availability is needed to keep systems running, not over-allocating
resources is also important. Systems need to be designed to handle expected loads and attacks
commensurate with the importance of their services. Providing unneeded redundancy introduces
more complexity and cost with no real advantages.
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Conclusion

In this paper, we covered the primary sources of cyber-security architectural principles over
the past 40 years and described their contributions. We then organized those principles into a
taxonomy, building a structure around the contributed principles to help facilitate application. Once
the taxonomy was in place, we compared it to other proposed taxonomies from literature over
the past 12 years, demonstrating how our proposed taxonomy differed from others. Finally, we
compared our taxonomy to the widely used confidentiality, integrity, availability triad, and showed
specific areas where principles were lacking.

With this taxonomy in place, we will begin to pivot toward providing design advice to system
architects via defined principles. We expect to provide a way for system architects and designers
to identify key system principles and from those principles navigate to specific design patterns
they can use to implement software embodying those principles in developed systems. Our overall
goal is to help systems engineers create software systems that are more secure by design rather
than implementation, and allowing for easy principle-to-design navigation hopefully makes the
development of these kinds of systems easier.
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