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Abstract

The goal of this project was to qualitatively evaluate the efficacy of using plasma cleaning to remove PDMS from
vacuum systems. Silicon containing compounds are notorious for interfering with vacuum system techniques such as
x-ray photoelectron spectroscopy (XPS), Auger Electron Spectroscopy (AES) and Secondary lon Mass Spectrometry
(SIMS). Finding a way to remotely and rapidly remove contaminants from a system saves time and money for
analysts using vacuum analytical techniques.

RGA:

* An RGA is a mass spectrometer.

 An RGA is composed of an Electronics Control Unit (ECU
and a probe.

 RGAs are most often used to monitor the quality of
vacuum and to identify contaminants.

Evactron® Plasma Cleaner:

 The XEIl Evactron® uses air plasma to rid surfaces of
contaminants.

The image to the left is an SRS® RGA.
The experiments mentioned in this
poster used the Transpector 2® RGA.
However, the SRS® has a similar physical
appearance.

Taken from SRS RGA website: www.thinksrs.com
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Procedure

* Run a control RGA scan without any sample (Results: Figure 1a).
 Placed PDMS in the chamber and heated sample while running RGA

cvgeiont (Results: Figure 1b).

cdeaner | ¢ Ran RGA at two higher temperature settings (Results: Figure 1c and

R 1d).

£ 1 «  Closed gate valve and ran RGA (Results: Figure 1e).

Plasma cleaned the main chamber, then ran RGA (Results: Figure 1f).
* Opened the gate valve and ran RGA at two different heat settings

(Results: Figure 2a and 2b).

- * Plasma cleaned with sample still in loading chamber and ran RGA

s e (Results: Figure 2c).

Loading * Removed sample, plasma cleaned and ran RGA once more (Results:

Chamber
Figure 2d).

Results:

The data generated from the se experiments provide convincing qualitative results that showing that the Evactron®
Plasma Cleaner removes PDMS effectively. The RGA spectra and partial pressure versus time plots below
demonstrate how well the plasma cleaner removes contaminants from a vacuum system. The following data is
organized into various experiments over two days.
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Conclusion and Future:

Figures 2e and 2f are partial pressure (torr) vs. time (s) curves of the two largest PDMS peaks
(73 and 147 amu). These two plots follow the same trend. Increasing the temperature of the
system effected the intensity of the PDMS peaks (Figures 2a-2d). However, only after plasma
cleaning does the pressure drop completely below the minimum detectable partial pressure of

1E-12 torr (Figure 2d).

Though RGA is a qualitative approach to the problem addressed in the aforementioned experiments, it clearly
reduces the intensity of the end chain (73 amu) and the short chain (147 amu) in RGA spectra. However, PDMS is
a silicone and can be many thousands of chain lengths long, and RGA can only effectively identify gas molecules
up to 300 amu in mass. These two complication makes it difficult to know whether or not heavy chains of silicone
remain in the chamber. One possible solution lies in the use of quantitative surface analysis techniques such as X-
ray Photoelectron Spectroscopy (XPS) or Auger Electron Spectroscopy (AES). It may also be useful to use a mass
spectrometry technique like matrix-assisted laser desorption/ionization (MALDI) to detect heavier chains of

PDMS.
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