SAND2016- 5482

Specification of Fenix MPI Fault
Tolerance library
version 0.9

Marc Gamell, Rutgers Discovery Informatics Institute
Rob F. Van der Wijngaart, Intel Corporation
Keita Teranishi, Sandia National Laboratories

Manish Parashar, Rutgers Discovery Informatics Institute

June 7, 2016

Sandia National Laboratories is amulti-mission laboratory managed and operated by Sandia Corporation, awholly owned subsidiary of
Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-A C04-94AL 85000

Contents
1 Introduction

2 Initialization, Rank Failure Recovery, and Teardown
2.1 Initialization. .« « s ¢ < ¢ 5 5 5 5 5858 5 53 8 s B EEEEEE B E a5
2.2 Call-back handler function recovery
2.3 Proactiverank removal Lo
2.4 Teardown

3 Data Storage and Recovery

3.1 Overview

3.2 Managing data storage and recovery constructs
3.2.1 Grouping data objects and ranks with data groups
3.2.2 Describing application data with data group members

3.3 Storing and committing application data
3.3.1 Storing group members
3.3.2 Making stored data recoverable with data group commits

3.4 Recovering application data

3.5 Managing data subsets Lo

3.6 Accessing data storage and recovery constructs
3.6.1 Querying group members
3.6.2 Querying committed data
3.6.3 Accessing group member attributes

3.7 Removing stored application data

4 Examples
4.1 Protecting process and data with Fenix
4.2 Storing data objects with subsets
4.3 Recoverying one member of a data group
4.4 Recoverying all members of a data group

A Appendix: Semantic picture of the Fenix Data recovery inter-
face

References

32

35

1 Introduction

Fenix is a software library compatible with the Message Passing Interface (MPI)
to support fault recovery without application shutdown.

Current implementation

This specification is derived from a current implementation of Fenix [1] that
employs the User Level Fault Mitigation (ULFM) MPI fault tolerance module
proposal. We only present the C library interface for Fenix; the Fortran interface
will be added once the C version is complete.

End current implementation

Fenix is used (1) to repair communicators whose ranks suffered failure de-
tected by the MPI runtime, and (2) to restore state to application variables
and arrays from redundant data storage. Only communicators derived from the
communicator returned by Fenit_Init are eligible for reconstruction. After
communicators have been repaired, they contain the same number of ranks as
before the triggering error occurred, unless the user instructed Fenix otherwise,
or unless Fenix could not allocate them according to the specified spawn policy.
In the latter case the program aborts.

Fenix provides its own redundant data storage API to facilitate data recovery
along with process recovery, but the user can choose other data recovery options
to meet a variety of application needs. For example, data could be recovered by
approximately interpolating values from unaffected, topologically neighboring
ranks instead of by reading stored redundant data. In addition, the user may
decide to use external libraries such as GVR (Global View Resilience [2]) or
even SCR (Scalable Checkpoint/Restart [3]) to restore rank data after a failure.
The crux is that the program does not have to be restarted completely.

Current implementation

Fenix uses MPI’s PMPI profiling interface. This currently means that it is
incompatible with other software tools that need access to the profiling interface
as well. It is expected that this restriction will be lifted soon via MPI extensions
similar to that proposed by Schulz and De Supinski [4].

End current implementation

We will indicate for each parameter used in a library function call whether
it provides an input value (i.e. it is read by the library call), an output value
(i.e. it is set by the library call), or both, using [IN], [OUT], and [INOUT],
respectively. If a parameter is an opaque data type accessed by a handle and
the handle itself is not changed by a Fenix function, but the contents of the
data type may be, we still label the parameter as [INOUT], in keeping with the
MPI specification.

Any Fenix function without a return type may be implemented via macros,
which means it cannot be used to resolve function pointers. It is up to the
implementation to decide which functions are macros.

Any Fenix function with optional parameters can be used as follows. As-
sume a function f(a,b,c,d), with a being a mandatory parameter and b, c,

and d being optional parameters can be called using only the following four
combinations: f(a), f(a,b), f(a,b,c), and f(a,b,c,d). If only a and c are
required by the application, the user will have to fill b with its default value
(e.g. FENIX_DATA_GROUP_WORLD_ID).

2 Initialization, Rank Failure Recovery, and Tear-
down

2.1 Initialization

Fenix Init

void Fenix_Init(
int *status,
MPI_Comm comm,
MPI_Comm *newcomm,
int *argc,
char ***xargv,
int resume_mode,
int spare_ranks,
int repair_policy,
int *error);

This function must be called by all ranks after MPI_Init or MPI_Init_
thread. It is used (1) to activate the Fenix library, (2) to specify extra resources
in case of rank failure, and (3) to create a logical restart point in case of rank
failure.

The program may rely on the state of any variables defined and set before
the call to Fenix_Init. But note that the code executed before Fenix_Init is
executed by all ranks in the system (including spare ranks). If any Fenix Data
group (see Section 3) instances were created in the program following Fenix_
Init, recovered ranks that experienced the failure, as well as surviving ranks,
may be supplied with data from a valid and consistent state taken before the
failure occurred. This behavior is controlled by the user. If an error occurs
inside Fenix_Init, the program will abort. All ranks calling Fenix_Init must
use the same values for all input parameters. It is recommended to access
argc and argv only after executing Fenix_Init, since command line variables
passed to the library that do not apply to the application may be stripped off
by Fenix_Init.

e status [OUT] - upon return, contains one of the following values, indi-
cating the current status of the calling rank:

— FENIX_STATUS_INITIAL_RANK - this is the value returned to all ranks
the first time the program is started (i.e. when the user invokes a

program manager, e.g. mpirun, to launch it, not when individual
ranks are reconstructed by Fenix to recover from a failure).

— FENIX_STATUS_RECOVERED_RANK - this rank replaces a failed rank
since the latest communicator restoration by Fenix. The rank was
taken either from the pool of spare ranks supplied via Fenix_Init,
or was obtained using MPI_Comm_spawn.

— FENIX_STATUS_SURVIVOR_RANK - this rank was not affected by the
rank failure that triggered the latest communicator restoration by
Fenix.

The status parameter always indicates the status of a rank since the last
exit from Fenix_Init. For example, assume a certain rank receives recov-
ered status due to a failure. If it survives a subsequent failure, the status
output parameter will indicate that this rank is now a survivor rank.

comm [IN] - communicator that includes any spare ranks the user deems
necessary. It will be used by Fenix to derive a new communicator that
can be repaired. MPI_COMM_WORLD is a valid value for comm.

newcomm [OUT] - Let the number of ranks in comm be C, the number of
spare ranks S, and the number of failed ranks thus far . Upon return
newcomm contains:

— (C—58) ranks if the communicator repair policy FENIX_COMM_REPAIR_
POLICY_SPAWN was selected, and

— (C — S) — maX(F - S, 0) ranks if FENIX_COMM_REPAIR_POLICY_NO_
SPAWN was selected.

Ranks in newcomm are assigned in the same order as in comm. To enable
successful recovery from failures via Fenix, the user should derive subse-
quent communicators only from newcomm.

arge [INOUT] - pointer to the number of arguments provided by the argc
argument to main, or NULL.

argv [INOUT] - pointer to the argument vector provided by the argv
argument to main, or NULL.

resume_mode [IN] - used to indicate where execution should resume upon
rank failure (all active (non-spare) ranks in all communicators, not only
those in communicators that failed). At a minimum the following should
be supported.

— FENIX_RESUME_BEGINNING - execution resumes at logical exit of Fenix_
Init.

e spare_ranks [IN] - the number of ranks initially in comm that are exempted
by Fenix in the construction of newcomm. These ranks are kept in reserve
to substitute for failed ranks. When all spare ranks have been depleted
and an additional failure occurs, Fenix will not attempt recovery, unless
spawning new ranks has explicitly been enabled. The behavior in this case
is undefined and may result in all ranks in comm calling MPI_Abort. The
spare_ranks parameter is ignored when control of the program returns
inside Fenix_Init in case of rank failure. Note that all spare ranks that
have not been used to recover from failures (and, therefore, are still re-
served by Fenix and kept inside Fenix_Init) will call MPI_Finalize and
exit when all active ranks have entered the Fenix_Finalize call.

Ranks to be used as spare ranks by Fenix will be available to the appli-
cation only before Fenix_Init, or after they are used to replace a failed
rank. This document refers to the latter as recovered ranks.

e repair_policy [IN] - used to communicate the type of recovery of ranks
Fenix may attempt. Legal values must include:

— FENIX_COMM_REPAIR_POLICY_NO_SPAWN - once spare ranks have been
depleted, no new ranks will be spawned to fill out original communi-
cators. Subsequent failures will be resolved by Fenix by “compacting”
survivor ranks within their respective communicators, such that they
retain the same order as before the failure, but they are numbered
successively within the shrunk communicator.

Note that this mode, in combination with requesting no spare ranks,
can be used to obtain a shrinking communicator repair mechanism.

— FENIX_COMM_REPAIR_POLICY_SPAWN - once spare ranks have been de-
pleted, new ranks will be spawned to fill out original communicators.

e error [OUT] - used to signal that a non-fatal error or special condi-
tion was encountered in the execution of Fenix_Init. An example of
such a condition is a communicator repair after all spare ranks have
been depleted under the policy FENIX_COMM_REPAIR_POLICY_NO_SPAWN
(i.e. FENIX_WARNING_SPARE_RANKS_DEPLETED).

Fenix_Init is called exactly once in a program. Spare ranks are not released
from Fenix_Init until they have been used by the library to repair damaged
communicators, or until Fenix_Finalize has been called by the active ranks
(at which time remaining spare ranks call MPI_Finalize and exit). When a
failure occurs, surviving ranks resume execution inside Fenix_Init (or else-
where if provided by resume_mode), and they do not read its input parameters
again. Replacement ranks that are created using MPI_Comm_spawn (invoked by
the library once the spare ranks have been depleted, but subject to the rank
repair policy specified by the user) start execution at the lexical top of the
program, including MPI_Init and Fenix_Init and any preceding statements.
Consequently, spawned replacement ranks experience another control flow than

survivor ranks or spare ranks, which may affect the correctness of MPI calls
placed before Fenit_Init, especially collectives. It is the user’s responsibility
to avoid such problems.

Current implementation
Rank spawning in response to an failure is currently not supported.
End current implementation

2.2 Call-back handler function recovery

Fenix Callback register

int Fenix_Callback_register(
void (*recover) (int, MPI_Comm, int, void*),
void *callback_data);

This function registers a callback to be called after a failure has been recovered
by Fenix, and right before resuming application execution (e.g. returning from
Fenix_Init if resume_mode is set to FENIX_RESUME_BEGINNING). If this func-
tion is called more than once, the different callbacks registered will be called in
the same order they were registered.

Fenix_Callback_register can be called either before or after calling Fenix_
Init, and does not need to be called collectively.

e A callback C, that is registered after Fenix_Init will only be invoked
by survivor ranks, since spare ranks or respawned ranks had no way to
register C, before a failure: they only execute code after Fenix_Init only
once the recovery procedure (which includes calling all registered callback
functions) is completely finished.

e A callback C} that is registered before Fenix_Init will be invoked by
survivor, respawned, as well as spare ranks after a failure occurs.

FENIX_ERROR_CALLBACK_NOT_REGISTERED will be returned if there is an er-
ror while trying to register the callback function.

e recover [IN] - the callback function to be registered.

e callback_data [IN] - a pointer to application-specific data to be passed
as the last parameter when calling the callback. Note that NULL is an
acceptable value.

If a callback returns, Fenix will consider that no error occurred within the
callback. If an error occurs, therefore, it needs to be either solved within the
callback or escalated by using mechanisms such as Fenix_Comm_invalidate or
MPI_Abort. Callback functions need to follow the following prototype:

void my_recover_callback(
int status,
MPI_Comm newcomm,
int error,
void *callback_data);

e status [IN] - contains the status of the rank in which this callback is called.
All ranks in which a callback is called may only have a status equivalent to
FENIX_STATUS_SURVIVOR_RANK or FENIX_STATUS_RECOVERED_RANK. See
Section 2.1 for more details.

e newcomn [IN] - contains the recovered communicator that may be returned
by Fenix_Init.

e error [IN] - indicates any error that may have occurred during the recov-
ery process. See Section 2.1 for more details.

e callback_data [IN] - contains the pointer passed when registering the
callback (last parameter of Fenix_Callback_register). Note that this
may be NULL.

In a future release of this specification, clarification of what happens when
a failure strikes between a callback is registered and Feniz_Intit is called will

be required. Currently, behavior in this case is undefined and can lead to an
unrecoverable error.

2.3 Proactive rank removal

Fenix Comm invalidate

int Fenix_Comm_invalidate(
MPI_Comm *comm,
int mask);

This function informs the library that certain ranks within a communicator
should be removed from the program execution. It can be used to remove ranks
proactively before they experience a fatal error. It must be invoked with a
resilient communicator managed by Fenix, or with MPI_COMM_SELF.

e comm [IN] - communicator whose rank(s) are slated for removal.

e mask [IN] - if non-zero, the calling rank will be removed.

2.4 Teardown

Fenix Finalize

int Fenix_Finalize(void);

This function cleans up all Fenix state, if any. If an MPI program using the
Fenix library terminates normally (i.e., not due to a call to MPI_Abort, or an
unrecoverable error) then each rank in newcomm returned by Fenix_Init must
call Fenix_Finalize before it exits. It must be called before MPI_Finalize,
and after Fenix_Init.

As Fenix_Init notes, all spare ranks that have not been used to recover
from failures (and, therefore, are still reserved by Fenix and kept inside Fenix_
Init) will call MPI_Finalize and exit when all active ranks have called Fenix_
Finalize.

3 Data Storage and Recovery

3.1 Overview

Fenix provides options for redundant storage of application data to facilitate
application data recovery in a transparent manner. The library contains func-
tions to control consistency of collections of such data, as well as their level of
persistence. Functions with the prefix Fenix_Data_ perform store, versioning,
restore and other relevant operations and form the Fenix data recovery API.
The user can select a specific set of application data, identified by its location
in memory, label it with Fenix_Data_member_create, and copy it into Fenix’s
redundant storage space through Fenix_Data_member_(I)store(v) at a cer-
tain point in time. Subsequently, Fenix_Data_commit assures the consistency
and the status of preceding Fenix_Data_member_store calls across MPI ranks,
marking the data as consistent and, therefore, recoverable after a loss of ranks.
Individual pieces of data can then be restored whenever they are needed with
Fenix_Data_member_(i)restore, for example after a failure occurs. We note
that the library’s data storage and recovery facility aims primarily to support
in-memory recovery, which is reflected in a number of design choices.

Populating redundant data storage using Fenix may involve dispersion of
data created by one rank to other ranks within the system (see e.g. [1]), making
the store operation semantically a collective operation. However, Fenix does not
require store and restore operations to be globally synchronizing. For example,
execution of Fenix_Data_member_store for a particular collection of data could
potentially be finished in some ranks, but not yet in others. And if certain ranks
nominally participating in the storage operation have no actual data movement
responsibility, the library is allowed to let them exit the operation immediately.
Consequently, Fenix data storage and retrieval functions should not be used for
synchronization purposes.

Multiple distinct pieces (members) of data assigned to Fenix-managed re-
dundant storage, can be associated with a specific instance of a Fenix data
group to form a semantic unit. Committing such a group ensures that the data
involved is available for recovery.

Appendix presents a diagram representing the data-centric view of the Data
Storage and Recovery Fenix Interface.

3.2 DManaging data storage and recovery constructs
3.2.1 Grouping data objects and ranks with data groups

A Fenix data group provides dual functionality. First, it serves as a container for
a set of data objects (members) that are committed together, and hence provides
transaction semantics. Second, it recognizes that Fenix_Data_member_store is
an operation carried out collectively by groups of ranks, but not necessarily by
all active ranks in the MPI environment. Hence, it adopts the convenient MPI
vehicle of communicators to indicate the subset of ranks involved.

An instantiation of a data group is obtained with the following function.

Fenix Data group create

int Fenix_Data_group_create(
int group_id,
MPI_Comm comm,
int start_time_stamp,
int depth);

e group_id [IN] - identifier of the group, unique among all active MPI ranks.
Must be the same for all ranks in comm. If a group with this group_id
was already created in the past and has not been deleted, the start_
time_stamp and depth parameters of this invocation will be ignored, since
Fenix automatically determines the correct values based on the previous
invocation. The recreated group will logically be the same as the one
previously in existence.

Note that group_id functions as a handle to the group, to be used in
creating data members associated with the group, storing these members,
committing the group, as well as recovering data after a failure: the group
is identified by group_id in Fenix_Data_member_store and Fenix_Data_
member_restore calls, for example.

The user-supplied group_id must be a nonnegative integer less than FENIX
GROUP_ID_MAX, with the latter value guaranteed to be at least 23°.

e comm [IN] - all ranks inside this communicator need to call this function
at the same logical time. They all participate as a logical unit in the
storage and recovery of the data stored by the corresponding Fenix_Data_
member_store call. comm should be a resilient communicator managed by

Fenix, or derived from a communicator managed by Fenix (i.e. newcomm
output parameter of Fenix_Init).

e start_time_stamp [IN] - subsequent commits related to this group have
a sequence number that uniquely identifies the commit within this group.
This unique logical sequence number is called the commit time stamp.
The start_time_stamp is the sequence number of the first commit to be
written to this group and can be defined by the user (for example, set
to zero); this identifier will be incremented by one unit automatically by
Fenix each time this group is committed. Must be the same in all ranks
in comm.

The user-supplied start_time_stamp must be a nonnegative integer less
than FENIX_TIME_STAMP_MAX, with the latter value guaranteed to be at
least 239,

e depth [IN] - the number of successive consistent commits (see Fenix_
Data_commit) of this group whose associated members are retained by
Fenix, in addition to the last one. For example, a depth of 0 means Fenix
will keep only the most consistent commit, while it will mark the previous
ones for deletion. Must be the same in all ranks in comm. The data
associated with older commit calls may be removed by Fenix. A depth of
-1 means Fenix will not remove any committed data automatically

The size and layout of the chosen communicator may affect the level of Fenix’
fault tolerance capability.

Current implementation

Specifically, if the buddy rank mechanism is used for redundant data storage (the
default method, see [1]), there have to be at least two ranks in the communicator
to be able to recover data after a rank failure. However, if these ranks are
collocated on the same processor or within the same node, they are more likely
to fail together than if they are located on different nodes. In general, the
communicator should be chosen such that it is possible to define a buddy rank
that is outside the expected failure envelope of the rank that created the data
to be stored.

End current implementation

The rationale behind the use of the group_id parameter is that it allows
Fenix to cache information about the group and use that at a later time. After
a loss of ranks, replacement ranks would not know about the group itself, but
given that label group_id is a value set and known by the application, the
application can query Fenix to retrieve the cached information and use it to
reconstruct the group logically. The ranks can then use the group to retrieve
redundantly stored application data.

The predefined constant FENIX_DATA_GROUP_WORLD_ID constitutes a group_
id as if created by calling:

Fenix_Data_group_create(

10

FENIX_DATA_GROUP_WORLD_ID, // group_id

newcomm, // communicator
0, // start_time_stamp
0); // depth

where newcomnm is the communicator returned by the last time Fenix_Init
returned. In other words, this is a convenient constant to represent all ranks
returned by Fenix_Init via a reserved group_id, an initial time stamp of zero,
and garbage collection depth of zero (i.e. Fenix will keep only the last consistent
commit).

Applications that do not need the flexibility of the more generic Fenix group-
ing mechanism can, therefore, avoid having to create a specific group and can
use this generic group instead.

A Fenix data group can be deleted using the following functions. Along with
the group, any application data associated with the group (see section 3.3.1) will
also be deleted. Because this may take significant time, an asynchronous version
is included.

Fenix Data group delete

int Fenix_Data_group_delete(
int group_id);

e group_id [IN] - id of the group to be destroyed.

When a data group is no longer needed, its resources can be released (and its
group_id be made available for use in other groups) with this function. This
function will recursively delete all its members and commits.

This collective operation marks the group object maintained by the library
for deallocation. Any pending operations that use this group will complete
normally; the object is actually deallocated only if there are no other active
references to it.

Fenix Data group idelete

int Fenix_Data_group_idelete(
int group_id,
Fenix_Request *request);

e request [OUT] - handle to the asynchronous store operation.

This function has the same effect as Fenix_Data_group_delete, except that
it returns immediately, possibly before the data or meta-data associated with
the group have been deleted. The operation can be finalized by waiting on the
returned request.

11

3.2.2 Describing application data with data group members

Fenix data groups are composed of members that describe the actual application
data. A member joins a group with the following function.

Fenix Data member create

int Fenix_Data_member_create(
int member_id,
void *buffer,
int count,
MPI_Datatype datatype,
int group_id);

e member_id [IN] - integer within the named group group_id that uniquely
identifies the data in buffer.

The user-supplied member_id must be a nonnegative integer less than

FENIX_MEMBER_ID_MAX, with the latter value guaranteed to be at least
940,

e buffer [IN] - the address of the data to be copied to the redundant storage
maintained by Fenix. Note that this parameter may also be specified using
the function Fenix_Data_member_set_attribute. The latter is critical
for non-survivor ranks ((FENIX_STATUS_RECOVERED_RANK) after a failure.
In that case data group members are implicitly recreated by the library
when the programmer calls Fenix_Data_group_create, but any pointer
to the application data is no longer valid, so must be supplied explicitly
by the user for each group member.

e count [IN] - maximum number of contiguous elements of type datatype
of the data to be stored!. This parameter does not need to be the same
in all ranks calling this function.

e datatype [IN] - data type of each element in buffer. This parameter needs
to be the same in all ranks calling this function.

e group_id [IN] [optional; default value: FENIX_DATA_GROUP_WORLD_ID] -
identifier of the group that will be associated with this member.

Fenix Data member delete

When a data group member is no longer needed, it may be deleted by the
following functions. Along with the data group member, any application data
associated with the member (see section 3.3.1) will also be deleted. Because
this may take significant time, an asynchronous version is included.

ITo avoid problems related to using an int to identify sizes (such as 32-bit integers not
being big enough to address all the memory, we will use MPI_Count once it is adopted by the
MPI Forum.

12

int Fenix_Data_member_delete(
int member_id,
int group_id) ;

This function marks all storage required to store data and meta-data related
to member_id for deallocation, being the data in the calling rank, in any other
rank, or in any other storage facility within the system. Any pending opera-
tions that use this member of the group will complete normally; the objects
are actually deallocated only after all operations involving this member have
completed.

This function needs to be called collectively, at the same logical time, by
all ranks associated with the communicator used when creating group_id. All
ranks must provide the same values for the parameters.

e member_id [IN] - unique integer within the named group that uniquely
identifies the data in buffer.

e group_id [IN] [optional; default value: FENIX_DATA_GROUP_WORLD_ID] -
group id of collection of data.

Fenix Data member idelete

int Fenix_Data_member_idelete(
int member_id,
Fenix_Request *request,
int group_id);

This function has the same effect as Fenix_Data_member_delete, except
that it returns immediately, possibly before the data or meta-data associated
with the member have been deleted. The operation can be finalized by waiting
on the returned request.

e request [OUT] - handle to the asynchronous store operation.

3.3 Storing and committing application data

3.3.1 Storing group members

Fenix Data member store

int Fenix_Data_member_store(
int member_id,
int group_id,
Fenix_Data_subset subset_specifier);

13

This function is used to safeguard the data associated with a particular
member of the data group. This function will place one or more copies of data
residing in buffer (supplied in the call to the function Fenix_Data_member_
create) in Fenix’ redundant data storage.

Current implementation

After creating a local copy in memory of this member, Fenix will transfer this
local copy to its final destination(s) (e.g. non-volatile memory, a peer’s memory,
a file on a local hard disk).

End current implementation

This function may fail if not enough memory can be allocated to store data
of the specified size. All ranks in the communicator that participated in Fenix_
Data_group_create must call this function at logically the same time, with the
same member_id.

When the call returns, the application can safely modify the data in buffer
marked for safeguarding, since it has already been saved. The saved data, how-
ever, will only be available for recovery after being time stamped via commiting
the group. This can be done using its group identifier, its member identifier,
and the logical time stamp of the commit.

Multiple calls to Fenix_Data_member_store with the same member_id with-
out intervening commits will lead to storing (parts of) the same application data
object. Depending on the value of subset_specifier, this may lead to over-
writing the data (loss of data), or incremental construction of the full data.

e member_id [IN] - integer label that uniquely identifies a member of the
data group (see Fenix_Data_member_create). FENIX_DATA_MEMBER_ALL
will store all members associated with the specified group.

e group_id [IN] [optional; default value: FENIX_DATA_GROUP_WORLD_ID] -
identifier of the group associated with this member.

e subset_specifier [IN] [optional; default value: FENIX_DATA_SUBSET_
FULL] - specifier of the subset of data to be stored. The choice of this
parameter needs to result in identical subsets in all ranks calling this
function, which minimizes the need for the library to coordinate between
the rank whose member needs to be safeguarded and the agent managing
Fenix’ non-local redundant data storage (which could be another rank
in the system), thus resulting in performance improvement. Users are
encouraged to use this function instead of Fenix_Data_member_storev
(see below) whenever possible. When a subset_specifier different than
FENIX_DATA_SUBSET_FULL is supplied, Fenix will only store the positions
in the application buffer that are in the subset.

Fenix Data member storev

int Fenix_Data_member_storev(

14

int member_id,
int group_id,
Fenix_Data_subset subset_specifier);

This function is the same as Fenix_Data_member_store, except that actual
subsets realized by the choice of parameter subset_specifier can be different
in different ranks.

Fenix Data member istore

int Fenix_Data_member_istore(
int member_id,
Fenix_Request *request,
int group_id,
Fenix_Data_subset subset_specifier);

This function has the same effect as Fenix_Data_member_store, except that
it returns immediately, even before the data has been stored safely. Data in the
application buffer marked for safeguarding may be overwritten once a call to
Fenix_Data_wait on request has returned.

Current implementation

Fenix_Data_member_istore copies the application data into local memory be-
fore returning and starts the asynchronous transfer to its final destination.
Therefore, in the current implementation, marked data in the application buffer
may be overwritten once the call Fenix_Data_member_istore returns.

End current implementation

The result of multiple calls to Fenix_Data_member_istore with overlapping
subsets and without intervening calls to Fenix_Data_wait is undefined.

e request [OUT] - handle to the asynchronous store operation.

Fenix Data member istorev

int Fenix_Data_member_istorev(
int member_id,
Fenix_Request *request,
int group_id,
Fenix_Data_subset subset_specifier);

This function is the same as Fenix_Data_member_istore, except that actual
subsets realized by the choice of parameter count in function Fenix_Data_
member_create and parameter subset_specifier can be different in different
ranks.

15

3.3.2 Making stored data recoverable with data group commits

Fenix Data commit

int Fenix_Data_commit (

int *time_stamp,
int group_id);

This function is used to freeze the current state of a data group, together

with all its application data that has been stored in Fenix’ redundant stor-
age, and label it with a time stamp, thus creating a consistent snapshot of the
stored application data. All ranks in the communicator that was used in the
creation of the data group must call this function at the same logical time.
Only data that has been committed is eligible for recovery through Fenix_
Data_member_restore. An application needs to call Fenix_Data_wait for all
pending asynchronous Fenix_Data_member_istore and Fenix_Data_member_
istorev operations in the group before committing.

e time_stamp [OUT] [optional; default value: NULL] - absolute sequence
number of the committed data. NULL is a valid parameter, in which case
the automatically incremented sequence number is not returned to the
application.

The time_stamp parameter will be a nonnegative integer less than FENIX_
TIME_STAMP_MAX, with the latter value guaranteed to be at least 23°.

e group_id [IN] [optional; default value: FENIX_DATA_GROUP_WORLD_ID] -
identifier of the group to commit.

Note that not all members in the group need to be stored (with Fenix_

Data_member_store or any other variant) in order for a commit to succeed.
For example, the following scenario is valid.

1(
11

// Create members

4| Fenix_Data_member_create (0, &a, 1, MPI_INT, mygroup);

Fenix_Data_member_create(l, &b, 1, MPI_INT, mygroup);
// Store members as part of commit with time stamp O

dla = myrank;

b = myrank+1;

Fenix_Data_member_store (0, mygroup);
Fenix_Data_member_store (1, mygroup);
Fenix_Data_commit (&ts, mygroup); // after this, ts=0
// Store only member ’b’ for commit with time stamp 1
b = myrank+100;

4| Fenix_Data_member_store (1, mygroup);

Fenix_Data_commit (&ts, mygroup); // after this, ts=1

16

3.4 Recovering application data

After a failure is recovered and control is returned to the application (for ex-
ample, by returning from Fenix_Init), the application may need to restore
previously saved and committed data objects. The first step is to recreate the
groups using the repaired communicators, which can be done using Fenix_
Data_group_create, as explained in Section 3.2.1. Members, however, do not
need to be recreated, since both their meta-data (in particular, the member_id,
the count, and the datatype) and application data are saved in the redundant
storage. The robustness of meta-data in Fenix’ redundant data storage depends
on the implementation’s policy, which can be queried with the function Fenix_
Data_redundancy_policy. Note that this policy governs all meta-data that
may need to be recovered after a failure that was not explicitly stored in Fenix’
redundant storage by the programmer. Users can fine-tune the storage policy
of safeguarded application data by specifying a particular policy at the time of
the definition of such data (see Fenix_Data_member_create).

Fenix Data redundancy policy

int Fenix_Data_redundancy_policy(
void *policy);

e policy [OUT] - policy used by the Fenix library

This function is used to query the library for the type of policy it uses to
safeguard all meta-data required by the library to create and restore the data
structures related to storage and recovery of application data, including data
groups and members.

Fenix Data member restore

int Fenix_Data_member_restore(
int member_id,
void *data,
int max_count,
int time_stamp,
int group_id);

This function is used to retrieve explicitly stored and committed data. It
is a collective operation; other ranks in the communicator that participated
in Fenix_Data_group_create when creating the group identified by group_id
must call this function at the same logical time. This function can only be used
if the size of the communicator used to store the data is the same as that at
the time of data recovery (this implies non-shrinking communicator recovery in
case of a loss of rank).

The application will be able to recover explicitly stored and committed data
group members by allocating a buffer and, using Fenix_Data_member_restore,

17

requesting Fenix to fill it with the data from a particular member at a particular
time stamp (commit).

If the size of the buffer to allocate is unknown for a particular rank, it can
be queried by using the functions described in Section 3.6.3.

Parameters:

member_id [IN] - this value must match the member id that was supplied
when Fenix_Data_member_store was called.

data [OUT] - the requested stored data will be written contiguously at
this local address. If NULL, no attempt will be made to fetch and restore
data. This is useful for selective recovery of application data. Each rank in
the communicator associated with the data group will receive the selected
data from the corresponding rank in the communicator used at the time
the data was stored and committed.

max_count [IN] - the requested stored data, if found, will only be recovered
if its size is max_count times the size of datatype or less.

time_stamp [IN] [optional; default value: FENIX_LATEST_DATA_GROUP_
COMMIT] - the time stamp of the requested committed member. The special
value of FENIX_LATEST_DATA_GROUP_COMMIT will always recover the latest
committed data by Fenix in group.

group_id [IN] [optional; default value: FENIX_DATA_GROUP_WORLD_ID] -
group that contains the requested data.

In case a member is selected for recovery in a commit that did not include
that particular member, that data member will be restored using the value of
the most recent commit(s) prior to the requested commit. This can be seen in
lines 20 through 23 of the following scenario.

// Create members

4| Fenix_Data_member_create (0, &a, 1, MPI_INT, mygroup);

Fenix_Data_member_create(l, &b, 1, MPI_INT, mygroup);
// Store members for commit with time stamp O

a
b

= myrank;
= myrank+1;

1| Fenix_Data_member_store (0, mygroup);

Fenix_Data_member_store (1, mygroup);
Fenix_Data_commit (&ts, mygroup); // after this, ts=0
// Store member ’b’ for commit with time stamp 1

b

= myrank+100;

4| Fenix_Data_member_store (1, mygroup);

Fenix_Data_commit (&ts, mygroup); // after this, ts=1
// Store member ’a’ for commit with time stamp 2

gl a

= myrank+200;

Fenix_Data_member_store (0, mygroup);
Fenix_Data_commit (&ts, mygroup); // after this, ts=2

// Restore members
Fenix_Data_member_restore (0, &new_a, 1, 1, mygroup);
// new_a now contains "myrank"” (line 5)

18

24| Fenix_Data_member_restore(l, &new_b, 1, 1, mygroup);
// mnew_b now contains "myrank+100" (line 11)

When restoring a group member m with time stamp ts that contains a hole
(i.e. in commit ts, a subset was used to store m that did not cover all elements
of m), previous time stamps of m will be inspected, starting from ts — 1 and
working backwards, until a value v of the hole is found in ¢ts — i (being i > 0).
The hole in the buffer data will then be filled using v. If no value for the hole
is found, the position of the hole in the application’s buffer data will be not
overwritten.

Fenix Data member irestore

int Fenix_Data_member_irestore(
int member_id,
void *data,
int max_count,
Fenix_Request *request,
int time_stamp,
int group_id);

This function has the same effect as Fenix_Data_member_restore, except
that it returns immediately, possibly before the application data has been re-
stored. Data in buffer data is not guaranteed to be consistent until a call to
Fenix_Data_wait on the request has returned.

e request [OUT] - handle to the asynchronous data recovery operation.

The above functions assume that the size of the communicator used during
storage of the data before the commit operation equals that present at the
time of the restoration operation. All ranks within the communicator call this
function, and Fenix can establish a one-to-one mapping between ranks that
stored data before the commit and those that are requesting data at the time of
the restoration. However, when the communicator has shrunk, such a mapping
no longer exists. In this case, or in other instances in which more control is
desired, the user can specify explicitly for each calling rank what is the source
rank whose stored data needs to be retrieved from Fenix’ redundant storage.
This is accomplished by the following two functions.

Fenix Data member restore from rank

int Fenix_Data_member_restore_from_rank(
int member_id,
void *data,
int max_count,
int time_stamp,
int group_id,
int source_rank) ;

19

This function works the same way as Fenix_Data_member_restore, except
that the source rank for the data to be recovered is specified explicitly.
Parameters:

e source_rank [IN] - specifies the rank (in the communicator associated
with group_id) that performed the data store and whose data we are
trying to recover.

Fenix Data member irestore from rank

int Fenix_Data_member_irestore_from_rank(
int member_id,
void *data,
int max_count,
Fenix_Request *request,
int time_stamp,
int group_id,
int source_rank);

This function works the same way as Fenix_Data_member_irestore, except
that the source rank for the data to be recovered is specified explicitly.
Parameters:

e source_rank [IN] - specifies the rank (in the communicator associated
with group_id) that performed the data store and whose data we are
trying to recover.

We note that these functions do not require that the communicator has
shrunk, and can be used for any recovery pattern consistent with their definition,
as long as the value for source_rank is valid.

3.5 Managing data subsets

Fenix data group members are used to provide resilient caches for sets of appli-
cation data that are contiguous in memory. Each set is represented by a pair
consisting of {start_pointer,count}. Subsets represent logical subsets of such
sets. They allow the user to indicate which elements (zero or more elements be-
tween 0 and count) will be selected for a particular Fenix_Data_member_store
operation or its variants (see example in Section 4.2). They provide a conve-
nient mechanism to reduce the burstiness of data traffic to the final destination
of stores (such as IO subsystems) accessed by Fenix_Data_member_store calls.
They also provide a way to store only the elements of a group member that
changed since last commit.

An example of usage of subsets can be seen as follows. Assume an array of
ten elements set initially to a particular set of values. An application iteratively
changes the elements in the array, one element per iteration. In this scenario,

20

Initial member store I

Commit (time stamp 0)

e e a a Iy

Second member store [| ‘ ‘ ‘ ‘ ‘ I |

array_end_offsets ﬁ ﬁ ﬁ ﬁ

Commit (time stamp 1)

num_blocks = 3
array_start_offsets @ @ @

Third member store l ‘ ‘ ‘ ‘ | |

array_end_offsets ﬁ ﬁ ﬁ

Commit (time stamp 2)

Figure 1: Incremental member store using subsets. Gray areas indicate the data
being saved by Fenix_Data_member_store operations.

the application can decide to initially store the entire array, and then, at a
specific iteration, store only the changed element by selecting it with subsets.

Another example of an array in a contiguous memory layout is illustrated
by Figure 1. In this example, the second and third Fenix_Data_member_store
calls store subsets of an array by block patterns. Fenix provides a data type to
allow users to define the relative location and size of individual blocks.

Current implementation

During the store call and its variants, Fenix decides the way to perform the
actual store based on the data size and granularity of blocks, as well as the
performance of underlying IO subsystems. See Fenix_Data_member_store for
more details.

End current implementation

Fenix Data subset create

int Fenix_Data_subset_create(
Fenix_Data_subset *subset_specifier,
int num_blocks,
int* array_start_offsets,
int* array_end_offsets);

Creates a subset based on num_blocks pairs of {start_offset,end_offset}.

When applying a Fenix_Data_subset value to Fenix_Data_member_store
calls, the values of array_start_offsets and array_end_offsets must be
less than the count of the entire data object (value of count) defined by the
corresponding Fenix_Data_member_create call.

21

e subset_specifier [OUT] - name of the subset specifier, to be used in
storing data.

e num_blocks [IN] - the number of contiguous data blocks, which also de-
fines the number of elements in array_start_offsets and array_end_
offsets.

e array_start_offsets [IN] - an integer array, which indicates the in-
dex of the first elements for each data block (the start_offset in the
pair {start_offset,end_offset}). The value indicates the number of
data elements from the beginning of the data registered at Fenix_Data_
member_create.

e array_end_offsets [IN] - an integer array, which indicates the index of
the last element for each data block (the end_offset in the pair {start_
offset,end_offset}). The value indicates the number of data elements
from the beginning of the data registered at Fenix_Data_member_create.

The constant FENIX_DATA_SUBSET_FULL of type Fenix_Data_subset repre-
sents the default subset specifier; it selects all the data indicated by the user via
the count parameter specified in the call to Fenix_Data_member_create.

Fenix Data subset delete

int Fenix_Data_subset_delete(
Fenix_Data_subset *subset_specifier);

Deletes a previously-created subset.

e subset_specifier [INOUT] - name of the subset specifier, as returned by
the subset_specifier parameter in Fenix_Data_subset_create. The
handle is set to FENIX_SUBSET_NULL.

3.6 Accessing data storage and recovery constructs

These functions provide the means to access and alter the information and
attributes for Fenix’s data recovery and its internals. The status of individ-
ual stored objects can be queried by pointing to the corresponding Fenix data
group and the member_id. Examples in Section 4.3 and Section 4.4 show how
these functions can be used. All functions in this section have local completion
semantics and do not have to be called collectively, except Fenix_Data_member_
get_attribute.

3.6.1 Querying group members

Fenix Data group get number of members

22

int Fenix_Data_group_get_number_of_members(
int *number_of_members,
int group_id) ;

e number_of_members [OUT] - number of available distinct member of this
group. Manually deleted members are not included in this number.

e group_id [IN] [optional; default value: FENIX_DATA_GROUP_WORLD_ID] -
Fenix data group whose information is sought.

Fenix Data group get member at position

int Fenix_Data_group_get_member_at_position(
int position,
int *member_id,
int group_id);

e position [IN] - sequence number of the requested Fenix_Data_member.
position must be a value between 0 and number_of_members-1, (number_
of _members as returned by Fenix_Data_group_get_number_of _members).
The member positions will be returned in the order the user added mem-
bers to the Fenix data group, i.e. oldest first, newest last (e.g. the first
member added by the user will have position 0). Deleted members will
not be included in this list.

e member_id [OUT] - the unique identifier of the Fenix_Data_member sought.

e group_id [IN] [optional; default value: FENIX_DATA_GROUP_WORLD_ID] -
Fenix data group whose information is sought.

3.6.2 Querying committed data

Fenix Data group get number of commits

int Fenix_Data_group_get_number_of_commits (
int *number_of_commits,
int group_id);

e number_of_commits [OUT] - number of available, distinct, consistent
commits of this group. Deleted commits (either deleted manually or
deleted through garbage collection —i.e. see depth of Fenix_Data_group_
create) are not included in this number.

e group_id [IN] [optional; default value: FENIX_DATA_GROUP_WORLD_ID] -
Fenix data group whose information is sought.

Fenix Data group get commit at position

23

int Fenix_Data_group_get_commit_at_position(
int position,
int *time_stamp,
int group_id);

e position [IN] - sequence number of the requested Fenix_Data_commit.
position must be a value between 0 and number_of _commits-1 (number_
of _commits as returned by Fenix_Data_group_get_number_of_commits).
The commit positions will be returned in the reverse order in which the
user executed them, i.e. oldest last, newest first (e.g. the most recent
completed commit will have position 0).

e time_stamp [OUT] - the unique identifier of the Fenix_Data_commit
sought.

e group_id [IN] [optional; default value: FENIX_DATA_GROUP_WORLD_ID] -
Fenix data group whose information is sought.
3.6.3 Accessing group member attributes

Certain properties can be assigned to members of Fenix data groups, for ex-
ample, to indicate a storage preference within the memory hierarchy (DRAM,
non-volatile memory, local disk). These properties, called attributes, can be
queried and defined using the following functions.

Fenix Data member get attribute

int Fenix_Data_member_get_attribute(
int member_id,
int attribute_name,
void *attribute_value,
int *flag,
int group_id,
int source_rank) ;

This function must be called at the same logical time by all ranks in the
communicator linked to the data group.
Parameters:

e member_id [IN] - unique integer within group associated with group_id
that identifies the data in Fenix’s redundant data storage.

e attribute_name [IN] - name of the particular attribute, consisting of the
prefix FENIX_DATA_MEMBER_ATTRIBUTE_, followed by a suffix. At least
the following suffixes must be valid: BUFFER, COUNT, DATATYPE, SIZE, and
REDUNDANCY_POLICY.

e attribute_value [OUT] - the attribute value of the particular member
of the target data group.

24

e flag [OUT] - true if an attribute value was extracted; false if no attribute
is associated with the key.

e group_id [IN] [optional; default value: FENIX_DATA_GROUP_WORLD_ID] -
Fenix data group whose information is sought.

e source_rank [IN] [optional; default value: the calling rank in the commu-
nicator associated with group_id] - for attributes that are rank-dependent
(such as FENIX_DATA_MEMBER_ATTRIBUTE_COUNT), specifies the rank (in
the communicator associated with group_id) that contains the attribute
that is sought.

Fenix Data member set attribute

int Fenix_Data_member_set_attribute(
int member_id,
int attribute_name,
void *attribute_value,
int *flag,
int group_id);

e member_id [IN] - unique integer within group associated with group_id
that identifies the data in Fenix’s redundant data storage.

e attribute_name [IN] - name of the particular attribute. Attribute names
with the suffix COUNT and DATATYPE are read only.

e attribute_value [IN] - the attribute value of the particular member of
the target data group.

e flag [OUT] - true if the attribute value was set; false if no attribute is
associated with the key or if the attribute is read-only.

e group_id [IN] [optional; default value: FENIX_DATA_GROUP_WORLD_ID] -
Fenix data group whose information is sought.
3.7 Removing stored application data

Data and meta-data associated with a specific commit operation can be manu-
ally marked for deletion using the following functions.

Fenix Data commit delete

int Fenix_Data_commit_delete(
int time_stamp,
int group_id);

25

This function removes irretrievably the stored members and meta-data as-
sociated with a specific Fenix_Data_commit call. It must be called by all the
ranks that participated in the construction of the group, and all ranks must
provide the same values for the parameters. It can be used in addition to, or in-
stead of, the implicit garbage collection that Fenix performs, which is controlled
by the depth parameter in Fenix_Data_group_create.

e time_stamp [IN] - the time stamp of the requested commit. The special
value of FENIX_LATEST_DATA_GROUP_COMMIT will always remove the latest
data consistently committed by Fenix. The special value of FENIX_ALL_
DATA_GROUP_COMMIT can be used to remove all data consistently commit-
ted by Fenix.

e group_id [IN] [optional; default value: FENIX_DATA_GROUP_WORLD_ID] -
group whose time stamped, committed data should be removed.

Fenix Data commit idelete

int Fenix_Data_commit_idelete(
int time_stamp,
Fenix_Request *request,
int group_id);

This function has the same effect as Fenix_Data_commit_delete, except
that it returns immediately, possibly before the data has been removed. The
operation can be finalized by waiting on the returned request.

e request [OUT] - handle to the asynchronous delete operation.

We note that redundant application data is also deleted as a side effect of the
functions Fenix_Data_group_(i)delete and Fenix_Data_member_(i)delete.
See sections 3.2.1 and 3.2.2.

4 Examples

4.1 Protecting process and data with Fenix

This example shows two versions of the same mini-example application, a non-
fault-tolerant version, and an augmented version with Fenix that tolerates fail-
ures in an on-line manner.
1| /* Non-fault-tolerant version */
4l int main ()
{
int it
int A[100], BI[50];

initialize (A, B);

26

[T S CH)

1

NONON NN

for(it=0 ; it<1000 ; it++) {
work1 (A, MPI_COMM_WORLD) ;
if (A[0] > 200) {
work2(A, B, MPI_COMM_WORLD);
}

/* Fault tolerant wversion with Feniz */
int main ()
£

int it;

int A[100], B[50];

int status, error;

MPI_Comm new_comm_world;

Fenix_Init (&status, MPI_COMM_WORLD, &new_comm_world,
&argc, &argv,
FENIX_RESUME_BEGINNING,
10, // mum_spare_ranks
FENIX_COMM_REPAIR_POLICY_NO_SPAWN, // repair_policy

&error) ;
if('error && status == FENIX_STATUS_INITIAL_RANK) {
/* no failure occurred */

it = -1;
initialize (A, B);
Fenix_Data_member_create (990, &it, 1, MPI_INT);
Fenix_Data_member_create (991, A, 100, MPI_INT);
Fenix_Data_member_create (992, B, 50, MPI_INT);
Fenix_Data_member_store (FENIX_DATA_MEMBER_ALL);
Fenix_Data_commit () ;
} else if('error) {
/* ranks recovered from a failure, now restore data */
Fenix_Data_member_restore (990, &it, 1, FENIX_LATEST_COMMIT);
Fenix_Data_member_restore (991, A, 100, FENIX_LATEST_COMMIT) ;
Fenix_Data_member_restore (992, B, 50, FENIX_LATEST_COMMIT);
} else {
// There was an error in Feniz
MPI_Abort (MPI_COMM_WORLD, -1);
¥

for(; it<1000 ;) {
il e o
Fenix_Data_member_store (990) ;
workl (A, new_comm_world);
if (A[0] > 200) {
work2(A, B, new_comm_world);
Fenix_Data_member_store (992) ;
}
Fenix_Data_member_store (991);
Fenix_Data_commit ();

27

4.2 Storing data objects with subsets

/% Non-fault-tolerant wversion */
int main ()
{
ing ity
double A[10000];
¢ const int lda = 100;

initialize (A);

1 for (it=0 ; it<100 ; it++) {
11 workl (A[ldax*it + it]);

19 }

1: }

|| /* Fault tolerant version with Feniz */
int main ()
{
int i%;
int A[10000];
r int offsets[100];
b int sizes[100];
int start_offset_A[100], end_offset_A[100];
const int 1lda = 100;
1(int status;
11 Fenix_Data_subset subset_LU;

1 Fenix _Init (&status, ...);

1 if (status == FENIX_STATUS_INITIAL_RANK) {

14 /% mno fatilure occurred */

16 it = 0;

17 initialize (A);

1 Fenix_Data_member_create (990, &it, 1, MPI_INT);

16 Fenix_Data_member_create (991, A, 10000, MPI_DOUBLE);

2(Fenix_Data_member_store (FENIX_DATA_MEMBER_ALL);

21 Fenix_Data_group_commit () ;

24 } else {

o /* ranks recovered from a failure, now restore data */
3 Fenix_Data_restore (990, &it, 1, MPI_INT, FENIX_LATEST_COMMIT
¥;3

25 Fenix_Data_restore (991, A, 10000, MPI_DOUBLE,
FENIX_LATEST_COMMIT) ;

2¢ }

2 for(; it<100 ; it++) {

2 Fenix_Data_member_store (990) ;

3(/% Create 2 subsets for the next operation */

31 for(j = it; j < 100; j++) {

32 start_offset_A[j]l = j*100 + j;

3 end_offset_A[j] = start_offset_A[j] + 1lda;

3 }

34 Fenix_Data_subset_create (&subset_LU, 100-it, start_offset_A,

end_offset_A);

317 workl (A[ldaxit + it]);
Fenix_Data_member_store (991, FENIX_DATA_GROUP_WORLD_ID,

28

subset_A);
40 Fenix_Data_group_commit () ;
11 Fenix_Data_subset_delete (&subset_LU);
1 }
14| ¥

4.3 Recoverying one member of a data group

This example assumes that ranks have the knowledge of (1) the group identifier
group_id, (2) the size of the communicator associated with that group (same
size as mycomm), (3) the features of the member sought (in particular, member_
id, count, and datatype) and (4) the specific time stamp ts of the sought
consistent commit.

Fenix_Init (&status, MPI_COMM_WORLD, &new_comm_world,

9 &argc, &argv,
FENIX_RESUME_BEGINNING,

4 num_spare_ranks,
FENIX_COMM_REPAIR_POLICY_NO_SPAWN,

z &error) ;

1 if ('error && status != FENIX_STATUS_INITIAL_RANK) {

// Failure successfully recovered
my_get_communicator_from_world(new_comm_world, &mycomm) ;

1¢ Fenix_Data_group_create (group_id, mycomm,

11 0, // These last two params are ignored,

14 0); // since group_id already ezxzisted

1: int dt_size;

1 MPI_Type_size(datatype, &dt_size);

1 assert(size != MPI_UNDEFINED);

16 uint8_t recovered_data = (uint8_t *) malloc(count*dt_size);
17 Fenix_Data_member_restore(

18 member_id, &recovered_data, count,

16 ts, group_id);

2(// At this point, the application has its recovered data in
21 // all positions of member_pointers.

24 // Now, the application should inspect these elements to try
2 // and determine what to do with the recovered data.

4.4 Recoverying all members of a data group

This example assumes that ranks have the knowledge of (1) the group identifier
group_id as well as (2) the size of the communicator associated with that group
(same size as mycomm).

This example assumes that the recovered rank have no knowledge about the
application data contained in the members that were stored. This is a corner
case, since the application should be aware of the data associated with a member
identifier in a group.

Fenix_Init (&status, MPI_COMM_WORLD, &new_comm_world,
&argc, &argv,

FENIX_RESUME_BEGINNING,
num_spare_ranks,

29

FENIX_COMM_REPAIR_POLICY_NO_SPAWN,

¢ &error) ;

1 if('error && status != FENIX_STATUS_INITIAL_RANK) {

// Failure successfully recovered
my_get_communicator_from_world(new_comm_world, &mycomm) ;
1 Fenix_Data_group_create (group_id, mycomm,

11 0, // These last two params are ignored,

13 0); // since group_tid already exzisted

1 int number_of_members;

14 Fenix_Data_group_get_number_of_members (

14 &number_of_members, group_id);

16 uint8_t **member_pointers = (uint8_t x*x)

17 malloc (number_of_members*sizeof (uint8_t *));

1¢ int *member_counts = (int *)

1 malloc (number_of_members*sizeof (int));

2(MPI_Datatype *member_datatypes = (MPI_Datatype *)

2] malloc (number_of_members*sizeof (MPI_Datatype));
24 for(int m=0 ; m<number_of_members ; m++) {

2 int member_id;

2 Fenix_Data_group_get_member_at_position(

24 m,

26 &member_id,

271 group_id) ;

25 int flag:

2 Fenix_Data_member_get_attribute(member_id,

30 FENIX_DATA_GROUP_MEMBER_ATTRIBUTE_COUNT,

31 (void #*) &member_counts[m], &flag, group_id);
39 assert (flag);

3: MPI_Datatype datatype;

34 Fenix_Data,member_get_attribute(member_id,

34 FENIX_DATA_GROUP_MEMBER_ATTRIBUTE_DATATYPE,

3¢ (void #*) &member_datatypes[m], &flag, group_id);
37 int dt_size;

38 MPI_Type_size (member_datatypes[m], &dt_size);

3¢ assert (size != MPI_UNDEFINED) ;

AC member_pointers[m] = (uint8_t *) malloc(count*dt_size);
11 int commit_time_stamp;

13 Fenix_Data_group_get_commit_at_position(

% 0, &commit_time_stamp, group_id);

1 Fenix_Data_member_restore(

15 member_id, &(member_pointers[m]), member_counts[m],
46 commit_time_stamp, group_id);

1
s // At this point, the application has its recovered data in
T // all positions of member_pointers.

5(// Now, the application should inspect these elements to try
51 // and determine what to do with the recovered data.

Acknowledgments

We thank Josep Gamell, Robert L. Clay, and Michael A. Heroux for their help,
consistent support, and insightful discussions. We also thank George Bosilca
and Ichitaro Yamazaki at University of Tennessee, Knoxville for the useful dis-

30

cussions in MPI-ULFM and realistic use cases of the persistent data storage
interface of Fenix.

The research presented in this work is supported in part by National Sci-
ence Foundation (NSF) via grants numbers CNS 1305375, ACI 1339036, ACI
1310283, ACI 1441376 and IIS 1546145, and by the Director, Office of Ad-
vanced Scientific Computing Research, Office of Science, of the US Department
of Energy Scientific Discovery through Advanced Computing (SciDAC) Insti-
tute for Scalable Data Management, Analysis and Visualization (SDAV) under
award number DE-SC0007455, the DoE RSVP grant via subcontract number
4000126989 from UT Battelle, the Advanced Scientific Computing Research and
Fusion Energy Sciences Partnership for Edge Physics Simulations (EPSI) under
award number DE-FG02-06ER54857, the ExaCT Combustion Co-Design Cen-
ter via subcontract number 4000110839 from UT Battle, via the SIRIUS grant
number DE-SC0015160, and through a grant from Sandia National Laborato-
ries. The research at Rutgers was conducted as part of the Rutgers Discovery
Informatics Institute (RDI?).

Sandia National Laboratories is a multi-program laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94A1.85000.

31

A Appendix: Semantic picture of the Fenix Data
recovery interface

The diagram below represents a data-centric view of the Data Storage and
Recovery Fenix Interface.

*
""""""""""""""""""""""""" Fenix_Data_member
Fenix_Data_group_get_number_of_members() Fen?x_Data_Wait()
Fenix_Data_group_get_member_at_position() int member_id Fenix-Data-test()
| —————— g void *buffer
vy int count
-~ MPI Datatype datatype
int storexank 000000 | F---------= l
|
Fenix_Data_member_create() i
MPI_Comm Fenix_Data_member_delete() :
Fenix_Data_member_Idelete() l
! Fenix_Data_member_store() Fenix_Data_stored_member
N Fenix_Data_member_storev/()
1 Fenix_Data_member_Istore()
Fenix_Data_group Fenix_Data_member_Istorev()
Fenix_Data_member_restore() :
int group_id Fenix_Data_member Irestore()
int start_time_stamp Fenix_Data_member_get_attribute()
int depth Fenix_Data_member_set_attribute() 1
Fenix_Data_group_create() Fenix_Data_subset
Fenix_Data_group.delete() Fenix_Data_commit
Fenix_Data_group_Idelete() int num_blocks
int time_stamp int* array_start_offsets
int* array_end_offsets
B T) Fenix,Data,commiticreate()
;" Fenix_Data_group_get_number_of_commits() Fenix_Data_commit_delete() Fenix_Data_subset_create()
Fenix_Data_group_get_commit_at_position() Fenix_Data_commit_Idelete() Fenix_Data_subset_delete()

Five types of logical data classes exist: Fenix_Data_group, Fenix_Data_
member, Fenix_Data_commit, Fenix_Data_stored_member, and Fenix_Data_
subset. For each data class, the middle part of each box describes user-
accessible fields, in which underlined fields are the unique identifiers of particular
instances of each data class. Particular instances from Fenix_Data_stored_
member can be uniquely identified by the pair (member_id, time_stamp), since
this data class can be seen as an associative class product of including particular
members in a particular commit. The bottom part of each box includes functions
used to create, delete, or manipulate different instances. Functions inside the
two bubbles with dotted lines are functions associated with Fenix_Data_group,
and can be used to discover the unique identifiers for Fenix_Data_member and

32

Fenix_Data_commit associated with a particular group, respectively. Note that
these data classes are not directly exposed to the user and Fenix implementa-
tions can actually choose to use a different layout for internal implementation.
This diagram serves as a way to understand the effect and relationship of the
different functions.

33

Fenix Function Index

Fenix_Callback_register, 6
Fenix_Comm_invalidate, 7
Fenix_Data_commit_delete, 25
Fenix_Data_commit_idelete, 26
Fenix_Data_commit, 16
Fenix_Data_group_create, 9
Fenix_Data_group_delete, 11
Fenix_Data_group_get_commit_at_position, 23
Fenix_Data_group_get_member_at_position, 23
Fenix_Data_group_get_number_of_commits, 23
Fenix_Data_group_get_number_of_members, 22
Fenix_Data_group_idelete, 11
Fenix_Data_member_create, 12
Fenix_Data_member_delete, 12
Fenix_Data_member_get_attribute, 24
Fenix_Data_member_idelete, 13
Fenix_Data_member_irestore_from_rank, 20
Fenix_Data_member_irestore, 19
Fenix_Data_member_istorev, 15
Fenix_Data_member_istore, 15
Fenix_Data_member_restore_from_rank, 19
Fenix_Data_member_restore, 17
Fenix_Data_member_set_attribute, 25
Fenix_Data_member_storev, 14
Fenix_Data_member_store, 13
Fenix_Data_redundancy_policy, 17
Fenix_Data_subset_create, 21
Fenix_Data_subset_delete, 22
Fenix_Finalize, 8

Fenix_Init, 3

34

References

[1]

M. Gamell, D. S. Katz, H. Kolla, J. Chen, S. Klasky, and M. Parashar,
“Exploring automatic, online failure recovery for scientific applications at
extreme scales,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE Press,
2014, pp. 895-906.

A. Chien, P. Balaji, P. Beckman, N. Dun, A. Fang, H. Fujita, K. Iskra,
Z. Rubenstein, Z. Zheng, R. Schreiber et al., “Versioned distributed arrays
for resilience in scientific applications: Global view resilience,” Journal of
Computational Science, 2015.

A. Moody, G. Bronevetsky, K. Mohror, and B. de Supinski, “Detailed model-
ing, design, and evaluation of a scalable multi-level checkpointing system,”
Lawrence Livermore National Laboratory (LLNL), Tech. Rep. LLNL-TR-
440491, 2010.

M. Schulz and B. R. De Supinski, “Pn mpi tools: A whole lot greater than
the sum of their parts,” in Proceedings of the 2007 ACM/IEEE conference
on Supercomputing. ACM, 2007, p. 30.

35

