.s SAND2014- 16016DE

Interns for Security, Arms control
and Force protection Engineering

Patricia Hurd Oliver Kubik Kenny Lu
University of Tulsa University of Maryland UCLA) John Mulder &
M.S.in CS, Dec 2014 B.S.in CS, May 2014 M.S. In EE, March 2015 Jeremy Gin & Rachael Flores-Meath Susan Wade, 5628

Co Authored with CCD Interns: Project Mentors:

When owners of a SCADA system suspect that it has been compromised, the
integrity of the programmable logic controller's (PLC) firmware is one of the first
things they might want to check. While it is typically straightfoward to obtain an
original copy of the firmware from the vendor, obtaining a copy of the firmware
on the device can pose some difficulty. Each vendor/device has a different
mechanism for updating firmware, which means the mechanisms for retrieving
the firmware are also different. While the firmware upload process is generally
documented, the download process is not. Our goal is to analyze various systems

and document the firmware download process.
The first step is to set up the

software for the PLC and learn
how to update the device
firmware. Once the process for
firmware update is understood,
we can eavesdrop on the traffic
being passed between the PLC
and the computer by running
Wireshark during a firmware
update. Sometimes the update
process uses standard application-
level protocols like FTP, but often
the protocols are vendor specific
and require time-intensive
manual packet analysis to
determine the format.

Once the packet format is understood, Scapy can be used to write a custom
parser for the captured traffic and to write a firmware update script. These
update scripts not only check our understanding of the process, they also allow
us to update the firmware without the (sometimes lengthy) software setup
process for each vendor.

After understanding the firmware upload process, we can start to look for how
to reverse the process for download.

ISAFE

Interns for Security, Arms control
and Force protection Engineering

Patricia Hurd Oliver Kubik Kenny Lu

: : _ _ ' ») : Project Mentors:
University of Tulsa University of Maryland UCLA Co Authored with CCD Interns John Mulder &

M.S.in CS, Dec 2014 B.S.in CS, May 2014 M.S. In EE, March 2015 Jeremy Gin & Rachael Flores-Meath Susan Wade, 5628

M *Local Area Connection 2 [Wireshark 1.10.7 (v1.10.7-0-g6b931al from master-1.10)] |- E | (]

File Edit View Go Capture Analyze Statistics Telephnnz Tools Internals Help

oAl BB AP DTFL QA @EW % 8

Filter: IEIExpressiDn... Clear Apply Save

: Time Source Destination Protocol Length Info
1260 3.6295520010.10.201.3 10.10.201.7 uppP 60 Source port: 50009 Destination port: wizard

1261 3.6307000010.10.201.7 10.10.201.3 UDP 60 Source port: wizard Destination port: 50009
1262 3.6344690010.10.201. 3 10.10.201.7 uDP 60 source port: 50009 Destination port: wizard
1263 3.6355690010.10.201.7 10.10.201.3 uppP 60 source port: wizard Destination port: 50009
1264 3.6397740010.10.201.3 10.10.201.7 uppP 60 Source port: 50009 pDestination port: wizard
1265 3.6406950010.10.201.7 10.10.201.3 UDP 60 Source port: wizard Destination port: 50009
1266 3.6447930010.10.201.3 10.10.201.7 UDP 60 Source port: 530009 Destination port: wizard
1267 3.6456920010.10.201.7 10.10.201.3 UDP 60 Source port: wizard Destination port: 50009
1268 3.6498290010.10.201.3 10.10.201.7 UDP 60 Source port: 50009 Destination port: wizard
1269 3.6508420010.10.201.7 10.10.201.3 UDP 60 Source port: wizard Destination port: 50009
1270 3.6548250010.10.201.3 10.10.201.7 UDP 60 Source port: 50009 Destination port: wizard
1271 3.6558580010.10.201.7 10.10.201.3 UDP 60 Source port: wizard Destination port: 50009
1272 3.6603270010.10.201.3 10.10.201.7 UDP 60 Source port: 50009 Destination port: wizard
1273 3.6616900010.10.201.7 10.10.201.3 UDP 60 Source port: wizard Destination port: 50009
1274 3.6660480010.10.201.3 10.10.201.7 UDP 60 Source port: 50009 Destination port: wizard
1275 3.6670520010.10.201.7 10.10.201.3 UDP 60 Source port: wizard Destination port: 50009
1276 3.6716010010.10.201. 3 10.10.201.7 UDP 60 Source port: 50009 Destination port: wizard
1277 3.6726040010.10.201.7 10.10.201.3 UDP 60 Source port: wizard Destination port: 50009
1278 3.6771600010.10.201. 3 10.10.201.7 UDP 60 Source port: 50009 Destination port: wizard
1279 3.6784500010.10.201.7 10.10.201.3 UDP 60 Source port: wizard Destination port: 50009
1280 3.6824960010.10.201.3 10.10.201.7 UDP 60 Source port: 50009 Destination port: wizard
1281 3.6836840010.10.201.7 10.10.201.3 UDP 60 Source port: wizard Destination port: 50009
1282 3.6879160010.10.201.3 10.10.201.7 UDP 60 source port: 50009 Destination port: wizard
1283 3.6889420010.10.201.7 10.10.201.3 UDP 60 Source port: wizard Destination port: 50009
1284 3.6930550010.10.201.3 10.10.201.7 uppP 60 Source port: 50009 pDestination port: wizard
1285 3.6944710010.10.201.7 10.10.201.3 uppP 60 source port: wizard Destination port: 50009

+ Frame 1286: 60 bytes on wire (480 bits), 60 bytes captured (480 bits) on interface 0
+ Ethernet II, Src: Vmware_59:47:f2 (00:0c:29:59:47:f2), Dst: Opto-22_02:cc:8c (00:a0:3d:02:cc:8c)
¥ Internet Protocol version 4, Src: 10.10.201.3 (10.10.201.3), Dst: 10.10.201.7 (10.10.201.7)
+# User Datagram Protocol, 5rc Port: 50009 (50009), Dst Port: wizard (2001)
-l Data (12 bytes)
Data: 000004400000fFarbc7d79ed
[Length: 12]

00 a0 3d 02 cc 8c 00 Oc 29 59 47 f2 08 00 45 00
00 28 00 01 00 00 40 11 d4 a5 0a O0a c9 03 0a Oa
€9 07 c3 59 07 d1 00 14 54 32 00 00 O4 40 00 0O
ff a7 bc 7d 79 e4 00 00 00 00 00 0O

Packets: 1286 - Displayed: 1286 (100.0%) . Dropped: 0 (0.0%5) Profile: Default

Opto22: We set up the software and monitored the firmware update; the upload
uses passive FTP, but the process cannot just be reversed for firmware download
since there is an intermediate step where the controller copies the firmware to
flash, then deletes it. We tried reading the memory using the protocol provided by
the vendor, but only the sections of the memory devoted to programming can be
read. The next step will be looking at JTAG to dump memory.

Scadapack 32/350: Set up vendor software for PLC programming and firmware
update. Listened to traffic, which uses Modbus/TCP. Vendor specific Modbus/TCP
functions are used to read and write. Currently analyzing packets and attempting
to send crafted packets to generate response.

Direct Logic 205: Monitored the traffic during a firmware update. The update uses
a non-standard protocol; we created a python script with functions to help analyze
the packet types and frequencies. We've identified certain packet types as well as
some critical packets and the meaning behind certain bits, but additional work
needs to be done before we can download the firmware.

