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Abstract

The digital design discussed in the following document is inspired by the digital dual mixer time
difference circuit and based on the white paper, Digital femtosecond time difference circuit for
CERN'’s timing system [5].

DMTD is originally an analog technique that measures the time difference between two events
with high precision using a commercial time interval counter. Our project applies this analog
concept to a digital system programmed onto a Microsemi ProASIC3E FPGA (Field-
Programmable Gate Array).

D-DMTD is a digital system theoretically capable of measuring the time difference between two
digital clock signals with very fine resolution (sub-picosecond) using a relatively low frequency
counter. The system essentially acts as a digital phase detector with femtosecond time resolution.
The main concern with this processing technique is its feasibility and accuracy when implemented
on an FPGA. Another concern is the environmentally-induced, horizontal phase noise in the digital
signals; this “jitter” jeopardizes the fidelity of the clocks and generates glitches in the signals.
Thus, the majority of the work was focused on determining under what conditions the digital
design performs optimally and generates the most accurate estimations for the phase shift.

This work was funded by Dept. 8736, Telemetry and R&D at Sandia National Laboratories.
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Application Specific Integration Circuit
Field-Programmable Gate Array

Dual Mixer Time Difference

Digital Dual Mixer Time Difference
Phase-Locked Loop

VHSIC Hardware Description Language
Root-Mean-Square



1. INTRODUCTION

Recent developments in technology have made FPGAs highly applicable in a wide spectrum of
application fields due to their re-configurability, fast processing capabilities, and ability to
simultaneously handle a large number of electronic signals [1]. In particular, FPGAs with precise
time difference capabilities are increasingly utilized for time-based signal processing and nuclear
medical imaging [6][7]. In other cases, such as high-energy physical experiments, high precision
timing is used to explore subatomic level fine structure in fixed target and collision experiments,
which often demands picosecond resolution [3]. Finally, the implementation of D-DMTD is of
special interest to the field of nuclear electronics, where high precision timing is required, despite
high temperatures and unstable environments [2].

With these applications in mind, this paper builds and expands upon P. Moreira’s theoretical digital
dual mixer time difference (D-DMTD) circuit for CERN’s (a European Organization for Nuclear
Research) timing system, and implements this design onto a Microsemi ProASIC3E FPGA device.

D-DMTD is capable of measuring the time difference between two out-of-phase digital clock
signals with sub-picosecond resolution using relatively low frequency counters [5]. Current phase-
difference detectors mostly use time-to-digital converter (TDC) design techniques, where
propagation delay structures in tapped delay line architectures are sensitive to temperature and
power supply voltage [2]. This creates the need for constant calibration, which can consume
valuable resources on FPGAs [4]. Even with these limitations, TDC designs thus far have only
achieved sub-nanosecond resolution in controlled environments. D-DMTD, like TDCs, have the
advantage in that it can achieve precision well below the sampling rate, allowing for use of lower
frequency components, which are cheaper, require less power, and simplify circuit board designs

[2].

The focus of this paper will be to confirm the capabilities of D-DMTD, theorized by P. Moreira,
and to qualify under what conditions this digital design optimally performs.



2. HIGH LEVEL DESIGN DESCRIPTION
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Figure 1: Block diagram of D-DMTD

The overall schematic of D-DMTD is shown above in Figure 1. The design consists of two input
digital clock signals—u(t) and ux(t)—both of which have a base frequency of v, and are separated
by a phase difference called At(t) or simply At. The Helper PLL (phase locked loop) is set by the
user at a specific clock frequency in order to produce the uamw(t) clock signal; the purpose of
Udmed(t) 1S to sample ui(t) and ua(t) at a slightly lower frequency than v, in order to spread out the
two phase-shifted signals in the time domain. The value of vimw is limited by the capabilities of
the FPGA used; for example, the ProASIC3E an internal clock of 40 MHz and is unable to produce
clock signals greater than 350 MHz. As discussed in a later section, the clock frequency, or Vdmd,
correlates to the level of resolution allowed in the estimation of At. The user specifies the frequency
of udame(t) using the following relationship:

Vamta = || Va (1)

The ‘N’ value also affects vamw and the level of resolution possible in the estimation of At, and is
selected based on the FPGA used. The ProASIC3E has PLLs capable of achieving % , which

yields an ‘N’ value of 127; this is the ‘N’ value used for all simulation and hardware testing.



2.1 Selection of ‘N’

The value designated as ‘N°’—along with vi—determines the precision of the D-DMTD estimation
for At. Below, Table I displays the calculated values of Atmin for various frequency and ‘N’ value
combinations, where Atmin specifies the minimum resolution or the smallest phase shift that can be
detected by the system. It is given by the following formula:

Aty = —— )

[N-vy]

Table 1: Resolution achieved by D-DMTD with various ‘N’ values and different clock
frequencies. The higher the ‘N’ values and clock frequency, the more precise the resolution.

N> 11 63 127 255 511 1023
1 MHz 90.91 15.87 7.87 3.92 1.96 977.52
2.5 MHz 36.36 6.35 3.15 s 782.78 391.01
5 MH; 18.18 3.17 1.58 784.31 391.39 195.50
10 MH7, 9.09 1.59 787.40 392.16 195.70 97.75
20 MHz 4.55 793.65 393.70 196.08 97.85 48.88
40 MH7 2.27 396.83 196.85 98.04 48.92 24.44
50 MH? 1.82 317.46 157.48 78.43 39.14 19.55
100 MH7, 909.09 158.73 78.74 39.22 19.57 9.78
500 MH? 181.82 31.75 15.75 7.84 3.91 1.96
1.25 GH 72.73 12.70 6.30 3.14 1.57 782
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Figure 2: Graphical Representation of Table I results. The threshold for sub-picosecond
resolution is indicated by the dotted line.



In general, higher ‘N’ values and higher frequencies allow for finer resolution, which is shown in
Figure 2 above. This has primarily been a discussion of the variables that need to be set before
running any simulation or test. The next sections detail how the digital design system physically
manipulates the input signals and produces an estimation for At.

2.2 Beating Two Signals

As shown in Figure 1, ui(t) and ux(t) first pass through a set of D-flip-flops. On the rising edges
of uamu(t), the D-flip flops sample the two input clocks, creating beat signals called upear1(t) and
Ubea2(t). These are shown below in Figure 3.

Uy (1’)

Upeat2(t) I

Af(t) Atbeat“)

Figure 3: Sampling u;(t) and uz(t) with ugmw(t) yields two elongated beat signals that are
later processed to calculate the phase shift.

A half period of the beat signal is equivalent to ‘N’ periods of ugmi(t), since Upeat1(t) and upear2(t)
each have 50% duty cycles. The beat signals above were created with an ‘N’ value of 5.

Essentially, by sampling a specific frequency signal with a slightly slower clock, D-DMTD
stretches the signal out in the time domain, allowing for heavy aliasing of ui(t) and ux(t). It should
also be noted that Figure I indicates that the two clock signals each pass through two D-flip-flops
that are tied together. This was done to address the issue of metastability in the hardware.



2.3 Deglitching the Signals

Uncontrollable environmental noise often propagates in the digital domain as horizontal phase
noise, or jitter, which refers to the variation in period of an oscillatory signal. Depending on the
amount of jitter, the act of passing of ui(t) and ux(t) through the D-flip flops can produce an output
signal with an unpredictable number of glitches. One such signal is shown in Figure 4.

50393701 fs

Glitched

Figure 4: Glitched signals arise from horizontal jitter in the input signals, which makes
rising and falling edges indistinguishable.

This presents a problem: the variable pattern of glitches masks where the rising and falling edges
of the beat signals truly are, threatening the integrity of the original input signals and making an
accurate phase shift detection unlikely. This uncertainty creates the need for a deglitcher
mechanism.

The Deglitching Algorithm implemented in D-DMTD uses a shifting array that takes in a new
value from a beat signal on every rising edge of uamw(t), while continuously evaluating whether
the number of ones and zeros in the array are equal. When the number of ones and zeros become
equal, the algorithm initiates a transition in the output “deglitched” signal: a 1 >0 transition or a
0->1 transition. The results of the Deglitcher Algorithm are shown below in Figure 5.

Deglitched
Glitched

Figure 5: Beat signals fed through the deglitcher block of the D-DMTD no longer have
random spikes near rising and falling edges.

There is one more variable of importance in this algorithm: the size of the shifting array, which
can be determined by the user. If the shifting array size is too small, then a random pattern of
glitches could be interpreted as a pulse incorrectly. If the shifting array is too large, then the array
is rarely filled with an equal number of ones and zeros. Simulations for various window sizes and
levels of jitter indicated that a window of size 20 yielded the most accurate estimations for At; the
data that drove this decision is discussed in the next section.



2.4 Selection of Window Size

The relationship between window size, jitter, and standard deviation of At is of particular interest.
Using simulation data to populate Figure 6, we measured our confidence in the estimation of At—
a value dependent on the amount of environmental noise, or RMS jitter, and the size of our
sampling window. The input signals were generated at 20 MHz, and separated by a phase shift of
1.3 ns, which is larger than the tmin value given by Table I for a frequency of 20 MHz and an N
value of 127.

Standard Deviation of Phase Shift vs. RMS Jitter

25
m— \\findow of 4
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2t Window of 20| |
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1.5
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o
o
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0 Il 1 1
0 500 1000 1500 2000

RMS Jitter (ps)

Figure 6: Graph displaying the standard deviation of At from the ideal At value at varying
jitter/window sizes.

As one would expect, higher values of jitter or phase noise, correspond to less accuracy in the
estimations for At. Thus, there is a positive, linear trend between RMS jitter and the standard
deviation of At for most window sizes.

Of particular interest in Figure 6 is how the relationship between jitter and the accuracy of At
varies with window size. For some window sizes, the standard deviation-RMS jitter relationship
follows fairly linear trends (i.e. 10, 20, 36), while others are much more unpredictable (i.e. 4) and
highly sensitive to changes in RMS jitter (i.e. 50, 62).



However, environmental RMS jitter is rarely as high as 1500 ps; jitter on the scale of tens of
picoseconds or less is a much more reasonable estimation. Thus, we focus in on the portion of the

graph within the black box. Figure 7 shows the zoomed-in area within the outlined region in Figure
6.

Standard Deviation of Phase Shift vs. RMS Jitter
0.35 = T T T T T T T

0.3

0.25

Standard Deviation of Phase Shift (ns)

0.2
e Window of 4 1
Window of 10
0.1 - Window of 20 |
‘ Window of 36
Window of 50
0.05 - Window of 62 |
20 40 60 80 100 120 140 160

RMS Jitter (ps)

Figure 7: Zoomed in version of Figure 6, focusing on resolutions that may be of interest in
real world applications.

For more realistic values of jitter, the standard deviation of At is relatively independent of window
size. The lines start to diverge as RMS jitter increases, with a window of 20 consistently yielding
the least amount of uncertainty (red-colored line). This is the window size used for simulation and
testing purposes.



2.5 XORing the Beat Signals

After deciding on a specific window size and running the deglitcher algorithm to generate two
deglitched beat signals, the phase shift can be determined by looking at the XOR results of the two
signals.

e XOR result =1 — signals are out of phase
e XOR result = 0 — signals are in phase

The number of continuous ‘1’s in the XOR result—the number of rising edges of uamt(t) occur
when XOR result = ‘1’—is related to Atpear. This XOR result is referred to as ‘count’, and its value
represents the amount of time that the two deglitched beat signals are out of phase. This is
proportional to the phase difference between the two original signals.

Udmtd(t)
Ubeat1(t)

Ubeat2(t)
XOR result

Figure 8: XORing the two beat signals together produces a logic ‘1’ when the beat signals
are misaligned.

As shown in Figure 8, the XOR result is ‘1’ for 4 clock periods of udmu(t), each of which lasts
50.394 ns (based on 20 MHz input signals). With ‘count’ = 4, Atpeat = 4 * 50.394 ns = 201.576 ns.
It is then possible to calculate At using a ratio of frequencies. Using the equation below, At =
201.576 ns * (1 — 127/128) = 1.5748125 ns for the phase shift between the original two signals
ui(t) and ua(t).

At = Atpeat (Vl:lat) = (Atpear) [1 - (%)] (3)

The simulation stimulus set ui(t) and ux(t) to have a relative phase shift of 1.3 ns, so the estimation
of 1.5748125 ns for At is slightly off. This is probably due to the high level of jitter induced in the
input signals, and thus simply highlights need for to record many values of ‘count’, average them,
and then calculate Atvear and At to get a more accurate estimation for the original phase shift
between u(t) and ux(t).

3. DESIGN VERIFICATION AND TESTING
10



3.1 Simulation Set-Up

Figure 9 shows the complete simulation for significant signals within the D-DMTD system. The
first four signals at the top of the waveform were signals generated from the testbench
(ddmtd_tb.vhd). The signals, input_signal 1 tb and input signal 2 tb, were generated using a
Matlab script (IdealClockNormalizedJitter.m).

reset_tb
pll_GLA_clk_tb
input_signal_1_tb
input_signal_2_tb
Flip Flop 1
£ d
<o
Flip Flop 2

| | 1l L1 | | l | | - il | |
lo | | I8 1z 8 7 8 7 i

| | S N — (S S § S (S

I ! ! J I ]
1 s a5 o o o s s o s s s s [ s
! ! l |

8
0
7
0
200000055

Figure 9: D-DMTD signals from input to D-flip-flops, deglitcher, XORing, FIFO, and SPI
Interface.

PIl. GLA clk tb is an output that is grabbed from the PLL IP Core instantiated in the top file. The
PLL takes in a 40 MHz signal—the board clock frequency produced by ProASIC3E—and outputs
a 2.480 MHz signal, which is the calculated udmw(t) value for a system where v, is 2.5 MHz.

reset_tb
pll_GLA_clk_tb
input_signal_1_tb
input_signal_2_tb

Figure 10: Out of phase beat signals are produced when u;(t) and uz(t) are sampled on
rising edges of ugma(t)

11



Figure 10 is a zoomed in version of the simulation, with the inputs to the flip flops removed for
clarity. The q’s represent the beat signals that are produced by sampling the input signals with
Udmwd(t)—pll_ GLA clk tb in Figure 10. In D-DMTD, there are actually a total of four D-flip flops
(two for each input signal for metastability purposes), but only two are shown in simulation to
avoid visual redundancy.

Figure 11: Data being written to, and read from, the FIFO along with corresponding write
enable and read enable signals

Figure 11 is a zoomed in version of the FIFO results for the simulation. D-DMTD writes to the
FIFO immediately after a new value is produced (from phase count algorithm). RE is enabled by
the SPI interface to grab a value from the FIFO to output serially when SPI is not outputting data
and the FIFO is not empty.

Figure 12: Each SPI transaction consists of 32 output bits; in this figure, a binary 8 is
produced

Figure 12 is a zoomed in version of the SPI output signals. SCLK is running continuously in the
background at a frequency of about 1000 KHz. Towards the end of the transaction, there is an
extended pulse for SCLK that wraps the signal due to a COUNT_MAX calculation in the code
that rounds our uamw(t) decimal value to an integer, causing truncation error. Data tb in Figure 12
indicates that the output value of this transaction is 8. It is determined by looking at data_tb relative
to the rising edges of SCLK tb. Each transaction is 32-bits, with the LSB (least significant byte)
all the way to the right and ending with the extended SCLK tb transaction. CSN_tb represents a
framing bit that spikes in between different transactions.

12



3.2 Hardware Set-Up

After D-DMTD was successfully simulated in ModelSim 10.4, it was programmed onto the
ProASIC3E FPGA. The DG645 Stanford Research Systems pulse generator was used to generate
the two 2.5 MHz input signals, and the LogicPort Analyzer extracted the data from the SPI
interface. The Logic Port would receive data each time the reset button on the FPGA was pressed,
and would then write that information, in the form of ‘count’ values, to an excel file.

To compare how the physical lab testing compared to the simulations in ModelSim 10.4, the phase
shift was varied between [0, 100] ns and the absolute error between the data and the input phase
shift was observed. Theoretically, the simulation and hardware data should reveal no apparent
trend between absolute error and phase shift; relative to each other, one might be offset from the
other by a constant amount, information that when taken into account, would help increase the
accuracy of later simulations by adding that offset to ModelSim’s estimations.

The upper limit of the phase shift range for lab testing was set by the pulse generator; the DG645
is incapable of creating a 2.5 MHz signal with a 50% duty cycle at phase shifts greater than % the
period. After gathering a few hundred data points (At estimations) for each phase shift, the time-
stamped excel files were post-processed using a Matlab script (read process HW _files.m). The
results of this comparison between hardware and simulation absolute error in calculating At are
shown in Figure 13.

Simulations vs. Hardware Results

— Sim
25 Hardware | |
20
W
=
S
0 15
z
=
9
o 10 r
<L
5 .
D I IM

10 20 30 40 50 60 70 80 80
Phase Shift (ns)

Figure 13: Comparison between hardware and simulation absolute error versus phase
shift.
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Most noticeably in Figure 13 is the fact that with a period of 400 ns for u(t) and ux(t), the absolute
error for hardware was only ~2 ns, and only 1 ns away from the simulation predictions. This is an
absolute error of only 0.5%. Compared to the resolution allowed with a pure 2.5 MHz clock (400
ns), D-DMTD successfully provided resolution down to 3.14 ns (tmin) with minimal error.

Figure 13 also confirms that there is no notable trend between the absolute error of At and the
phase shift between ui(t) and ux(t); this applies to both hardware and simulation estimations of At.
Additionally, there is a fairly constant offset between the two lines, allowing for the accuracy of
ModelSim’s simulations to be improved upon by adding that difference in error to simulation
estimations.

Again, due to limitations of the equipment available, the comparison study between the simulation
and hardware results was conducted using only 2.5 MHz signals for ui(t) and ux(t). Even so, there
was a clear correlation between the two sets of data, and proof that a physical implementation of
D-DMTD can accurately estimate At. Figure 13 also demonstrates that the difference in
performance between hardware and simulation data will be minimal.

14



4. VHDL IMPLEMENTATION

4.1 Code Hierarchy

The code hierarchy is as shown in Figure 14.

4 [} tb_ddmtd (ddmtd_tb.vhd)
4 [B ddmtd (ddmtd_proasic.vhd)

[EL SPI_Out (SPI_Out.vhd)
average
[%L deglitch (deglitch.vhd)
B fifo_write_fsm (fifo_write_fsm.vhd)
[ flip_flop (flip_flop.vhd)
(%L phase_count (phase_count.vhd)
& pll_clk_gen

Figure 14: Design hierarchy of D-DMTD including testbench wrapper

e ddmtd tb.vhd
o ddmtd proasic.vhd

=  SPI Out.vhd
= average.vhd (FIFO IP CORE)
= deglitch.vhd
= fifo write fsm.vhd
= flip flop.vhd
= phase count.vhd
= pll clk gen (PLL IP CORE)

4.2 VHDL Files
411 ddmtd_proasic.vhd

This is the main top level file in which we declare and instantiate all of our components. It is based
on the design described in the Design section.

41.2 pll_clk_gen.vhd
This is an IP core that we used within Libero SOC to generate the proper clock frequency we
needed for uamw(t). It has two outputs: “lock™ and “pll_clk”.

15



Figure 15: Schematic of the components within D-DMTD
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4.1.3 flip_flop.vhd

This entity is a regular D flip flop with an additional input, called “lock”, that indicates when the
PLL clock is generating a valid signal that will allow us to sample our inputs correctly.

41.4 deglitch.vhd

This is an algorithm that we developed to accurately determine when the start and end of a signal
should occur given glitches in the input signal that could arise. We used the zero count method,
which involves the use of a shifting array (with a length that can be determined by the user) that is
initially filled with zeros and shifts once to the left each clock of udmtd during which it takes in
one new input value. When the number of 1’s and 0’s in the shifting array was equal, we flipped
the signal from 1 to 0 or 0 to 1 based on what the signal was previously (kept track of this with
two flags), producing deglitched beat signals. Depending on the window size used, the two
deglitched signals would be slightly delayed from its original input. However, this is okay because
the delays to both of the signals are equal. After running simulations, we determined a window
size of 20 was optimal.

41.5 phase_count.vhd

We determined the Atuvear by counting the number of clock cycles of uamw that the two beat signals
were out of phase. We determined this Atpear by XORing the two signals together and storing this
value into a count variable that would be outputted from this block. This block would reset itself
after each iteration, allowing us to get as much phase count data as we wanted. The count was
outputted as a 32-bit integer.

41.6 average.vhd

Average.vhd is a CoreFIFO instantiated within Libero SOC. This allows us to store values from
phase count before sending them out of the FPGA. This is needed because phase count.vhd
produces data much faster than our SPI_Out.vhd can ship data out. The FIFO is 32x256. We
arbitrarily decided to utilize 70 results from phase count.

41.7 fifo_write_fsm.vhd

This is a state machine that determines when to write to the FIFO by spiking the WE (write enable)
signal. The state machine is controlled by the two flags from phase count.vhd, which indicate
when a signal is valid or about to change.

4.1.8 SPI_Out.vhd

We used SPI protocol to send out our data. This file utilizes a state machine that looks for when
the FIFO is no longer empty before spiking the REN signal to grab a value and transmit out of the
FPGA a single bit at a time. The user specifies the clock frequency used in the design (in our case
udmtd), which helps determine the SCLK.
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5. MATLAB ANALYSIS AND DATA PROCESSING

5.1 Resolution Limitation
tmin_resolution.m

This script calculates the values of tmin for ‘N’ values ranging from 63 to 1023, and frequencies
(Vu) ranging from 0.1 MHz to 5 GHz. The resulting tmin values—calculated using Formula (2)—
are plotted on a graph (Figure 2) and are given on the scale of femto-seconds.

5.2 Window Size
stdev_RMS _Jitter ALL.m

This script takes the already processed data from ModelSim’s simulations, in the form of standard
deviation and RMS lJitter, and displays the points on a graph (Figure 6).

5.3 Simulation Signal Generation
IdealClockNormalizedJitter.m

This script generates two output .txt files that contain the data points for signals ui(t) and ux(t).
The text of these files can then be transferred to the simulation testbench file to generate clock
signals. The user can specify the frequency, relative phase shift, and amount of RMS jitter these
signals inherently have. The script calculates the ideal data points for a signal with the frequency
specified, and then adds a random amount of variation to each point that falls in the range [0, RMS
jitter].

5.4 Data Processing and Graphing

5.4.1 Process 5 files.m

The purpose of this script is to process the five .txt files that are filled with the output of five
different simulations run in ModelSim 10.4; the values stored in these files are various values of
‘count’. This script parses the files, converts these values of ‘count’ to At, and then calculates the
standard deviation and average in the time domain. The absolute error is calculated separately in
excel.

5.4.2 read_process HW files.m

The purpose of this script is to process the data files obtained from in-lab or hardware testing. Data
is collected from the FPGA using the Logic Port Analyzer, which then exports the values of ‘count’
to an excel file. This script opens the 100+ excel files, reads in the values for ‘count’, converts to
the time domain, and calculates the average and standard deviation for the At value given by these
files. This is the hardware equivalent of the Process 5 files.m, which processes the data gathered
from ModelSim 10.4.

18



5.4.3 graphingHW_Sim.m
This script graphs the absolute error between the At estimated by both the hardware and
simulations, and the At input to the system in the beginning. The results are shown in Figure 13.
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6. LIMITATIONS AND FURTHER WORK

6.1 Limitations
6.1.1 D-DMTD Design

D-DMTD is unable to detect phase shifts greater than half the period of the input signals; phase
shifts greater than this amount result in a loss of information. To calculate the total phase difference
between the two input signals (including those greater than half the period), multiple instances of
D-DMTD running at different frequencies (vVamw) can be implemented on an FPGA. Another option
would be to obtain a coarse count for the number of periods that elapse between the two input
signals that are fed into D-DMTD using the FPGA board clock.

6.1.2 Analog Frontend

A fully-functional, sub-clock digital phase-detector (D-DMTD) requires analog circuitry capable
of converting two environmental triggers into two clocks separated by a relative phase difference
equivalent to the time elapsed between the two events. Extensive research was done to see if
conventional, industry-standard IC oscillators can accomplish this; however, while many off-the-
shelf products offer the desirable frequency range and level of precision, they are not designed to
work for this purpose. Dual oscillator ICs were considered, but they would need to have
deterministic power up times, so that the same power-up time delay would be applied to both
trigger signals and not affect the natural temporal separation.

A possible alternative to generating the two square wave input signals for D-DMTD, is an analog
or digital form of a ring oscillator. The limitation here would be the frequency of the square wave
that can be generated, which correlates to the propagation delay of the circuitry (not gates) needed
to make the signal oscillate.

6.2 Further Work

The digital implementation of the project was limited by the equipment available. The Stanford
DG645 pulse generator is incapable of producing multiple phase-shifted clock signals with 50%
duty cycles at frequencies greater than 2.5 MHz. Other industry-available pulse generators are
capable of much higher frequencies, which, as has been discussed earlier, affects the resolution of
the digital phase detector. Thus, future work would entail increasing test equipment capability and
conduct tests to provide more data points for analysis.

Jitter is another issue that needs to be considered as the frequency of usmw(t) increases to obtain
more precise timing resolution. As the sampling rate increases, uamw(t) will be sampling closer to
the rising and falling edges of the input signals, causing more glitches. Within the D-DMTD
design, the deglitcher mechanism has the most room for improvement. By analyzing the results of
different deglitching methods/algorithms, the accuracy of D-DMTD can be improved. The zero
count detection method was employed for the current D-DMTD design, but there may be better
alternatives.
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8. APPENDIX

DMTD
DDMTD
At(t) or At

Atmin

N
Ui(o)
Ua(t)

Udgmea(t)

U lbeat(t)
Usbear(t)
Vi
Vbeat
Vdmtd
Window
PLL
SPI

dual mixer time difference

Digital- dual mixer time difference

Phase shift between two digital clock signals; represents time between two initial trigger
events

The minimum phase shift we can detect between two digital clock signals; measure of
resolution

Variable that establishes ratio between vn and vbeat

Input signal with frequency vn

Input signal with frequency vn; phase shifted relative to U1(t)

Clock signal that samples ul(t) and u2(t); set at a slightly lower frequency so as to spread
the two signals out in the time domain

Result of passing U1(t) through d-flip-flops; stretched out in time domain

Result of passing U2(t) through d-flip-flops; stretched out in time domain

Frequency of input signals: U1(t) and U2(t)

Frequency of beat signals: Ulbeat(t) and U2beat(t)

Frequency of Udmtd(t); slightly less than Vn

Size of shifting array in deglitching algorithm; affects how

Phase-locked loop; responsible for creating udmtd(t) signal

Serial Peripheral Interface; used for synchronous serial communication
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