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Abstract—Cybersecurity and privacy are of the utmost im-
portance for safe, reliable operation of the electric grid. It
is well known that the increased connectivity/interoperability
between all stakeholders (e.g., utilities, suppliers, and consumers)
will enable personal information collection. Significant advanced
metering infrastructure (AMI) deployment and demand response
(DR) programs across the country, while enable enhanced au-
tomation, also generate energy data on individual consumers
that can potentially be used for exploiting privacy. Inspired by
existing works which consider DR, battery-based perturbation,
and differential privacy noise adding, we novelly consider the
aggregator (cluster) level privacy issue in the DR framework
of solar photovoltaic (PV) generation following. Different from
most of the existing works which mainly rely on the charg-
ing/discharging scheduling of rechargeable batteries, we utilize
controllable building loads to serve as virtual storage devices
to absorb a large portion of the PV genertaion while delicately
keeping desired noisy terms to satisfy the differential privacy for
the raw load profiles at the aggregator level. This not only ensures
differential privacy, but also improves the DR efficiency in load
following since part of the noisy signal in solar PV generation
has been filtered out. In particular, a mixed integer quadratic
optimization problem is formulated to optimally dispatch a
population of on/off controllable loads to achieve this privacy-
preserving DR service.

I. INTRODUCTION

An important feature of the smart grid is the demand
response (DR) mechanism that provides customers with flex-
ibility to meet their energy needs. Intermittent and volatile
production of renewable energy leads to an unavoidable incor-
poration between customers and energy sources that increases
the need for additional balancing resources. In addition to
battery energy storage (BES), virtual storage devices such as
thermostatically controlled loads (TCLs) play as an alternative
storage to help restore demand-supply balance. However, sig-
nificant advanced metering infrastructure (AMI) deployment
and DR programs, while enable enhanced automation, also
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generate energy data on individual consumers that can poten-
tially be used for exploiting privacy [1], [2]. There exist major
concerns about consumers’ privacy when aggregators provide
DR services using controllable building loads, especially after
an intruder gains access to the aggregated power consumption
data or the aggregator releases this information to the public.
According to a study by NIST [3], obtaining near-real-time
data regarding energy consumption may infer when and how
long a residence or facility is occupied, where people are in
the structure, what they are doing, whats their favorite team,
whats their political affiliation, and so on.

To protect the residential users’ privacy from malicious
attacks, many secure data aggregation schemes have been
proposed in the literature, i.e., encryption mechanism, battery-
based perturbations, and noise adding. Homomorphic encryp-
tion was utilized in [4], [5] to allow a semi-trust gateway to
aggregate consumption reports in a specific residential area.
End-to-end encryption is a straightforward way to hide the
communication content and preserve users privacy, but at
the same time heavily increases communication overhead and
computational latency for lightweight embedded systems [6].
An alternative way is to bring uncertainty into the original
raw data by directly adding noise signal, especially using
the differential privacy mechanisms [7]. Broadly speaking,
differential privacy is a mathematically provable paradigm for
privacy-preserving data sharing [8]. It ensures that the outputs
of neighboring datasets are indistinguishable from randomized
noise. Various approaches based on differential privacy have
been introduced in [9]-[11] for smart meter reading and
appliance usage using directly noise addition.

Inspired by existing works which consider DR, battery-
based perturbation, and differential privacy noise adding under
different scenarios, we novelly consider the privacy issue in the
DR framework of solar photovoltaic (PV) generation tracking.
Different from most of the existing works that mainly rely on
the charging/discharging scheduling of rechargeable batteries,
we utilize controllable building loads to serve as virtual storage
devices to track a pre-specified aggregated load profile so that
the raw power consumption will be distorted and the differen-
tial privacy for personal information can be satisfied. The main
objective of our work is to reduce both fluctuations in solar
PV generation and potential privacy leakage while providing
certain user satisfaction. To the best of our knowledge, we are
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Fig. 1: PV-based perturbation mechanism

the first to study this challenging problem of increasing solar
PV penetration level while providing privacy protection.

In this paper, we propose a hybrid method, which is a
combination of battery-based perturbation and noise adding.
We denote that, D(r) and B(¢) in Fig. 1 correspond to base
loads and differential privacy signal, respectively. On the one
hand, by filtering out the high frequency components in PV
generation, it relieves the pressure of generation following
for slow-responsive controllable loads. On the other hand, by
smartly picking the mid-high frequency components, desired
differential privacy noise signal B(t) is perfectly computed,
and then implemented through virtual storage devices. The
main privacy concern here is to ensure two aggregated datasets
are indistinguishable by delicately keeping the inherent noisy
signal inside local solar PV generation. At last, the perfor-
mance of the proposed design is verified through control-
lable Heating, Ventilation and Air-Conditioning (HVAC) loads
based on the DR control technique introduced in [12], [13].

The remainder of this paper is organized as follows. Section
Il introduces the background for differential privacy and
problem formulation. Section III then derives the optimization
formulation for aggregated HVAC loads. Section IV presents
the simulation results to validate the tracking performance
using a set of real temperature and solar power data. Finally,
Section V summarizes the paper and presents the conclusions.

II. PRELIMINARY AND PROBLEM FORMULATION

In this section, we will discuss the basic principle for
differential privacy and the building thermal model. By adding
random noise, typically with Laplacian [14] distribution, to the
measurement data submitted by the customers, the differential
private aggregation scheme will not increase system complex-
ity. On the one hand, this contributes to reducing the capital
and maintenance cost by purchasing smaller size battery stor-
age. On the other hand, considering the intermittent renewable
resources, this privacy-in-the-loop strategy will contribute to
absorbing the PV high frequency uncertain fluctuations and,
therefore, reducing stress to the grid.

A. Differential Privacy

Broadly speaking, differential privacy is a privacy-
preserving mechanism, which is independent of the back-
ground knowledge of the adversary [8], [15]. It guarantees
that the probabilities that two neighboring data sets that
have the same output are quite close so that the probability

dilation is bounded by exp(g). By doing so, the adversary
can hardly infer a single data record by manipulating outputs.
The definition and detailed description of the standard e-
differential privacy can be found in [15].

Mathematically, .# satisfies e-differential privacy, if for all
possible data sets, any individual (say, Alex), and all possible
result set R C Range(.#):

Pr(.# (DB \.Jv1th Alex) € R) <l 0
Pr(.# (DB without Alex) € R)

where DB is short for Database. Note that € is denoted as the
privacy budget and specifies the privacy degree. Intuitively, a
lower € means a better privacy and typically € =0.1.

Definition 2.1: Given an n-dimension dataset D", a ran-
domized algorithm to answer query A is (8, ¢)-differentially
private if Vx,y € D" that differs only in one element and all
S € range(A),

Pr[A(x) € S] < e x Pr|A(y) € 8]+ 6, )

where range(A) denotes the output range of A.

After reviewing differential privacy, a Baseline Aggregation
scheme can be drawn to provide differential privacy for real-
time aggregated data streams. The basic principle is to add
independent Laplace noise into the aggregation result at each
time slot [7], aiming at providing e-differential privacy.

B. Problem Formulation

In an aggregated control system, the power consumption
data is transmitted to the controller. It is necessary that the
information preserves a certain level of privacy such that an
adversary or another curious aggregator cannot infer more
information about the system states than what is intended.

The overall objective is to utilize the aggregated HVAC
loads to compensate fluctuations in solar PV power as well
as protecting the users’ privacy without jeopardizing thermal
comfort. In other word, we will utilize controllable loads to
maximize the locally absorbed PV generation while providing
adequate differential privacy covering noise signal. Hence, we
need first to compute the minimum differential privacy noise
signal corresponding to the specific solar PV generation, then
ensure the controllable loads consume exactly desired amounts
of energy (as illustrated by Py.py () in Fig. 1) through DR
algorithms.

Problem 2.2: (Privacy-preserving generation following
problem). Given the dataset D(¢) and the query function Q(+)
over D(t) which returns P(z) (i.e., Q(D(t)) = P(t)), we aim to
devise a privacy-preserving algorithm .7 which extracts B(r)
(from local PV generation L(z)) as noise to the query result
to hide L(r) from adversaries such that (8,€)-differential
privacy is guaranteed with good J, €.

III. PRIVACY-PRESERVING GENERATION FOLLOWING

This section discusses the noise construction technique
to provide sufficient differential privacy. It is followed by
the control design, which relies on model predictive control
(MPC) scheme to regulate the aggregated power consumption
of a population of HVAC loads to track a desired profile.



A. Differential Privacy Noise Calculation

In this subsection, to derive the necessary noise signal for
differential privacy, we depart from exploring the definition of
(g, 0)-differential privacy.

In the original derivation for differential privacy [7], Dwork
presented a general protocol to implement differential privacy
utilizing the concept of global sensitivity AQ. Given a query
set O € Q, the global sensitivity AQ is the maximal .Z]
distance (difference) between the exact query results on any
two neighboring datasets D and D», i.e.

AQ = g%HQD&Q@mm
= Lr)r]]fB(Z|Q(D1)*Q(D2)|7 (€)

for all Dy, D, that differ in at most one element.

Informally, the sensitivity AQ is the maximum amount the
result Q(-) can change, given any change to a single users’
data.

Lemma 3.1: When AQ = 1, the function Q(-) achieves
(g, 0)-differential privacy if noise from the Laplacian distri-
bution is added to it [7].

It should be mentioned that, although we focus on the
Laplace noise in this paper, our approach is easily extendable
to other mechanisms that satisfy requirements by differential
privacy.

Remark 3.2: The AQ usually depends on the data domain
D and the query set Q, but not the actual data. Therefore,
we simply assume such a constant AQ is public knowledge to
everyone, including the adversary.

The Laplace Mechanism, My, outputs a randomized result
R on dataset D, followmg a Laplace distribution with mean
Q(D) and magmtude 22 e,

PdeQD)M“aw< IR— (D n) @

This is equivalent to adding m-dimensional independent
Laplace noise to each query in Q, that is, M(Q,D) = Q(D) +
Lap(AQ)’” in which Lap(%) is a random variable following
a zero-mean Laplace distribution with scale A?Q. The Laplace
noise is drawn from Laplace distribution with probability

density function (PDF)

700 = grewn(~2D), s
where the variance of Lap(A) is 2A% = 2@—532. Since the
Laplace noise injected into each of the m query result is
independent, the overall expected squared error of the query
answers obtained by the Laplace mechanism is zmgAQ [16].

Remark 3.3: Note that the amount of error only depends
on the sensitivity of the queries, regardless of the records in
dataset D. Therefore, we can obtain the desired noise signal to
ensure differential privacy (denoted as Ppppy (k)) by sampling
through f(x) (defined in (5) and (4)), where k represents time
step.

Remark 3.4: Ppppy (k) corresponds to the desired noise
signal B(z) in Fig. 1.

After extracting this noise part from the total PV generation,
we can easily compute the remaining net PV generation
Pnepv (k) that needs to be locally consumed by aggregated
controllable loads. Pypy (k), which will play as a new refer-
ence profile to be followed by the DR program, is defined as
follows.

Pyerpyv (k)
B. DRf()I’ PDPPV

Due to the partially uncontrollable and stochastic nature of
renewable resources, the variance of net load of distribution
systems increases [17]. In effect, TCLs, such as HVAC units,
have been used for virtual energy storage. Hence, the designed
privacy noise signal Ppppy can be provided by such virtual
storage devices.

The feasibility of this approach has been well recognized
in the literature, for example in [12], [13], [18], [19].

C. DR for PNeIPV

This section develops a centralized MPC-based DR strategy
to locally absorb the net PV generation - Pyerpy .

1) Building Thermal Model: In this section, we describe the
typical one-dimensional model used in this work and formulate
the control strategy. The system model was widely utilized in
the literature such as [13], [20], [21].

The system state is the room air temperature ¢. If we
denote the state vector X = [¢], input U = [Modepyac] (HVAC
ON/OFF status), and disturbances V = [T, Qou] (outdoor
temperature and solar irradiance), we can rewrite the building
thermal model into the state-space form as:

X =AX +BU +GV. (7)

= Ppy (k) — Ppppv (k). (6)

State-space matrices A,B,G can be obtained for any given
building, and disturbance V is recorded for that specific
location.

We consider the problem where indoor temperature x = g is
required to remain within certain bounds of a constant dead-
band in the presence of the disturbance vector V. Moreover,
we make the indoor temperature x; (j corresponds to j
building) track a pre-assigned reference temperature set-points
by minimizing the state error ¢;(k) := x;(k) — X, at each time
step k, where X, is the temperature set-point.

MPC is implemented as a discretized building thermal
model with sampling period AT = 10 minute, t; = iAT which
yield the discrete-time model

= Apxy + Bruy + Gy, (8)

After ensuring the differential privacy noise signal, we need
to design optimal control signals to orchestrate the aggregate
demand of HVAC systems follow the net PV power generation
Py opy without Violating the temperature comfort requirement.

Zu,(k

where N, denotes total number of HVAC units and u;(k)
denotes the control action taken for the j; HVAC unit at the
ky;, time interval.

Xk+1

~ Pyepy (k), )



2) Cost Functions: We formulate the control strategy as
an optimization problem, whose objective consists of two
parts. The first part describes the performance of privacy
protection while the second part characterizes the user comfort
satisfaction (e;(k) denotes the temperature deviation from
temperature setpoint).

NI’ N
7= Y {000 ~ Prary (07 + R eik))) }, (10)
k=1 i=1

where N, represents the prediction horizon with Q and R being
weighting factors.

3) Constraints: In the MPC problem, we have both states
and control input constraints. For temperature state constraint,
we set x € [22.5°C,23.5°C]. And for the discrete ON/OFF
control signal, the binary inputs u € {0, 1}. Notice here, “0”
means HVAC OFF, while “1” means HVAC ON.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the proposed privacy-preserving
aggregation algorithm through a numerical example. We con-
sider a central coordinator that collects total PV generation,
computes desired differential privacy noise signal, and allo-
cates energy to a population of HVAC loads to minimize
difference between total power consumption and net PV
generation.

Based on the MPC design introduced in Sec. III-C, we
utilize 100 buildings, each of which is equipped with identical
building thermal model (8). It is worth mentioning that the
simulation time is 432 time steps, which means 10 mins per
time step for three days. Both PV generation and weather
profiles are picked for these days from a local station.

A. Differential Privacy Noise

The desired noise is generated by Lap(u,b), with u =0
and b = % (corresponding to the raw PV generation mea-
surement), and € = 0.1. Figs. 2 and 3, respectively, illustrate
the detailed noise signal for each time step and the overall
histogram for the generated noise. From Fig. 3, we observe
that Laplace noise is obtained. Then, the net PV generation
Puepy (k) profile is depicted in Fig. 4.

B. Load Tracking Performance for Pyepy

Based on the net PV generation profile, we present sim-
ulation results for the developed MPC strategy of all 100
buildings in Figs. 5 - 6. The indoor temperatures are plotted in
Fig. 5. We can observe that the indoor temperatures are strictly
bounded by the preassigned comfort band, utilizing discrete
ON/OFF control signals. After checking the temperatures in
bound, we need to evaluate the tracking performance depicted
in Fig. 6. It can be seen from Fig. 6 that satisfied tracking
performance has been achieved, in particular with the presence
of highly dynamic solar PV generation after extracting the
designed noise signal. Therefore, we claim that these 100
HVAC loads are well coordinated to track the PV generation
using the developed optimal control strategy.
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Fig. 4: Net reference PV power generation (Py.py)

V. CONCLUSIONS AND FUTURE WORKS

In this paper, the privacy issues associated with DR that
aim to improve security and efficiency of aggregated control-
lable loads for mitigating fluctuations in solar PV generation
are addressed. Different from most of the existing works
which mainly rely on the charging/discharging scheduling of
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Fig. 6: Tracking the Py,py signal using MPC control

rechargeable batteries, we utilize controllable building loads to
serve as virtual storage devices to track a pre-specified aggre-
gated load profile so that the raw power consumption will be
distorted and the differential privacy for personal information
can be guaranteed. A differential privacy based aggregation
algorithm is proposed to compensate for fluctuations in solar
power as well as to protect the users’ privacy without jeop-
ardizing user comfort. Considering the intermittent renewable
resources, this privacy-in-the-loop strategy will contribute to
filter out high frequency uncertain fluctuations into the grid.
Optimal coordination of controllable loads is then investigated
to simultaneously track both the load and noise profiles.
A numerical example is provided to optimally dispatch an
aggregate of on/off HVAC units to track the designed net
PV generation signal after filtering out the privacy signal. It’s
worth mentioning that, this framework can be generalized to
any controllable loads.

In our future work, a distributed cooperative optimization-
based control algorithm will be combined with this framework
to address the large-scale HVAC system control problem. An-
other interesting direction is to design a more complex privacy-
preserving DR framework, whose objective is to ensure the
privacy of each individual user under the aggregator.

(1]

[2

—

(3]
[4]

(5]

(7]

[8

—

(91

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

REFERENCES

C. Horne, B. Darras, E. Bean, A. Srivastava, and S. Frickel, “Privacy,
technology, and norms: The case of smart meters,” Social science
research, vol. 51, pp. 64-76, 2015.

C. Zhao, J. He, P. Cheng, and J. Chen, “Analysis of consensus-based
distributed economic dispatch under stealthy attacks,” IEEE Transactions
on Industrial Electronics, vol. 64, no. 6, pp. 5107-5117, 2017.

N. S. Grid, “Introduction to nistir 7628 guidelines for smart grid cyber
security,” Guideline, Sep, 2010.

R. Lu, X. Liang, X. Li, X. Lin, and X. Shen, “Eppa: An efficient
and privacy-preserving aggregation scheme for secure smart grid com-
munications,” IEEE Transactions on Parallel and Distributed Systems,
vol. 23, no. 9, pp. 1621-1631, 2012.

F. Li, B. Luo, and P. Liu, “Secure information aggregation for smart grids
using homomorphic encryption,” in Smart Grid Communications (Smart-
GridComm), 2010 First IEEE International Conference on. 1EEE, 2010,
pp. 327-332.

E. Liu and P. Cheng, “Achieving privacy protection using distributed
load scheduling: A randomized approach,” IEEE Transactions on Smart
Grid, 2017.

C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to
sensitivity in private data analysis,” in TCC, vol. 3876. Springer, 2006,
pp. 265-284.

F. McSherry and K. Talwar, “Mechanism design via differential privacy,”
in Foundations of Computer Science, 2007. FOCS’07. 48th Annual IEEE
Symposium on. 1EEE, 2007, pp. 94-103.

L. Yang, X. Chen, J. Zhang, and H. V. Poor, “Optimal privacy-preserving
energy management for smart meters,” in INFOCOM, 2014 Proceedings
IEEE. 1IEEE, 2014, pp. 513-521.

J. Won, C. Y. Ma, D. K. Yau, and N. S. Rao, “Privacy-assured aggrega-
tion protocol for smart metering: A proactive fault-tolerant approach,”
Biological Cybernetics, vol. 24, no. 3, pp. 1661-1674, 2016.

P. Barbosa, A. Brito, and H. Almeida, “A technique to provide dif-
ferential privacy for appliance usage in smart metering,” Information
Sciences, vol. 370, pp. 355-367, 2016.

J. Dong, M. Olama, T. Kuruganti, J. Nutaro, Y. Xue, I. Sharma, and S. M.
Djouadi, “Adaptive building load control to enable high penetration of
solar PV generation,” in 2017 IEEE Power & Energy Society General
Meeting, 2017.

J. Dong, M. Olama, T. Kuruganti, J. Nutaro, C. Winstead, Y. Xue, and
A. Melin, “Model predictive control of building on/off HVAC systems
to compensate fluctuations in solar power generation,” in 2018 9th
IEEE International Symposium on Power Electronics for Distributed
Generation Systems (PEDG). 1EEE, 2018, pp. 1-5.

J. Le Ny and G. J. Pappas, “Differentially private filtering,” /IEEE
Transactions on Automatic Control, vol. 59, no. 2, pp. 341-354, 2014.
C. Dwork, “Differential privacy: A survey of results,” in International
Conference on Theory and Applications of Models of Computation.
Springer, 2008, pp. 1-19.

G. Yuan, Z. Zhang, M. Winslett, X. Xiao, Y. Yang, and Z. Hao, “Op-
timizing batch linear queries under exact and approximate differential
privacy,” ACM Transactions on Database Systems (TODS), vol. 40, no. 2,
p. 11, 2015.

Y. Zhang, A. Melin, M. Olama, S. Djouadi, J. Dong, and K. Tomsovic,
“Battery energy storage scheduling for optimal load variance mini-
mization,” in 2018 IEEE Power Energy Society Innovative Smart Grid
Technologies Conference (ISGT), Feb 2018, pp. 1-5.

J. Brooks and P. Barooah, “Virtual energy storage through decentralized
load control with quality of service bounds,” in Proc. of American
Control Conference (ACC). 1EEE, 2017, pp. 735-740.

Y. Lin, P. Barooah, and J. L. Mathieu, “Ancillary services through
demand scheduling and control of commercial buildings,” IEEE Trans-
actions on Power Systems, vol. 32, no. 1, pp. 186-197, 2017.

J. L. Mathieu, S. Koch, and D. S. Callaway, “State estimation and
control of electric loads to manage real-time energy imbalance,” /[EEE
Transactions on Power Systems, vol. 28, no. 1, pp. 430-440, 2013.

J. Dong, C. Winstead, J. Nutaro, and T. Kuruganti, “Occupancy-based
HVAC control with short-term occupancy prediction algorithms for
energy-efficient buildings,” Energies, vol. 11, no. 9, p. 2427, 2018.



