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Abstract. Achieving performance portability for high-performance com-
puting (HPC) applications in scientific fields has become an increasingly
important initiative due to large differences in emerging supercomputer
architectures. Here we test some key kernels from molecular dynamics
(MD) to determine whether the use of the OpenACC directive-based pro-
gramming model when applied to these kernels can result in performance
within an acceptable range for these types of programs in the HPC set-
ting. We find that for easily parallelizable kernels, performance on the
GPU remains within this range. On the CPU, OpenACC-parallelized
pairwise distance kernels would not meet the performance standards re-
quired, when using AMD Opteron “Interlagos” processors, but with IBM
Power 9 processors, performance remains within an acceptable range for
small batch sizes. These kernels provide a test for achieving performance
portability with compiler directives for problems with memory-intensive
components as are often found in scientific applications.
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1 Introduction

Software development productivity is reduced when sections of high-performing
programs must be frequently rewritten in low-level languages for new supercom-
puter architectures. This is not only a consequence of increased labor costs, but
also because the code can become more error-prone due to shortened lifetimes,
multiple authors, and the inherent difficulty of programming close to machine-
level [?,?,?,?]. Because of such considerations, creating performance portable
applications has become an important effort in scientific computing [?,?], and is
recognized as a significant software design goal by both the U.S. Department of
Energy (DOE) [?,?,?] and the National Science Foundation (NSF) [?].

Classical molecular dynamics (MD) simulation is a popular tool for a number
of fields within the physical and chemical sciences [?,?] and has been successfully
implemented in the high-performance computing (HPC) setting by several devel-
opers [?,?,?,?,?,?,?,?,?]. The associated reports pay testimony to the extensive
effort involved in porting these programs to different HPC platforms in order
to meet increasingly rising standards. A variety of non-portable components are
employed in leadership MD programs that allow for cutting-edge performance
to be obtained. Some of the most performance-enhancing elements for per-node
speedup include the CUDA C language (and CUDA API) for GPU-based accel-
eration, and architecture-specific SIMD intrinsic functions along with threading
for the CPU portions [?,?,?,?,?,?,?]. CUDA C and the CUDA API, for exam-
ple, is currently usable only with NVIDIA GPUs, so sections of code written in
CUDA will have to be rewritten or translated for use on a different GPU-vendor’s
product; AMD GPUs, for instance, have recently been shown to be competitive
to NVIDIA GPUs [?,?]. For optimal performance on CPU-portions of heteroge-
neous architectures, architecture-specific SIMD instructions implemented with
either intrinsic functions or vector instructions are often found to be essential
in leadership MD programs [?]: without the use of SIMD, a majority of the
processor’s capacity may be unused by a program, and many compilers are not
effective in auto-vectorizing code [?], but highly optimized SIMD instructions
are architecture-specific and require a considerable effort. This amount of effort
may not be optimal or even permissible for a domain scientist, as it will detract
from time spent in scientific pursuits. Nevertheless, scientific computing needs
can often be very niche-specific and thus commercial applications may not pro-
vide an adequate computational solution [?]. Modern science has advanced to
a level that some amount of computing is required for both the theoretical and
experimental branches: while computational science has become recognized as
the “third pillar” of science by national agencies such as the NSF [?], current
trends indicate that it is now essential to the functioning of the other two [?]. It
is thus of great importance that scientific computing initiatives have accessible
programming tools to produce efficient code that can be easily ported to a num-
ber of HPC architectures, and that the machine-level back ends are re-targeted
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and optimized by system or API developers, while maintaining a consistent,
unified front-end interface for the computational scientist to use.

High level, compiler-directive based programing models such as OpenACC
and OpenMP have the potential to be used as a tool to create more perfor-
mance portable code [?,?]. Results of such attempts have been mixed, however
[?,?,?,?,?,?]. The creation of a dedicated portable program should provide the
most optimal results [?,?]. Accordingly, here we test the possibility of creating
a portable MD application starting with key kernels of the basic algorithm, and
acceleration using OpenACC, to assess whether the resulting performance of
these kernels is within an acceptable range to be used as part of HPC-based
MD programs. This effort provides tests of the performance of OpenACC on
kernels that involve non-negligible memory operations, and large memory trans-
fers to the GPU, characteristic of many scientific applications. The kernels also
represent calculations important to other types of computational work such as
classification and data analysis.

2 Background

2.1 Performance Portability

To quantify portability, an index has been proposed, the degree of portability
(DP):

DP = 1− (CP /CR) (1)

where CP is the cost to port and CR is the cost to rewrite the program [?]. Thus,
a completely portable application has an index of one, and a positive index in-
dicates that porting is more profitable. There are several types of portability;
binary portability is the ability of the compiled code to run on a different ma-
chine, and source portability is the ability of the source code to be compiled on
a different machine and then executed [?,?,?]. Here, costs can include develop-
ment time and personnel compensations, as well as error production, reductions
in efficiency or functionality, and even less tangible costs such as worker stress
or loss of resources for other projects. For the HPC context, we can say that an
application is performance portable if it is not only source-portable to a variety
of HPC architectures using the Linux operating system and commonly provided
compilers, but also that its performance remains in an acceptable range to be
usable by domain scientists for competitive research. To avoid the ambiguity in
the phrase “acceptable range,” Pennycook proposed the following metric for PP
[?,?]:

PP (a, p,H) =

{ |H|∑
i∈H

1
ei(a,p)

if a is supported ∀i ∈ H

0 otherwise,
(2)
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where |H| is the cardinality of the set H of all systems used to test the
application a, p are the parameters used in a, and ei is the efficiency of the ap-
plication on each system i ∈ H. Efficiency, here, can be the ratio of performance
of the given application to either the best-observed performance, or the peak
theoretical hardware performance [?].

Use of a high-level programming interface with a re-targetable back end that
is standardized and supported by a number of both commercial and open-source
initiatives has been found to be a critical element of portable application design
[?,?]. OpenACC [?] was first developed to provide a high-level programming
model for GPU programming, and now has been extended to multi-core ma-
chines. Conversely, OpenMP [?], once specific to CPU-based threading, has now
been extended to the GPU. Both of these APIs offer compiler-directive-based
interfaces with which to wrap sections of code for parallelization; they both ap-
pear in a similar format to the syntax used by OpenMP, which has now become
familiar to many programmers of all levels. These two APIs are supported by
a number of commercial hardware and compiler developers, and in addition, by
the GNU project [?].

2.2 Molecular Dynamics

In molecular dynamics, a system, represented by atomistic units, is propagated in
time based on some calculated forces using a numerical integration of Newton’s
equations of motion. The simulation cannot proceed with the next step until
the previous one is completed; furthermore, a very small time-step is required to
keep the simulation from sustaining unacceptable drifts in energy, as compared
to experimental timescales that the simulation may be modeling [?]. Therefore,
minimization of time per step is highly important. Several open-source, highly
parallel classical MD programs exist that can scale to over thousands of nodes
of a supercomputer and are heavily used internationally for molecular research.
These programs are able to perform a time step in less than two milliseconds for
systems of hundreds of thousands of atoms, or in seconds for systems of hundreds
of millions of atoms [?,?,?,?,?,?].

The classical molecular dynamics algorithm involves three main components:
the integration step, the calculation of bonded forces, of pairwise short-range
non-bonded (SNF) forces, and the calculation of long-range forces. The integra-
tion step is generally the quickest part of the calculation, and as it has some
memory-intensive aspects, is often calculated using the CPU, in implementa-
tions using heterogeneous architectures. The long-range forces calculation, in
most implementations, involves an Ewald-sum, and requires Fourier transforms.
The SNFs consist of the Lennard-Jones interaction, and short-range electro-
static forces. The Lennard-Jones interaction is an empirical function created to
approximate the dispersive, or van der Waals forces, which in reality are purely
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quantum effects. The functional forms for these two additive forces are:
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Here FLJ(rij) is the Lennard-Jones force on atom i due to atom j, with rij
being the vector connecting atom i to atom j. σ is a parameter that depends on
the atom type of both interacting atoms, and FC(rij) is the analogous Coulomb
force, with qn being the point-charge value assigned to atom n, and ε0 the per-
mittivity of free space; both are functions of the inter-atomic distance [?,?].

Fig. 1: Schematic of the interaction neighbors for cell-cell interactions involved in the spatial decom-
position in the molecular dynamics algorithm. The central box (orange), interacts with itself, and
with its 26 immediate neighbors, creating a total of 27 interactions for each cell in the grid, if in a
periodic system, or a range of interactions from 8-27 if in a non-periodic system. Boxes are exploded
outward for visualization purposes, but sides are touching in the actual grid.

The Lennard-Jones and short-range electrostatic forces rapidly decay to zero
outside of a radius of about 10-14 angstroms. This creates an excellent mecha-
nism for reducing the total calculation by imposing a distance-based radial cutoff
on each atom, outside of which no interactions are considered. Algorithmically,
the SNF calculation usually consists of a spatial decomposition, or domain de-
composition, of the system, into a three-dimensional grid of cells, followed by a
binning of the atoms into their associated cells with some sort of sorting proce-
dure. After this the pairwise forces on each atom can be calculated and summed
[?,?]. These forces, as can be seen from their equations, depend on the pairwise
distances between an atom and all other atoms within the radial cut-off. If the
spatial decomposition is performed so that the cells’ dimensions are close to the
LJ cut-off distance, then only the interacting cell-cell pairs need to be searched
for interacting atoms, for each cell [?]. In the periodic regime, all cells have 26
neighbors, and distances of all atoms within the central cell must be calculated
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as well, resulting in 27 cell-cell interactions that must be calculated for each cell
in the grid of the domain decomposition. Figure 1 shows a central cell and its
interacting cell neighbors. Figure 2 shows a sparsity plot of the distance matrix
for all cell-cell interactions in the system, with those having distances greater
than the cut-off set to zero and colored white, and interacting cells colored blue.
As can be seen, the cut-off creates a banded structure to the matrix, and reduces
the number of cell-cell calculations by about 90%.

Fig. 2: Sparsity plot of distance matrix of all cell-cell distances, with all distances outside of radial
cut-off of 10 angstroms set to zeros (and colored white), for a solvated system of 30,000 atoms
(small protein), and all distances within the cut-off in blue. The number of cells in each direction
is 6, resulting in a total of 46,656 cell-cell distances. 4096 of these are actually calculated in a
non-periodic MD simulation due to the cut-off scheme.

3 Portability goals: timings and architectures

HPC MD developers have continuously pushed for increasingly shorter per-time-
step execution rates. Currently, GROMACS [?] and NAMD [?] exhibit highly
competitive timings per time-step. For 21 M atoms, NAMD attained about 5 ms
per time-step and for a 224 M atom system, about 40 ms per time-step using
using 4096 nodes, according to published benchmarks [?,?]. In 2015 GROMACS
reported a sub-millisecond time-step for a 80,000 atom system using only 32
nodes, with Intel E5-2680v2 processors with 20 CPU cores and 2 K20X NVIDIA
GPUs, and 1.7 ms per step for a 2 M atom system using 512 nodes of the
same processor type but without GPU [?]; thus performance on a multi-core
machine can actually exceed that of a GPU-enabled supercomputer for MD.
Using GROMACS 5.1.3 on OLCF Titan, a Cray XK7 with AMD Interlagos
CPUs and one NVIDIA K20X GPU per node we obtained a 1.2 ms time-step
for a 1.1 M atom system using 1024 nodes. This level of performance has been
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attained and is expected on many-core, multi-core, and GPU-containing HPC
systems.

We test some key kernels from a MD calculation to see if parallelization with
OpenACC can be performed while remaining under 7 ms/time-step for a system
under 20 M atoms, or 55 ms/time-step for a system of about 220 M atoms, after
domain decomposition. On a single node, the total times for the kernels must
be well below these numbers while at the same time the job size on the node
must be large enough so that the total domain decomposition would not use
more that about 2000 nodes for a smaller system, and 4000 nodes for a larger
system. Common domain decomposition for MD programs involves computing
the SNFs acting on about 15 K atoms on a single node. For around 15 K atoms,
there are about 3,000 cell-cell interactions, so what we aim for is a total kernel
time under 6 ms for about 3,000 cell-cell interactions, or 50 ms for about 12,000
cell-cell interactions, which leaves time for communication and other less time-
consuming portions of the calculation, and corresponds to an 80% efficiency score
compared to NAMD, and if maintained for all architectures tested, would result
in a minimum of 80% performance portability score in (2). We test whether
this performance can be maintained using the same source code, on nodes with
multi-core CPUs and on heterogeneous nodes containing a GPU.

4 Designing The Kernels

4.1 The programming model and its portable subset

C enjoys native support on a variety of machines and is familiar to most pro-
grammers, furthermore, C++ functionality has been added for some compilers
[?], but can be problematic [?]. We try to use only the portable subset of C and
OpenACC. For C, this means avoiding structures and classes, and programming
elements that are difficult to parallelize with directives. While OpenMP provides
SIMD constructs that enable machine-specific elements to be added to a parallel
region, OpenACC does not contain syntax for such explicit targeting [?,?,?,?].
Additionally, it has been found that OpenACC threading on the CPU can be
poor if the optimal organization of a particular kernel is not used, and that this
re-organization for the CPU can decrease performance on the GPU [?]. We would
like for parallel regions to not have to be rearranged with different constructs
to obtain adequate performance on different architectures. We tried to use the
simplest layouts as an initial test, with the hope that the design and modular-
ity of the application could provide a large portion of the parallel performance
gain. Although the format of directive-based parallelization with OpenMP and
OpenACC initially seem similar, unfortunately the two APIs differ enough in
how they must be used to obtain adequate parallelization, that they cannot be
exchanged using simple macros. In many cases, different sections of nested loops
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require different arrangement of parallel clauses, and in some cases, the code
region must be re-arranged when switching between APIs [?,?,?]. There are ini-
tiatives that are aimed at performing an automated translation from one to the
other; this is a positive development as currently only several compilers support
each interface [?]. To facilitate such a translation it will also be advantageous to
use the simplest syntax for each parallel region.

4.2 Modular format and kernels

To create a modular format that can facilitate portability, deconstruction the
MD algorithm into its subtasks was performed. To simplify the algorithm we
avoid the use of non-rectangular cells for the domain decomposition. Several
highly optimized algorithms have been published that focused on the use of
cells of varying complexity, [?,?]; these types of algorithms require more time to
code, understand, and test, and thus are not a practical choice for a dedicated
portability effort. We chose a rectangular grid, and once the grid is created, the
location of each atom can very easily be calculated using a reduction over its
three position coordinates. A one-digit address can be uniquely determined.

We focus on several computational modules that are repeated every time
step. The creation of the cell-grid, based on the minimum and maximum values
of the atomic positions along each dimension, and the cut-off radius given, is an
example of a procedure that only needs to be calculated one time for a constant-
volume simulation. This is also true for the creation of the interaction list for
the cell-cell interactions. The first module that is repeated is “atom-binning.”
Involved in this task is the assignment of each atom to its corresponding cell,
referred to here as the “cell-assign” procedure. Additional steps involve counting
the number of atoms in each cell, and the filling of a data structure representing
each cell with the appropriate atoms’ coordinates, either with a gathering of
all atoms belonging to, or with a halo-exchange type operation after an initial
sorting. Cell-assignment is a completely parallel task that is trivial to distribute
and requires no redesign from an analogous serial algorithm. For the rest of
the parallel binning algorithm, however, it is impossible to simply parallelize
the counting and the permutation-array steps with a directive added to a serial
implementation: the concept of counting and all-prefix-sums are dependent on
the sequential programmatic progression. This is an excellent example of how
the use of OpenACC in a näıve way to speed-up a serial algorithm can fail
completely. An algorithm’s serial version may require a complete restructuring
in a parallel programming model.

Another module we tested is the squared pairwise-distance calculation. This
module comprises a large portion of the force computation in MD, which is the
largest bottleneck [?,?]. The decay of the force functions, however, makes the
cut-off approximation both accurate and very computationally important; the
cell-based spatial decomposition makes excellent use of this [?]. The large, cell-
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cell pairwise distances calculation (the pairwise distance of each atom in each
cell with all other atoms in interacting cells) has a complexity of O(N), where N
is the total number of atoms being modeled, however the prefactor is very large.
To obtain the pairwise distances, an element-wise square root must be applied.

The pairwise distance calculation is also important for numerous applications
in statistics and data science. A pairwise-distance calculation over a large number
of multi-dimensional observations is central to clustering algorithms such as k-
means and some kernel methods [?,?,?,?,?]. Therefore an analysis of the potential
for performance portability of a massively parallel distance matrix calculator is
of interest in its own right [?,?].

Many MD programs also employ an atomic neighbor-list, which not updated
every time step under the assumption that the atoms will not move considerably
each step. This reduces the number of times the pairwise distances within the cell
interactions are calculated, thus it reduces the prefactor in the O(N) complexity.
However, this procedure incurs some launch overhead, memory access, and com-
munication costs: potential inefficiency of many small data-structure-accessing
steps, increased bookkeeping requirements in the code, and the requirement to
“batch” the calculations by hand on the GPU for efficiency, lead to increases in
code complexity and thus potential error-generation, and decreases in portabil-
ity. We did not address the neighbor-list calculation in this study.

5 Binning module (Neighbor-list updates): bin-assign,
bin-count, and bin sorting

5.1 Bin-assign, Bin-count

Listing 1.1 shows a serial version of the bin-assign and bin-counting procedures.
The most efficient method, in serial, is to use a one-dimensional array of atoms’
bin IDs, and an accompanying array that keeps track of how many atoms in
each bin. In a serial implementation, this bin-count can be accomplished in the
same for-loop as the bin-assign.

1

2 /∗ a f t e r determining the number o f b ins based on the t o t a l system s i z e
and the cu to f f , a l l o c a t e the array that keeps t rack o f how many
atoms are in each bin : ∗/

3 bin count=( i n t ∗ c a l l o c ( numbins∗ s i z e o f ( i n t ) ) ;
4 // binning procedure :
5 f o r (b = 0 ; b < num atoms ; b++) {
6 // read each atom ’ s 3 coo rd ina t e s and c a l c u l a t e the value o f the 3−d i g i t
7 // address :
8 temp [ 0 ] = f l o o r ( ( coords [ b ] [ 0 ] / range [0]− kbinx )∗num divx ) ;
9 temp [ 1 ] = f l o o r ( ( coords [ b ] [ 1 ] / range [1]− kbiny )∗num divy ) ;

10 temp [ 2 ] = f l o o r ( ( coords [ b ] [ 2 ] / range [2]− kbinz )∗num divz ) ;
11 // f i nd the 1−d i g i t address o f the atom
12 n= num divy∗num divz ∗( temp [ 0 ] )+num divz ∗( temp [ 1 ] ) +(temp [ 2 ] ) ;
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13 // ente r the 1−d i g i t address in to that atom ’ s index in the b i n i d s array
:

14 b i n i d s [ b ] = n ;
15 // update the count in that bin ’ s index in the b in count array :
16 bin count [ n]= bin count [ n ]+1;
17 }
18 /∗ The v a r i a b l e b i n i d s i s a one−dimens iona l array the l ength o f the

number the t o t a l number o f atoms . Each element o f b ins conta in s the
s i n g l e−i n t e g e r bin ID o f the atom with corresponding array index ,
and the v a r i a b l e coords i s a two−dimens iona l array a l l o c a t e d at the
i n i t i a l i z a t i o n o f the program , conta in ing the x , y , and z components
o f each atom ’ s coo rd ina t e s . The v a r i a b l e b in count i s a t a l l y o f

the number o f e lements in each bin . ∗/

Listing 1.1: Code snippet of a serial version of bin-assign/bin-count

For a parallel version, “counting” is ill-defined, and this seemingly trivial
computation in serial, becomes a more difficult task in parallel. The serial version
of the gathering step is also relatively trivial. Listing 1.2 shows a version of this
type of nested solution in a serial implementation.

1 count = 0 ;
2 f o r (b=0; b<numbins ; b++) {
3 f o r ( c=0; c<num atoms ; c++) {
4 i f ( b i n i d s [ c]==b){
5 ga the r a r ray [ count ]=c ;
6 count++;
7 }
8 }
9 }

Listing 1.2: Code snippet of a serial version of the gathering array generation

Since the bin-assign procedure is independent for each atom, it is easily par-
allelizable. The requirements simply involve using a single OpenACC directive
to parallelize the serial version. Listing 1.3 shows the implementation of its par-
allelization using an OpenACC parallel loop pragma. It is further possible to
potentially optimize this section using different OpenACC options, however,
with just this simple addition, using the PGI compiler, OpenACC generates
an implicit copy out of bin ids, an implicit copy in of coords and range. For
500,000 atoms, this section of the binning algorithm required 115 microseconds
(0.115 ms), and for 30,000 atoms, 11 microseconds (0.011 ms), using one node
of Titan with the GPU. Although the use of gangs, workers, and other data
distribution keywords provided by OpenACC are defined for particular divisions
of tasks, the actual performance of these various methods to create compiler-
written code for a particular HPC architecture is highly system dependent. We
found for the above kernel, that these additional constructs did not improve
performance. The most general pragma, the “kernels” directive, allows the API
to determine what regions of the section can be parallelized, and to distribute
these regions appropriately. A less general option is the parallel “loop” region,
which specifically tells the compiler to parallelize the loop.

1 #pragma acc p a r a l l e l loop pr i va t e ( temp)
2 f o r (b = 0 ; b < num atoms ; b++) {
3 // read each atom ’ s 3 coo rd ina t e s and c a l c u l a t e the value o f the 3−d i g i t
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4 // address :
5 temp [ 0 ] = f l o o r ( ( coords [ b ] [ 0 ] / range [0]− kbinx )∗num divx ) ;
6 temp [ 1 ] = f l o o r ( ( coords [ b ] [ 1 ] / range [1]− kbiny )∗num divy ) ;
7 temp [ 2 ] = f l o o r ( ( coords [ b ] [ 2 ] / range [2]− kbinz )∗num divz ) ;
8 // f i nd the 1−d i g i t address o f the atom
9 b i n i d s [ b]= num divy∗num divz ∗( temp [ 0 ] )+num divz ∗( temp [ 1 ] ) +(temp [ 2 ] ) ;

10 }

Listing 1.3: Code snippet of a simple OpenAcc parallelization of bin-assign

Manual task division for bin-assign together with OpenACC pragmas
We also tested how some amount of manual splitting of the bin-assignment tasks
would affect the speed-up. We separated the atoms into 5 evenly distributed
blocks, and added OpenACC loops around both the blocks, and the inner bin-
assign. Interestingly, this resulted in a 3-5 × speed-up, depending on the number
of atoms. However, the speed-up may be system- and data-size- dependent, and
it may be a difficult task to optimize this manual splitting by future users of the
application.

5.2 Parallel algorithm design for bin count and gather

The bin count and gather operations are classical examples of more difficult prob-
lems in parallel computing. For this reason, for a portable application, these mod-
ules may be better handled with optimized routines from libraries rather than
OpenACC. Furthermore, the optimal programmatic solution may vary greatly
between architectures. Details are provided below.

Bin count Parallelization of the bin-count procedure can be approached in
several ways. This is ultimately a histogramming task. One can use an atomic-
add for the bin-count array variable, which can be kept in a shared location in
memory. These types of operations are supported by OpenACC’s more advanced
directive options. Alternately, one can create a type of merge-count, so that the
bin-ID array is split into subarrays, each is counted in serial by parallel gangs,
and the results are merged. It is also possible that for various architectures,
there will be a different optimal solution for this step. Thus this is an example of
a region of code that may require encapsulation and increased documentation,
as well as several kernels to be used for specific systems, or the potential for
exchanging with an optimized library. A high performing histogram routine,
for instance, could be employed in this section [?], as can a parallel prefix-sum
routine [?].

Gather In order to gather all atomic coordinates belonging to a cell (bin) into
a single data structure for passing to the pairwise distance calculation, the use of
masks, or an efficient parallel scan algorithm can be used. This process involves a
(fuzzy) sorting and somewhat complicated data movement patterns. The optimal
solution can require a significant amount of effort and may vary greatly based



12 A. Sedova et al.

on the architecture targeted, and thus is the type of procedure that could also
be replaced with a call to hardware-specific libraries, that would each provide
an optimized solution for a specific architecture. One possibility is to exploit
sorting procedures provided by HPC libraries such as Thrust [?]. This again is a
region that must be encapsulated and well-documented, because it may involve
machine-specific solutions [?].

1 f o r (b=0; b<num batch ; b++){
2 /∗ rows=dim , columns=obs . ∗/
3 f o r ( i = 0 ; i < num coords n ; i++) {
4 f o r ( j = 0 ; j < num coords m ; j++) {
5 f o r ( k = 0 ; k < 3 ; k++)
6 {
7 temp = batchA [ b ] [ k + 3 ∗ i ] − batchB [ b ] [ k + 3 ∗ j ] ;
8 y [ k ] = temp ∗ temp ;
9 }

10 temp = y [ 0 ] ;
11 f o r ( k = 0 ; k < 2 ; k++)
12 {
13 temp += y [ k + 1 ] ;
14 }
15 batchC [ b ] [ i + num coords n ∗ j ] = temp ;
16 }
17 }
18 }

Listing 1.4: Code snippet of serial version of the squared pairwise distance
calculation

After the initial gathering of atoms into their respective cell arrays, future
gathering operations can be accomplished with a data exchange routine com-
mon in the halo-exchange algorithms used in stencil computations [?,?]. This
takes advantage of the fact that atoms do not move large amounts over short
time periods, and thus many atoms may not change cells for many time steps.
Therefore the number of exchangers will be small. However, this approach in-
volves communication expense and more complicated data movement patterns.
Alternately, larger groups of atoms in neighboring cells can again be sorted by
bin ID using a fast sorting algorithm that is most efficient on heavily presorted
data [?,?,?]. For smaller systems where data is located on a single node, it may
be faster to resort all atoms than to perform numerous communication and data
exchange operations. Ultimately, the optimal choice of algorithm may also be
hardware specific, and thus it is possible that the most performance portable
solution for this module is a call to an HPC library.

6 The squared pairwise distance calculation:
performance, portability, and effort

In this section we examine the performance portability of an OpenACC imple-
mentation of the calculation of the squared pairwise distance matrix for all atoms
in sets of two interacting cells. This calculation does not suffer from the types of
algorithmic complexities that the bin count and gather modules do; it is a more
easily parallelizable routine much like the bin assign module. For this module,
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in addition to the use of OpenACC for parallelization on the GPU and on the
CPU, we also created two alternate implementations, one using a CUDA kernel,
to compare performance of the directive-based implementation, and one com-
pletely using routines from newly emerging batched versions of accelerator-based
Basic Linear Algebra Subprograms (BLAS)[?] libraries.

The BLAS version is a pedagogical example of a solution that is not only
portable, but actually requires the least amount of parallel programming ex-
perience: it allows the user to perform the calculation without any knowledge
of accelerator programming or even any experience with compiler directives.
Thus the effort and skill required to port this version would be minimal. While
batched versions of BLAS standard routines are not technically part of the stan-
dard, there is a growing need for these types of routines and they are available
in many scientific libraries.

Listing 1.4 shows the serial version of such a calculation. The variables batchA
and batchB are batched collections of atoms in interacting cells, batchC is an ar-
ray of respective distance matrices for each cell pair from in batchA and batchB,
and num cells is the number of cells in each batch. There is a loop over the three
dimensions in order to provide generality: for use in data analysis the dimension
may be very large and parallelization of the loop may be necessary.

We tested single node, single GPU and CPU-only implementations, imple-
menting parallelization with OpenACC, CUDA and cuBLAS using OLCF Titan,
a Cray XK7 with 16-core AMD Opteron “Interlagos” CPUs and NVIDIA Ke-
pler (K20X) GPUS, and OLCF Summit, a system containing 42 IBM POWER9
CPUs and 6 NVIDIA Volta (V100) GPUs per node, with 4 SMT hardware
threads per CPU core [?].

1 #pragma acc data copyin (A[ 0 : 3∗ num batch∗num coords n ] ) , copyin (B[ 0 : 3∗
num batch∗num coords m ] )

2

3 pa i rw i s e batched (A, B, C, num coords n , num coords m , num batch ) ;
4

5 void pa i rw i s e batched ( double A[ ] , double B [ ] , double C [ ] , i n t ldX , i n t
ldY , i n t num batch ){

6 #pragma acc data pre sent (A) , pre sent (B) , pre sent (C)
7 #pragma acc k e r n e l s
8 #pragma acc loop independent
9 f o r ( i n t b=0; b<num batch ; b++)

10 {
11 double y [ 3 ] ;
12 double temp ;
13 /∗ rows=dim , columns=obs . ∗/
14 #pragma acc loop independent
15 f o r ( i n t i = 0 ; i < ldX ; i++) {
16 #pragma acc loop independent
17 f o r ( i n t j = 0 ; j < ldY ; j++) {
18 #pragma acc loop seq
19 f o r ( i n t k = 0 ; k < 3 ; k++)
20 {
21 double temp = A[ b∗3∗ ldX + k + 3 ∗ i ] − B[ b∗3∗ ldY + k + 3 ∗ j

] ;
22 y [ k ] = temp ∗ temp ;
23 }
24 temp = y [ 0 ] ;
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25 #pragma acc loop seq
26 f o r ( i n t k = 0 ; k < 2 ; k++)
27 {
28 temp += y [ k + 1 ] ;
29 }
30 C[ b∗ ldX∗ ldY + i + ldX ∗ j ] = temp ;
31 }
32 }
33 }
34 }

Listing 1.5: Code snippet of a simple OpenACC parallelization of the squared
pairwise distance calculation

6.1 Use of OpenACC for the squared distance calculation: GPU

Fig. 3: Comparison of performance (time in ms), for CUDA and OpenACC versions of the GPU-
based all-pairwise squared distances calculation on OLCF Titan (K20X) and Summit (V100), over
increasing batch sizes. A: Using OpenACC distance kernel. B: Using CUDA distance kernel.

The GPU-based OpenACC version was created by adding a data region,
an acc kernels region, and three acc loop independent regions around the
serial pairwise distance function shown in Listing 1.4. The two dimensional array
was also flattened. Listing 1.5 shows this implementation. While there may be
further work to be done in determining the optimal OpenACC clauses to use for
this calculation, for the scheme shown in Listing 1.5, results were surprisingly
good. On both Titan and Summit, a reasonable number of batches could be
processed in under 10 ms, and on Summit, all cell-cell interactions for a system
the size of a small protein (about 6000 batches) could be processed on a single
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GPU in under 10 ms. Figure 3-A shows timings for increasing batch sizes using
one node and one GPU of each machine. These results are within the acceptable
range we determined for an MD step, although for smaller systems the upper
limit on the time-per-step greatly constrains the amount of batches that can be
offloaded to a single node, resulting in the use of only a small percent of the peak
FLOPs available on the GPU. With no such constraint, it would be possible to
perform significantly more pairwise distance calculations per node in a relatively
rapid amount of time based on how much the two tested GPUs’ global memories
can hold.

For larger systems, it may be advantageous to use more batches per node, and
maximize the percentage of peak FLOPs used, as the amount of allowed time per
time step for larger systems by current standard is higher. For a system of about
80,000 atoms, as in the GROMACS benchmark discussed in section 3, using
about 1024 batches per node, the distance calculation can be completed for all
interacting atoms in under 10 ms using less than 8 nodes. Using 32 nodes, as used
in the benchmark, this calculation can be completed in under 0.5 ms on Summit.
Of course there are some additional calculations to be performed, i.e. the square
root and the application of the force functions to the distances, to complete
the SNF routine, however, these involve fewer FLOPs and no further memory
transfers. The possibility of using OpenACC on GPUs within a performance-
portable HPC MD application is not excluded by these initial benchmarks.

Fig. 4: A. Comparison of performance by GFLOPS for CUDA and OpenACC versions of the GPU-
based all-pairwise squared distances calculation on OLCF Titan (K20X) and Summit (V100), over
increasing batch size. B: Speedup (×) of CUDA kernel over OpenACC kernel distance kernel on
Summit, for total runtime and memory transfer time. C: Speedup of CUDA kernel over OpenACC
kernel distance kernel on Titan.
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6.2 Comparison to CUDA Kernel

Figure 3-B shows timings for the CUDA implementation of this calculation on
Titan and Summit, and Figure 5 shows memory transfer times and speedup over
OpenACC version. OpenACC is slower, but less than 2 ×. Performance is still
within the acceptable range, and excellent on Summit, using OpenACC.

Fig. 5: Comparison of memory transfer time for CUDA versions (and BLAS version) of the GPU-
based all-pairwise squared distances calculation on a) OLCF Titan (K20X) and b) Summit (V100),
for different batch sizes. Inset: Speedup (×) for Summit versus Titan

6.3 OpenACC on the CPU

We tested the parallelization of the kernel using OpenACC for CPU-based
threading with the ta=multicore compiler flag, using the identical code. There
are some algorithms that can be performed faster on the CPU, with OpenMP
threading, than on the GPU with OpenACC or CUDA [?,?,?]. To get maximum
performance on the CPU you must use threading, alignment, and vectorization
[?], OpenACC has no functionality for intrinsic-function level specification. It
also has no option for treating thread affinity. OpenACC seems to be less useful
for creating truly performant CPU-based kernels than GPU version, for kernels
like the distance calculation. Memory transfer time was sub-microsecond, and is
not reported. Figure 6 shows kernel runtimes for varying batch sizes and scal-
ing data on Summit and Titan. For smaller batch sizes, times can be within an
acceptable range for Summit, but not Titan. Furthermore, the small batch size
limit reduces the number of cell-cell interactions to those in an equivalent system
of about 20,000 atoms. Therefore, we see that performance of OpenACC, even
on new supercomputer cores, is barely within the lowest limit for performance
portability.
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6.4 Comparison to a purely BLAS-based algorithm: Lowest
programming knowledge required

A well-known algorithm for the pairwise distance calculation can be implemented
completely with subroutines from BLAS libraries. Surprisingly, although this al-
gorithm involves slightly more total flops and a significant amount of memory
operations than the direct method, it has been considered in the past as a fast
way to implement the distance calculation on the CPU, if using threaded sci-
entific libraries like Intel’s MKL [?]. Matrix operations such as matrix-matrix
multiplication are included in most high-performing scientific libraries provided
by system manufacturers, and have also become benchmarks for measuring the
performance of these systems. Thus they are competitively implemented in a
highly optimized manner. The algorithm for the BLAS-based distance matrix
calculation is shown in Algorithm 1.

Fig. 6: Performance and scaling (time in ms) of OpenACC threading on the CPU, Summit and Titan,
for all-pairwise squared distances calculation. Left: Performance. Right: Scaling plot for 1024 cell-cell
interactions (batch number 1024).

The BLAS-based algorithm would probably be used on a single large matrix,
in data analysis. Here we explored the potential of using such an algorithm on
the GPU with a more recently developed massively-parallel extension of matrix-
matrix multiplication (MM), the batched MM routines, to compare performance
to our other two versions. While as-yet not a standard BLAS routine, a batched
version of MM for many small matrices exits in both the NVIDIA-provided
cuBLAS library [?], and Intel MKL for multicore architectures and the KNL [?].
Furthermore, an version of a batched MM routine is provided by Magma, [?]
an open-source effort that creates accelerated BLAS routines for a number of
architectures. There is a growing possibility that that batched BLAS routines
will enter into the standard, as they arise naturally when large problems are
decomposed on parallel platforms [?].

The BLAS method creates a floor for the amount of programming skill and
effort required for an accelerated squared pairwise distance calculation. With
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this version programmer would not need to have any experience in any pro-
gramming languages other than C/C++ or FORTRAN, not even the use of
compiler directives. However, this algorithm works best for large matrices that
are closer-to-square in shape, unlike our coordinate arrays.

Algorithm 1 Pairwise squared distance calculation using matrix operations,
adapted form Li et al., 2011 [?]

1: load matrices A and B and allocate memory for matrix C
2: A has dimension N by 3, B has dimension M by 3, and C has dimension N by M
3: note: (·) denotes elementwise multiplication
4: v1 = (A ·A)[1, 1, 1]T

5: v2 = (B ·B)[1, 1, 1]T

6: P1 = [v1,v1, ...,v1] (dimension N by M)
7: P2 = [v2,v2, ...,v2]T (dimension N by M)
8: P3 = ABT (dimension N by M)
9: D2 = (P1 + P2 − 2P3), where D2 is the matrix of squared distances

10: pairwise distance matrix can be recovered from D2 by element-wise square-root

We implemented this algorithm using cuBLAS, the CUDA-based BLAS li-
brary provided by NVIDIA. Using matrices of size 200 by 3, we tested this
implementation on a single GPU of Titan and Summit. Matrices A and B in
our situation are the 3-D coordinates for atoms in two interacting cells. In order
to perform lines 6 and 7 with BLAS routines, one can use the dger routine (outer
product) of v1 or v2 with a vector of ones of length N. However, cuBLAS does
not provide a batched version of dger, and thus we used batched MM again with
input “matrices” v1 or v2 and a vector of ones. The element-wise multiplication
is available in MKL as a Hadamard product, but not in cuBLAS, thus lines 4
and 5 were performed on the CPU and not included in timings. Because of this,
we found that on the GPU, this algorithm cannot be performed completely with
cuBLAS functions. Even without these first two components of the calculation,
the performance of this method on the GPU compared to that of OpenACC or
CUDA-C is much lower. Figures 7 and 8 show timings and comparison to the
CUDA kernel. This (partial) version’s performance is quite poor, but better than
the OpenACC-threaded CPU version. Despite optimized BLAS routines on the
GPU provided by NVIDIA, the memory operations swamp the performance in
comparison to the CUDA-C and the GPU-based OpenACC versions.

7 Programming effort

It is difficult to measure worker effort, especially when skill levels of workers may
differ. Some papers report that CUDA requires more effort than OpenACC, even
for workers familiar with both APIs [?,?,?]. However, different compilers each



Directives for Performance Portability: Kernels from Molecular Simulation 19

Fig. 7: Comparison of performance of BLAS version, all-pairwise squared distances calculation, on
the GPU, using OLCF Titan (K20X) versus Summit (V100).

may implement a particular directive instruction differently, and variable per-
formance may require alternate constructs to be used to parallelize a particular
section of code, leading to some level of trial and error in each port. This lack
of a defined outcome increases potentials for performance portability, as there
are more possibilities that optimal performance will be obtained by using dif-
ferent constructs and different compilers, but can be frustrating for the user,
and increased experience may not increase the ease of this process. Therefore,
we cannot say that the use of OpenACC requires significantly less total worker
effort than use of CUDA-C for small kernels. On the other hand, the amount
effort required for OpenACC parallelization is not large, and the result is far
more portable than CUDA-C after the first implementation has been created. It
is also possible that the effort required for OpenACC is less than for some alter-
native portable solutions, such as OpenCL [?]. The use of the cuBLAS-batched
indeed required the minimum amount of programming skill, however, creating
the kernel involved more programming steps than the addition of a directive to
a serial kernel, and more testing to make sure the result was correct. On the
other hand, after the initial implementation is created, it should be able to be
used without any changes except for linking to a different library and any small
changes to the call syntax.

Fig. 8: Left: Comparison of performance (time, ms) of BLAS versus CUDA version of all-pairwise
squared distances calculation, using one GPU on Summit. Right: Speedup (×) of CUDA version on
Summit vs. cuBLAS-batched version on Summit.
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8 Conclusions

We have found that portable kernels that remain within an acceptable perfor-
mance range can be created for calculations representing bottleneck regions in
MD. Using OpenACC, we found that while performance on the GPU was closer
to the performance of CUDA kernels, on the CPU, performance of threaded ker-
nels was much lower, and on older CPUs such as the AMD Bulldozers, would
not provide acceptable performance. However, on the Power 9 processors, CPU
performance remained within the low range of acceptability for smaller job sizes.
Future work can compare the performance of these kernels when using OpenMP
both on the CPU and the GPU. It is possible that the need for some amount
SIMD-level instructions could be required for better performance on the CPU,
and can also be tested in future work with OpenMP SIMD constructs.

Testing key kernels in scientific applications in this way creates examples
of directive-based parallelization that include memory-limited calculations and
difficult-to-parallelize algorithms, and expose routines that may perform in a
less-than-efficient way. These examples, in turn, give the API developers test
problems that may be outside of their usual testing routines, and thus help to
maintain the cycle of collaboration between computational scientists and API
developers that is seen as a requirement for the creation of portable, high-level
interfaces for applications.

Challenges presented by the designing of HPC-portable applications using
compiler directives include difficulties in the creation of parallel versions from se-
rial routines, and can reveal the need for the use of high-performance libraries cre-
ated for each particular architecture by specialists for certain encapsulated sec-
tions, instead of using the directives in those regions. It is possible that through
the use of carefully designed modules and functions, together with directive-
based programming models such as OpenACC, acceptable performance for some
tasks can be achieved relatively easily. This can allow for a unified, performance
portable interface for applications.

A Artifact Description Appendix: Using Compiler Directives for
Performance Portability in Scientific Computing: Kernels from
Molecular Simulation

A.1 Abstract

This appendix details the run environments, compilers used, and compile line
arguments for the four tested methods details in the text. Note that hardware
access is limited to OLCF users.
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A.2 Description

Check-list (artifact meta information)

– Algorithm: Select kernels used in molecular dynamics
– Compilation: See compliers and commands below
– Binary: C++/CUDA or C++/OpenACC
– Run-time environment: Modules displayed below
– Hardware: OLCF Titan and Summit as described in main text
– Run-time state: Summit used SMT=1 for CPU threading. Run

commands below
– Execution: Run commands below, BLAS routines were called using

standard calls to the cuBLAS library
– Publicly available?: All kernels are provided in the text and ap-

pendix

All kernels used are listed in the main text, except the CUDA kernel. This
is provided below:

1 template<typename T, i n t BS>
2 g l o b a l void
3 d i s t a n c e k e r n e l (T∗∗ A data , T∗∗ B data , T∗∗ C data , i n t lda )
4 {
5 i n t r o w s t r i d e = lda ;
6 i n t row = blockIdx . x∗BS+threadIdx . x ;
7 i n t c o l = blockIdx . y∗BS+threadIdx . y ;
8 s h a r e d T ∗A, ∗B, ∗C;
9 i f ( threadIdx . x+threadIdx . y==0)

10 {
11 A = A data [ b lockIdx . z ] ;
12 B = B data [ b lockIdx . z ] ;
13 C = C data [ b lockIdx . z ] ;
14 }
15 sync th r ead s ( ) ;
16 i f ( ( row < lda ) && ( c o l < lda ) )
17 {
18 T elementSum = (T) 0 . 0 ;
19 #pragma u n r o l l
20 f o r ( i n t i =0; i <3; i++)
21 {
22 T d i f f = A[ i ∗ r o w s t r i d e+row ] − B[ i ∗ r o w s t r i d e+c o l ] ;
23 elementSum += d i f f ∗ d i f f ;
24 }
25 C[ c o l ∗ r o w s t r i d e + row ] = elementSum ;
26 }
27 }
28 void
29 cuda d i s tance ( double ∗∗ A data , double ∗∗ B data , double ∗∗ C data ,
30 i n t lda , i n t numBatches )
31 {
32 const i n t BS = 16 ;
33 i n t NB = ( lda+BS−1)/BS ;
34 dim3 dimBlock (BS ,BS) ;
35 dim3 dimGrid (NB,NB, numBatches ) ;
36 d i s t a n c e k e r n e l <double , BS><<<dimGrid , dimBlock>>>
37 ( ( double ∗∗) A data , ( double ∗∗) B data , ( double ∗∗) C data , lda ) ;
38 }

Listing 1.6: CUDA version of batched pairwise distance calculation
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Software dependencies Below are the modules, compilers, and run commands
used.

1 CUDA/BLAS ON SUMMIT, MODULES:
2 gcc / 5 . 4 . 0 cuda /9 . 1 . 8 5
3 CUDA/BLAS TITAN MODULES:
4 gcc / 6 . 3 . 0 cuda too l k i t / 9 . 1 . 8 5 3 .10−1.0502. d f1cc54 . 3 . 1
5

6 Compiler c a l l s
7 CPP = g++
8 CPPFLAGS = −Wall −O3
9 NVCC = nvcc

10 NVCCFLAGS = −arch=sm 35 −D r e s t r i c t= r e s t r i c t −DNO CUDA MAIN −O3
11

12 OPENACC, GPU VERSION:
13 COMPILER = pgc++
14 COMP FLAGS = −acc −ta=nv id ia : cc35 −Minfo=a c c e l −mp
15 #rep l a c e with Summit ve r s i on nv id ia : cc70
16

17 SUMMIT EXECUTION:
18 j s run −−r s p e r h o s t ${NPPNODE} −−nrs ${NP} −ELD LIBRARY PATH −c7 −g1 . /

matr ix mul batched > benchmark .SUMMIT. job
19 j s run −−r s p e r h o s t ${NPPNODE} −−nrs ${NP} −ELD LIBRARY PATH −c7 −g1 . /

d i r e c t D i s t 3 > ACC benchmark .SUMMIT. job
20 }
21

22 Compiler output , Titan :
23 make pa i rw i s e batched . o
24 make [ 1 ] : Enter ing d i r e c t o r y
25 pgc++ −acc −ta=nv id ia : cc35 −Minfo=a c c e l −mp −c pa i rw i s e batched . cpp −o

pa i rw i s e batched . o
26 pa i rw i s e batched ( double ∗ , double ∗ , double ∗ , int , int , i n t ) :
27 4 , Generating pre sent (D [ : ] ,Y [ : ] ,X [ : ] )
28 9 , Loop i s p a r a l l e l i z a b l e
29 CUDA shared memory used f o r y
30 15 , Loop i s p a r a l l e l i z a b l e
31 17 , Loop i s p a r a l l e l i z a b l e
32 Acce l e ra to r ke rne l generated
33 Generating Tesla code
34 9 , #pragma acc loop gang /∗ blockIdx . z ∗/
35 15 , #pragma acc loop gang , vec to r (128) /∗ blockIdx . x threadIdx .

x ∗/
36 17 , #pragma acc loop gang /∗ blockIdx . y ∗/
37 19 , #pragma acc loop seq
38 26 , #pragma acc loop seq
39 19 , Complex loop c a r r i e d dependence o f X−>,y ,Y−> prevents

p a r a l l e l i z a t i o n
40 make [ 1 ] : Leaving d i r e c t o r y ‘/ auto f s / nccs−svm1 home1/ andreas / source s /

D2Calc/AT/ACC’
41 pgc++ −acc −ta=nv id ia : cc35 −Minfo=a c c e l −mp −o d i r e c t D i s t 3 d i r e c t D i s t 3 .

cpp pa i rw i s e batched . o
42 d i r e c t D i s t 3 . cpp :
43 main :
44 43 , Generating copy (D[ : batch count ∗40000 ] )
45 61 , Generating copyin (T [ : batch count ∗600 ] ,U [ : batch count ∗600 ] )
46 73 , Generating copyin (U [ : batch count ∗600 ] ,T [ : batch count ∗600 ] )
47

48 Compiler output , Summit : I d e n t i c a l
49

50 OPENACC, CPU VERSION:
51 COMPILER = pgc++
52 COMP FLAGS = −acc −ta=mult i co re −Minfo=a c c e l −mp

Listing 1.7: Compile and run information


