
SANDIA REPORT
SAND2018-6880
Unlimited Release
Printed June 26, 2018

Sierra Structural Dynamics Code
Verification Plan

Sierra Structural Dynamics Development Team

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Liverrnore, California 94550

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the
U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Approved for public release; further dissemination unlimited.

Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by National Technology and Engineering Solutions of Sandia, LLC

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone:
Facsimile:
E-Mail:
Online ordering:

(865) 576-8401
(865) 576-5728
reports@adonis.osti.gov
http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone:
Facsimile:
E-Mail:
Online ordering:

(800) 553-6847
(703) 605-6900
orders@ntis.fedworld.gov
http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

2

SAND2018-6880
Unlimited Release

Printed June 26, 2018

Sierra Structural Dynamics Code Verification Plan

Sierra/SD Development Team

COMPSIM
STRUCTURAL DYNAMICS

Abstract

Verification and validation (V&V) of scientific computing programs are important at San-
dia National Laboratories (SNL) due to the expanding role of computational simulation in
managing the United States nuclear stockpile. This document presents the verification plan
for the Sierra Structural Dynamics application. This verification plan includes code devel-
opment practices, structure of test suites, and additional quality assurance practices used by
the Sierra/SD team.

3

Contents

1 Sierra/SD Verification Procedures 5

1.1 Overview 5

1.2 Code Development Practices 5

1.3 Overview of testing Pyramid 6

1.4 User Support Process 7

1.5 Verification Policy for New Features 7

1.6 Nightly Testing Process 7

1.7 Other SQA Tools 8

1.8 FCT 8

4

Chapter 1

Sierra/SD Verification Procedures

1.1 Overview

This document contains a verification overview for the software package Sierra/SD. In
contrast to the Sierra/SD User's Manual,? which demonstrates how to use the code, and
the Theory Manual,' which details the underlying mathematics of the code, the verification
manual is a list of well documented verified examples demonstrating how the code performs
on a subset of verification problems. In additional to the verification tests detailed in this
document high confidence in the correctness of Sierra/SD is maintained by an extensive test
suite, several code quality tools, and rigorous team processes. The intent is to fully verify
each capability in Sierra/SD. This manual should be used to gain a level of confidence in
the rigor for which Sierra/SD is verified for high consequence analysis. However, quality
verification is a journey of continuous improvement. There may be gaps in the verification
coverage. If there is a clear gap in the verification coverage that is essential to analysis, the
Sierra/SD team should be contacted at sierra-help@sandia.gov.

1.2 Code Development Practices

The first step to a well verified code is code development practices that ensure all new code
features are properly tested. The Sierra/SD team follows the laws of test driven development
(TDD) coding practice as outlined in Clean Code.? The three laws of TDD are

1. You may not write production code until a failing unit test is written.

2. You may not write more of a unit test than is sufficient to fail.

3. You may not write more production code than is sufficient to fix the currently failing
test.

Following these laws ensures that all new capability is covered by tests, and that all capability
modified through user stories or corrected by user support is also covered by tests. However,
these practices fail to ensure that all legacy capability is adequately covered, or that all

5

permutations of capability are well verified. The Sierra/SD process for covering permutations
of capability is outlined in 1.8. In addition to the enumerated TDD practices the Sierra/SD
development team also uses code reviews, pair programming, and external beta testing as
additional safeguards to prevent coding errors.

1.3 Overview of testing Pyramid

In order to efficiently maintain code quality a properly organized suite of tests must
be used, a large number of small tests of individual capabilities building up to smaller
numbers of large and complex tests. There are many types of tests for Sierra/SD: Unit,
Fast (Continuous), Performance, Verification, Regression, and Acceptance. For tests to have
value they most be run regularly and in an automated fashion. With the exception of a few
large acceptance tests the entire Sierra/SD test suite is run nightly.

• Unit Tests: a test of an individual source code function. Unit tests are generally run
through the Google GTEST framework. A unit test can be used to verify a given
function has the correct behavior for every possible input. Unit tests are very fast.
Sierra/SD currently uses many thousand unit tests.

• Fast Tests: a test that must run in under ten seconds. Fast tests are run every hour
on the master branch of the Sierra code base. This high run frequency allows quickly
pinpointing any issues introduced into the code base. The fast test suite is designed to
give a broad coverage of all core Sierra/SD features. Sierra/SD uses about a thousand
fast tests.

• Verification Tests: a test that compares test outputs to an analytic result or confirms
the test has some expected property (such as a convergence rate.) Verification tests
are one of the most valuable test types and the verification test suite will continue to
be expanded over time. Sierra/SD maintains about a thousand verification tests.

• Regression Tests: a test that confirms the code produces and expected output, but
without rigorous mathematical demonstration that the output is indeed correct. Gen-
erally a test case is produced and then engineering judgment used to confirm the
test case is behaving as expected. The test then confirms this approved behavior is
maintained. An example would be the modal decomposition of a complex shape part.
Currently Sierra/SD uses several thousand regression test. Regression tests are a neces-
sity, but the the Sierra/SD development team is moving over time to a larger balance
of tests in the more valuable unit and verification categories.

• Performance Tests: a test used to confirm Sierra/SD maintains acceptable runtime
and memory use bounds. These tests are expensive and Sierra/SD maintains only
about a hundred.

6

• Acceptance Tests: a test of a full analysis use case provided by an analyst. Acceptance
tests are the largest and most complex tests in the system. An acceptance test ensures
the work flow for an entire complex analysis chain maintains functionality. As accep-
tance tests are very expensive Sierra/SD maintains only about a dozen to cover the
most important and commonly used work flows.

1.4 User Support Process

The key to credible capability is a user support process that identifies, patches, and tests
against any bugs found by Sierra/SD analysts. When a bug report is submitted a minimal
representative example of the bug is produced by the developers and added as a test to the
nightly test suite. After necessary development is done to resolve the issue the new nightly
test ensures that the bug will not reappear in future releases.

1.5 Verification Policy for New Features

When new capability is added to Sierra/SD, the code development processes outlined in
Clean Code? and Test Driven Development are followed. The new development always begins
with a unit testing of new functionality. After completing the unit test, a self-documenting
verification test is added that demonstrates the capability reproduces an analytical result.
Additionally, regression tests may added that exercise the range of inputs of the capability.
Once these tests are in place, an acceptance model, received from key analyst stakeholders,
is run to ensure the capability behaves as expected and gives an acceptable result.

The Sierra/SD team migrated to a structure of individual test documentation maintained
in the test repositories in 2013. The legacy formats are also included in this document, and
eventually will be migrated to the new format. Thus though all verification tests are verified
to a high level of rigor, not all verification tests are included in this verification test manual.

1.6 Nightly Testing Process

Every night the entire code base is compiled on multiple platforms with multiple compil-
ers. Some subset of the nightly tests are run on each platform. Every fast and nightly test is
run on the development platform, compiled with both debug/release and gcc/intel compilers.
Additionally, all nightly tests are run on the Trinity surrogate (both Haswell and Knights
Landing chips). The entire test suite (including performance tests) are run on intel-release
on the primary HPC production platform dedicated to Nuclear Deterrence. Some subsection
of the tests are run on experimental platforms, such as Darwin (MAC-OS), Broadwell, and
Ride (GPU). These tests are useful because they may identify software quality issues that

7

don't cause problems in the production platforms, but could in the future as new platforms
move into production.

1.7 Other SQA Tools

In addition to the nightly testing process, other software quality tools are run nightly to
check for possible code errors or gaps in testing coverage. These tools include the memory
checker Valgrind, the Feature Coverage Tool (FCT), and the Line Coverage Tool (LCOV).

1.7.1 Valgrind

Valgrind is a tool used to check for memory leaks and memory errors. A memory leak is
when memory is allocated, but never freed while the program is still running. The existence of
memory leaks within loops can lead to a simulation taking an increasing amount of memory as
simulation time increases, eventually leading to code failure. A memory error represents the
executable accessing memory that has not been allocated, or is otherwise out of bounds. A
memory error generally results in unpredictable behavior, and can lead to fatal segmentation
faults. Valgrind is run nightly on both the "nightly" and "fast" tests. All memory leaks and
errors are eliminated for every sprint snapshot and release version of Sierra/SD.

1.7.2 LCOV

The coverage tool For Sierra/SD, LCOV, measures the code source line coverage of unit,
fast, and nightly testing. The LCOV tool reports how many times each line of code is called
for the respective test suite. For each file, folder, and executable in Sierra LCOV reports
the percentage of lines in the code that are covered by at least one test. For example, as
of the 4.48 release, unit tests cover 48.3%, fast tests cover 79.4%, and nightly tests cover
86.0% of the code base. It is up to the development team to ensure that all new features
are well covered. The Sierra/SD development team strives to improve test code coverage
over time. However, 100.0% coverage is not always practical. Some uncovered code is either
non-released research capability or depreciated legacy capability. Additionally many error
messages do not have a test that hits the error message, therefore the line of code with the
error message may be uncovered.

1.8 FCT

For Sierra/SD the Feature Coverage Tool (FCT) creates three documents from an input
file; the annotated input file, the two way coverage graph and the list of best matching tests.

8

The FCT can be used by analysts to assess the Sierra/SD verification rigor for a specific
analysis. Additionally the Sierra/SD development team can use output of the FCT prioritize
needs for verification test suite improvement.

The annotated input file shows the features (corresponding to input deck lines) that are
used in verification tests (in green), regression tested (yellow) or untested (red). Developers
and analysts can use this tool to see if for an analysis in question untested features are used
and take action to mitigate or explain them. One mitigation strategy is to create a new
verification test for the feature. An explanation is needed if the FCT has indicated a false
positive (the FCT tool is helpful, but still in development).

The second document produced by FCT is the two way coverage chart. The two way
coverage chart indicates for any two features if a verification or regression test exists that
uses both of those features simultaneously. It can be impractical to add a verification test
every possible feature combination. However, the two way coverage report can be used to
see if certain key feature combinations are tested together, such as damping in a transient
analysis or strain output on shell elements. Lack of a two way coverage test may indicate
additional verification testing is needed, though engineering judgment must be applied to
identify the most critical feature combinations.

The third FCT output is a of list the top 5 verification tests nearest to (in the sense
of using the same capabilities) as used in the input file. If an analysis has a very closely
matching rigorous verification test is gives high confidence that the entire use case of the
analysis and all feature combinations used are well verified in conjunction.

9

DISTRIBUTION:

1 MS 0380

1 MS 0899

M. J. Skroch, 1542

Technical Library, 9536 (electronic copy)

v1.40

11

Sandia National laboratories

12

