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Abstract

This document presents tests from the Sierra Structural Mechanics verification test suite.
Each of these tests is run nightly with the Sierra/SD code suite and the results of the test
checked versus the correct analytic result. For each of the tests presented in this document
the test setup, derivation of the analytic solution, and comparison of the Sierra/SD code
results to the analytic solution is provided. This document can be used to confirm that a
given code capability is verified or referenced as a compilation of example problems.



Contents

1 Executive Summary

2 Sierra/SD Verification Procedures

2l

2.2

2.3

24

2.5

2.6

2.7

2.8

CPTEPTIEIL = 5 2 5.5 1 5 56 1580 4 6 55 5k 65 56 25 BAYLEA Y BEEF SR E5 HE3F SALRNET B8 TS
Code Development Practices .. ........cciteiimiiiinenniinnnneeenae.
Overview of testing Pyramid .. ....... .. .. .. . . . .
User Support Process . . .. ...
Verification Policy for New Features ... ........ ... .. ... ... ... .......
Nightly Testing Process . ....... ... . e
Other SQA ToolS . . ...

3 Sierra Structural Dynamics Verification Tests

3.1 Craig Bampton Reduction . ........ ... ... ... . . ... ... . . . . ...
3.2 Superelement Damping . .......... ..
3.3 SierraSM to SierraSD Coupling . .. ...
3.4 Eigenvalue Restart with Virtual Nodes and Elements . ...................
3.5 Filter Rigid Modes from Loads . ........ ... .. .. .. . . . . i ...
3.6  Sensitivity to Parameters. ... ... ..
3.7 Sensitivity Analysis with a Superelement .......... .. ... .. ... .. ... .....
o
3.9 Beam-Beam with Craig-Bampton Reduction ...........................
Sl Modal Fores LOBTIAE - s s cusinmsissssmmsssssasssnmss 558 585 5585 %5 0 5

11

13

13

13

14

15

15

15

16

16

19



3.11 Lighthill Analogy - Helmholtz Resonator .......... ... ... .. ... ... ...... 40

3.12 LightHill Tensor Verification .......... .. .. .. .. .. 43
3.13 Superelement Superposition. . ........... ... .. 47
3.14 Superelement Inertia Tensor and Mass Inertia Matrix. .. ................. 49
3.15 Nastran/SierraSD Interoperability with Superelements . ............... ... 53
Sierra/SD Contact, Constraints and MPCs 65
4.1 Parallel Distribution of Load through Rbars ........... .. ... .. ... ... 65
4.2 Rigidset Compared to Rbar . ....... ... .. . . . . 66
4.3 Multiple Tied-Surfaces and Curved Surfaces ........................... 69
4.4 Contact Verification ... ... ... . 70
Sierra/SD Solutions 87
5.1 Waterlineof aship ...... ... 87
5.2 Transient CONVEIZENCE . . . . ..ottt e 88
5.3 Modal Transient Temporal Convergence............... ... .. ... ...... 90
5.4 Transient Restart . ... ... e 92
5.5 Q Modal Transient . ... ... 94
5.6 Q Modal Frequency Response . ......... ... ... . . . .. 99
5.7 Fluid Structure Interaction Added Mass. ... ....... ... .. ... ... ... .... 101
5.8 Fluid Structure Cavitation. ............ ... . . .. 105
5.9 Buckling of Constant Pressure Ring ....... ... ... .. .. ... . ... ... ... 108
Sierra/SD Element Verification 111
6.1 Diler Beadn DEnlINE . s cocinvssnsiinissmasamishssssasinaisadsneis 111
fi.2 Diler Bopen Propatliiss. . cossunssnaisnsssassnnainnisamibtnstasdsnsis 113
o O I 116
B4 Two Layered Hewsball ....ciinvsissrsnossssssscsnmssnassnassnsssme 119



6.5 Preloaded Beam . ... ... ... .. . . 120
6.6 Partial Cylinder Patch . ..... ... .. . . 125
6.7 Membrane Geometrical Stiffness ... ... ... ... .. . L 129
6.8 Membrane Quad . ... ... . ... 132
6.9 QuadM membrane Patch .. ...... .. ... .. ... . . ... 134
6.10 QuadS_GY Shear Membrane Shell . .. ........ ... ... . ... ... ... ...... 139
6.11 QuadS GY Shear Membrane Shell - Geometric Stiffness and Preload . .. ... 145
6.12 Hex Membrane Sandwich. ... ... .. ... .. .. .. . . . . . . . . . . 148
6.13 Higher Order Hex Acoustic Element Convergence . ...................... 151
6.14 Higher Order Tet Acoustic Element Convergence ....................... 153
6.15 P-elements on 1-D waveguide up toorder 6 .. ...... .. ... .. ... .. ... . .... 155
6.16 P-elements on Acoustic Sphere for Multiple Refined Hex-Meshes . ... ....... 159
6.17 P-elements on Acoustic Sphere for Multiple Refined Tet4-Meshes . ......... 163
6.18 Tied-Joint with Joint2G and Spring. Slip and Rigid .. ................... 167
6.19 Slide RBE2. Selected DOFS ... ... ... . i 173
6.20 Thin Plate Bending . ... ... .. 175
6.21 Spring Dashpot . . ... 176
Solutions in Rotating Coordinate Frames 189
7.0 DBotaling Dignbball Stallies . ... :voismsivnaisnsiinsisamssnisosisnmes 189
Tee Retating DeatfiBRaiien . . « oo as i 50 timaipess o s i na i s 5o aashess hE b 191
T Rotting Shell Balien. < : woivasssssisnsisnasamiinsssossonisoussnei 192
f:d Botating Hing SOEEEE. . o« co i nsissaisnsi smas onabeis o isoiiwndiasis 194
v Bobabing Rine Meeleralion « s oo sveisnsismssascianssnmiinacnsds oo s 197
7.6 Rotating Superelemeiit StAtIcE . ... .cisovisnsisonaisnaisosmisvssssisosis 198
7.7 Rotating Superelement Beam Statics ............. ... ... . . .. .. 202
& Point Magsin 8 Rotahing Frame . .. .o s vascussionismissussnasnnas amas 204



8 Inverse Methods
8.1 Force Identification from Structural Acoustic Frequency Responses . ........
8.2 Force Identification from Frequency Responses .........................
8.3 Force Identification from Temporal Pressures...........................
8.4 Force Identification from Temporal Tractions. ........ ... ... ... .. ... ....
8.5 Force Identification from Temporal Acoustic Pressures .. .................

8.6 Force Identification using Modal Transient......... .. ... .. ... .. ... ....

9 High Cycle Fatigue and Damage
9.1 Random Vibration Moments .. ........ ... .. . .. ... . . .
9.2 Fatigue Output of Single DOF in Random Vibration ....................
9.3 Fatigue Output of Dogbone Test ... ... .. ... .. .. ... . .. . . ... . ... ....

04 Tatisne Output of Plomed Shell .« c s scisvussnmssnssisvssnssisasnmes amas

10 Legacy Sierra/SD Verification Problems
LT Elerignt Verifeaion TREEE ... . . ~c .- oo ccnmsomeinumsrissenmssimsenesnuss
L2 DOBIIEEIEE « < o 55 5 5 5 5 5 6k 5 6% 0 5 606 5 5 R K B MR § F S E R 4R R E R B KB E B R €
108 Nanlineer Dol . . oo o coss mms s mm s o s e sme s om e s B %7 08 63 00§ wEds BE
1 Dlaimmial TOPmli I, .o vocranssumresnioassnpssnussamesnmsnass seds
10.5 Solution Procedures . ........ ... .
10.6 Mass Properties Verification Tests . ............ .. ... ...
10.7 Phenomenon Based Testing ... ......... ... i
10.8 User Evaluations. . .. ... ..

10.9 Other Tests . . o oo

Appendix

A Input Decks For Verification Problems

7

209
209
212
214
217
220

223

225
225
231
237

242

251
252
296
365
372
378
405
419
432

439

441



A.1 Parallel Distribution of Load through Rbars ........................... 441

A2 RigidSet Comparsd ta BBEF . oo swisvsismssnsssansomsismasnmes ans 442
A.3 Multiple Tied-Surfaces and Curved Surfaces ........................... 443
A.4 Craig Bampton Reduction . ........ ... .. ... . . . 444
A.5 Superelement Damping . ......... ... 445
A8 Biler Boaini BeBllIng » o o oo v o mom s 50 65 85 5 0566 68 b5 0% v s 5885 645 085 60 F T 446
A7 FEuler Beam Properties. .. ... ... ... 448
A8 ANavy Beam ... ... .. 449
A.9 Two Layered Hexshell . ... ... ... . . . . . . . . . . 450
A LU CEritE DEBIPOL: o o smos am v onmes sw 55 8a s pmas 0sis oess da s Has nEEs ame 451
A.11 Preloaded Beam .. ... ... 452
A.12 Partial Cylinder Patch . ....... ... .. .. . . . 453
A.13 Membrane Geometrical Stiffness .......... ... ... ... .. ... ... 454
A I A MEmbIENe CRBA « « ¢ s 65 0.5 66 0w v s 5655 546 pm5 8 06 05 Fas s HhF 6 Ba s RES S BE B 455
A.15 QuadM membrane Patch ... ... . . . 456
A.16 QuadS GY Shear Membrane Shell . .. ... ... ... . 457
A.17 QuadS GY Shear Membrane Shell - Geometric Stiffness and Preload ... ... 458
A 18 Hex Membrane SafidWashl . . o o s ov co s s s maismss omosvses oo it mssssssomss 459
A.19 SierraSM to SierraSD Coupling . .. ...t 460
A.20 Waterline of a ship .. ... .. o 461
A.21 Transient CONVEIZENCE . . ..o vttt e e e e e 462
A.22 Modal Transient Temporal Convergence. ..............uouvitennennenn.. 463
A.23 Transient Restart Examples. .. ... .. . . . 464
A.24 Figenvalue Restart with Virtual Nodes and Elements ... ................. 465
A.25 Filter Rigid Modes from Loads . .......... ... ... . .. 466
A28 Dlowlal THmsEammt . « « w.c o om 65 605 15 5 86 5 5 9555 5% 0K BHE S EH D W5 HEEF R € 467



A.27 Q Modal Frequency Response .. ..... ... . i 468

A2R Sengitivity to PATSIIEEErs . o o o s v v suiswa ismas nw s ovso mnismasnsss an 469
A.29 Sensitivity Analysis with a Superelement ... ....... ... ... .. ... ... .. .... 470
A.30 Shock Tube ST ... . 471
A.31 Fluid Structure Interaction Added Mass. .. ........ .. ... .. ... 472
A:82 Fluid Structure Cavitabioni. o s s s sursssssmas omvsnmsomsismasnsmss smn 473
A.33 Higher Order Hex Acoustic Element Convergence . ...................... 474
A.34 Higher Order Tet Acoustic Element Convergence ....................... 475
A.35 P-elements on 1-D waveguide up toorder 6 . .......... ... ... ... ... .... 476
A.36 P-elements on Acoustic Sphere for Multiple Refined Hex-Meshes . ... ....... 477
A.37 P-elements on Acoustic Sphere for Multiple Refined Tet4-Meshes . ......... 478
A.38 Tied-Joint with Joint2G and Spring . ............. ... ... . ... 479
A39 Beam CBR .. ... 480
AA0 Slide RBE2, Seleated DOFS o5 oo sassnaismasososmsssmsssnmssvsessmss 481
A.41 Thin Plate Bending .. ... . . . 482
A.42 Modal Force on a Biplane Model. ... ...... ... ... ... ... .. ... ... .. .... 483
A.43 Lighthill Analogy - Helmholtz Resonator .......... ... ... ... ... ... .... 484
A4 LightHill Tensor Verifieation IApUE . o« o ssiomsismssnsssssismsssssssmes 485
A.45 Superelement SuUperposition. .. ........ .. 486
A .46 Superelement Inertia Tensor Input . ....... ... ... .. .. ... ... . . ..., 487
A.47 Nastran/SierraSD Interoperability with Superelements . ............... ... 488
AAB Contact VerTHaation : « s oo o nsvs sw s 5ai 6855 80 05 bd s 8 55 §8 54 5 5555 608 6 3 489
A.49 Buckling of Constant Pressure Ring Input .. ....... ... ... ... ... ... .. .... 490
A.50 Rotating Dumbbell Statics . ........ ... .. . . 491
A.51 Rotating Beam Statics .. ... 492
Ab2 Rotating Shell BtatIes. o o oo s o015 s s s masoms s 8w 08 bmss s 10 mds wsssames 493



A.53 Rotating Ring Statics. .. ... ...
A.54 Rotating Ring Acceleration ... ... ... ... ...ttt ..
A.55 Rotating Superelement Statics ........... ... ... . i
A.56 Rotating Superelement Beam Statics ............... ... ... .....
A.57 Point Mass in a Rotating Frame .. .......... .. .. .. .. .. .. ... ... ....
A.58 Force Identification from Structural Acoustic Frequency Responses . ........
A.59 Force Identification from Frequency Responses .........................
A.60 Force Identification from Temporal Pressures. ..........................
A.61 Force Identification from Temporal Tractions. ..........................
A.62 Force Identification from Temporal Acoustic Pressures ... ................
A.63 Force Identification with Modal Transient ......... ... ... ... ... ... ....
A.64 Random Vibration Moments .. ...... ... ... . ... .. i
A.65 Fatigue Output of Single DOF in Random Vibration ....................
A.66 Fatigue Output of Dogbone . ....... ... ... ... . . . . .

A.67 Fatigue Output of Pinned Shell . . ......... .. .. ... . .. ... ... ... .. ....

B Making the Verification Document

C Richardson Extrapolation

D Legacy Test Matrix

References

10

509

511

513

513



Chapter 1

Executive Summary

Verification and validation (V&V) of scientific computing programs are important at
Sandia National Laboratories (SNL) due to the expanding role of computational simulation
in managing the United States nuclear stockpile. The complexities of structural response
calculations used to analyze physical problems, the varieties of codes applied to the calcu-
lations, and the importance of accurate predictions when assessing field conditions demand
confidence in the consistency and accuracy of computer codes. Confidence in the accuracy
of the predictions arising from computer simulations must ultimately be gained through
verification and validation.

The Sierra structural dynamics analysis code (Sierra/SD) plays a central role in the qual-
ification of weapon systems and components for normal and hostile environments throughout
the Stockpile-to-Target Sequence. Sierra/SD is used:

e To redesign weapon components.

e To certify weapon components and systems for target environments such as hypersonic
vehicles.

e To certify that components will survive the thermomechanical shock loads associated
with hostile environments.

e To evaluate current stockpile issues, including issues associated with uncertainty quan-
tification.

e To address many other problems that are encountered in stockpile management.

Furthermore Sierra/SD is an engineering code that is used at Los Alamos National Laborato-
ries (LANL), and elsewhere for achieving the engineering deliverables of those organizations.

This document describes the verification plan for the Sierra/SD code. Additionally de-
tailed description is provided for several key verification tests. The verification tests assure
that the mathematics and numerical algorithms associated with functionality describing en-
gineering phenomena in Sierra/SD are implemented correctly. The suite of verification tests
will evolve as the functionality of Sierra/SD evolves.
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Sierra/SD is developed in accordance with a set of Software Quality Engineering (SQE)
practices.»? These procedures conform to those outlined in,® but are tailored to Sierra/SD
development. It is important to understand the role that these SQE practices play in the
overall verification and validation effort.
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Chapter 2

Sierra/SD Verification Procedures

2.1 Overview

This document contains a verification overview for the software package Sierra/SD. In
contrast to the Sierra/SD User’s Manual,® which demonstrates how to use the code, and
the Theory Manual,” which details the underlying mathematics of the code, the verification
manual is a list of well documented verified examples demonstrating how the code performs
on a subset of verification problems. In additional to the verification tests detailed in this
document high confidence in the correctness of Sierra/SD is maintained by an extensive test
suite, several code quality tools, and rigorous team processes. The intent is to fully verify
each capability in Sierra/SD. This manual should be used to gain a level of confidence in
the rigor for which Sierra/SD is verified for high consequence analysis. However, quality
verification is a journey of continuous improvement. There may be gaps in the verification
coverage. If there is a clear gap in the verification coverage that is essential to analysis, the
Sierra/SD team should be contacted at sierra-help@sandia.gov.

2.2 Code Development Practices

The first step to a well verified code is code development practices that ensure all new code
features are properly tested. The Sierra/SD team follows the laws of test driven development
(TDD) coding practice as outlined in Clean Code.® The three laws of TDD are

1. You may not write production code until a failing unit test is written.

2. You may not write more of a unit test than is sufficient to fail.

3. You may not write more production code than is sufficient to fix the currently failing

test.

Following these laws ensures that all new capability is covered by tests, and that all capability
modified through user stories or corrected by user support is also covered by tests. However,
these practices fail to ensure that all legacy capability is adequately covered, or that all

13



permutations of capability are well verified. The Sierra/SD process for covering permutations
of capability is outlined in 2.8. In addition to the enumerated TDD practices the Sierra/SD
development team also uses code reviews, pair programming, and external beta testing as
additional safeguards to prevent coding errors.

2.3 Overview of testing Pyramid

In order to efficiently maintain code quality a properly organized suite of tests must
be used, a large number of small tests of individual capabilities building up to smaller
numbers of large and complex tests. There are many types of tests for Sierra/SD: Unit,
Fast (Continuous), Performance, Verification, Regression, and Acceptance. For tests to have
value they most be run regularly and in an automated fashion. With the exception of a few
large acceptance tests the entire Sierra/SD test suite is run nightly.

Unit Tests: a test of an individual source code function. Unit tests are generally run
through the Google GTEST framework. A unit test can be used to verify a given
function has the correct behavior for every possible input. Unit tests are very fast.
Sierra/SD currently uses many thousand unit tests.

e Fust Tests: a test that must run in under ten seconds. Fast tests are run every hour
on the master branch of the Sierra code base. This high run frequency allows quickly
pinpointing any issues introduced into the code base. The fast test suite is designed to
give a broad coverage of all core Sierra/SD features. Sierra/SD uses about a thousand
fast tests.

o Verification Tests: a test that compares test outputs to an analytic result or confirms
the test has some expected property (such as a convergence rate.) Verification tests
are one of the most valuable test types and the verification test suite will continue to
be expanded over time. Sierra/SD maintains about a thousand verification tests.

e Regression Tests: a test that confirms the code produces and expected output, but
without rigorous mathematical demonstration that the output is indeed correct. Gen-
erally a test case is produced and then engineering judgment used to confirm the
test case is behaving as expected. The test then confirms this approved behavior is
maintained. An example would be the modal decomposition of a complex shape part.
Currently Sierra/SD uses several thousand regression test. Regression tests are a neces-
sity, but the the Sierra/SD development team is moving over time to a larger balance
of tests in the more valuable unit and verification categories.

o Performance Tests: a test used to confirm Sierra/SD maintains acceptable runtime

and memory use bounds. These tests are expensive and Sierra/SD maintains only
about a hundred.
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o Acceptance Tests: a test of a full analysis use case provided by an analyst. Acceptance
tests are the largest and most complex tests in the system. An acceptance test ensures
the work flow for an entire complex analysis chain maintains functionality. As accep-
tance tests are very expensive Sierra/SD maintains only about a dozen to cover the
most important and commonly used work flows.

2.4 User Support Process

The key to credible capability is a user support process that identifies, patches, and tests
against any bugs found by Sierra/SD analysts. When a bug report is submitted a minimal
representative example of the bug is produced by the developers and added as a test to the
nightly test suite. After necessary development is done to resolve the issue the new nightly
test ensures that the bug will not reappear in future releases.

2.5 Verification Policy for New Features

When new capability is added to Sierra/SD, the code development processes outlined in
Clean Code® and Test Driven Development are followed. The new development always begins
with a unit testing of new functionality. After completing the unit test, a self-documenting
verification test is added that demonstrates the capability reproduces an analytical result.
Additionally, regression tests may added that exercise the range of inputs of the capability.
Once these tests are in place, an acceptance model, received from key analyst stakeholders,
is run to ensure the capability behaves as expected and gives an acceptable result.

The Sierra/SD team migrated to a structure of individual test documentation maintained
in the test repositories in 2013. The legacy formats are also included in this document, and
eventually will be migrated to the new format. Thus though all verification tests are verified
to a high level of rigor, not all verification tests are included in this verification test manual.

2.6 Nightly Testing Process

Every night the entire code base is compiled on multiple platforms with multiple compil-
ers. Some subset of the nightly tests are run on each platform. Every fast and nightly test is
run on the development platform, compiled with both debug/release and gee/intel compilers.
Additionally, all nightly tests are run on the Trinity surrogate (both Haswell and Knights
Landing chips). The entire test suite (including performance tests) are run on intel-release
on the primary HPC production platform dedicated to Nuclear Deterrence. Some subsection
of the tests are run on experimental platforms, such as Darwin (MAC-OS), Broadwell, and
Ride (GPU). These tests are useful because they may identify software quality issues that
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don’t cause problems in the production platforms, but could in the future as new platforms
move into production.

2.7 Other SQA Tools

In addition to the nightly testing process, other software quality tools are run nightly to
check for possible code errors or gaps in testing coverage. These tools include the memory
checker Valgrind, the Feature Coverage Tool (FCT), and the Line Coverage Tool (LCOV).

2.7.1 Valgrind

Valgrind is a tool used to check for memory leaks and memory errors. A memory leak is
when memory is allocated, but never freed while the program is still running. The existence of
memory leaks within loops can lead to a simulation taking an increasing amount of memory as
simulation time increases, eventually leading to code failure. A memory error represents the
executable accessing memory that has not been allocated, or is otherwise out of bounds. A
memory error generally results in unpredictable behavior, and can lead to fatal segmentation
faults. Valgrind is run nightly on both the "nightly" and "fast" tests. All memory leaks and
errors are eliminated for every sprint snapshot and release version of Sierra/SD.

2.7.2 LCOV

The coverage tool For Sierra/SD, LCOV, measures the code source line coverage of unit,
fast, and nightly testing. The LCOV tool reports how many times each line of code is called
for the respective test suite. For each file, folder, and executable in Sierra LCOV reports
the percentage of lines in the code that are covered by at least one test. For example, as
of the 4.48 release, unit tests cover 48.3%, fast tests cover 79.4%, and nightly tests cover
86.0% of the code base. It is up to the development team to ensure that all new features
are well covered. The Sierra/SD development team strives to improve test code coverage
over time. However, 100.0% coverage is not always practical. Some uncovered code is either
non-released research capability or depreciated legacy capability. Additionally many error
messages do not have a test that hits the error message, therefore the line of code with the
error message may be uncovered.

2.8 FCT

For Sierra/SD the Feature Coverage Tool (FCT) creates three documents from an input
file; the annotated input file, the two way coverage graph and the list of best matching tests.

16



The FCT can be used by analysts to assess the Sierra/SD verification rigor for a specific
analysis. Additionally the Sierra/SD development team can use output of the FCT prioritize
needs for verification test suite improvement.

The annotated input file shows the features (corresponding to input deck lines) that are
used in verification tests (in green), regression tested (yellow) or untested (red). Developers
and analysts can use this tool to see if for an analysis in question untested features are used
and take action to mitigate or explain them. One mitigation strategy is to create a new
verification test for the feature. An explanation is needed if the FCT has indicated a false
positive (the FCT tool is helpful, but still in development).

The second document produced by FCT is the two way coverage chart. The two way
coverage chart indicates for any two features if a verification or regression test exists that
uses both of those features simultaneously. It can be impractical to add a verification test
every possible feature combination. However, the two way coverage report can be used to
see if certain key feature combinations are tested together, such as damping in a transient
analysis or strain output on shell elements. Lack of a two way coverage test may indicate
additional verification testing is needed, though engineering judgment must be applied to
identify the most critical feature combinations.

The third FCT output is a of list the top 5 verification tests nearest to (in the sense
of using the same capabilities) as used in the input file. If an analysis has a very closely
matching rigorous verification test is gives high confidence that the entire use case of the
analysis and all feature combinations used are well verified in conjunction.
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Chapter 3

Sierra Structural Dynamics Verification
Tests

12

3.1 Craig Bampton Reduction

The goal of the test is to verify both generation of a Craig-Bampton (CB) reduction and
associated matrix sensitivities as well as the Taylor series expansion of the resulting matrices
to generate a point evaluation of a parameter.

3.1.1 One Hex Models

The model is shown in Figure 3.1. There are two hex elements in the structure. The
element on the right of the figure will be reduced to a superelement. The element on the left
is the “residual structure,” which uses the previously generated superelement. It is clamped
on the left surface. Analysis is performed in two stages. First, the CB reduction is performed
and sensitivity matrices dKr/dp and dMr/dp are generated. The reduction is performed
in two ways: by constant vector, and by finite difference approaches. Following sensitivity
analysis and model reduction, a system analysis is performed where those matrices are used
in a Taylor series expansion.

For this analysis, we use the material density as the sensitivity parameter. The model is
selected so there are no repeated frequencies.

19
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Figure 3.1: One Hex superelement model

3.1.2 Analysis
3.1.2.1 Analytic Analysis

For a constant vector sensitivity analysis, the reduced order matrices are given by,

];30 = ( ) (31)
by = TTK( Ap)T, (3.2)
dk ky — ko

2~ A (3.3)

Here,

T, is the transformation matrix evaluated at p,,

Do is the nominal value of the sensitivity parameter,
Ap is the change of the sensitivity parameter,

k  is the reduced stiffness matrix, and

K() is the unreduced stiffness matrix.

Identical relations exist for the mass matrix.

In our example, the density of a single element is the only sensitivity parameter. The
density has no impact on the stiffness matrix, so ky = k’o, and dk /dp = 0. There is a change
in the mass matrix, which will affect the system eigen frequencies.

For a finite difference sensitivity analysis, the relations are somewhat different.

lfo - K(po)T,
ky = 1T (po + Ap)Th (3.5)
dk ky — k,
b~ A (3.6)
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Here,

T7 is the transformation matrix evaluated at p, + Ap,

Because T7 depends on the density, the reduced stiffness matrix is affected by the transfor-
mation. Interestingly enough, the reduced mass matrix is impacted less because of normal-
ization of the fixed interface nodes, which counter the effect of increased mass. The 1,2 and
2,2 sections of the matrix do change.

3.1.2.2 Numerical Results

Figure 3.2 shows a comparison of the system level solutions as a function of density. Three
curves are shown. The exact solution shows results obtained by rebuilding the superelement
using the parameter, and without sensitivities. The other two curves evaluate dk/dp at the
nominal value, and estimate the superelement contribution using a Taylor series expansion.
Results are shown for mode 3. A comparison of the error is shown in Figure 3.3
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Figure 3.2: Modal Frequency Variation with Density

3.1.3 Summary

These analyses compare results for application of sensitivity matrices to superelement
analysis. In this extremely simple example, the constant vector method is exact, while finite
difference methods introduce a slight error. That is not a general case. For input deck see
Appendix A 4.
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3.2 Superelement Damping

A superelement can have block proportional damping in Sierra SD.! A model was created
consisting of two steel blocks acting as a cantilever beam. To incorporate block proportional
damping into a system two parameters may be used, blkalpha and blkbeta. Blkalpha is
mass proportional damping and blkbeta is stiffness proportional damping. For this model
stiffness damping has the largest impact on the system. The damping parameters are set
low enough for energy to enter block two, but high enough to absorb energy. A pressure
load is applied on the top surface of block 1. A transient analysis is run with and without
superelements and compared. Block 2 is reduced to a superelement and contains block
proportional damping. The damping parameters for the superelement run are entered in the
block section of the input deck during the CBR solution. Figure 3.5 consists of three curves

pu

Figure 3.4: Initial model and model with superelement

including the undamped full system solution, the damped solution with no superelements,
and the damped solution with superelements. The damped model with superelements traces
the damped model without superelements well. A full convergence study was not preformed
as the two damped models will not match perfectly due to model truncation. For input deck
see Appendix A.5.

1System proportional damping does not create a damping matrix and cannot be used to generate a
reduced order damping matrix.
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Figure 3.5: Superelement Damping Results. Damped and undamped response of full system
models compared with damped model of the reduced order model.
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3.3 SierraSM to SierraSD Coupling

3.3.1 Beam Preload

This is a verification test comparing Abaqus to Sierra-SD using selective deviatoric hex8
elements. The geometry of this model can be seen in Figure 3.6. The model is a bar that
is fixed on one end and constrained in the y and z direction on the other. A prescribed dis-
placement is applied in the x-direction in Sierra-SM, and then a modal analysis is performed
in Sierra-SD. For verification, the first 4 modes are compared to the Abaqus finite element
code. The Eigenvalue results are shown in Table 3.1.

T —
/—E K

Figure 3.6: Geometry of Bar

Table 3.1: Beam Preload Verification

Mode Number Salinas Abaqus

1 1834.47 1834.50
2 10175.2 10176.0
3 12469.1 12472.0
4 12469.1 12472.0

3.3.2 Plate Preload Verification

This example is a similar to the previous model, except that it has the geome-
try of a plate, as shown in Figure 3.7. The plate consists of selective deviatoric hex8
elements and is fixed on oneside and constrained in the y and z directions on the
other. A prescribed displacement is applied in the x-direction in Sierra-SM, and then
a modal analysis is performed in Sierra-SD. For verification, the first 5 modes are com-
pared to the Abaqus finite element code.The Eigenvalue results are shown in Table 3.2.
The path to these verification tests is
Salinas _rtest/verification/adagio coupling/barModelPreload.

For input deck see Appendix A.19.
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Figure 3.7: Geometry of plate

Table 3.2: Plate Preload Verification

Mode Number Salinas Abaqus

1 1380.37 1406.60
1834.47 1834.50
5208.10 5212.80
7234.86 7236.60
8911.89 8914.00

O = W N
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3.4 Eigenvalue Restart with Virtual Nodes and Elements

A transient restart model was created and tested including virtual nodes and elements,
tied joints and superelements. The model is shown in Figure 3.9. For restart analysis
two solution cases and input decks are needed. First, a restart=write solution where the
desired amount of steps are analyzed and a output file is created with results. Second, a
restart=read solution where the output file that was created is now read in and analyzed
to the new desired amount of steps. For this test the write file had 10 steps and the read
in file had 20 steps. This test includes superelements, infinite elements, and tied joints. A
truth model was constructed with no restart and used for verification. Figure 3.8 shows the
comparison of the truth model with no restart and the model with restart.

x 10
0 T T T
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-0.81 4
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time % 10-3

Figure 3.8: Comparison between truth model and restart
In Figure 3.8 the 20th node in the y direction was compared between the two cases. The

error is on the magnitude of 10713 which is expected due to the solvers, therefore, validating
transient restart capability in Sierra-SD.

3.4.1 Eigen Restart

This model was also analyzed using an eigen restart capability. The difference in this
model is that there are no infinite elements only superelements and tied joints. This model
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was compared to a truth model and is showing accurate results. The transient and eigen
restart tests were created and run in serial and in parallel.

Figure 3.9: Restart Model Geometry. “Ninjabot”

For input deck see Appendix A.24.
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3.5 Filter Rigid Modes from Loads

3.5.1 Introduction and Purpose

For some analyses, it is advantageous to remove the rigid body component of a solution.
This is the case for a reentry body for example, which may have a static preload followed by
a transient response with applied random pressures. The static preload is a singular system
if the force is not properly self-equilibrated. The transient response is also troublesome. The
true physics is complicated and includes a fluid structure interaction with random pressures
as well as flight dynamics which stabilize the structure from rotation. The numerical analyst
may represent that physics by a random pressure load. Unfortunately, that load can cause
the body to rotate wildly, which is both nonphysical and distracting. As a solution, we filter
the input forces to the body so that only self-equilibrated forces are applied. Because of the
singularity, and small contributions to various linear solvers, a rigid body displacement may
be generated. This component is filtered out after the solve, leaving a displacement that has
no rigid body component.

3.5.2 Description of the Test

In this test, a small beam of Hex8 elements has a load applied transverse to one end. See
Figure 3.10. Because there are no boundary conditions, the resulting system is singular for
a statics solution. Figure 3.11 indicates the equilibrated forces applied to the structure, and
the resulting deformation.

Verification requires determining the following:

1. The loads are properly equilibrated.

2. The output displacement vector contains no rigid body components.

Figure 3.10: Beam Loading
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Figure 3.11: Filtered Beam Forces and Displacements

3.5.3 Evaluation

The verification is done by Matlab. Forces and Displacements are loaded into the Matlab
engine and simple calculations are performed.

1. The sum of each force component is zero (1.7e-6). This confirms that the translational

portion of the force has been equilibrated.

. The sum of cross terms is zero (1.25e-5).

nodes

:E::‘Fi X j% =0

This confirms that the net moments are zero. Thus, the loads have been properly
equilibrated.

. We confirm that the output displacement vector contains no rigid body components
as follows.

The net output translational components are summed for each component.

These components are less than le-10.
We also confirm that the net moment is zero.

nodes

E ﬂk X j% =0
7

The net moment is less than 1.1e-5.

Thus, we have confirmed that the loads are self equilibrated, and that the resulting displace-
ments are orthogonal to rigid body translation and rotation.

For input deck see Appendix A.25.
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3.6 Sensitivity to Parameters

Sensitivity to parameters is available for multiple solution types. The primary application
is in eigen analysis where the semi-analytic solutions can provide significant computation and
accuracy benefit over a finite difference approach. A script was developed for testing different
parameters using the finite difference method in Sierra-SD. The script checks that, as the step
size decreases, the finite difference approximation to the modal sensitivity converges to the
value provided in the code. A simple model was developed and analyzed for verification. This
model is two hex elements that are connected via a tied joint. The Kz = elasticle7+ / —10
parameter in the Joint2G block is where the sensitivity analysis is preformed. Figure 3.12 is
a plot of the results and shows this capability. The Eigenvalue sensitivity information can
be found in the result file and matches the value shown in Figure 3.12.
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Figure 3.12: dLambda/dp vs. dp
Figure 3.13 shows the frequency vs. dp. For input deck see Appendix A.28.
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Figure 3.13: Frequency vs.dp
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3.7 Sensitivity Analysis with a Superelement

The goal of the test is to verify both generation of a Craig-Bampton (CB) reduction
and associated matrix sensitivities as well as the Taylor series expansion of the resulting
matrices to generate a point evaluation of a parameter. In this example, a more complex
model is evaluated with two parameters. While the geometry of the model is more complex
the structure still is linear in the parameters of interest.

3.7.1 Blade Model

The model is shown in Figure 3.14. The full model (including superelement and residual
structure) is shown on the left. The next cut away shows only the residual structure in gray.
A portion of that model is provided only for visualization. On the right is the model of
the superelement which consists of quadrilateral and triangular shells. The interface nodes
are in red. Analysis is performed in two stages. First, the CB reduction is performed and
sensitivity matrices dKr/dp and dMr/dp are generated. The reduction is performed in two
ways: by constant vector, and by finite difference approaches. Following sensitivity analysis
and model reduction, a system analysis is performed where those matrices are used in a
Taylor series expansion.

For this analysis, we use the material density and Young’s modulus as the sensitivity
parameters. There are no repeated frequencies, which avoids any issue of mode mixing for
finite difference sensitivity.

3.7.2 Analysis
3.7.2.1 Analytic Analysis

For a constant vector sensitivity analysis, the reduced order matrices are given by,

ke = TTK(p,)T,

ki = TIK(p,+ Ap)T,

dk ky — k.

— 3.9
i Ap (3.9)

T, is the transformation matrix evaluated at p,,
Do is the nominal value of the sensitivity parameter,
Ap is the change of the sensitivity parameter,
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Figure 3.14: Blade superelement model

Lk is the reduced stiffness matrix, and
K() is the unreduced stiffness matrix.

Identical relations exist for the mass matrix.

For a finite difference sensitivity analysis, the relations are somewhat different.

k, = TTK(p,)T, (3.10
b = TIK(p,+Ap)Th 3.11
dk ki — ko

= 12
ap Ap (3.12)

Here,

T: is the transformation matrix evaluated at p, + Ap,

Because T7 depends on the density and Young’s modulus, the reduced stiffness matrix is
affected by the transformation.
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3.7.2.2 Numerical Results

Figure 3.15 shows a comparison of the system level solutions as a function of design
parameter. We vary the density and Young’s modulus together. Three curves are shown. The
exact solution shows results obtained by rebuilding the superelement using the parameter,
and without sensitivities. The other two curves evaluate dk/dp at the nominal value, and
estimate the superelement contribution using a Taylor series expansion. Results are shown
for mode 3. A comparison of the error is shown in Figure 3.16
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Figure 3.15: Modal Frequency Variation with Density

3.7.3 Summary

These analyses compare results for application of sensitivity matrices to superelement
analysis. In this example, for which the superelement matrices vary linearly with the param-
eter, the constant vector method works extremely well. While not shown here, variations of
a single parameter by itself returns very similar results.

One point of interest is that for large variations of the parameter, the finite difference
method of computing sensitivities resulted in indefinite matrices that caused the eigensolver
to fail. For input deck see Appendix A.29.
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3.8 Shock Tube

Analysis Type Nonlinear Acoustics

Element Type Hex8
Boundary Conditions | absorbing, fixed velocity
Keywords

nonlinear acoustics, run time compiler

3.8.1 Problem Description

This is the verification test of nonlinear acoustics.

3.8.2 Verification of Solution

The SierraSD nonlinear acoustics equation is the Kuznetsov equation. In the SierraSD
Verification manual, see section 10.2 and specifically the subsectiom 10.3. Fubini’s exact
solution to a wave guide is used. A Matlab script, the section Verification of solution of

Kuznetsov equation. A Matlab script, shocktube_exact_solution.m generates the exact
solution.

Nonlinear Acoustics / Waveguide / Computed and Exact Time Histories
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Figure 3.17: Shock Tube

For input deck see Appendix A.30.
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3.9 Beam-Beam with Craig-Bampton Reduction

This model exercises CBR reductions on a beam. The full model consists of 200 beam
elements, each of length 0.01, for a total length of 2 units. The beam is free floating in the
X direction, but constrained in all other directions. It is driven by a simple force on the left
(x = 0) end. The load is a sawtooth force with a period and duration of 1.5ms. The system

is integrated with a fixed time step of 0.1 ms.
An “equivalent” model is generated by separating the model into two equal sections of
100 elements each. The right hand side segment is converted into a superelement, and then

attached to the left hand structure. The superelement includes the single fixed dof on the
left end, and 90 internal generalized dofs representing most of the modes of the system. The

loading and integration are identical to the full structure.
Figure 3.18 compares the X component of displacement on node 101 of both models.

Node 101 is located at the junction of the superelement. Clearly the superelement and
residual structure represent the solution very well. Figure 3.19 shows the difference of the

solutions.
For comparison, Figure 3.20 compares results with a CBR model that includes no gener-
alized dofs. As anticipated, the results are not nearly as good.
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Figure 3.18: Comparison of Full Model with CBR Reduction

For input deck see Appendix A.39.
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Figure 3.19: Error in CBR reduction
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Figure 3.20: Comparison of Full Model with Guyan Reduction. Without the generalized
dofs, the comparison is poor.
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3.10 Modal Force Loading

Modal Forces provide an alternative, body-based loading to a structure which can be
useful for some solutions. These modal forces are the conjugate of modal force output in the
modaltransient solution method.

Verification is performed by use of the modal transient method, and is shown in Figure
3.21. The model used is shown in Figure 3.22. The model is first run using physical inputs,
and produces two output files: 1) the modal forces, and 2) the output displacements. The
second run uses modal force as the input. Finally, the output displacements of the two modal
transient runs are compared. Results are identical (except for round-off errors).

Physical
Loads

Modal Transient b Physical
Displacement
Modal .
Loads Comparison

Modal Transient > Physical
Displacement

Figure 3.21: Verification Process for Modal Force

Figure 3.22: Biplane Model

For input see Appendix A.42
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3.11 Lighthill Analogy - Helmholtz Resonator

The Lighthill tensor provides a source term for noise generation in aeroacoustic simu-
lations. The Lighthill tensor captures noise generated by unsteady convection in flow in a
fluids simulation. Sierra/SD produces a source term from the Lighthill tensor that is ap-
plied as a nodeset load in the pressure formulation of acoustics. Sierra/SD produces the
Lighthill loading by reading in the time varying divergence of the Lighthill tensor using the
readnodalset function. The divergence of the Lighthill tensor is used to create an equiva-
lent elemental force vector. The divergence of the Lighthill tensor is provided from a Fuego
incompressible fluids simulation.

Verification of the Lighthill loading is performed for the Helmholtz resonator shown in
Figure 3.23 which has an analytic resonant frequency of 120Hz. The discretized mesh,
material properties, initial and boundary conditions used in the Fuego simulation are shown
in Figure 3.24. Fuego then calculates the divergence of the Lightill tensor and writes this
out to exodus as nodal data at variable timesteps.

150 cm
50 cm
20cm
lcm
30cm
50 cm
100 cm

uuuuuuuuuuuuuuuuu

S| =lo|la|lo|lo|o

:
nnnnnnnnnnnnnnnnnnnn

Min element 0.2cm

Max element | 1.72 cm

Figure 3.23: Dimensions of Helmholtz resonator

Single element depth of 1 cm
Number of elements =27352
Number of nodes  =55640
Inflow = 2700 cm/s
P =1.01325e06 dynes/cm”2
Time =0.3 sec
Time step ~3e-5 - 6e-5 sec
CFL=0.9
Equations:

Continuity

X/Y/X Momentum

. . Turbulent Kinetic Energy
PeﬂOdIC Turbulent Frequency

Figure 3.24: Boundary and initial conditions for Fuego simulation

The Fuego output is used as input in Sierra/SD with the same discretization of the
Helmholtz resonator shown in Figure 3.23 with an additional semi-circular domain in order
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to apply an acoustic boundary condition. Absorbing boundary conditions are applied to
the edge sideset of the semi-circular region, highlighted in red in Figure 3.24. boundary
with absorbing boundary conditions eliminate the rigid body modes from the solution which
can cause a which linear linear growth in the pressure field. The nodal DivT data on the
Fuego domain is converted to nodeset data using the ejoin flag -convert nodal to nodesets.
The distribution factors for the new nodeset data are changed from 0 to 1. The Sierra/SD
simulation reads in the time varying nodeset data from Fuego and interpolates it to the
nearest timestep either linearly or using the closest timestep. The double divergence of the
Lighthill tensor is then calculated and applied as a source term in the Sierra/SD transient
acoustic simulation. Results for the Sierra/SD acoustic simulation using Lighthill loading
are shown in Figure 3.25 for acoustic pressure versus time. An FFT of the pressure data is
shown in Figure 3.26 with peaks at 61, 121, and 183. These resonances were also observed
in the pressure data sampled in the rigid chamber of the Fuego simulation. The main peak
is close to the analytic resonant frequency of 120Hz.
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Figure 3.25: Sierra/SD time history of pressure for Lighthill loading.

For input see Appendix A.43
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Figure 3.26: FFT of Sierra/SD pressure data shown in Figure 3.25
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3.12 LightHill Tensor Verification

The Lighthill tensor provides a source term for noise generation in aeroacoustic simu-
lations. The Lighthill tensor, T, captures noise generated by unsteady convection in flow
in a fluids simulation. Sierra/SD produces a source term from the Lighthill tensor that is
applied as a nodeset load in the pressure formulation of acoustics. Sierra/SD produces the
Lighthill loading by reading in the time varying divergence of the Lighthill tensor using the
readnodalset function. The divergence of the Lighthill tensor, V - T, is used to create an
equivalent elemental force vector.

In this verification example we compare Lighthill loading to Point Volume Acceleration
loading for a 1-D waveguide shown in Figure 3.27a). The 1ighthill and pointVolAcc load
functions are applied to the nodeset indicated by the yellow region. For this example the
divergence of the Lighthill Tensor varies only in the x-direction and is given by

t
(V-T), = (1 4+ cos (%)) sin? (Z—[)) for ¢ < 40s (3.13)
where z is the location along the x-axis and ¢ is time. Only a single load pulse is simulated,
t < 40s. The simulation is run for a total time of 550s, giving the pressure pulse time to
propagate away from the nodeset. The y and z components of V - T are zero. This form for
Lighthill loading makes (V - T'), = 0 at the end of the nodeset, x = £20.

The same pressure response as that given in equation 3.13 is produced with a scalar nodal
load equal to V - (V - T) properly scaled by the number of nodes and area it is acting over.
For the V - T used in this example,

(. (TT . o [Tt
. . = —— _— R <
V-(V-T) 50 (sm (20)> sin (40> for t < 40s (3.14)

and the scalar nodal force applied using Point Volume Acceleration is 1V - (V - T) for the
uniform linear hexahedral mesh shown in Figure 3.27b where each element is 1x1x1.

Figure 3.28 shows the pressure output at t=75s over the length of the waveguide for
lighthill and pointVolAcc loading given by equations 3.13 and 3.14, respectively, applied
to the uniform mesh shown in Figure 3.27b. These are compared to the analytical result
shown by the black line. The results are given after the pressure pulse has been applied,
showing the propagation of the pressure wave through the acoustic medium. The percent
difference in pressure between the two loading methods and the analytical result is shown
in Figure 3.29 at t=75s. The L1 error of the pressure over the domain is shown at each
simulation timestep in Figure 3.30. This plot shows the L1 error increasing over the duration
of the 1ighthill or pointVolAcc load (¢ < 40s) and then remaining steady.

The geometry in Figure 3.27a) was also discretized with an unstructured linear tetra-
hedral mesh shown in Figure 3.27c¢) and lighthill loading was applied to the domain.
Results for these simulations are also shown in Figures 3.28-3.30 and show the same error as
the uniform hexahedral mesh with Lighthill loading.

43



A

B N

a) 1000x1x1 -20<nodeset<20

b) Uniform hex mesh

J - * J "ot . - » J U

¢) Unstructured tet mesh

Figure 3.27: a) Schematic of 1000x1x1 waveguide geometry. Geometry extends from
x==+500. Yellow region contains the nodeset being loaded. b) Regular hex mesh used
to compare Lighthill and Point Volume Acceleration loading. ¢) Unstructured tet mesh used
for lighthill loading. Yellow nodes in b) and ¢) indicate nodes in nodeset being loaded.
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Figure 3.28: Pressure output for 3 load cases compared to analytical result at t=75s.
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% Difference Pressure: time=75s
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Figure 3.29: Percent difference in pressure between the three load cases and the analytical

pressure for t=75s.
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Figure 3.30: L1 error in pressure for each load type versus time.

For input see Appendix A.44
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3.13 Superelement Superposition

A four truss, 1-D problem provides a simple verification of Craig-Bampton Reduction
(CBR) and superposition based reconstruction. As illustrated in Figure 3.31, the model is
clamped on the left end, and constrained to admit only translations in the X direction on
the remaining four nodes. A transient load acts in the X direction for this problem, so the
model is fully one-dimensional.? The verification proceeds as follows.

1. Compute the full system (4 element) static load due to a point load on the center node.
This is used as the truth model.

2. Split the model into two pieces, each composed of two elements each. The CBR model
is floating in the X direction, where load is applied.

3. Approximate solution uses CBR methods to reduce the last two elements (3 nodes) to
two dofs.

4. The “residual solution” computes the system statics solution based on the left hand
side (unreduced) model connected to the CB reduced right hand side system. Results
in the residual are compared with step 1.

5. One output of the system transient solution is “endtruss-out.ncf”. This file con-
tains the modal amplitudes and the interface amplitudes for the superelement. These
amplitudes, together with the modal bases computed in step 2 above, provide the
information necessary to compute the physical degrees of freedom in the portion of
the structure on the right. The model is generated using the “superposition” solution
method. This model is then compared with the results from the right hand portion of
the truth model.

Figure 3.32 provides a comparison of the solutions using the full model, and the individual
components.

Residual Model Reduced Model

Figure 3.31: Four Truss Geometry

Theory. A CB model generates a transformation matrix consisting of a combined set of
fixed interface and constraint modes. These modes may be stored in an exodus file. We call
this “se-base.exo”. A netcdf file, “se.ncf” is also created at this time. Subsequently, this
reduced model is inserted into a residual model for superelement analysis, say a transient

2 The CBR reduction must use lumped masses for consistency with the statics solutions.
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Reduced/Superposed and Full Model Displacement
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Figure 3.32: Results of Superposition Problem

analysis. That analysis outputs the standard exodus results, “resid-out.exo” and results
on the netcdf file, “se-out.ncf”. The point is to recover the response on the original interior
degrees of freedom of the superelement.

The transient response on the interior degrees of freedom is,

nmodes nconstraint

Z Gi(tn)ir, + Z tn) ik (3.15)

where,
ug(t,) = is the displacement at interior dof k
t, = 1is the time step
q¢; = 1is the amplitude of a generalized dof for mode ¢
¢ir = 1is the fixed interface mode i at dof k
w; = is the amplitude of interface dof j
Y = is the constraint mode j at dof k&

The amplitudes ¢; and w; are found in “se-out.ncf”, while the mode shapes, ¢;, and vy,
are found in “se-base.exo”. Super_superp simply combines these results and writes a new
output file containing the results.

For input see Appendix A.45
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3.14 Superelement Inertia Tensor and Mass Inertia Ma-
trix

The inertia tensor provides a means of applying initial conditions to the interior dofs of
a superelement. General boundary conditions are not supported, but initial conditions that
include linear combinations of rigid body motion can be readily managed. As these are the
most common boundary conditions, there is great utility in computing the inertia tensor as
part of the Craig-Bampton (CB) reduction process.

There are two matrices associated with CB reduction and rigid body applications. The
inertial tensor, I, = TT R, is used to establish initial velocity. Here T is the CB reduction
matrix and R is a six column rigid body vector in the physical space. The mass inertia
matrix, I, = TTMR, can be used to apply gravity or other body loads. M is the mass
matrix in the physical system.

3.14.1 Inertia Tensor, [, =TTR

The development of the inertia tensor was used for use in LS-Dyna. LS-Dyna also has
the reduction process. Verification involves comparison of the output of the two codes. The
LS-Dyna output is in DMIG format. We compare with a previous matlab output from
Sierra/SD which was compared by hand with the lsdyna results. Also, Sierra/SD outputs
the fixed interface modes first, while LS-Dyna puts them last. The model is shown in Figure
S

The overall comparison of the values is very good with a relative L2 norm about 6%.
Figure 3.34 compares the values of the matrix. There are 3 rigid body modes (corresponding
to each of the three translations). There are 10 fixed interface modes and 12 constraint
modes, for a total of 22 columns in the inertia tensor. There is significant difference for
mode 10, but that is expected because it is the last mode, and the next mode is very near
in frequency.

3.14.2 Mass Inertia Matrix, I,, =TT MR

The Mass Inertia matrix, [,,, is determined by a comparison with an independent
MATLABT™ calculation, using the following steps.

1. Use the single processor input, and enable “mfile” output.
2. Run Sierra/SD to reduce the model and generate the mass inertia matrix.

3. Read in the fixed interface modes, ¢, and constraint modes, v, from Sierra output.
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Figure 3.33: LS-Dyna and Sierra/SD Inertia Tensor Model. The model is colored by the
parallel decomposition.

4.

10.

Form the transformation matrix.

r-(33)

Read the partitioned components of the mass matrix (M,,, M., and M,,) from Sierra
output. Generate a mass matrix that includes all dofs of interest.

M'U'U MUC
M= ( Mo M, )

. Compute and compare the reduced mass matrix computed by the two methods. M=

TTMT.
Compute the Nx3 rigid body matrix. Only translational components are included.

Compare the Sierra computed Inertia Tensor, I, = T7 R, with the Is-dyna stored values.
This is a code-to-code comparison. This is also compared with a Matlab solution.

Compute the Mass Inertia matrix, /v = T7 M R, and compare results with those output
from Sierra. A comparison of the results is shown in Figure 3.35.

Results are compared in serial and in parallel.

These steps found in the Matlab script, massInertiaTensorCompare.m.
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Figure 3.34: LS-Dyna and Sierra/SD Inertia Tensor Terms
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Figure 3.35: Mass Inertia Matrix. Values (left) and Differences (right).
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For input see Appendix A.46.
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3.15 Nastran/SierraSD Interoperability with Superele-
ments

3.15.1 Needs and Requirements

There is often a need to exchange data with external collaborators. Most often these
collaborators use commercial products for finite element analysis. One of the varieties of
Nastran is the most commonly used exchange format. Sierra/SD has been designed to
interface to these formats through its superelement capability. Export through a Nastran
superelement may be done directly in Sierra/SD as part of the CBR method,or it may be
accomplished through the “ncfout” application which translates the model into either DMIG
or outputd format. In addition, Sierra/SD may import certain DMIG formatted models
using “nasgen’.

Such export /import capabilities provide the basis of interaction with collaborators, and

it is important that the process be simple and accurate. However while significant effort has
been put into these tools, testing has been rather limited because of challenges in running
Nastran in the Sierra test harness. Without regular testing, capabilities can not be trusted
for crucial collaborations. The intent of this verification is to provide a well defined testing
strategy to ensure persistent capability. These tests may need to be run manually, but the
tests should ensure capability.
This test does NOT regularly run nastran. Section 3.15.7 contains in-
structions for running nastran by hand to fully verify current analysis.
The nightly test runs Sierra, and compares results carefully with previ-
ously completed analyses which had been compared with nastran.

3.15.1.1 Scope of Evaluation

The focus of these tests is evaluation of the CBR exchange capability. In particular, we
focus on the following.

1. Compatibility of the data format for exchange of reduced order stiffness and mass
matrices.

2. Bi-directional capability, i.e. output of superelements from Sierra/SD in DMIG format,
and input through nasgen.

3. A clear, well defined process for generating and using these reduced order models (or

ROM).
4. Support for damping matrices, and output transfer matrices (OTM).
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5. Support for inertia mass matrix export. The inertia mass matrix is not currently
supported for boundary conditions in Sierra/SD. As such, it cannot be tested for
import.

To keep the focus, we explicitly limit the following.

e No element comparisons. Nastran element formulations clearly differ from Sierra/SD
capabilities. That is expected, and not tested here. Convergence of these elements to
proper solutions is performed elsewhere.

e Nasgen translation of most data. There are extensive tests for translation of the model.
With the exception of the superelement capabilities, these lie outside the scope of this
set of testing.

3.15.2 Model Evaluation

The model must be evaluated for suitability for comparison. In particular, the solutions
of the unreduced models (Nastran and Sierra), must be close enough to allow code to code
comparison of reduced models.

The model is illustrated in Figure 3.36. There are three primary areas of consideration.

Base The support at the base provides the fixed boundary condition and the attachment
location for the two tuning tines. It is part of the residual.

Load Tine The leftmost tine (red) is also part of the residual. Force/Pressure boundary
conditions may be applied to this tine.

ROM Tine The rightmost tine (yellow) is the portion of the model to be reduced. The
interface to the residual is the element at the base of the tine. There is a single point
on the end of the tine that serves as a location for OTM evaluation.

All sections of the model use the same material properties (aluminum), and all use Hex20
elements, as these are expected to be very similar between the two applications. We evaluate
the model for lowest eigenmodes and for a modal frequency response function (FRF) to an
impulse on the side of the loading tine. The FRF provides a useful comparison, even when
the time history data would suffer from phase errors introduced by small differences in the
element formulations.

Table 3.3 provides a comparison of the frequencies for vibration of the structure.

Figure 3.37 compares the modal FRF solutions for the Sierra and Nastran solutions.
‘The model is considered suitable for evaluation. ‘
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Figure 3.36: Tuning Fork Model

oe Description Sierra/SD | Nastran | Diff %
1 base bending 532.07 527.84 0.8%
2 symmetric bending 937.07 926.53 1.1%
3 asymmetric bending 2956.4 2891.84 2.2%
4 | symmetric 2nd bending 4733.4 4630.10 2.2%

Table 3.3: Vibrational Frequency Comparison
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Figure 3.37: FRF Solutions with 3% damping. Sierra/SD and Nastran.
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3.15.3 Superelement Reduction and Insertion
3.15.3.1 Sierra/SD Model reduction and Insertion

In Sierra/SD, the following steps are followed to compute the system response by su-
perelement reduction techniques.

1. The ROM section of the exodus model is pulled out separately. This can be accom-
plished using grepos.

2. The CB reduction input is generated. This is similar to the full system model, with
additions of a CB section.

3. Sierra/SD is run on the CBR input. This generates a netcedf output.

4. The residual model is generated. Like step 1, we use grepos and delete the block
associated with the ROM.

5. A “socket” is created for the superelement, using “mksuper”.

6. A residual input is created. This is very similar to the original full system model, but
now contains entries for the new superelement block.

7. Sierra/SD is run on the residual input.
Commands for some of these operations are shown in Figure 3.38. Results of the eigen

analysis, compared with the full model, are shown in Table 3.4. With no internal modes,
significant errors are introduced. Four modes in the ROM represents the system well.

Mode | Full Model | 4-Mode ROM | 0-Mode ROM
1 532.065 532.066 551.163
2 937.066 937.066 1107.19
3 2956.37 2956.87 3758.39
4 4733.4 4734.76 6022.09

Table 3.4: Eigen Value Comparison - SierraSD full model and with ROM

3.15.3.2 Nastran Model reduction and Insertion

In MSC or NX Nastran, one approach to compute the system response by superelement
reduction techniques is described in the following steps.

1. The ROM section of the Nastran mesh file is pulled out separately. This was accom-
plished using the Altair HyperMesh preprocessor. The residual structure’s node and
element definition are saved as a separate bulk data file residual_struct.bulk.
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. The ROM section of the exodus model is pulled out separately.

grepos tuningforkx.exo rom.exo « EQF
delete block 11
delete block 31

EQF

. The CB reduction input is generated. The solution and cbmodel sections look like the
following.

SOLUTION
cbr
nmodes=4
END
cbmodel
nodeset 41

format=netcdf

file=rom.ncf

inertia_matrix=yes
end

. Sierra/SD is run on the CBR input. This generates a netcdf output.

. The residual model is generated. This is identical to step 1, but deletes block 21.

. A “socket” is created for the superelement, using “mksuper”.

mksuper tmp.exo « EOF
add nodeset
41
write residual.exo
quit

EOQF

. A residual input is created. Copy full model input to residual.inp. Comment out block

definition for block 21, and add definition for block 32.

. Sierra/SD is run on the residual input, and compared with original model.

Figure 3.38: Running Sierra/SD solution with Superelement
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. The CB reduction input is generated in cbr.bdf. This requires using the EXTSEQUT
card in the case control section. Also required is the definition of a BSET card that
contains the interface nodes (a-set dofs) to be constrained during the dynamic reduction
step. A QSET card is used to define the generalized dofs (g-set) to be used for the
reduction. Lastly, a SPOINT card is necessary to define scalar points for the generalized
dofs. Note that the number of generalized dofs requested should not be excessive —
otherwise, the reduced matrices will have null columns for unused g-set dofs and may
result in a performance degradation.

. Nastran is run to execute an eigen solution step (SOL 103). The EXTSEOUT card in
the case control section has many options for the type and format of superelement
information generated. In this example, the EXTSEOQUT card was specified to request a
punch (.pch) file cbr.pch that contains the reduced stiffness and mass DMIG matrices.
Additional superelement information (e.g., DMI matrices and DTI tables that are
associated with the OTM) which may not be necessary for subsequent use is also
generated by default.

. The resulting punch file cbr.pch is then cleaned up by removing all the information
within it except the stiffness and mass DMIG matrices. The names of the DMIG
matrices were also renamed to something more convenient. This updated punch file
can be saved as cbr_dmig.pch.

. The residual (residual structure with the superelement attached) input is created. This
is very similar to the original full system model, but contains additional cards that
insert the superelement via DMIG input. The stiffness and mass DMIG matrices are
called in using the K2GG and M2GG cards, and the SPOINT card must be included to
define the generalized dofs.

. Nastran is run on the residual input.

Additional details of Nastran’s superelement functionality can be found in Reference 7
(MSC Nastran 2017 Superelements User’s Guide). Results of the eigenanalysis for the full
model and the residual model with superelement are shown in Table 3.5. The results are
practically identical.

Figure 3.39 compares the input displacement of the Sierra/SD and MSC/Nastran ROM

on a Sierra/SD residual. Data on the output (ROM) tine is not available with these methods
because the basis vectors of the ROM are available only internal to Nastran.

3.15.4 Using Sierra/SD Superelements in Nastran

It is also informative to compare the eigenanalysis results to assess the equivalence of
the DMIG matrices generated by Sierra/SD and Nastran. In one case, DMIG matrices are
exported by Sierra/SD and then used within Nastran to attach to the residual structure for an
eigenanalysis step. In the second case, DMIG matrices are generated entirely within Nastran.
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MSC Nastran 2016 MSC Nastran 2016
(full Model) (Nastran based DMIG)

Mode | Natural Frequency [Hz| | Natural Frequency [Hz| | Difference |%]
1 928 928 0.00
2 927 927 0.00
3 2,892 2,892 0.00
4 4,630 4,630 0.00
5 6,078 6,078 0.00
6 6,446 6,446 0.00
7 8,118 8,119 0.01
8 12,863 12,864 0.01
9 14,426 14,427 0.01
10 17,672 17,681 0.05

Table 3.5: : Eigenanalysis Comparison — MSC Nastran Full Model with ROM
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Figure 3.39: Modal Transient Comparison. The input displacement of the Sierra/SD and
MSC/Nastran ROM on a Sierra/SD residual
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These results, shown in Table 3.6, indicate that within practical frequencies of interest,
Sierra/SD produces very similar reduced matrices to Nastran. Results of a modal frequency
response analysis for the full Nastran model and the residual model with superelement are
shown in Figure 3.40. The ouput is located at node 14, which lies at the boundary between
the residual mesh and the superelement. The results are practically identical.?

MSC Nastran 2016 MSC Nastran 2016
(Sierra/SD based DMIG) | (Nastran based DMIG)

Mode | Natural Frequency [Hz| | Natural Frequency [Hz| | Difference [%)]
1 028 928 -0.04
2 931 927 -0.52
3 2,916 2,892 0.84
4 4,675 4,630 0.95
) 6,144 6,078 1.07
6 6,499 6,446 0.83
7 8,292 8,119 2.09
8 13,209 12,864 2.62
9 14,972 14,427 3.64
10 17,796 17,681 0.65

Table 3.6: Eigenanalysis Comparison — Sierra/SD -generated DMIG and Nastran-generated
DMIG. Residual and Superelement are employed in each analysis.
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Figure 3.40: Modal FRF Comparison: Full Model (solid line) and Residual Model with
Superelement (solid markers)

Sierra/SD computes a superelement using a Craig-Bampton reduction. That reduced
order model may be written in several formats. For use in Sierra/SD, we write this as a

3Sierra/SD has recently added a higher precision DMIG output. This uses 16 character “long” format
nastran fields, and is selected with the “FMT=dmig*” option.
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netedf/exodus file. It may alternatively be written as a DMIG* compatible with Nastran.
More flexibly, we can convert the netedf/exodus file to several formats (including DMIG and
Output4) using the ncfout application.

For application of a DMIG to a Nastran model, the interface node numbers must be
consistent. Figure 3.41 illustrates the nodes on an interface, together with the first few lines
of the DMIG, which define a portion of the reduced stiffness matrix. Each row and column
is indicated by the GRID/CID pair.

DMIG K2GG 6 1 6 1 1.6896+6

6 2 -197648. 14 1 726510.

14 2 36078.7 47 1 899966.

47 2 63681.1 47 3 90702.2

¥ 55 1 750185. 55 2 58875.3

55 3 -67421.3 97 1 -2.141+6

97 2 -115178. 97 3 -275194.

111 1 -454831. 111 2 45783.7

113 1 -1.028+6 113 2 156507 .

z 3 am 113 3 -587.767 116 1 -442113.
116 2 -48070.2 116 3 -202927.

. —l DMIG K2GG 6 2 6 2 2.0542+6
14 1 -36078.7 14 2 1.0384+6

Figure 3.41: DMIG example. On the left, the interface nodes and orientation from the model
is shown. The extract from the DMIG on the right illustrates the first row of the stiffness
matrix. The index to each value is the GRID and CID pair for that column.

The original BDF file must be modified as follows.

1. Copy original, and remove the five elements in the ROM region.
2. Add SPOINTS corresponding to the DMIG
3. Include the new DMIG data.
4. Add commands to include K2GG and M2GG in the case control.
Table 3.7 provides a comparison of the full Nastran model with the eigen solution using a

reduced order model from Sierra/SD. The solution with four fixed interface modes provides
good accuracy.’

3.15.5 Using Nastran Superelements in Sierra/SD

The Nastran superelement model is translated using nasgen. This tool translates the
model and superelement simultaneously, with the superelement written to a netedf file. Nas-
tran uses a different element formulation, and orders the modes differently from Sierra/SD,

4 Direct Matrix Input at Grid points

5The default data width for a DMIG is 8 characters. There may be a significant loss of accuracy in
truncating data to this size. We have recently added the option to output 16 character DMIG using the
DMIG* format.
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Mode | Full Model | 4-Mode ROM | 0-Mode ROM
1 527.842 528.046 546.461
2 926.535 931.379 1098.845
3 2891.837 2916.451 3681.061
4 4630.102 4674.563 5980.433

Table 3.7: Eigen Value Comparison - Nastran full model and with Sierra/SD ROMs.

so we may not reasonably directly compare the matrices output in the translation. It is
possible to simply run the translated analysis using Sierra/SD. The compared eigenvalues
are shown in Table 3.8. The results are very reasonable.

Mode | Sierra/SD (Hz) | Nastran (Hz)
1 530.594 527.8421
2 932.069 926.5357
3 2930.28 2891.865
4 4692.38 4630.148

Table 3.8: Comparison of Nastran and Sierra/SD Eigenvalues using Nastran Superelement

3.15.6 Superposition Methods for Output of Internal Data

The Craig-Bampton method necessarily removes internal physical degrees of freedom
from the superelement. Sometimes results on those internal dofs are required. The dis-
placements, accelerations and velocities on these locations may be readily obtained through
post-processing using the super_superp tool.

Figure 3.42 compares the output of the sample on nodeset 41, at the tip of the unloaded
tine, from the full model with the results obtained using the reduced model. Both models
are run in Sierra/SD for consistency. The left tine is loaded with an impulse. Figure 3.43
illustrates the deformation of the full model, compared with the residual and superimposed
superelement.

3.15.7 Related Nastran Analyses Required for Verification

The nastran inputs for these analyses are included in the test repository, but are not run
as part of the nightly test process. To evaluate these models, the following steps may be
followed.

3.15.7.1 Eigen Problem

The nastran eigen problem of the entire model may be evaluated by running:
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Figure 3.42: Comparison of Output Displacements. The plot on the left compares displace-
ments of the full and reduced order models at the input location. The plot on the right
compares displacements on the unloaded tine after the selem_superp tool is used to extract

the displacement from the reduced model.
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Figure 3.43: Superposition Solution and Full Deformation, ¢ = 2ms. The full model (in blue
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background) is compared with the residual and the post-processed superelement.
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workstation> nastran tuningfork.bdf

The resulting output in tuningfork.£06, may be evaluated for the appropriate normal mode
frequencies.

3.15.7.2 Modal FRF

The eigen problem may be modified to run a modal frequency response. Most modifica-
tions are in the case control section. Analyze with,

workstation> nastran tuningforkfrf.bdf

Output analysis is a relatively easy using nastran aware tools, or the PCH file may be mined
to garner the data.

3.15.7.3 Insertion of a ROM from Sierra/SD

There are relatively few changes required to the original BDF file required to include
a DMIG from Sierra/SD. See the example in se.bdf, which includes the DMIG for the
rightmost tine.

workstation> nastran se.bdf

Output of this analysis is the normal modes solution (as in section 3.15.7.1), but with the
ROM of the right tine. Comparison of the modal frequencies provides validation of the
analysis.

3.15.7.4 Insertion of a ROM from Nastran

The eigen_se.bdf file provides the input for nastran analysis using the nastran generated
superelement. The superelement (in DMIG format) is read using an ‘include’ command.
Analysis is performed using this command.

workstation> nastran eigen_se.bdf

The eigenvalues are found in the .£06 output file and may be compared with the Sierra/SD
results of section 3.15.5.

For input see Appendix A.47.
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Chapter 4

Sierra/SD Contact, Constraints and
MPCs

4.1 Parallel Distribution of Load through Rbars

The purpose of the verification is to ensure that loads may be properly distributed through
a “spider” collection of Rbar elements onto a concentrated mass. The model is shown in Fig-
ure 4.1. This is a model of a conmass connected to a hex by spiders using rbars. Verification
that the model works the same running with one processor or six processors.

Figure 4.1: Model for Parallel Distribution of Load through Rbars

For input deck see Appendix A.1.
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4.2 Rigidset Compared to Rbar

The purpose of this test is to verify rigidsets. Verification means that the rigidsets do
the same thing as an equivalent block of rbars.

A rigidset is a tool to define a set of nodes as completely rigid. It is done by creating a
sideset (or a nodeset, but sidesets are preferred) and defining that sideset as a rigidset in the
input deck. While rbars can be used to produce the same rigidity, the process with rigidsets
is much easier. Setting up an equivalent block of rbars involves creating a block of beams
that are not redundant, which gets trickier with more nodes. This step can take more time
than desired. Then the block is defined with rbars in the input deck. Rigidsets are much
easier to use and produce similar results.

While the results are the same, the means of obtaining them are different. This can be
seen through the MPCs (Multi-Point Constraint equations). Consider the single hex model
in Figure 4.2. Since this meshed model contains only a single hex, it only has eight nodes.
A sideset has been assigned to one of the hex surfaces, shown in green in Figure 4.2. This
sideset is used to define the rigidset. Rbars are defined by three of the edges on this surface,
constrained as a block of BEAM elements.

As previously mentioned, the rigidset is defined by a sideset. A wireframe of the single
hex’s rigidset can be seen in Figure 4.3. There are 18 MPCs and three node connections
that are used in the constraint equations. The node connections here are between nodes 3
and 4, 2 and 1, 3 and 1, as represented by the dashed red lines in Figure 4.3. There are
6 constraint equations for each of these connections. Together, these constraint equations
make a perfectly rigid surface.

The MPCs for the block of rbars also create a perfectly rigid surface, but the equations
and node connections differ from those used in the rigidset. Figure 4.4 shows the block of
rbars created from three edges of the surface. Notice that there cannot be a connection
between nodes 3 and 4. A connection between nodes 3 and 4 would require an rbar there,
which would cause redundancy in the constraint equations. One of the difficulties in creating
a block of rbars is making sure there are no redundancies. As shown by the dashed red lines,
the connected nodes here are 4 and 1, 1 and 2, 2 and 3. Each connection still has 6 constraint
equations, making 18 MPCs in all. The result is the same as rigidsets, but the means of
getting there is different.

Rigidsets and Rbars use different constraint equations, but both can create a rigid set
of nodes with the same eigenvalues. This means that rigidsets can be verified by comparing
the results to rbars. For input deck see Appendix A.2.
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Figure 4.2: A model of a single hex.

Figure 4.3: A wireframe view of the sideset used for the rigidset in Figure 4.2.
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3 12

Figure 4.4: A wireframe view of the block of beams used for the rbar collection in Figure 4.2.

68



4.3 Multiple Tied-Surfaces and Curved Surfaces

The purpose of this test is to verify the behavior of multiple tied surfaces. The model is
shown in Figures 4.5 through 4.12. Included are several figures that show the model broken
down into blocks and the relationships between the surfaces and blocks. Note that Block 3
is actually Block 10 in the input files.

We verify that the eigen analysis retains 6 rigid body modes, and that the structure is
appropriately tied on the planar and curved surfaces. Note that 6 rigid body modes are
not, calculated due to poor conditioning of the constraint matrix if con tolerance 1le-3 is
commented out in the GDSW solver block. Figure 4.13 shows mode 15 of the solution, with
a large degree of deformation.

Block 1

Block 2

Figure 4.5: All three blocks from an above angle.

For input deck see Appendix A.3.
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Block 1

Block 2

Figure 4.6: All three blocks from a below angle.

4.4 Contact Verification

In this section we provide a series of verification tests for a conceptually monolithic
bar created by tying together separate element blocks. This verification test documents the
solution convergence rate for a contiguous mesh versus a discontinuous mesh tied along planar
or curved boundaries. Additionally the test investigates the effect of tied data gap removal
and master-slave pairings. Evidence based usage guidelines for tied data are provided based
on the results.

4.4.1 Description of the Test

Three load cases are considered: A gravity load on a cantilever beam (Figure 4.14(a), a
bar fixed at one and with a traction load on the other (Figure 4.14(b), and free-free eigen.
To ensure planar notionally 2D results, the poisson’s ratio of the material is set to zero and
boundary conditions constrain motion to the xy plane.

The mesh is generated with Hex8 elements. The geometries used are pictured in figure
4.15. The top mesh is a contiguous mesh to be used as a comparison baseline, and refined
significantly for a “truth” solution. The middle mesh uses straight interfaces between the
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Figure 4.7: Block 1 and Surface 1.

block partitions. The bottom mesh uses curved interfaces between the block partitions.

4.4.2 Expected Results

The eigen modes, cantilever beam displacement, and axial pull solution all have approx-
imate solution based on beam theory. However, as the meshed beam has finite thickness,
ultimate verification is done against a “truth” solution generated by a highly refined contigu-
ous mesh.

For the free-free eigen case, the first three modes should be rigid body modes. These
tests investigate the preservation of rigid body modes with tied data and the convergence of
the first three flexible modes. For the cantilever beam problem, the quantity of interest is
tip displacement and total strain energy, again compared versus a highly refined contiguous
truth solution. For the axial bar pull analysis the quantity of interest is maximum stress,
which is expected to be artificially high when tied interfaces are used. The axial bar pull
analysis is effectively a patch test that should produce an exactly known uniform stress state.
Any deviation from this expected stress state is considered error.
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Figure 4.8: Block 1 and Surface 3.

4.4.3 Evaluation of Free-Free Eigen Load Case

The bar is constrained to deform inplane only. Thus, the bar should have three rigid
body modes: two translational, and one rotational. The expected mode shapes for the first
three flexible modes are shown in Figures 4.16(a) ( 535.5 Hz), (b) ( 1272.6 Hz), and (c)
( 1453.9 Hz).

4.4.3.1 Convergence Rate for Eigen Values

The mesh convergence for the first three flexible modes are shown in Figures 4.17(a)-(c).
Note the third flexible mode is the axial bar extension mode. This mode approaches the
correct solution with very few elements due to the complete lack of any bending in the mode
shape. As a result, the convergence plot is not particularly informative, but is shown here
for completeness. Generally second order convergence rates are achieved with or without
contact. The contiguous mesh tends to have moderately less absolute error at any given
refinement.

4.4.3.2 Invariance to Rigid Body Rotation

Figure 4.18 shows how accurately the rigid body rotation mode is preserved. Ideally,
this rigid body rotation mode will have zero stiffness. In practice there is a very small
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Figure 4.9: Block 2 and Surface 2.

stiffness due to round-off errors and finite solver convergence tolerance. However, for the
curved contact case with gap removal off there is a very significant error in the rigid body
rotation mode. Using the faceted curved cuts, there are finite gaps between the nodes and
faces on the two sides of the contact interface. When tied contact constraints are defined
across finite gaps, the constraints artificially constrain rotations. The smaller the gap, the
less artificial constraint is produced. As the mesh is refined the node to face gap shrinks,
and the solution converges toward the exact solution. However, as seen in both the rigid
body rotation mode, and the results for the flexible modes, the error from these gapped
constraints is quite substantial.

4.4.3.3 Effect of Master/Slave Interaction Pairing

For optimal accuracy, it is imperative to chose the correct surface for master/slave inter-
actions in tied data. The previous results were made with the recommended setting of using
the finer meshed surface as the slave surface (nodes), and the coarser surface as the master
(faces). The master and slave surfaces are selected by the order of surfaces in the tied data
section of te input deck. As an example, the below syntax selects the nodes of surface 101
as the slave nodes and the faces of surface 100 as the master nodes.

TIED DATA
SURFACE 100, 101
END
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Figure 4.10: Block 3 and Surface 103.

The opposite master slave pairing is given by:

TIED DATA
SURFACE 101, 100
END

If master and slave surfaces are selected properly, MPC _Status, which is specified by the
slave constraint_info output option, will appear as shown in figure 4.19(a). If the wrong
surface is chosen as master, then the results appear as shown in figure 4.19(b). Notice that
many nodes on the tied surfaces have begun to separate from, or penetrate into, the opposing
surface. This is a result of the relative refinements between the two surfaces. In the incorrect
example, the more refined surfaces were chosen as the master surface, and many interactions
were missed.

The reason for this lies in the way that tied data functions; specifically, tied data requires
that all nodes on the slave surface lie on the faces of the master surface, but does not impose
the same requirement on the nodes of the master surface. If both surfaces are at approxi-
mately the same refinement, it does not matter which side is the master surface, but when
the master surface is at a significantly higher refinement than the slave surface, there will
be some faces of the master surface which are not constrained to any slave nodes, and are
allowed to move without any stiffness contribution from the slave surface.

Note that the MPC _Status variable is not a foolproof check of correct interactions. It clearly
shows the issues on the small circular region, but is not a sufficient check on the larger arc.
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Figure 4.11: Block 3 and Surface 102.

The eigen mode convergence with reversed master/slave interactions is shown in Fig-
ure 4.20(a)-(c). With the non-recommended master/slave pairing the convergence rate be-
comes sporadic. The eigen shape solution will contain obvious errors local to the contact
interface. A decent eigen value solution can sometimes be obtained when these errors cancel.
On the whole though, the eigen value solutions are much worse with the non-recommended
master /slave pairings.

4.4.4 FEvaluation of Cantilever Beam Static Results

The result for contiguous cantilever beam is shown in Figure 4.21.

4.4.4.1 Convergence Rate

The mesh convergence of tip displacement for the cantilever beam is shown in Figure 4.22.
Convergence is quadratic with or without contact. As in the eigen mode solution, addition
of contact does add some error for a given mesh density. Likewise, the presence of finite gap
constraints introduces additional error into the solution.
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Figure 4.12: Block 3 and Surface 101.

4.4.4.2 Symmetric Contact

It is possible to inadvertently add symmetric contact to a model. In symmetric contact
the nodes of surface one are constrained to the faces of surface two while simultaneously the
nodes of surface two are constrained to the faces of surface one. For example, including both
the following tied data sections in an input deck would add symmetric contact to a model:

TIED DATA

SURFACE 101, 100
END
TIED DATA

SURFACE 100, 101
END

Symmetric contact is not expected to work correctly. Symmetrically constrained inter-
faces are over constrained. Such interfaces can rotate, stretch, and shear, but they cannot
bend. The convergence of the cantilever bar with symmetric constraints is shown in Fig-
ure 4.23. With symmetric constraints there is no convergence to the correct solution. As
seen in Figure 4.24 the symmetric contact interfaces cannot bend, leading to a completely
spurious displacement and stress result.
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Figure 4.14: Beam under (a) gravity loading and (b) traction loading.
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Figure 4.15: Mesh Geometry

Figure 4.16: Flexible mode shapes (a) mode 1 (b) mode 2 and (c¢) mode 3 (non-uniform axial

elongation)
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Figure 4.17: Convergence rates for flexible modes. (a) First elastic mode converges to 534.5
Hz (b) Second elastic mode converges to 1272.6 Hz (c) Third elastic mode converges to
1453.9 Hz.
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81



_VStressX

4.626e+00

X 2.313e+00
0.000e+00

-2.313e+00

-4.626e+00

Figure 4.21: Cantilever Beam Deformed result (greatly magnified)
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Figure 4.22: Cantilever Beam Convergence For Tip Displacement
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Figure 4.23: Cantilever Beam Convergence with Symmetric Constraints
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Figure 4.24: Incorrect Cantilever Beam Result with Symmetric Contact
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4.4.5 FEvaluation of Axial Pull Results

The axial pull results should produce an exact uniform XX direction stress of 1000,
however the nature of tied contact constraints produces artificial stress concentrations at the
contact interface. The convergence of stress is shown in Figure 4.25 and the distribution
of stress on two mesh resolutions shown in Figure 4.26. The magnitude of tied data stress
concentrations are not remedied by mesh refinement. The stress concentrations do become
somewhat more localized with mesh refinement.
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Figure 4.25: Axial Pull Convergence for Maximum Stress

_VStressX

1.030e+01
1.015e+01
1.000e+01
9.850e+00
9.700e+00

b)

Figure 4.26: Spurious Local Stress Concentrations with (a) coarse and (b) fine meshes.
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4.4.6 Usage Guidelines

Used carefully, tied data can greatly simplify the model creation process by eliminating
the need for contiguous meshes. However, there are a number of significant areas for concern
when setting up tied data.

e Models using tied data can achieve quadratic convergence for both eigen modes and
static displacement. However, results will generally by at least mildly inferior to a
contiguous mesh at the interface.

e Using gap removal will significantly improve the accuracy of contact at curved inter-
faces.

e For optimal accuracy, the finer meshed surface should be used as the ’slave nodes’ of
tied data interactions and the coarser surface the 'master faces’.

e Symmetric contact constraints should always be avoided as they lead to major errors
and a non-convergent solution.

e Tied contact introduces irresolvable local stress concentrations at the tied interface. If

an accurate stress is needed near the tied interface, a contiguous mesh should be used.

For input see Appendix A.48
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Chapter 5

Sierra/SD Solutions

5.1 Waterline of a ship

A code to code comparison was performed between Sierra-SD and the Navys finite element
code Float. This is a ship model, that utilizes the waterline solution case in Sierra-SD. An
image of the model is shown in Figure 5.1. Three key parameters were analyzed between

L.

Figure 5.1: uhwmGeometry

the two codes the draft which is the distance from the bottom of the ship to the waterline,
the pitch which is the rotation about the y-axis, and the roll which is the rotation about the
x-axis. The results can be seen in Table 5.1. For input deck see Appendix A.20.

Table 5.1: Sierra-SD solution vs. Float (Navy code)

Sierra-SD  Float

Draft 187.0580  187.0579
Pitch (about y-axis)  0.0503 0.0497
Roll (about x-axis)  -0.0001 0.0000
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5.2 Transient Convergence

A verification test was created for temporal convergence of the transient solution. A
vertical load was applied at the end of a cantilever beam, and the vertical displacement at
the end of the beam after 4.5 seconds was calculated.

Figure 5.2 shows the final displacement of the deformed beam.

Figure 5.2: Verification Problem - Beam

Figure 5.3 shows the time history result for the problem, solved at three different time-
steps.

End of Beam Results
0.6

0.4}

02

0.2 -

Displacement Y-Dir

. . . . . . . . )
0 0.5 1 15 2 2.5 3 3.5 4 4.5
Time (s)

Figure 5.3: Time History of Transient Verification Problem

Figure 5.4 shows the Richardson Convergence of the problem. Convergence values n = 2
implies second order convergence.

For input deck see Appendix A.21.
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Figure 5.4: Richardson Extrapolation of Transient Verification Problem
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5.3 Modal Transient Temporal Convergence

The modal transient temporal convergence The test consists of a 100 element cantilevered
beam that is loaded using a triangle pulse function. The modal transient test was run using
3 different time steps, and the results of these tests are compared to the results obtained
from the same tests run using the direct transient method.

Figure 5.5 shows the plot of the deformed beam. The loading for the three tests is the
same and it consists of a ramp load applied at the free end of the beam. The load has a
duration of 2 seconds and a max value of 1 at 1 second.

e +

Figure 5.5: Verification Problem - Beam

Figure 5.6 shows the time history of the beam end point for the problem for three time
steps.
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Figure 5.6: Time History of Modal Transient Verification Problem

The Richardson convergence was used as a means of determining the order of conver-
gence for the modal transient method. Figure 5.7 shows the Richardson Convergence of the
problem. Convergence values n = 2 implies second order convergence. This results is very
similar to the Richardson convergence obtained from the direct transient method.

The modal transient tests were run using only 3 modes for verification purposes. Figure
5.8 shows the difference in displacement at the end of the beam between the direct transient
method and the modal transient method for At = 0.001.
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Figure 5.7: Richardson Extrapolation of Modal Transient Verification Problem

It should be noted that this difference decreases as the number of modes used in the modal
transient method are increased. The three modes retained are sufficient to approximate most
of the solution for this low frequency loading. This corresponds well to the analysis use case
where modal transient is used to represent the lower frequency response of complex systems.
Temporal convergence depends on adequate modal basis. A similar study with high frequency
input could not be expected to converge without a much larger modal basis.

« x107? Solution Difference between Direct and Modal Transient
5 T T T T T T

Difference

L L
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Time Step

Figure 5.8: Displacement Difference for Modal and Direct Transient Solutions

For input deck see Appendix A.22.
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5.4 Transient Restart

Analysts should be able to restart from any of the transient analysis capabilities into any
of the others.! Of course, there are differences in the solutions with respect to accuracy,
and output quantities. For example, the nonlinear transient integrator outputs the number
of nonlinear steps as a global output variable. This is unavailable for modal transient. In
addition, there are internal variables associated with nonlinear elements and viscoelastic
materials which may not be propagated across the restart boundary.

Verification of this use case involves the following steps.

1. Computation of 40 normal modes.

2. Computation and output of 30 ms of time history with the first integrator.
3. Exit Sierra/SD, and start a new Sierra/SD analysis.

4. Restart read the previous normal modes.

5. Restart read the previous time history data, and computation of the next 10ms of
data.

6. Check of the .rslt to ensure that the time history data was restarted (as opposed to
recomputed from scratch).

7. Check the history file for accuracy. Note that the tolerances are quite loose on this
check. Each integrator provides a somewhat different solution (as expected).

8. Visual comparison of the results.

Table 5.2 indicates the tests that have been performed. Nonlinear transient as the first
integrator is not currently tested. Figure 5.9 provides the data for the second row of Table
5.2, which includes all cases where the direct transient was the first integrator. Likewise,
Figures 5.10 through 5.11 show data for modaltransient and explicit as the initial integrators.

Untested Untested Untested Untested
NA
NA
Untested NA
NA NA

Table 5.2: Tested restart capabilities for transient integrators in Sierra/SD.

For example inputs, see Appendix A.23. The model is shown in Figure 3.9.

!'The gmodal solutions cannot be restarted.
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Figure 5.9: Restart from Direct Transient Analysis. In each case, 30ms of analysis is
completed using a direct transient run, and is followed by a restart.

Figure 5.10: Restart from Modal Transient Analysis. In each case, 30ms of analysis is
completed using a Modal transient run, and is followed by a restart.

Figure 5.11: Restart from Explicit Transient Analysis. In each case, 30 ms of analysis is
completed using a Explicit transient run, and is followed by a restart.
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5.5 (Q Modal Transient

The gmodal solution method is a standard Newmark-beta integrator that is applied in
parallel on the modal space. It is limited to loadings that are space/time separable, and all
outputs must fit on single processor. Verification is applied to four cases.

1. Constant force on a floating body, with limited modal interaction. The behavior is
rigid body only, and analytic solutions are trivial.

2. Repeat the above, but eliminate the rigid body motion. A comparison with the stan-
dard modal solution provides the verification.

3. We repeat case 2, but add modal damping. Again, the analytic solution is straightfor-
ward.

4. A complex loading.

The above examples exercise the primary elements of the software. All are run in parallel.
The model is shown in Figure 5.12. It consists of a thin cylinder with beams on one end
attaching to a large mass. The loading is applied to the mass.

Figure 5.12: Q Modal Verification Model
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5.5.1 Constant Force Applied to Floating Structure

In this example the load activates only a rigid body mode, and the body behaves as a
point mass. The analytic solution for a constant force applied to a point mass is,

a(t) = % (5.1)

o(t) = ta(t’)dt/ (5.2)

_ %t (5.3)

d(t) = / tv(t')dt' (5.4)
E, .,

- ¢ (5.5)

)
3

The dimensionless load is set to 10° in the input file, and the result file indicates that the
total dimensionless mass of the structure is 1001.25 - wtmass=2.5932375.

Figure 5.13 compares the analytic and numerical solutions for displacement. Figure
5.14 provides similar results for acceleration. While the agreement is excellent, a small
discrepancy is observed if differencing the solutions. This occurs because the numerically
integrated solution tends to lag the analytic solution by a half step.

x 10"

computed
analytic

Displacement
IS
Displacement Error

. I . I I I L ! . L L . . . L I I
0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2 0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2
time time

Figure 5.13: Response of Rigid Body Mode

This example ensures that the modal force is being computed properly for rigid body
modes. As they are identical to elastic modes, that follows as well. It verifies the behavior of
the integrator, except that there are contributions from the damping matrix which are not
considered.
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Figure 5.14: Acceleration Response of Rigid Body Mode. The analytic acceleration is a
constant of F'/m ~ 38561.8. The error in the figure is much smaller than this, and represents
the elastic response of higher frequency elastic modes, that are just slightly active in the

analysis.

5.5.2 A single Elastic Mode

While the analytic expression for an analytic mode is not quite as complete as for a
rigid body response, we may still proceed with verification. We assume that the eigenvalues
are computed correctly. We also assume that the modal force, f,(t) = ¢* f(z,t), has been
verified. The previous example addresses this. Then, the analytic response may be computed.

a(t) = F,acos(w;t) (5.6)
v(t) = /a(t')dt’ (5.7)
= Fyw;asin(w;t) (5.8)
dt) = / ()t (5.9)
= 5;04(1 — cos (w;t)) (5.10)

%

2

where « represents the modal contribution from mode ¢ at natural frequency w;, i.e. @ = ¢;.

The analytic and numeric results for this case are shown in Figure 5.15.
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Figure 5.15: Step Function response of Undamped Oscillator

5.5.3 Damped Simple Harmonic Oscillator

The solution of the previous solution can be neatly modified by applying damping. The
phase ¢ satisfies cos ¢ = (. The analytic solution is,

2(t) = A (1 S (VL = Clut & ¢> (5.11)

sin(¢)

Results for the analytic and numeric solutions are shown in Figure 5.16.
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Figure 5.16: Step Function response of Damped Oscillator
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5.5.4 Complex Loading

The last verification example (case 4) utilizes code to code comparison. We apply a tri-
angle pulse of unit amplitude and duration 1 ms. Comparison is with the standard modal-
transient method. This boundary condition is essentially an impulse which causes a linear
increase in displacement. There is no difference between the modaltrans and gmodaltrans
solutions.

For input deck see Appendix A.26.
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5.6 (Q Modal Frequency Response

The gmodal solution method is a standard Newmark-beta integrator that is applied in
parallel on the modal space. It is limited to loadings that are space/time separable, and all
outputs must fit on single processor. Qmodalfrf is used to perform a fast modal frf analysis

on a subset of the mesh.

The verification runs modalfrf and gqmodalfrf on the biplane model seen in Figure 5.17.
The load is constant and applied to the underside of one of the tail fins.

Figure 5.17: Q Modal Frf Verification Model

The verification for qmodalfrf assumes that the modalfrf results are correct. This test
compares the frequency response function output of the modalfrf and gqmodalfrf tests to
ensure that they are the same. The displacement of modalfrf and gmodalfrf must match.
The real displacement in the y direction versus frequency for the modalfrf and gmodalfrf
tests are shown in Figure 5.18. Note how the lines (modalfrf) and circles (qmodalfrf) match.

For input deck see Appendix A.27.
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Figure 5.18: Real Displacement in the Y Direction Versus Frequency for the Modal Frf and
Q Modal Frf Analyses
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5.7 Fluid Structure Interaction Added Mass

The following test is used to determine to what extent that SierraSD accounts for an
added fluid mass to a structure when computing the angular frequencies. The test consists
of a hollow steel sphere with a spring attached to the outer surface. Tests were run with the
steel sphere submerged in water as shown in Figure 5.19 and a steel sphere with no added
mass. The fluid is an acoustic medium.

Y

—

Figure 5.19: Model of the hollow sphere and spring submerged in water

5.7.1 Analytical solution

The analytical solution for this test is based on the natural frequency equation of an
object attached to an oscillating spring. Assuming that the spring is ideal and massless with
no damping w =:

K

w=4/— (5.12)

When the fluid is added around the sphere and is submerging the spring, the added mass
must be accounted for. This changes w to:

K

5.13
m 4+ mg ( )

e =

The formulas for various shapes are documented.® In the case of a spherical structure,

the added mass is given by:

2
Mg = §7rpa3 (5.14)

The first mode computed in SierraSD should match the analytical solution.
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There are several parameters for this test. The steel sphere is fixed in the x and y direction
so that displacements were only allowed in the z direction (direction of the spring). Also,
the steel sphere is constrained from rotating. The outer surface of the fluid region follows
the Dirichlet boundary conditions where p=0. The node attached to the end of the spring is
fixed for no translation. The only displacement allowed in the system is in the direction of
the spring. As a result the global structure has no rigid body modes. The steel sphere has a
high modulus of elasticity to ensure a very stiff structure. For this verification problem the
steel sphere is essentially rigid.

5.7.2 Computational Approach

The eigenfrequencies of the coupled structural acoustic system require computation of a
quadratic eigenvalue problem (QEVP).

+ + AXMmu=20 5.15
K+ CXx4 X2

where K is the stiffness matrix, m the mass matrix, and C is the gyroscopic coupling
matrix. The solutions to the equation include only purely imaginary eigenvalues A = iw.
Two methods for computing QEVP are applied. SA eigen uses a modal projection to re-
duce the dimension of the problem and solve dense QEVP using LAPACK routines. The
QEVP /Anasazi method is a custom solution solving the full problem without the approxi-
mation of a modal projection.

Shell elements were investigated in particular detail. When analyzing shell elements
the thickness of the inner sphere was as thin as 0.0001. The test was run using SA-eigen
and Anasazi. The number of modes, refinements, and test parameters varied to maximize
accuracy of the results. A collection of results using SA-eigen and Anasazi with various
thicknesses is shown in Table 5.3.

Table 5.3: Frequency results for SA-eigen, Anasazi, and analytical results

Model Frequencies

Sphere size 0.1 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005 0.00025 0.0001
analytic 0.1529 0.1945 0.2385 0.2881 0.3136 0.3293 0.3400 0.3438 0.3458 0.3470
sa-eigen 0.1522 0.2040 0.2628 0.3381 0.3825 0.4123 0.4340 0.4419 0.4459  0.4480
anasazi 0.1477 0.1934 0.2412 0.2955 0.3237 0.3412 0.3532 0.3574 0.3595 0.3605

A visual representation of the frequencies in SierraSD using SA-eigen and Anasazi com-

pared to the analytical solution is shown in Figure 5.20. For Anasazi, when the shell begins
to get thick (above 0.010), the parameters have to be changed in order for the test to con-
verge. The conditioning of the matrices begins to act up, so changing parameters such as

young’s modulus will help this. SA-Eigen will work for all models and parameters.

This figure shows that the impact of the fluid loading is largest for thin shells. The
QEVP /Anasazi method tracks the analytical solution very well.
solution is not as accurate, but the solution is still much better then the coupled solution.
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Frequencies vs. Analytical

Anasazi_solution

Frequencies

T T T T 0.0000—
0.0001 0.001 0.01 0.1 1

sphere size

Figure 5.20: Frequencies in SierraSD compared to the analytical solution.

Validation of the SierraSD code is most visible when the size of the inner steel sphere
is the thinnest. When the steel sphere is very thin the added mass has a greater impact
on the results. The weight of the steel sphere will be considerably less then the weight of
the surrounding fluid and the ratio between the mass added and the mass of the structure
has an immense impact on the frequencies of the system. Figure 5.21 shows the comparison
of having an added mass to your system and shows the results between SierraSD and the
analytical solution.

- Frequencies vs. Mass_added/Mass

0.9000 1 //

0.8000 Analytical solution
0.7000 / ——Sa_eigen solution

Anasazi solution

«»
'g 0:6000 —No_water Analytical solution
2 0.5000
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0.10000 1.00000 10.00000
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Figure 5.21: Frequencies in SierraSD vs the mass ratio of the system.

This model was also investigated using using hexahedral and tetrahedral solid elements
with a QEVP /SA-eigen solution case. For thicker models using either solid element produced
more accurate results. However, the overall system was to be modeled as a rigid body and
when using the solid elements this process increased complexity as the steel sphere became
increasingly thin. The number of elements increased exponentially with the thinner the
structure. Also, adjustments to the parameters of the model had to be constantly maintained
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to ensure a stiff structure. For the shell elements, the thickness is defined in the input deck
and the stiffness is easily accounted for. For input deck see Appendix A.31.
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5.8 Fluid Structure Cavitation

An important class of fluid-structure interaction (FSI) problems involve the numerical
calculation of the response of a structure that is excited by a transient acoustic pressure wave.
These complex models have been created and well represented with the development of the
doubly asymptotic approximations that describe the fluid-structure interaction in terms of a
radiation boundary that truncates the fluid-volume mesh to finite extent. In Sierra-SD we do
not use the DAA, but apply a volumetric acoustic mesh with infinite elements representing
the radiation boundary. A model was created in Sierra-SD that represents a solution that
has already been obtained.” This is a one-dimensional problem, which involves a flat plate
initially resting on the surface of a half space of fluid. An acoustic pressure wave is prescribed
on the plate causing excitations that consist of a step-exponential plane wave superimposed
upon an ambient hydrostatic pressure field. Figure 5.22 is an illustration of the model.

Figure 5.22: 1D FSI Plate Shell Model in SD

This model consists of a single structural rectangular plate 1.5 in by 1 in. The plate
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consists of a QuadT shell element with a thickness of one. The fluid volume is 300 hex
elements of similar rectangular dimensions. The boundary of the fluid mesh has infinite
elements to serve as absorbing boundary conditions, as well as far-field calculators. The
physical properties used for the analysis were in imperial units. The mass density of the
plate was 5.329686e—4 1b sec?in*, while that of the fluid was 9.3455e—5 1b sec*in~4. The

speed of sound of the fluid was 57120 in/sec.

A peak pressure of the incident wave that is applied to the plate is 103 psi with a
decay time of 0.9958e—3 sec. For the transient analysis, 1200 time steps were used, with an

intergration time step of 1.313e—5 sec.

The Sierra-SD results were compared to and verified against published results.!® Figure
5.23 of the y component of velocity versus time reproduces the published results.

e a Ref. [l 1]

| i —  USA-STAGS-CFA

Velocity 1,

o0 200 oo 6.00 .00 oo 12.00

Time (decay units)

Figure 5.23: Velocity vs Time, Results from Felippa and DeRuntz

The model without cavitation was reproduced in Sierra-SD and compared to.!° This
is shown in Figure 5.24. The actual velocities in in/sec can be obtained by multiplying
by 57.12, while the time scale is given in decay time units. The decay time units can be
expressed as t = 1/Ax (time). The velocity of the plate is essentially zero by six decay times.

Comparisons of the models is very good. For input deck see Appendix A.32.
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Figure 5.24: Velocity vs Time, Results from Sierra-SD
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5.9 Buckling of Constant Pressure Ring

Most analytic solutions for linear buckling are derived using Euler-Bernoulli beam theory.
These solutions are ideal for meshes built with beam and shell elements, but are only ap-
proximate verification examples for 3D solid meshes. In this section we present the buckling
analytic solution of buckling of a circular ring. We only present the results using 3D solid
elements. The model is shown in Figure 5.25.

Figure 5.25: Buckling Ring Example. Model parameters
Diameter: 40
Material: aluminum
Cross Section I: 1/12
Cross Section Area: 2.0

Cross Section Thickness: 1.0

5.9.0.1 Buckling of a Circular Ring

In this example, we consider buckling of a circular ring subjected to a uniform, external
pressure. The critical buckling pressure is given'! as

_ 3BI

P = 5 (5.16)
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For the geometry of the problem, the critical buckling load is predicted to be

3x 107 x L+
= 2—0312 =312.5 (5.17)

The computed buckling load was 395.408. Since the exact solution is for Euler-Bernoulli
beam theory we expect some difference, however this may be a little too high. We will re-try
with beam elements once they are on-line for buckling.

For input see Appendix A.49
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Chapter 6

Sierra/SD Element Verification

6.1 FEuler Beam Bending

The Beam2 element is a simple Euler Beam. The beam bending equation for a point
load, P, on the end of a cantilever beam of length, L, is,

_ P2*(3L —x)
i) = —6gr

Figure 6.1 shows the comparison with the analytic solution for a beam of length L = 1,
E = 10e6, and bending moment I1 = 0.2 for a 100 element beam. Figure 6.2 shows the
convergence as a function of the number of elements in the beam. The solutions here are
performed with a direct solver, sparsepak, and with the GDSW solver with 2 processors. The
lack of convergence to the analytic solution is expected, and indicates the increased numerical
error as the matrices become more ill conditioned. As the number of elements increases, the
matrix condition worsens. Even the serial solver accuracy suffers, but parallel iterative
solvers are particularly vulnerable to reduced accuracy for poorly conditioned systems.!

In some sense, the lack of convergence is pathological in this example. The exact solution
is a cubic, which can be met exactly by a single element of the beam. Thus, increasing the
beam count is not required to improve accuracy. The example illustrates both the correctness
of the solution for a low element count, and the effect of matrix condition and solver on the
solution.

For input deck see Appendix A.6.

I'Note that for this example we have used standard solver parameters for GDSW. With care, the solution
can be forced to be more accurate.
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Figure 6.2: Beam2 Bending “Convergence”. The plot shows the Ly Norm of the error in w,
divided by the Ls norm of w as a function of the number of elements. Properly convergent
solutions would decrease as the number of elements increase. While this solution is very
accurate, it is not converging to the analytic solution as the number of elements increases.
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6.2 FEuler Beam Properties

The following test verifies that Sierra SD uses the I1 and I2 properties defined in the
input deck in the manner outlined by the user’s documentation. The problem was analyzed
using a thin long cantilevered beam with a rectangular cross-section made up of 100 Beam?2
elements with the following geometry:

Figure 6.3: Geometry of Beam

Table 6.1: Beam Cross-Sectional Properties

Width | 0.1 | Height | 0.3
Length | 100 | Area | 0.03
I 0.09 12 0.01

The beam’s cross-sectional properties were chosen to give a very long slender beam with
a good separation between bending axes.

6.2.0.1 Analytical Solution

A MATLAB script was created to calculate the modal frequencies for a single span
cantilevered beam using the following formula from Blevins:

fi= A (E—]Y (6.1)

oLz \m

fi Natural Frequency
A; Natural Frequency Parameter (Tabular Values)
E, I, m, A, and L are the usual physical properties of the beam

6.2.0.2 Computational Approach

The beam was analyzed using both Sierra-SD and NASTRAN. The NASTRAN results
were used as a reference for comparison along with the analytical solution results obtained
previously. It is important to note that both the analytical solution and the NASTRAN
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solution do not calculate twisting modes, while the Sierra-SD model did. These modes were
not compared.

The natural frequencies for all 3 modes are shown in Table 6.2

Table 6.2: Natural Frequency [Hz| results for Analytical, Sierra-SD and NASTRAN models,
Displacement Axis Comparison for NASTRAN and Sierra-SD models

Mode | Analytical | NASTRAN | Sierra-SD | NASTRAN | Sierra-SD
1 0.1022 0.1021669 | 0.102161 Z-Axis Z-Axis
2 0.3065 0.3065007 | 0.306484 Y-Axis Y-Axis
3 0.6403 0.640269 0.640129 Z-Axis Z-Axis
4 1.7928 1.792772 1.79205 Z-Axis Z-Axis
5 1.9208 1.920807 1.92039 Y-Axis Y-Axis
6 3.5131 3.513118 3.51092 Z-Axis Z-Axis
7 N/A N/A 4.90285 N/A N/A
8 5.3783 5.378316 5.37615 Y-Axis Y-Axis
9 5.8074 5.807436 5.80229 Z-Axis Z-Axis

10 N/A 7.905694 7.90561 Z-Axis Z-Axis

Natural frequencies that show N/A are twisting modes. Figure 6.4 shows the differences
in calculated natural frequencies.

6.2.0.3 1I1 and I2 Verification

After testing that natural frequencies were in agreement for all three models, the dis-
placements of the Sierra-SD model were compared to the displacements of the NASTRAN
model to confirm that the orientations of I1 and I2 were correct. The following table 6.2
shows the comparison results.

6.2.0.4 References

Blevins, Robert D. “Formulas for Natural Frequencies and Mode Shape “, Krieger Pub-
lishing Company, 1984

For input deck see Appendix A.7.
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6.3 A Navy Beam

The following test was used to verify that Sierra SD is using the 11 and 12 properties
defined in the input deck in the manner outlined by the user’s documentation. The problem
was analyzed using a thin long cantilevered beam with a rectangular cross-section made up
of 100 Nbeam elements with the following geometry:

Figure 6.5: Geometry of Beam

Table 6.3: Beam Cross-Sectional Properties

Width | 0.1 | Height | 0.3
Length | 100 | Area | 0.03
I 0.09 12 0.01

The beam’s cross-sectional properties were chosen to give a very long slender beam with
a good separation between bending axes.

6.3.0.1 Analytical Solution

A MATLAB script was created to calculate the modal frequencies for a single span
cantilevered beam using the following formula®

fi= ar <g>é (6.2)

S onl2\m

fi Natural Frequency
Ai Natural Frequency Parameter (Tabular Values)
E, I, m, A, and L are the usual physical properties of the beam

6.3.0.2 Computational Approach

The beam was analyzed using both Sierra-SD and NASTRAN. The NASTRAN results
were used as a reference for comparison along with the analytical solution results obtained
previously. It is important to note that both the analytical solution and the NASTRAN
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solution do not calculate twisting modes, while the Sierra-SD model did. These modes were
not compared.

The natural frequencies for all 3 modes are shown in Table 6.4

Table 6.4: Natural Frequency [Hz| results for Analytical, Sierra-SD and NASTRAN models,
Displacement Axis Comparison for NASTRAN and Sierra-SD models

Mode | Analytical | NASTRAN | Sierra-SD | NASTRAN | Sierra-SD
1 0.1022 0.1021669 | 0.102161 Z-Axis Z-Axis
2 0.3065 0.3065007 | 0.306484 Y-Axis Y-Axis
3 0.6403 0.640269 0.640129 Z-Axis Z-Axis
4 1.7928 1.792772 1.79205 Z-Axis Z-Axis
5 1.9208 1.920807 1.92039 Y-Axis Y-Axis
6 3.5131 3.513118 3.51092 Z-Axis Z-Axis
7 N/A N/A 4.90285 N/A N/A
8 5.3783 5.378316 5.37615 Y-Axis Y-Axis
9 5.8074 5.807436 5.80229 Z-Axis Z-Axis

10 N/A 7.905694 7.90561 Z-Axis Z-Axis

Natural frequencies that show N/A are twisting modes. Figure 6.6 shows the differences
in calculated natural frequencies.

6.3.0.3 11 and I2 Verification

After testing that natural frequencies were in agreement for all three models, the dis-
placements of the Sierra-SD model were compared to the displacements of the NASTRAN
model to confirm that the orientations of I1 and 12 were correct. The following table 6.4
shows the comparison results. For input deck see Appendix A.8.
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6.4 'Two Layered Hexshell

6.4.1 Problem Description

This example demonstrates that the automatic verification documentation is viable.
Static analyses of a sequence of layered plates problems are solving using the hexshell element

Analysis Type | Statics

Element Type | Hexshell

Dimensions [—1/2,1/2] x [-1/2,1/2] x [-5/2,5/2]
Keywords layered

6.4.2 Verification of Solution

The mesh consists of a hexahedron of dimension [—1/2,1/2] x [-1/2,1/2] x [-5/2,5/2].
The example is a step in a study of deflection versus layer thickness. Results have been
compared to documented results,'?!® in the past. For input deck see Appendix A.9.

119



6.5 Preloaded Beam

The following test was used to verify that Sierra SD accurately acounts for an axial preload
on a beam. This test was verified using three different references, two different analytical
solutions (Shaker, 1975), (Carne, 1982), and an abaqus benchmark problem. Beam and shell
elements were examined between the two tests. The problem was first analyzed with no
preload using the same analytical solution and then modeled to verify that the system is
functioning appropriately.

6.5.1 Test One

Test one is a verification of the analytical solution using beam elements. All parameters
were incorporated using SI units. The beam parameteres are:

~—Freload

Area =4

Inertia = 1.3333
length = 10

E = 187e9

Nu = 0.3

density = 8015.19

Figure 6.7: Geometry of Beam

The beam is pinned on both ends (pinned pinned), with an axial preload in the x direction.
This test was analyzed using a tensile and compressive preload.

6.5.1.1 Analytical Solution

An axial preload has limited verification due to lack of closed form solutions, however;
in the paper (Carne, 1982) an analytical solution can be used. Assuming pinned pinned
constraints on the beam the natural frequencies are:

a2 { BI\? pPL? 72
AR (i T I .
Vo ( L ) (pA) [ E]n27r21 (6.3)

n represents the mode number;
P is the axial load;
E, I, p, A, and L are the usual physical properties of the beam
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A similar analytic solution for non dimensional natural frequency of a pinned pinned
beam under axial preload can be found at (Shaker, 1975). Also, a Matlab file is in the test
repository under beam preload verification that solves the two analytical solutions.

6.5.1.2 Computational Approach

This test case was modeled using Sierra SD.The eigenfrequencies of a beam under an
axial preload require a multicase solution set including static, tangent, and eigen. The static
case applies the preload. The tangent case is used following the linear solution step, where
the stiffness matrix is recomputed based on the current value of displacement. Finally, the
eigen case is used to output eigenfrequencies. The beam was partitioned into one hundred
elements.

There are several parameters for this test. In order to model the beam with pinned
pinned constraints and an axial displacement due to preload the beam was treated with pin
roller constraints (where y=0) first. The preload was applied in the x direction at the roller
and the max displacement was found. This Max displacement was then used in the pin pin
model as a boundary condition of x at the location of the pin and preload.This extra step
needs to be done for a pin pin case because an axial preload is being applied at the pin where
x=0 as a boundary condition, so the beam has zero displacement in the x direction. Also,
the length of the beam had the following constraints: z = 0, rotx = 0, and roty = 0. These
constraints are used to ensure that the appropriate bending modes are analyzed.

A summary of the results where compared and shown in Table 6.5.

Table 6.5: Natural Frequency results for Analytical and Sierra SD solution

Sierra SD Analytical

# P=N/A P=13 P=17 P=1el0| P=N/A P=1e3 P=1e7 P = 1el0
1 43.8041 43.8041  43.8041  51.3605 43.8048 43.805 43.805 51.948

2 175207 175207  175.207  181.575 175.219 175.220  175.220  183.905
3 394.18 394.18 394.18  397.775 394.244  394.244  394.244  403.046
4 700.677  700.677  700.677  700.268 700.878  700.878  700.878  709.723
5 1094.63 1094.63  1094.63  1089.04 | 1095.122 1095.122 1095.122 1103.987
6 1575.96 1575.96  1575.96  1564.04 | 1576.976 1576.976 1576.976 1585.852
7 214455 214455  2144.55  2125.15 | 2146.439  2146.44 2146.44  2155.322
8 2800.29 2800.29 2800.29  2772.26 | 2803.512 2803.513 2803.513 2812.399
9 3543.03 3543.03  3543.03  3505.24 | 3548.196 3548.196 3548.196 3557.085
10 4372.62  4372.62  4372.62 4323.94 | 4380.489 4380.489 4380.489 4389.381

All modes are within 1.5 percent error between the analytical solution and Sierra SD.

121



6.5.2 Test 2

The following test is used to verify the static preload feature in Sierra SD. An Abaqus
benchmark for an Eigenvalue analysis of a beam was found and compared against. The test
consists of a cantilever beam, made of one hundred elements and a static axial force applied
in the x direction.

6.5.2.1 Beam Elements

The beam was analyzed with and without the static preload. Figure 6.8 shows the
geometry of the model.

Fixed Preload
v - v

Axial preload of 44482.
Beam Area=0.00002026
Length of beam 0.127
I1=12 = 3.26907E-11

Figure 6.8: Geometry of Beam

An equivalent test was created and analyzed in Sierra-SD. The test had three solution
cases static, tangent, and eigen analysis. The cantilever beam is partitioned into one hundred
beam elements. The frequencies were compared between Abaqus and Sierra-SD and shown
in table 6.6.

Table 6.6: Results Abaqus vs. Sierra-SD (beam elements)

Abaqus Sierra-SD
Without Preload

Mode 1 212.4 212.818

Mode 2 1330.8 1333.49

Mode 3 3727.2 3733.11
With Preload

Mode 1 1137.9 1136.8

Mode 2 3624.4 3616.07

Mode 3 6694.1 6667.12

The results from Sierra-SD match up well with the benchmark problem in Abaqus.
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6.5.2.2 Shell Elements

A similar test was created in Sierra SD using shell elements. This is a cantilever beam,
made of 100 elements and a static axial force applied in the x direction, and was used and
compared to the Abaqus benchmark. However, modification to the input deck is needed to
ensure a similar structure of the model. The Abaqus model has a circular cross section with
an inertia equal to I = (7 % r?)/4. When modeling shell elements a square cross section
was used and a corresponding base and height was used to have an equivalent inertia. The
inertia for a square cross section is I = (b* h)/12. Also, the beam was modeled with a
pressure load, in order to distribute the load evenly.

The frequencies using shell elements in Sierra-SD and results in Abaqus are compared in
table 6.7.

Table 6.7: Results Abaqus vs. Sierra-SD (shells)

Abaqus Sierra-SD
Without Preload

Mode 1 212.4 212.793

Mode 2 1330.8 1327.73

Mode 3 3727.2 3689.16
With Preload

Mode 1 1137.9 1141.66

Mode 2 3624.4 3621.86

Mode 3 6694.1 6636.3

123



A graphical representation of the data using shell elements in Sierra-SD and results in
Abaqus is shown in Figure 6.9

Abaqus vs. Salinas Natural Frequencies
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Figure 6.9: Shells Sierra SD vs. Abaqus

Even with slight modificaitons done to the input deck the results when using shell ele-
ments in Sierra-SD match up well with Abuqus.

The Abaqus benchmark problem can be found using this URL.

http://www.ilsb.tuwien.ac.at /v6.10 /books/bmk /default.htm?startat—=ch01s04ach37.html

6.5.3 References

Carne, Thomas G., Donald W. Lobitz, Arlo R. Nord, and Robert A. Watson. "Finite
Element Analysis and Modal Testing of a Rotating Wind Turbine." (1982): 8-9. Sandia
Report. Web.

Shaker, Francis J. "Effect of Axial Load on Mode Shapes and Frequencies of Beams."
Lewis Research Center (1975): 1-9. Web.

For input deck see Appendix A.11.
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Figure 6.10: Partial Cylinder under Axial Stretch

6.6 Partial Cylinder Patch

This verification example checks the strain output on shell elements. The model is a
partial cylinder under axial stretch, with a radius » = 2.0, height h = 1.0 and thickness
t = 0.01, shown in Figure 6.10. The material has a Young’s modulus of £ = 10° and a
Poisson’s ratio of v = 0.3. An axial displacement of d,;;,; = 0.01 is applied to the cylinder.

The analytical axial strain and hoop strains are:

€agiar = 0.010 (6.4)
€roop = 0.003. (6.5)
The analytical axial stress and hoop stress are:
Oazial = €agial ¥ B = 10° (6.6)
Choop = 0.0. (6.7)

The analytical strain energy density and total strain energy are:

SEdensity = 0.5 * Ougial€azial = 90 (68>
2ht
B — 5D s * %*T = 1.570754. (6.9)

Post processing scripts are used to transfrorm the shell strain results to the hoop and
axial directions. Special care has been taken to ensure that the mesh is general, and to
verify strain output for arbitrary shape elements. Figure 6.11 shows the axial strain for each
element type. Figure 6.12 shows the strain energy density for each element type. Figure
6.13 shows the axial stress for each element type. For input deck see Appendix A.12.
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Figure 6.11: Axial Strain for Partial Cylinder
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Figure 6.12: Strain Energy Density for Partial Cylinder
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Figure 6.13: Axial Stress for Partial Cylinder
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6.7 Membrane Geometrical Stiffness

We wish to evaluate the geometric stiffness for a simple unit square, with pre-stress in
the Y direction. As described in the theory manual, the geometric stiffness is given by,

F=t BB _dswi Sha, Ow\p O, Ou
g AUzm 0%y or; 2 €y ox; el@xw ea’(‘?xm em(?my

y=1
6.7.1 Development

dA (6.10)

Let nodes 1, 2, 3 and 4 have coordinates (0,0), (1,0), (0,1), and (1,1). The shape functions
for the nodes are given by

Ni=(1—-2z)1-y) (6.11)
Ny =2z(1—-y) (6.12)
Ny=(1-2)y (6.13)
Ny = a3y. (6.14)

The shape function derivatives are then

Na=y—1 (6.15)
Ny=z—1 (6.16)
Noz=1-—y (6.17)
Nyy = —z (6.18)
N3z =—y (6.19)
Nyy=1—2z (6.20)
Nigz=y (6.21)
Nyy=1 (6.22)
We have ,
u = Z(Ul,iNl + ug; Ny + ug ;N3 + us i Ny)e;, (6.23)

=1

where e; is a unit vector in global direction 7. We then obtain

3

U, = Z(Ul,iNl,x -+ UQ,@'NQ@ + U3’Z’N37;E + U47Z’N47x)ei (624)
i=1
3

Uy = Zmlﬂ'Nl’y + upiNoy + Uz i N3y + usiNyy)e; (6.25)
i=1
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When o = 095, and all other components are zero, we can write,

T
Eg = t/ 022u7yu,y—|—
A

1
— 5t/ o l(e1uy + eu,)(eiu, + exu ) + (exuy + esuy)(esu, + esu )| dA  (6.26)
A

or,

Eg _ T
r— —/A“,y“,ydA (6.27)
—1/(e1u,y)2dA (6.28)
2 Ja
—/(elu,y)(eguym)d/l (6.29)
A
1 2
— | (equ,)*dA (6.30)
2 Ja
—Q/Xeﬂkwabq (6.31)
A

6.7.1.1 K, entry

We will examine the 1,1 entry of the stiffness matrix first. This can be found by setting
w;; = 0 unless i = j = 1, and u;; = 1. This is often called “probing”. Then,

U, = Nl,zel (632)
uy = Niye (6.33)
Then,
fi—/Nﬂm, (6.34)
t022 - A 2 ’

—1)?

= / @=1) 4 ay (6.35)
4 2

13t
_&- (6.36)

6 0

1
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6.7.1.2 Other Entries

Computing the remaining terms in the matrix is tedious, but straightforward. A maple
script can be used to accomplish this. From that script, we determine the following.

Ky = o306 (6.38)
Kgog = —togy/2 (6.39)
Kgss = toan/3 (6.40)
Kgiy = toy/8 (6.41)

(6.42)

The maple script is available.

6.7.1.3 Rotations

The test in this directory runs only on a unit square in the xy plane. However, a
related verification test rotates that structure generally, and compares eigen responses for
that rotation with an unrotated square. Having identical eigenvalues assures us that rotations
are an issue. For input deck see Appendix A.13.
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6.8 Membrane Quad

A verification test was created for membrane elements in Sierra-SD. The geometry of this
test is shown in Figure 6.14.

¥

=

Figure 6.14: membraneGeometry

There is a total of four membrane elements in the model with the following boundary
conditions. The three bottom and top nodes are fixed in the x and y direction. This is an
eigen solution case with a total of fourteen modes. For verification the test in Sierra-SD was
compared to the Abaqus finite element code. The Eigenvalue results are shown in Table 6.8.
All modes are compared. There are nine rigid body modes in the model.

For input deck see Appendix A.14.
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Table 6.8: Sierra-SD and Abaqus Eigenvalue Comparison

Mode Number  Sierra-SD Abaqus

1 -6.70788E-09 0.0

2 -6.70788E-09 0.0

3 0.0 0.0

4 0.0 0.0

) 0.0 0.0

6 0.0 3.7945E-08
7 6.70788E-09  3.7945E-08
8 9.48637E-09  8.8049E-05
9 1.16184E-08 1.1743E-04
10 2607.7 2607.7
11 4237.42 4237.4
12 4723.49 4723.5
13 4723.49 4723.5
14 5164.01 5164.0
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6.9 QuadM membrane Patch

A patch test that was created for a SierraSD membrane element. The geometry of this
test is shown in Figure 6.15. There are a total of five boundary conditions constraining the

Figure 6.15: Patch Test Geometry

model. First, all nodes are fixed in the z direction, which is the direction normal to the plane
of the model. Second, the top left corner node is fixed in all directions. Third, the nodes on
the left side of the geometry are constrained in the x direction. Fourth, the nodes on the
top of the geometry are constrained in the y direction. Finally, the nodes on the far right
side of the geometry have a prescribed displacement of 0.1 in the positive x direction. The
test was analyzed by verifying constant strain throughout the geometry. The results from
this test can be seen in Table 6.9.

6.9.1 Eigen

The model was also tested using an eigen solution. In this case only the out-of-plane
boundary conditions were applied, resulting in a model that should have three rigid body
modes. The number of rigid body modes was to be verified in accordance with the boundary
conditions. The test case outputs three rigid body modes as expected.

6.9.2 Rotated Patch Test

Further verification was performed using the same patch test by rotating the test out of
the XY plane, shown in Figure 6.16.

The model is constrained by MPC’s to impose exactly the same boundary conditions as
were described in the previous section, except that they were defined with respect to the
rotated coordinate system. With these boundary conditions the model has no rigid body

134



Table 6.9: Strain for Membrane Elements

Node Number Strain

1 Fixed = 0
2 0.0250
3 0.0250
4 Fixed = 0
) 0.0250
6 Fixed = 0
7 0.0250
8 Fixed = 0
9 0.0250
10 0.0250
11 0.0250
12 0.0250
13 0.0250

| .

Figure 6.16: Test Geometry
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modes. The first 10 modes for the rotated test are compared to the in plane patch test. The
Eigenvalue results are shown in Table 6.10. As expected, the modes are the same in both
cases and are invariant with respect to the rotation of the model.

Table 6.10: Rotated Patch Test

Mode Number No-rotation Rotated

1 627.172 627.172
2 818.997 818.997
3 924.864 924.864
4 1471.59 1471.59
5 1869.91 1869.91
6 2187.29 2187.29
7 2429.53 2429.53
8 257491 2574.91
9 2931.04 2931.04
10 3073.42 3073.42

6.9.3 Hex Elements

For verification, the model was also created using the default hex8 elements. The same
geometry was used as the membrane element, but the surface was extruded with a thickness
of 1. The same boundary conditions were used as well. The results can be seen in table 6.11.
The strain is constant for every node through out the model, therefore, verifying the patch
test is working.

6.9.4 Orthotropic Material Properties

In this test, we consider a 2 x 2 mesh of an orthotropic membrane model where the
material elasticity tensor only provides stiffness in the x direction, with zero stiffness in the
remaining directions. In addition, we constrain the out-of-plane motion to be zero. With
these conditions, we expect 12 rigid body modes, since each of the nodes in the mesh is
free to move in the y direction with no resistance. This test involves a coupled Sierra-SM
and Sierra-SD analysis, where Sierra-SM produces an output exodus file that contains the
necessary material properties. Sierra-SD uses this output exodus file and performs a modal
analysis. For verification, the first 18 modes are compared to the Abaqus finite element code.
The eigenvalue results are shown in Table 6.12. There are 12 rigid body modes in the model,
and the remaining modes show an acceptable comparison of the two codes.

The direction of the fibers in the material properties were also changed from the y direc-
tion to the x direction. The modes were verified to match exactly and were independent of

136



Table 6.11: Strain for Hex Elements

Node Number Strain
1 Fixed = 0
2 Fixed = 0
3 0.0250
4 0.0250
5 Fixed = 0
6 Fixed = 0
7 0.0250
8 0.0250
9 0.0250
10 Fixed = 0
11 0.0250
12 Fixed = 0
13 Fixed = 0
14 Fixed = 0
Nodes 15-26 0.0250

Table 6.12: Orthotropic Material Patch Test

Mode Number Abaqus Sierra-SD
1 0.0000 -3.63305E-03
2 0.0000 -2.86194E-03
3 2.18886E-03 -2.33876E-03
4 4.74120E-02  -9.21049E-04
5 6.70089E-02  9.91374E-05
6 6.70388E-02  5.23966E-04
4 6.70477E-02  9.29529E-04
8 6.70864E-02  1.14456E-03
9 6.71252E-02  1.45159E-03
10 8.20846E-02  1.71789E-03
11 8.20859E-02  2.19313E-03
12 9.47649E-02  2.70663E-03
13 1.08203E+05 1.08184E+05
14 1.53022E+05  1.52995+05
15 1.53022E+05  1.52995+05
16 1.87413E+05  1.87379+05
17 2.16406E+05  2.16367+05
18 2.65042E+05  2.64994+05
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the fiber direction as expected. For input deck see Appendix A.15.
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Figure 6.17: Transverse shear strains 3, and (3, allow cross sections to not remain on a plate
perpendicular to fiber direction. This relaxation of the Kirchhoff hypothesis enables accurate
study of thick plates and shells.

6.10 QuadS GY Shear Membrane Shell

Verification of the QuadS GY Element. The existing Salinas membrane element used
for eigenmode/linear analysis is a quad with three extensional degrees of freedom: u, v, and
w. The new shell finite element draws on the Reissner-Mindlin plate theory, as described
in Chapter 5 of Ref.? This element has six degrees of freedom per node; three infinitesimal
displacements: u, v, w; and three infinitesimal rotations: 6,, 6,, and 60,. Selective reduced
integration is used in this bilinear element: Bending and membrane strains are integrated
according to the 2-by-2 Gauss rule, whereas shear deformation is underintegrated at one
central point. This mixed strategy avoids the “locking” effects caused by shear interpola-
tion. Uncoupled drilling stiffness is added to curb in-plane rotation #,. This stiffness is set
internally and prevents the solution from containing meaningless null eigenvalues.

6.10.1 Eigenvalue analysis: Verification on a flat shell

In this section, we verify the new element using two procedures: a) The existing Salinas
element QuadT is used to generate reference data; b) Analytical solutions are used. Note that
whereas the element QuadT captures only bending, the new QuadS GY captures bending
and shear deformations, in addition to membrane modes. The shell used for verification has
dimensions of 1 m by 1 m, the modulus of elasticity is £ = 30 MPa, the Poisson ration is 0.3,
and density is 0.288 kg/m?.
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6.10.1.1 Isotropic

In this subsection, the behavior of Quad T (bend. + memb.) and QuadS_ GY (bend.
+ memb. + shear) are compared to bending analytical results (Kirchhoff-Love). A general
formula for obtaining the natural frequencies of a flat plate for various boundary conditions
is as follows

A2 ER 1:

~ 2ma? [127(1 —1?)
where ) is a parameter that depends on the shell dimensions and its boundary conditions,
a is the first dimension of the rectangular shell, F is the isotropic modulus of elasticity, h is
the thickness, « is the mass per unit area of the shell, and v is the Poisson ration. The \;;

values for specific boundary conditions, relative dimensions, and mode number are given in
the literature (see Ref.”).

6.10.1.1.1 Fixed-Fixed-Fixed-Fixed (FFFF) The bending eigenfrequencies of the
plate for two different thickness values are reported in Tables 6.13 and 6.14. The shear-
deformable shell element (QuadS GY) results naturally diverge from bending theory for
increasingly thicker sections.

Table 6.13: Eigenfrequencies for FFFF flat shell of thickness 0.001 m. Frequencies are in
Hertz and discrepancies from theory are given in percentage between parenthesis.

Analytiical QuadT QuadS GY
1st mode 347.620 347.466 347.669

(Ref.) (0.04) (0.01)
ond mode  709.052  708.562  709.363
(Ret.) (0.07) (0.04)
3rd mode  709.052  708.579  709.406
(Ref.) (0.07) (0.05)
Ath mode  1046.048  1044.230  1045.507
(Ret.) (0.17) (0.05)
5thmode  1271.098  1270.185  1272.846
(Ret.) (0.07) (0.17)
6th mode  1276.893 1276.245  1278.894
(Ref.) (0.05) (0.15)

6.10.1.1.2 Free-Free-Free-Free(FrFrFrFr) Tables 6.15 and 6.16 show natural fre-
quency results of the same plate with the four edges free. Rigid body motion has been
disregarded. Only deformation modes are reported in this subsection.

6.10.1.1.3 Simply supported-Free-Free-Free (SFrFrFr) The natural frequencies as-
sociated with the lowest-frequency deformation modes are shown in Tables 6.17 and 6.18.
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Table 6.14: Eigenfrequencies for FFFF flat shell of thickness 0.01 m. Frequencies are in Hertz
and discrepancies from theory are given in percentage between parenthesis.

Analytical QuadT  QuadS GY

hline 1st mode 3476.203  3474.659 3463.921
(Ref.) (0.04) (0.35)

2nd mode 7090.527  7085.620 7048.431
(Ref.) (0.07) (0.60)

3rd mode 7090.527  7085.790 7048.851
(Ref.) (0.07) (0.59)

4th mode 10460.48  10442.393 10361.58
(Ref.) (0.17) (0.94)

5th mode 12710.98  12701.847  12598.886
(Ref.) (0.07) (0.88)

6th mode 12768.93 12762.453  12661.539
(Ref.) (0.05) (0.84)

6.10.1.2 Orthotropic

For an orthotropic material model, we use a clamped-clamped shell with the following
arbitrary orthotropic properties: E, = 30 MPa, E, = 0.5MPa, v,, = 0.3, G, = 0.5 MPa,
p = T7.46 g/m?3, and thickness is 1 mm. It is assumed that the fiber is aligned with the element
frame of reference, i.e., fiber angle & = 0 deg. Both analytical and QuadT results disregard
shear dynamics, whereas shear is present in the computations of the QuadS GY. The effect
of transverse shear tends to be negligible for small relative thickness values. Analytical
results are obtained by applying a similar expression to 6.43, also provided in Ref.” Results
are summarized in Table 6.19. A graphical comparison of the (32) mode for two SD elements
is shown in Fig. 6.18.

For input deck see Appendix A.16.
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Table 6.15: Eigenfrequencies for FrFrFrEr flat shell of thickness 0.001 m. Frequencies are in
Hertz and discrepancies from theory are given in percentage between parenthesis.

Analytical QuadT QuadS_ GY
1st mode 130.297  129.818 129.919
(Ref.) (0.37) (0.29)
2nd mode  191.147  188.996 189.086

(Ref)  (1.12) (1.08)
3rd mode  235.964 233438  234.240
(Ref.)  (1.07) (0.73)

Ath mode 338251  333.017  335.625
(Ret.)  (1.54) (0.78)
5thmode 338251  335.954  335.756
(Ref.)  (0.68) (0.74)
6th mode  594.306  582.394  580.133
(Ref.)  (2.00) (0.87)

Table 6.16: Eigenfrequencies for FrEFrFrFr flat shell of thickness 0.01 m. Frequencies are in
Hertz and discrepancies from theory are given in percentage between parenthesis.

Analytical QuadT QuadS_ GY
Ist mode  1302.97  1316.80 1263.69
(Ref.)  (1.06) (3.01)
2nd mode 191148  2167.89 1938.90
(Ref.) (13.41) (1.43)
3rd mode  2359.65  2353.98 2632.25
(Ref.) (0.24) (11.55)
4th mode  3382.51  3359.54 3331.60
(Ref.) (0.68) (1.50)
5th mode  3382.51  4489.73 3331.81
(Ref.) (32.73) (1.50)
6th mode  5943.06  5891.27 5873.92
(Ref.) (0.87) (1.16)
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Table 6.17: Eigenfrequencies for SFrErFr flat shell of thickness 0.001 m. Frequencies are in
Hertz and discrepancies from theory are given in percentage between parenthesis.

Analytical QuadT QuadS_ GY
1st mode 64.212 64.152 64.177
(Ref.) (0.09) (0.05)
2nd mode  145.075  143.874 143.905

(Ref.) (0.83) (0.81)
3rd mode 246.203 244 .989 244.650
(Ref.) (0.49) (0.63)

4th mode 252.384 250.912 249.830
(Ref.)  (0.58) (1.01)
hthmode  470.480 467576  467.594

(Ref.)  (0.62) (0.61)
6th mode  491.150  488.143  487.013
(Ref.)  (0.61) (0.84)

Table 6.18: Eigenfrequencies for SFrFrFr flat shell of thickness 0.01 m. Frequencies are in
Hertz and discrepancies from theory are given in percentage between parenthesis.

Analytical QuadT QuadS GY
Ist mode  642.117  641.523 635.558

(Ref.) (0.09) (1.02)
ond mode  1450.752 1438.741  1437.167
(Ref.) (0.83) (0.94)
3rd mode  2462.029 2449.891 2426.925
(Ref.) (0.49) (1.42)
4th mode  2523.845 2500.117  2486.897
(Ref.) (0.58) (1.46)
5thmode  4704.803  4675.760  4639.690
(Ref.) (0.62) (1.38)
6th mode  4911.501 4881.430 4841.552
(Ref.) (0.61) (1.42)
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Table 6.19: Eigenfrequencies for clamped-clamped orthotropic flat shell of thickness 0.001 m.
Frequencies are in Hertz and discrepancies from theory are given in percentage between
parenthesis.

Analytical QuadT QuadS_GY
11 mode  209.022 210.144 210.365

(Ref.) (0.54) (0.64)
12mode 226154  226.862  227.138
(Ref.) (0.31) (0.43)
13mode  266.218  266.395  266.738
(Ref.) (0.06) (0.19)
21 mode 572750 571523  572.802
(Ref.) (0.21) (0.01)
22 mode  585.382  583.755  585.204
(Ref.)  (0.28) (0.03)
23 mode 611422  609.315  611.004
(Ref.) (0.34) (0.07)
31 mode 1118.82 1115.867  1120.096
(Ref.) (0.26) (0.11)
32 mode 1130410 1126535  1131.111
(Ref.) (0.34) (0.06)
33 mode 1152.056 1147.003  1152.097
(Ref.) (0.43) (0.00)

(a) QuadT (memb.+ bend.) (b) QuadS_GY (memb.+ bend. + shear)

Figure 6.18: Comparison of (32) modes resulting from orthotropic material model (see Ta-
ble 6.19).
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6.11 QuadS GY Shear Membrane Shell - Geometric
Stiffness and Preload

Verification of the QuadS _GY Geometric Stiffness matrix and SierraSM Preload.

6.11.1 Verification of geometric stress stiffness matrix

The effect of geometric stiffness was evaluated by preloading a cantilever beam made
up of shear-deformable shell elements. This example was also used for the verification of
other Sierra-SD shell elements. This model consists of a beam clamped on one end and with
applied axial pressure on the other end. Beam dimensions are 0.127 m (length), 0.0044504 m
(width), and 0.0044504 m (thickness). The modulus of elasticity is 187 GPa, the Poisson ratio
is 0.3, and density is 8015.19kg/m?. A linear pressure of -2245852908.28 N/m is applied to
the free end, which yields an axial displacement of 1.5656243 mm. The effect of an axial
load stiffens the system thus increasing the beam’s natural frequencies. The following table
summarizes the behavior of the new element:

Table 6.20: First three natural frequencies of a beam with applied axial pressure.

Abaqus SD shell QuadS_GY Difference (%)

Without Preload

Mode 1 212.4  212.793 215.574 1.49

Mode 2 1330.8  1327.73 1345.831 1.12

Mode 3 3727.2  3689.86 3740.46 0.36
With Preload

Mode 1 1137.9  1141.66 1111.647 2.31

Mode 2 3624.4  3621.86 3536.431 2.42

Mode 3 6694.1  6636.30 6507.385 2.79

Two methods are used to obtain the eigenfrequencies reported in Table 6.20:

e SD shell. In Sierra-SD, the pressure load is applied to the shelled beam and, with the
resulting displacements, the sytem stiffness is updated. After that, eigenvalue analysis
on the beam is performed considering the updated stiffness.

e QuadS GY. The eigenfrequencies of the preloaded system is computed in a two-step
process. First, we applied a prescribed displacement in Sierra-SM to achieve a beam
stress state analogous to the SD shell. Then we write those stress to an Exodus output
file. This file is used in Sierra-SD to read the geometry of the system and its stresses,
which are then used to compute the natural frequencies of the preloaded beam.

This difference in methodology is justified by the way tire eigenanalysis is performed: First
a complex nonlinear system is solved in Sierra-SM. With the resulting stresses, a geometric
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stress stiffness matrix is built to account for the preloaded state of the tire. Finally eigenvalue
analysis is performed in Sierra-SD. Note that the process used for the QuadS_ GY shell
involves some approximation: Only one integration point is used to carry stresses from
Sierra-SM to Sierra-SD, whereas membrane and bending deformation is spatially integrated
on a 2-by-2 grid — this may be the reason for the slight discrepancies reported in Table 6.20.

6.11.2 Verification Sierra-SM-Sierra-SD for small deformation

This section compares small deformation results between Sierra-SM and Sierra-SD. For
the GY fiber shell, several fiber angles are chosen in order to verify that element frames of
reference and orientation match.

6.11.2.1 Isotropic shell

A clamped shell on one edge, of dimensions 150 mm by 100 mm is used to compare the
displacement results of Sierra-SM and Sierra-SD for small deformation. The shell thickness
is 0.4409 m, its modulus of elasticity is 187 MPa, and its Poisson ration, 0.3. One of the short
edges is fully clamped and a force of 200 N /node is applied on the other short edge. The same
shell is defined in both, the quasistatic nonlinear code Sierra-SM and the linear solver Sierra-
SD. Results in terms of axial and lateral displacements may be observed in Figs. 6.19 and
6.20. The axial displacement on the solicited edge center for Sierra-SM is 5.9924 - 10~° mm,
whereas for Sierra-SD is 5.9908 - 107° mm. Similarly, for lateral displacement, the values are
1.0332 - 10~® mm for Sierra-SM, and 1.0409 - 10~%mm for Sierra-SD.

For input deck see Appendix A.17.
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Figure 6.19: Comparison of axial displacement.
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Figure 6.20: Comparison of lateral displacement.



6.12 Hex Membrane Sandwich

6.12.1 Isotropic Material

A simple plate model was constructed and analyzed using hex and membrane elements,
shown in Figure 6.21.

Figure 6.21: Test Geometry

The first test using this plate model was unpreloaded, and consisted of isotropic mem-
brane elements sandwiched in between hex elements. The model is fixed on one end and
constrained in the Y and Z direction on the other end. The Eigenvalue results are shown in
Table 6.21.

Table 6.21: Isotropic-Nopreload

Mode Number Abaqus Sierra-SD
1 1472.5 1472.46
1994.5 1994.48
5231.2  5231.19
6787.4  6787.39
8958.0  8957.96
11674.0  11674.2

S T = W N

For a preloaded model, this test was stretched with large deformations in Sierra-SM and
a representative exodus file was outputted. This exodus file was used in Sierra-SD for a
subsequent eigen analysis. For verification, all modes were compared to the Abaqus finite
element code. As in the unpreloaded case, the plate is fixed on one end and is constrained
in the Y and Z direction on the other end. The Eigenvalue results are shown in Table 6.22.
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Table 6.22: Isotropic-Preload

Mode Number Abaqus Sierra-SD
1 1420.8 1410.79
2 1798.3  1808.77
3 5212.8  5208.10
4 6765.5  6765.63
5
6

8914.0  8911.89
11638  11636.50

6.12.2 Orthotropic Material

The same plate model was tested using orthotropic material properties. The material
elasticity tensor only provides stiffness in the x direction, with zero stiffness in the remaining
directions.The first test was an unpreloaded model. The Eigenvalue results are shown in
Table 6.23.

Table 6.23: Orthotropic-Nopreload

Mode Number Abaqus Sierra-SD

1 4776.10  4772.99
2 5231.20  5231.19
3 8152.20  8149.91
1 8958.00  8957.96
2 10998  10970.90

For the second test, the same model was used, except that a uniaxial preload in the
x-direction was applied using Sierra-SM. An output exodus file was then passed to Sierra-
SD for the modal analysis. For verification, all modes were compared to the Abaqus finite
element code. The Eigenvalue results are shown in Table 6.24.

Table 6.24: Orthotropic-Preload

Mode Number Abaqus Sierra-SD
1 4600.30  4451.72
5212.80  5208.10
7821.60  7919.50
8914.00  8911.89
9878.40  9227.89

Tt = W N
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For input deck see Appendix A.18.
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6.13 Higher Order Hex Acoustic Element Convergence

This section demonstrates a convergence study for the phex element, up to order 4. We
verify that the convergence rates approach the theoretically predicted ones in the limit of
small enough element size.

The geometry of the model is shown in Figure 6.22. It consists of an acoustic waveguide
of length L = 10.0(m), and cross sectional dimensions of 1.0(m). The walls were assigned as
rigid around the boundaries of the waveguide, including the endcaps. The speed of sound
was given as ¢ = 332.07. With these parameters, the exact frequencies of vibration of the
air in the waveguide are given as

ne

fo =57 =166,33.2, .. (6.44)

Figure 6.22: Waveguide Model for Convergence Study of P-hex elements.
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Figure 6.23 shows the convergence plot for the hex element for orders 2 — 4. The theory
predicts that the modal frequencies should converge at a rate of h?’, where h is the element
size, and p is the order. Thus, on a log-log plot, the slopes of the convergence lines should
be 4, 6, and 8, respectively. In Figure 6.23 we show the relative errors in the 10" modal
frequency. Similar results were obtained for the other modes, and so we only show the 10%*
modal frequency for brevity. In addition to the errors, we show lines that have slopes of 4, 6,
and 8, respectively for comparison with the error curves. As seen, for each order, the correct
slope is obtained in the limit of small A, (or large %)

o0 Convergence Study for Waveguide Mode, hex elements

—a—error, order 2
s, ——slope of 4
10-2F W —e—error, order3
) e ——slope of 6
\\ ~\:—<::;\:1¢ error, order 4
10-4 - o SO I slope of 8 .
S
S 106
v
10—8 L
10710 )
10—12 1 L L L L 1 L IR S T S S T ST SN S T N B I M S A A W N NN RSN NN FR RN TN RTRI STRRE Tt
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Figure 6.23: Convergence Study of P-hex elements.

For input deck see Appendix A.33.
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6.14 Higher Order Tet Acoustic Element Convergence

This section demonstrates a convergence study for the ptet element, up to order 4. We
verify that the convergence rates approach the theoretically predicted ones in the limit of
small enough element size.

The geometry of the model is shown in Figure 6.24. It consists of an acoustic waveguide
of length L = 10.0(m), and cross sectional dimensions of 1.0(m). The walls were assigned as
rigid around the boundaries of the waveguide, including the endcaps. The speed of sound
was given as ¢ = 332.07. With these parameters, the exact frequencies of vibration of the
air in the waveguide are given as

ne

fo =57 =166,33.2, .. (6.45)

Figure 6.24: Waveguide Model for Convergence Study of P-tet elements.
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Figure 6.25 shows the convergence plot for the tet element for orders 2 — 4. The theory
predicts that the modal frequencies should converge at a rate of h?’, where h is the element
size, and p is the order. Thus, on a log-log plot, the slopes of the convergence lines should
be 4, 6, and 8, respectively. In Figure 6.25 we show the relative errors in the 10" modal
frequency. Similar results were obtained for the other modes, and so we only show the 10%*
modal frequency for brevity. In addition to the errors, we show lines that have slopes of 4, 6,
and 8, respectively for comparison with the error curves. As seen, for each order, the correct
slope is obtained in the limit of small A, (or large %)
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Figure 6.25: Convergence Study of P-tet elements.

For input deck see Appendix A.34.
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6.15 P-elements on 1-D waveguide up to order 6

This section demonstrates a convergence study for the phex element, up to order 6. The
geometry of the model is shown in Figure 6.26. It consists of an acoustic waveguide of length
L =10.0(m), and cross sectional dimensions of 1.0(m). One end of the waveguide is assigned
as a sideset with an absorbing boundary. The other end is the sideset assigned to where
the load is applied, in this case an acoustic velocity. The node where the solution has been
found is a corner node on the loaded sideset.

L

Figure 6.26: Waveguide Model for Convergence Study of P-hex Elements.

Figure 6.27 shows the convergence of the real part of acoustic pressure for the actual
solution, as well as the value of expected convergence. It can be seen that the actual value
quickly begins to converge to the theoretical value around order 3.

Figure 6.28 shows the convergence of the imaginary part of acoustic pressure. Similar to
real part of acoustic pressure, the computed value of imaginary pressure quickly approached
the expected value near order 3.

Figure 6.29 shows the convergence of acoustic impedance for the actual solution. As
expected, the Impedance approaches the theoretical value around order 3. In Figure 6.30 we
show the relative error for Apressure on a semilog plot.
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Figure 6.27: Convergence Study of P-hex elements-Apressure.
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Figure 6.28: Convergence Study of P-hex elements-ImagApressure.

156



Impedance
T T T T T T T T T
Actual Impedance
— — Theoretical Impedance
490 J"'u,
.llII
480 I"I
\
\
!
\
III
L 470 \ b
E \
[ \
= Y
L Y
o \
E 4s0f \ N
IIl
l".
450 \ A
\
\
II|
!
440 1 -
\
Y
430 1 \i——r T T T Y S T
1 1.5 2 2.5 3 3.5 4 4.5 & 5%
Order

Figure 6.29: Convergence Study of P-hex

elements-Impedance.
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Figure 6.30: Convergence Study of P-hex elements-Relative Error.
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For input deck see Appendix A.35.
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6.16 P-elements on Acoustic Sphere for Multiple Refined
Hex-Meshes

This section demonstrates a convergence study for the phex element, up to order 3 using
several refinements of one mesh.

The geometry of the model is shown in Figure 6.31. It consists of an acoustic sphere of
radius 7 = 5.0(m) hollowed out with a smaller sphere of » = 1.0(m). The outer surface is
assigned as a sideset with an absorbing boundary. The inner surface is the sideset assigned
to where the load is applied, in this case an acoustic velocity. The node where the solution
has been found is a node on the inner surface of the sphere.

¢

L s

Figure 6.31: Acoustic Spherical Model for Convergence Study of P-hex Elements.

Figure 6.32 shows the convergence of the real part of acoustic pressure for the actual
solution for each refinement of the mesh, as well as the value of expected convergence. From
this figure, it can be seen that even up to order 3, convergence is not seen on the first
refinement of the mesh created. This is because the course mesh on the sphere creates a
sharp geometry and less of a smooth surface. The fourth refinement of the mesh approaches
the expected value much more accurately. Higher order elements on the more refined meshes
would most likely show closer convergence.
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Figure 6.33 shows the convergence of the imaginary part of acoustic pressure. Similar to
the real part of acoustic pressure, the computed value of imaginary pressure approaches the
expected value more accurately as order increases for a highly refined mesh. This plot also
shows how the geometry of the model can have a major effect on the accuracy of convergence.

Figure 6.34 shows the convergence of acoustic impedance for the actual solution. As
expected, the Impedance approaches the theoretical value as order and refinement increase.

In Figures 6.35 and 6.36 we show the relative error for Apressure and ImagApressure for
each refinement on a semilog plot.
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Figure 6.32: Convergence Study of P-hex elements-Apressure.

For input deck see Appendix A.36.
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Figure 6.33: Convergence Study of P-hex elements-ImagApressure.
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Figure 6.34: Convergence Study of P-hex elements-Impedance.
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Errar

Figure 6.35: Convergence Study of P-hex elements-Relative Apressure Error.
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6.17 P-elements on Acoustic Sphere for Multiple Refined
Tet4-Meshes

This section demonstrates a convergence study for the ptet element, up to order 3 using
several refinements of a tetrad mesh.

The geometry of the model is shown in Figure 6.37. It consists of an acoustic sphere of
radius r = 5.0(m) hollowed out with a smaller sphere of = 1.0(m). The outer surface is
assigned as a sideset with an absorbing boundary. The inner surface is the sideset assigned
to where the load is applied, in this case an acoustic velocity. The node where the solution
has been found is a node on the inner surface of the sphere.

¢

L

Figure 6.37: Acoustic Spherical Model for Convergence Study of P-tet Elements.

Figure 6.38 shows the convergence of the real part of acoustic pressure for the actual
solution for each refinement of the mesh, as well as the value of expected convergence. From
this figure, it can be seen that even up to order 3, convergence is not seen on the first
refinement of the mesh created. This is because the course mesh on the sphere creates
a sharp geometry and less of a smooth surface. It is important to note that the fourth
refinement data is only for order 1. The purple line is extended through order 2 to give a
visual of how close the fourth refined mesh is to the expected solution. Higher order elements
on highly refined meshes would most likely show a more accurate convergence.
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Figure 6.39 shows the convergence of the imaginary part of acoustic pressure. Similar to
the real part of acoustic pressure, the computed value of imaginary pressure approaches the
expected value more accurately as order increases for a highly refined mesh. However, like
Apressure, the fourth refined mesh only has data for order 1 and the line has been extended
for this plot in order to give a better visual of the results of using a highly refined mesh.
This plot also shows how the geometry of the model can have a major effect on the accuracy
of convergence.

Figure 6.40 shows the convergence of acoustic impedance for the actual solution. As
expected, the Impedance approaches the theoretical value as order and refinement increase.
Once again, the fourth refinement data point using order 1 has been extended.

In Figures 6.41 and 6.42 we show the relative error for Apressure and ImagApressure for
each refinement on a semilog plot. Error for refinement 4 is effected by the extended point
and is not completely accurate.
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Figure 6.38: Convergence Study of P-tet elements-Apressure.

For input deck see Appendix A.37.
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Figure 6.39: Convergence Study of P-tet elements-ImagApressure.
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Figure 6.40: Convergence Study of P-tet elements-Impedance.
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Figure 6.41: Convergence Study of P-tet elements-Relative Apressure Error.
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Figure 6.42: Convergence Study of P-tet elements-Relative ImagApressure Error.

166



6.18 Tied-Joint with Joint2G and Spring. Slip and Rigid

6.18.1 Purpose

The “Tied Joint” structure is a meta structure that provides an efficient and robust means
of modeling a joint structure. The purpose of this document is to verify that both the tied-
joint and conventional methods produce the same solution. Showing the results are the same
encourages the use of tied-joints rather than the more tedious conventional method which
involves replicating nodes and the use of multi-point constraints (MPCs). Generally, the
input file for the tied-joint method is much simpler since all of the constraints are accounted
for, rather than having to list them by hand. Also, for the tied-joint input files the necessary
constraints become included in the method itself, resulting in a simpler model for the input
geometry file.

6.18.2 Lap Joint Comparison
6.18.2.1 Model Geometry

The lap joint model used for both the conventional and tied-joint tests consists of two
partially overlapping rectangular blocks, as seen in Figure 6.43. The end of one of the blocks
is fixed, while the opposite end of the other block is loaded with a constant applied force.
The particular model seen here and used in the following results was created using Cubit
and exported as an exodus file.

Figure 6.43: Tied-Joint Model Geometry
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6.18.2.2 Building the Tied-Joint model

6.18.2.3 Non-slip

The exodus file of the original model as described in 6.18.2.1 is the geometry file used
for the tied-joint input. The non-slip tied joint model requires the use of a new block. The
relevant portions of the input file for the Tied-joint model are seen in Figure 6.44. Using the
tied-joint model results in two virtual nodes being created. The exodus output file obtained
from using the tied-joint approach is then used as the input geometry file for the conventional
non-slip method, and the extra nodes are included using MPCs as explained later.

Tied Joint
Normal Definition = none
surface 1,2
Shear Definition
side = rigid
connect to Block 33
end
Block 33
Spring
Kz = Elastic 1e9
Kx = Elastic 1e9
Ky = Elastic 1e9
end

Figure 6.44: Tied-Joint Non-Slip Input

6.18.2.4 Slip

The geometry file used for the tied-joint slip input is also the original exodus file created
from Cubit. However, some changes to the Sierra/SD input file are made in order to incor-
porate slipping. In the Tied-Joint block the normal definition is set to slip and the side is
set equal to “rrod” under the shear definition. Everything else in the file is kept the same,
as seen in Figure 6.45. The output of the tied-joint slip file creates two extra blocks that
constrain the overlapping surfaces from stretching, allowing the surfaces to move together as
one. This output is in turn used in the input file of the conventional slip model, as described
later.
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Tied Joint
Normal Definition = slip
surface 1,2
Shear Definition
side = rrod
connect to Block 3

end
Block 3
Spring
Kx = Elastic 1e9
Ky = Elastic 1e9
Kz = Elastic 1e9
end

Figure 6.45: Tied-Joint Slip Input

6.18.3 Building the Conventional Model
6.18.3.1 Non-slip

The input model used for the conventional approach is the output of the tied-joint model.
The tied-joint model produces an additional block to connect the virtual nodes that are
created internally, and thus an additional block with spring or joint2g properties is explicitly
added to the input file of the conventional method. The difference between the joint2g and
the spring properties, is that the joint2g includes rotational degrees of freedom, everything
else within the input file remain the same. The input file requires rigidsets and MPCs
linking the duplicate nodes that the tied-joint model creates to the “original” nodes on the
corresponding faces. The rigidset input section with the spring connection is seen in Figure
6.46.

6.18.3.2 Slip

The geometry file used for the conventional slip input is the output from the tied-joint
slip input. The extra blocks created from the tied-joint slip output are defined "dead" for
this input file when using a spring. In their place, a new section called Tied Data is added
in order to incorporate slipping. When a joint2g is used, these extra blocks are defined as
"rbe3", replacing the use of MPCs. This can be seen in Figure 6.47. The Tied Data is
specified to be a transverse slip that applies to the overlapping surfaces. Rrodsets are also
added instead of the rigidsets that are seen in the conventional non-slip input file. Figure
6.48 shows a section of the input file when using a spring connection for conventional slip.
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Rigidset
sideset 1
end
Rigidset
sideset 2
end
Block 33
Spring
Kz = Elastic 1e9
Kx = Elastic 1e9
Ky = Elastic 1e9
end

Figure 6.46: Conventional Non-Slip Input

6.18.4 Comparison of Results

Exodiff was used to compare the tied-joint and the conventional model for both the slip
and non-slip models. While the results from using the tied-joint method and the conventional
method were not exactly the same, they were extremely close. These results show that the
tied-joint method is just as accurate as the conventional approach. This, in addition to the
previously mentioned advantages of offering the user a simpler input and model definition,
make the case for the continued use of Tied-Joints in Sierra/SD.

For input deck see Appendix A.38.1 and Appendix A.38.2.
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Rrodset
sideset 1
end
Rrodset
sideset 2
end
Block 3
Joint2G
Kx = Elastic 1e9
Ky = Elastic 1e9
Kz = Elastic 1e9
Krx = Elastic 1e9
Kry = Elastic 1e9
Krz = Elastic 1e9
end
Block 4
rbe3
method=new
end
Block 5
rbe3
method=new
end
Tied Data
surface 1,2
transverse slip
end

Figure 6.47: Conventional Slip Input with Joint2G
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Rrodset
sideset 1
end
Rrodset
sideset 2
end
Block 3
Spring
Kx = Elastic 1e9
Ky = Elastic 1e9
Kz = Elastic 1e9
end
Tied Data
surface 1,2
transverse slip
end

Figure 6.48: Conventional Slip Input with Spring

172



6.19 Slide RBE2. Selected DOFS

This test exercises the RBE2 element as a slider. The model and results are shown in
Figure 6.49. The base plate is clamped. The perpendicular plate is clamped on the left, and
pulled from the right. We are interested in the behavior of the RBE2 links that connect the
two plates.

In this example, the RBE2 (which are translated as RBARS in nasgen) provide a con-
nection in only selected dofs. In particular, the 13456 dofs are constrained, while the 2 is
left free. This leaves translation in the Y axis unconstrained.

Figure 6.49 indicates a uniform displacement in the Y direction on the loaded side of
the perpendicular plate. This is in agreement with the NASTRAN results. NASTRAN
results indicate a maximum displacement of 0.00213, while the QuadT displacement is
0.0023220022994. The discrepancy is expected based on the difference in element formu-
lations. The results indicate that the plate is free to translate, but constrained in the other
directions.

Figure 6.50 uses an identical geometry but the load is augmented with a Z component
of load. As can be seen in the example, addition of an orthogonal loading does not restrict
the sliding behavior.

" DispVEC
2.374e-03

1.780e-03
1.187e-03
5.935e-04
0.000e+00

Figure 6.49: Model and Results of Selective DOF RBE2 Test

For input see Appendix A.40
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Figure 6.50: Model and Results of Orthogonally loaded Test
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6.20 Thin Plate Bending

The model, shown in Figure 6.51, is a flat rectangular plate of dimension 48x24x0.5.
The normal is in the Z coordinate direction. A uniform pressure is applied to the plate.
Analytic expressions for the maximum displacement are found in Roark for the thin plate

approximation, to which this should apply. The edges are clamped (no rotations for trans-
lations).

Table 6.25 compares the solutions from various methods and elements for this example.

v4

_Dispz

i 0.000e+00

. -5.939e-03
-1.188e-02

-1.782e-02
-2.376e-02

Figure 6.51: Thin Plate Bending. Geometry and Deformation

Roark || Nastran | %error || NQuad | %error | QuadT | %error
0.02451 || 0.02459 | -0.33 0.02376 | 3.05 0.024497 | 0.05

Table 6.25: Thin Plate Bending Center Point Solutions

For input see Appendix A.41
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6.21 Spring Dashpot

6.21.1 Statics Verification: 1 translational dof at a time
6.21.1.1 Spring Translation in the X-Direction

In this example, the spring stiffness is K = 3, and the spring is driven by a force of
f = 7.5. After running the code, we find that the calculated solution is within 0.0001% of
the exact solution, f/K.

6.21.1.2 Spring Translation in the Y-Direction

In this example, the spring stiffness is K = 1, and the spring is driven by a force of f = 1.
After running the code, we find that the calculated solution is within 0.0001% of the exact
solution, f/K.

6.21.1.3 Spring Translation in the Z-Direction

In this example, the spring stiffness is K = 1, and the spring is driven by a force of f = 1.
After running the code, we find that the calculated solution is within 0.0001% of the exact
solution, f/K.

6.21.1.4 Spring Translation in all Directions at Once

We now consider a spring with values in all 3 translational dofs. The axis of the spring
is aligned with the x-coordinate direction, so the behavior of this system in each dof is
uncoupled.

Spring Translation in the X-Direction
In the x-direction, the spring stiffness is K, = 1.2, and the spring is driven by a force of
f» = 2.4. After running the code, we find that the calculated solution is within 0.0001% of
the exact solution, f,/K,.

Spring Translation in the Y-Direction
In the y-direction, the spring stiffness is K, = 1, and the spring is driven by a force of f, = 1.
After running the code, we find that the calculated solution is within 0.0001% of the exact
solution, f,/K,.

Spring Translation in the Z-Direction
In the z-direction, the spring stiffness is K, = 1, and the spring is driven by a force of f, = 3.
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After running the code, we find that the calculated solution is within 0.0001% of the exact
solution, f,/K,.

6.21.2 Statics Verification: 1 rotational dof at a time
6.21.2.1 Spring Rotation about the X-Axis

In this example, the rotational spring stiffness is K, = 2.5, and the spring is driven by a
moment of m = 6.5. After running the code, we find that the calculated solution is within
0.0001% of the exact solution, m/K,.

6.21.2.2 Spring Rotation about the Y-Axis

In this example, the rotational spring stiffness is K, = 1.3, and the spring is driven by a
moment of m = 2.6. After running the code, we find that the calculated solution is within
0.0001% of the exact solution, m/ K.

6.21.2.3 Spring Rotation about the Z-Axis

In this example, the rotational spring stiffness is K, = 1, and the spring is driven by a
moment of m = 1. After running the code, we find that the calculated solution is within
0.0001% of the exact solution, m/K,.

6.21.2.4 Spring Rotation about all Axes at Once

We now consider a spring with values in all 3 rotational dofs. The axis of the spring
is aligned with the x-coordinate direction, so the behavior of this system in each dof is
uncoupled.

Spring Rotation about the X-Axis
The rotational spring stiffness about the x-axis is K,, = 0, and the spring is driven by a
moment of m, = 4.6. After running the code, we find that the calculated solution is within
0.0001% of the exact solution, m, /K, .

Spring Rotation about the Y-Axis
The rotational spring stiffness about the y-axis is K, = 0, and the spring is driven by a
moment of m, = 3. After running the code, we find that the calculated solution is within
0.0001% of the exact solution, m, /K, .

Spring Rotation about the Z-Axis
The rotational spring stiffness about the z-axis is K,, = 0, and the spring is driven by a
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moment of m, = 1. After running the code, we find that the calculated solution is within
0.0001% of the exact solution, m,/K,..

6.21.3 Transient Dynamics Verification: 1 translational dof at a
time

In the following examples, we investigate the translational response of the SpringDashpot
element in each of the three coordiante directions. The equation of motion for such a system
with mass M, damping B, and stiffness K is the following:

Mii+ Bi+ Ku = f (6.46)

The exact solution for a spring-dashpot system with a constant force f depends on the
damping ratio { = Q\z—m. In all cases, the initial conditions u(0) = dy and u(0) = vy are

used, and we denote the undamped natural frequency w, as \/K/M. For an overdamped
system (¢ > 1), the exact solution is:

3 wnt | V0 + (Cwn +wq)(do — f/K) ot

t) =<
u(t) K +e S0y -
_ Vot (W —wa)(do — f/K) o '
de
where the damped natural frequency wq is w,+/C? — 1.
For an underdamped system (¢ < 1), the exact solution is:
— i —Cwnt _—
u(t) = 7 +e (do — f/K) cos(wgt)
(6.48)
nw(do — f/K
+ Yo+ Gwn(do = f/ )sin(wdt)
Wy
where wyg = wy/1 — (2.
Finally, for a critically damped system (¢ = 1), the exact solution is:
u(t) = L+ {(do — /) + [oo +wuldo — [/ K)] 1} (6.49)

K

6.21.3.1 Spring-Dashpot Translation in the X-Direction

In this example, the spring-dashpot stiffness is K = 4, the damping is B = 5, and is
driven by a force of f = 10.
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Figure 6.52: Comparison of exact and calculated x-displacement

6.21.3.2 Spring-Dashpot Translation in the Y-Direction

In this example, the spring-dashpot stiffness is K = 4, the damping is B = 4, and is
driven by a force of f = 10.
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Figure 6.53: Comparison of exact and calculated y-displacement

6.21.3.3 Spring-Dashpot Translation in the Z-Direction

In this example, the spring-dashpot stiffness is K = 4, the damping is B = 3, and is
driven by a force of f = 10.
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Figure 6.54: Comparison of exact and calculated z-displacement

6.21.4 Transient Dynamics Verification: all Translational and Ro-
tational dofs at once

In this example, we consider a spring-dashpot with values in all 6 translational and
rotational dofs. The axis of the spring is aligned with the x-coordinate direction, so the
behavior of this system in each dof is uncoupled. The results are summarized below.

6.21.4.1 Spring-Dashpot Translation in the X-Direction

The spring-dashpot stiffness in the x-direction is K = 6.5, the damping is B = 1.23, and
the x-component of the force is f = 1.
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Figure 6.55: Comparison of exact and calculated x-displacement
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6.21.4.2 Spring-Dashpot Translation in the Y-Direction

The spring-dashpot stiffness in the y-direction is K = 7.8, the damping is B = 3.21, and
the y-component of the force is f = 1.
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Figure 6.56: Comparison of exact and calculated y-displacement

6.21.4.3 Spring-Dashpot Translation in the Z-Direction

The spring-dashpot stiffness in the z-direction is K = 5.23, the damping is B = 2.34,
and the z-component of the force is f = 1.
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Figure 6.57: Comparison of exact and calculated z-displacement
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6.21.4.4 Spring-Dashpot Rotation about the X-Axis

The spring-dashpot stiffness about the x-axis is K = 8.75, the damping is B = 2.1, and
the x-component of the moment is m = 1.
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Figure 6.58: Comparison of exact and calculated x-rotation

6.21.4.5 Spring-Dashpot Rotation about the Y-Axis

The spring-dashpot stiffness about the y-axis is K = 6.45, the damping is B = 1.32, and
the y-component of the moment is m = 1.
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Figure 6.59: Comparison of exact and calculated y-rotation
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6.21.4.6 Spring-Dashpot Rotation about the Z-Axis

The spring-dashpot stiffness about the z-axis is K = 9.78, the damping is B = 2.3, and
the z-component of the moment is m = 1.
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Figure 6.60: Comparison of exact and calculated z-rotation

6.21.5 Transient Dynamics Verification: all Translational and Ro-
tational dofs at once, with a coordinate transformation

In this example, we consider a spring-dashpot with values in all 6 translational and
rotational dofs. Additionally, a coordinate tranformation is utilized such that the axis of
the spring is not alligned with the x-coordinate direction as seen in figure 6.61, leading to
uncouped behavior in in the dofs of this system.

Figure 6.61: Figure showing the position, boundary conditions, and force applied to a spring
in the global coordiante space {x,y,z}

For a given local (i.e. with respect to the spring element) coordinate system [ =
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{2, v, '}, we can transform the stiffness and damping terms to the global coordinate
system using the following equations:

K9 — RKOR

B(g) _ R/B(l)R, (650)

where K9 and BY are the stiffness and damping matrices defined in the global coordinate
system g = {Z, y, 2}, and where the rotation matrix R is defined as

~

(6.51)

~

=
I
N >@\> 8>

In this example, the x-axis of the local coordinate system lies in line with the direction of
the spring element as seen in figure 6.61, or 2’ = {1,1, 1}, with the local origin at the fixed
point of the spring, {0,0,0}. Additionally, we chose the (global) x-axis x = {1,0,0} to be on
the local x-y plane, or eqivalently for the local z-axis to be in the direction {0,1, —1}. This
local coordinate system leads to ' = {v/3/3,v/3/3,v3/3}, v = {V/6/3,—6/6,—/6/6},
ZA/ = {07 \/5/2’ _\/5/2}

The translational spring-dashpot stiffness in the (local) x, y, and z-directions respectively
are K, = 6.5, K, = 7.8, and K, = 5.23. Likewise, the three components of the tranlational
damping are B, = 1.23, B, = 3.21, and B, = 2.34. The tranlational dofs of the spring-
dashpot are driven by a force of f = {1, 1, 1}.

The rotational spring-dashpot stiffness about the (local) x, y, and z-axes respectively are
K,, =875, K,, = 6.45, and K,, = 9.78. Likewise, the three components of the rotational
damping are B,, = 2.1, B,, = 1.32, and B,, = 2.3. The rotational dofs of the spring-dashpot
are driven by a moment of m = {1, 1, 1}.

Since we have included damping in our analysis, over a long period of time, the trans-

lational solution will tend towards the static solution, K ()~ f. Likewise, the rotational

—1
solution will tend towards Kf,g ) m.

The displacement and rotational results in each of the global dofs are summarized below.
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6.21.5.1 Spring-Dashpot Translation in the (global) X-Direction

dispx vs time

0.25 - -
e -o dispx at node 2

)
LY
020
$ ‘\’
|
? .
. 1)
ois| * . ‘f’\,
« ' ‘h °
6
& ! v
'-E 1
o0} ¢
1
|
,
1
005} ¢
)
'
!
o
0.00 . . . "
0 2 4 6 8 10

time

Figure 6.62: X-displacement over time

6.21.5.2 Spring-Dashpot Translation in the (global) Y-Direction
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Figure 6.63: Y-displacement over time
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6.21.5.3 Spring-Dashpot Translation in the (global) Z-Direction
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Figure 6.64: Z-displacement over time

6.21.5.4 Spring-Dashpot Rotation about the (global) X-Axis
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Figure 6.65: X-rotation over time
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6.21.5.5 Spring-Dashpot Rotation about the (global) Y-Axis
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Figure 6.66: Y-rotation over time

6.21.5.6 Spring-Dashpot Rotation about the (global) Z-Axis
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Figure 6.67: Z-rotation over time

For the general aprepro compatable input decks used in each of the three basic cases above
(statics, transient dynamics, and transient dynamics with a coordiante transformation) see

Appendix A.10.
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Chapter 7

Solutions in Rotating Coordinate Frames

Sierra/SD supports solutions in a rotating coordinate frame. Tests in this section address
this verification.

7.1 Rotating Dumbbell Statics

7.1.1 Model Description and Purpose

The model consists of a symmetric bar 6 units long with equal masses on either end. The
bar is stationary in a rotating coordinate frame. To avoid singularities, the center point of
the bar is clamped. The bar is massless. See Figure 7.1.

The test evaluates a very simple geometric problem, and insures that centrifugal forces
are correctly applied to concentrated masses. It insures that rotations will work properly
about the default coordinate axis.

O+ b o

Figure 7.1: Dumbbell Geometry

Analysis Type | linear statics
Element Type | Hex8

Loading centrifugal
Keyword centrifugal force

7.1.2 Analytic Results

Each mass on either end of the rotating bar should experience only centrifugal loadings.
The left hand side includes the centrifugal softening matrix (but no geometric stiffening).
The magnitude of the loading is,

P =0 X (A x F)AM
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where,

) = 1.1 in the Z direction.
7 is 3.0, radial direction.

AM is 2.0

The resulting force is 7.26 units in the radial direction. It is applied only at the end nodes
where the concentrated masses are located, as the other points are massless. For input deck
see Appendix A.50.
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7.2 Rotating Beam Statics

Consider a beam of length L with constant cross-sectional area A, elastic modulus F,
and mass density p. The root of the beam is at x = 0 and its tip at * = L. The axis of
rotation passes through the origin and is in the z-direction. Further, the angular velocity is
constant and denoted by 2.

With the assumption of all mass being concentrated along the axis of the beam, the net
force in the z-direction at radial position r is given by

i
F= Qz/ xdm
L
= QQ/ rpAdx
= pAQ*(L* —1%)/2. (7.1)
Thus, the axial stress at r is
o(r) = F/A = pQ*(L* — %) /2. (7.2)

The axial strain is assumed constant across each cross section and given by
e(r) = o(r)/E = pQ*(L* —r?)/(2E). (7.3)

The axial displacement is obtained by integrating the axial strain. Since the axial displace-
ment vanishes at x = 0, we obtain

ulr)= /D’" €(z) dz
= p02/(2E) /OT([} —2?)dx
= o2/ (2E)(L*x — 2°/3)|;

= P D /0 — (/L) (7.0

For input deck see Appendix A.51.
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Figure 7.2: Comparisons of axial deformations with exact solution for a beam.
7.3 Rotating Shell Statics

The rotating shell example is similar to the rotating beam 7.2 with £ = 19.5 x 1019,
L =10, p =7700, A =1, and 2 = 5. Three different finite element meshes of the beam
were constructed. The first one is a HEX8 mesh with 50 elements in the z-direction and 5
elements in both the y and z-directions (the dimensions of the beam in the three coordinate
directions are 10, 1, and 1). The second one is a quadrilateral shell mesh with 50 elements
in the z-direction and 5 elements in the y-directions. The third one is a mesh of beams with
50 elements in the x-direction. Comparisons of axial deformations for three finite element
analyses are shown in Figures 7.2 and 7.3. Notice that all three finite element results are
close to the exact solution, with the QUADT results being the least accurate. We note that
much more accurate results were obtained when the QUADT elements were replaced by NQUAD
elements. We think that the less accurate predictions for the mesh of QUADT elements is
caused by anisotropies introduced by representing each quadrilateral element as the union
of two triangular elements.

For input deck see Appendix A.52.
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Figure 7.3: Zoomed in view of Figure 7.2 showing differences for QUADT elements.
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7.4 Rotating Ring Statics

7.4.1 Introduction and Purpose

This test examines a simple ring in a rotating frame. Verification of the forces is made
here. We intentionally do not verify displacements as these depend on the element formula-
tion.

The ring, shown in Figure 7.4 is a two unit radius thin structure. A constant angular
velocity, €1, is applied at 1.1 radians per second in the Z direction. The ring is not centered
on the origin, but is centered on a user defined coordinate system.

7.4.1.1 Analytical Results

The resulting forces are given by,

F = /pﬁxﬁxmv (7.5)
= 1.1%22.0(pV,) 7 (7.6)
Where pV,, represents the mass associated with a node. For this model, there are 148 nodes

on the ring which each share equally the total ring mass of 12.5626 units. The resulting force
is 0.2054 units outward.

For the Euler force,

— d —
F= Laxr .
/pdthrdV (7.7)
- 1.12.0 (pV,,) 7 (7.8)

and the resulting force is 0.2054/1.1 units outward.

7.4.2 What is tested

The test evaluates the following:

e The centrifugal force in a rotating system.
e The force on shells with rotational degrees of freedom. The moment should be zero.

e A coordinate translation.
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It does not test,

e Coordinate rotation.
e Solid or point mass elements.

e Solution when there is no symmetry.

For input deck see Appendix A.53.
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Figure 7.4: Rotating Ring Geometry and Results

196



7.5 Rotating Ring Acceleration

This is a variation on the static analyses of a rotating ring described in section 7.4. Here
an angular acceleration is applied instead of the angular velocity in 7.4. By hand, the angular
acceleration is .2054/1.1 force units. For input deck see Appendix A.54.

197



7.6 Rotating Superelement Statics

Models (including superelements) must be loaded by centrifugal forces if they are to be
analyzed in a rotating coordinate frame. However, as discussed in the analysis section, there
are inherent problems in loading a superelement with a centrifugal force. In this test, we
examine one case where the loading is exact.

The model is a single hex element which is rotated about an edge. The unreduced model
force may be computed as,

Fcentrifugal = ﬁ X (Q X F) (79)
[ [M][Q][r] (7.10)

where € is the angular velocity vector, [€)] is a rotation matrix, [M] is the mass matrix and
[r] represents the position coordinates. This solution is as accurate as possible for a finite
element representation of the continuous model. See details in the theory manual.

The geometry is shown in Figure 7.5.

. e
—

Figure 7.5: Rotating Hex Geometry

7.6.1 Tests

We evaluate several steps of the test.

1. We look at the loading of a single hex in rotation. This is our truth model.
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2. We insure that the model reduction process is consistent.

3. We examine the loading of a superelement equivalent to the single hex element.

Each of these tests is described in a little more detail in what follows.

Single Hex Rotation

Equation 7.10 describes the load calculation for a single hex in a coordinate frame rotating
at a constant angular velocity. The results of the loading have been examined visually for

reasonable response, but no strict verification of these results are available. The loading
vectors are not entirely radial (as expected).

The analysis is singular, i.e. the body has a zero energy mode and is free to rotate

about the axis of rotation. Because of this, only the forces are evaluated - comparison of

displacements could result in errors from inaccurate solution of the singular system. The
force response is shown in Figure 7.6.

Figure 7.6: Rotating Hex Response

7.6.1.1 Superelement Reduction

A critical part of this evaluation is “reduction” of the hex to a superelement. In most such
reductions, a combination of interior “fixed interface” modes are combined with interface or
“constraint” modes to generate a reduced basis. Here we have no interior modes and all the
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interface nodes are retained. One of those nodes has only 2 degrees of freedom, so there is
a slight reduction. As a consequence, the superelement model is of dimension 23, while the
original hex has 24 degrees of freedom. The most important point is that the superelement
model may now be run through the software, which follows an entirely different path from
the original.

7.6.1.2 Loading of a Superelement

In the final stage, the superelement is inserted into a new model. In this case, we re-
use the original mesh. However, the block definitions are those of a superelement. The
superelement is loaded using the centrifugal force routines. The result must be identical to
the original test.

7.6.2 Analysis

Superelements are problematic for computation of internal integrals. Typically, all the
internal shape functions and data are available only during the superelement reduction stage.
During subsequent analyses, only the interface information and reduced order matrices are
retained.

For computation of the centrifugal force, an integral must be evaluated over the volume
of the element.

f:p/ Qx (Qx7)dV
element

When the full shape functions are available, this can be evaluated as a discretized linear
algebra system (equation 7.10). However, the model reduction process condenses out infor-
mation from the interior of the superelement to the nodes of the interface. The total mass is
conserved, but information required to compute the interior integrals is no longer available.
This verification test is structured so that no internal information is lost and the integrals
may be computed exactly.

This set of tests insures the following;:

The software can successfully exercise a superelement.

Identical results are obtained to the original hex, indicating no transposing of degrees
of freedom.

All of the nodes on the interface are being exercised.

Superelements are supported with other than 3 dofs on a node. Node 1 has 2 degrees
of freedom, and there are 23 degrees of freedom total.

However, because of the details of the test, we do not evaluate the following;:

200



e Superelements with internal degrees of freedom.

e Superelements with a reduced set of interface nodes.

For input deck see Appendix A.55.
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7.7 Rotating Superelement Beam Statics

We build on the analysis of a rotating hex beam. As shown in the hex beam example,
the analytic solution can be written,

wr)y = /OT €(z)dx

_ 02/(2E) /OT(L2 _ %) dz

= pQ*/(2E)(L*z — 2*/3)[;

= ”%ZL?’ B(r/L) — (r/L)%). (7.11)

We next consider an example with £ = 19.5 x 10*°, L = 10, p = 7700, A = 1, and
2 = 5. A superelement is generated by extracting all the nodes down the center of the
beam. There are 101 nodes retained in the superelement, with 40 generalized degrees of
freedom associated with fixed interface modes. Comparison of axial deformations for the
finite element analysis is shown in Figure 7.7. Finite element results are close to the exact
solution, but there differences because the superelement integration is not fully accurate for
computation of centrifugal force moments.

For input deck see Appendix A.56.
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Figure 7.7: Comparisons of axial deformations with exact solution for a beam.
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7.8 Point Mass in a Rotating Frame

It is useful to verify a simple point mass in a rotating frame. We consider a system
rotating at a constant angular velocity Q = Qk. The angular acceleration is zero. A single
point mass, m, is observed in the rotating frame. The point mass is frictionless. The
geometry is illustrated in Figure 7.8.

’
Q
|-

.

Figure 7.8: Rotating Frame Geometry

7.8.1 Mass at Rest in Inertial Frame

This is by far, the simplest case. In the inertial frame we have a mass located at (x,,0).

It does not move. In the rotating frame, r = x, and ' = —Q¢’; or in the Cartesian rotating
frame,
¥ = x,cos (=) (7.12)
Yy = w,sin(—Q) (7.13)

7.8.2 Mass Initially at Rest in Rotating Frame

We consider a mass initially at the point (x,,0) with an initial velocity of ¥ = Qz,é,. In
the rotating frame this mass appears initially at rest at location («/,0). However, because of
the rotation of the frame, the mass will begin to move away from the center of the rotating
frame.
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7.8.2.1 Without Coriolis Contribution

—

In the rotating frame, the only force acting on the body is the centrifugal force, O x (ﬁ XT)
As all the forces are in the radial direction, the differential equation reduces to a single degree
of freedom system.

mi = Q%r

This equation is very similar to that of a harmonic oscillator. With the given initial conditions
the solution is,

r = x,cosh(t)
where cosh() is the hyperbolic cosine.

This solution is not physical, as there is no Coriolis force. At time progresses, the velocity
continues to grow unbounded, but the angular position remains zero.

7.8.2.2 With Coriolis Contribution

We solve this by computing the solution in the inertial coordinate system, and trans-
forming back to the rotating frame.

In the inertial frame, there are no forces acting on the body. The solution in Cartesian
frame is,

T = Z (7.14)
= ot (7.15)
= 2,0t (7.16)

This may be transformed to polar coordinates, still in the inertial frame.

R B (717)
= 2oy/1+ ()2 (7.18)
0 = tan ' (y/z) (7.19)
tan~"! (Qt) (7.20)

We use the relation that ' = 6§ — Qt and " = r. Then,
0 =tan"' () — Ot
This solution may then be transformed to rotating cartesian frame in the usual way.
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Small Angle Approximations

For solutions with 2t << 1 the solutions in this section may be compared with the
previous section. We use,

0> o

tan_l(e) ~ (9—?—1—3%— (7 21)
2

Vite ~ 1+% (7.22)

For both solutions,

2
r’zwo(1+(92t) ),

while #” = 0 with no Coriolis term. Including the Coriolis term we obtain,

—(Qt)°
3

0 ~

Figure 7.9 shows the solution to this problem. Both analytic and finite element solutions
are shown. A good degree of agreement is obtained even for a very large displacement.
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Figure 7.9: Point Mass initially at rest in rotating frame

7.8.3 Mass Moving in the X axis

This example starts at the same location, i.e. (x,,0) in the inertial frame, but the initial
velocity in the inertial frame is —2x,Q/7é,. Thus, at time Qf = 7/2, the mass will be at
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the origin. At time Q¢ = 7, the particle will be located at (—x,,0). In the inertial frame,

g = (1l —20t/7) (7.25)
or,

r = (1 —2Qt/7) (7.26)

0 = 0 (7.27)
In the rotating frame, ' = r and ¢’ = —Qt. The Cartesian description is therefore,

¥ = x,(1—20t/7)cos () (7.28)

Yy = (1 —2Qt/7)sin () (7.29)

For input deck see Appendix A.57.
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Chapter 8

Inverse Methods

8.1 Force Identification from Structural Acoustic Fre-
quency Responses

The structural-acoustic frequency domain force identification capability is demonstrated
using the synthetic response at three frequencies. The geometry of this test is shown in
Figure 8.1.

Figure 8.1: Force Inversion Test Geometry

The model contained three regions, as shown in Figure 8.1: two steel regions, represented
by the red and green blocks, and a region of air, represented by the yellow block. Tied
constraints were assigned at the steel-steel and steel-air interfaces to connect these regions.
A concentrated mass, represented in cyan, was placed at one end of the model and was
connected with a spring connection. Acoustic loading was applied to one side of the air
region, shown in blue in Figure 8.2. The frequency of the acoustic loading was varied
between 10 Hz, 20 Hz, and 30 Hz.

Synthetic input data was generated by performing a forward problem on the coupled air-
steel model using known acoustic velocity amplitudes for two loading functions, F; and Fs.
Displacement values were determined for a node set on the end of the green steel block, while
acoustic pressure values were determined for a node set on the side of the air region. The
data was then used in the inverse problem to verify that the code could recover the original
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Figure 8.2: Side of model with applied acoustic loading represented in blue

acoustic velocity inputs for the two acoustic loading functions. The test, which used a full
Newton algorithm with analytic Hessians, was analyzed by comparing the obtained acoustic
velocity amplitudes to the expected values. Table 8.1 compares the expected acoustic velocity
values to values obtained through the inverse problem (Exp/Obt).

Table 8.1: Acoustic Velocity Values

Frequency (Hz) || Fy (Ezp/Obt) | Fy (Ezp/Obt)
10 4.0/4.0 5.0/5.0
20 4.0/4.0 5.0/5.0
30 4.0/4.0 5.0/5.0

At each frequency tested, acoustic velocity values obtained in the inverse problem
matched expected values of 4.00 and 5.00 for forcing functions F; and F5, respectively.
The test was performed both in serial and parallel. For each run, the ROL optimization
performed three iterations, providing appreciable convergence for the objective function and
gradient. Figure 8.3 shows the convergence behavior of the objective function and gradient
values for the serial run; optimization results for the parallel run matched the serial run
results.

For input deck see Appendix A.58.
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Figure 8.3: ROL Optimization of Objective Function and Gradient
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8.2 Force Identification from Frequency Responses

The frequency domain force identification capability is demonstrated using the synthetic
response and three frequencies. The cubic geometry of this test is shown in Figure 8.4.

Figure 8.4: Force Inversion Test Geometry

One boundary condition constrained the model. An absorbing boundary was specified on
one side, emulating a non-reflecting condition. Acoustic loading was applied to the opposite
side, applied at frequencies of 1, 2, and 3 Hz. Figure 8.5 indicates sides of the model with
specified boundary conditions:

Figure 8.5: Sides with absorbing boundary side (green) and with acoustic loading (orange)

The model was discretized using 64 Hex-8 elements, arranged in a 4x4 x4 cube. Synthetic
input data for the inverse problem was generated by running a forward problem with the
amplitudes shown in Table 8.2, and was comprised of acoustic pressure values specified at
element nodes. This data was then used in the inverse problem to verify that the code could
recover the original acoustic velocity inputs. The test, which used a full Newton algorithm
with analytic Hessians, was analyzed by comparing obtain acoustic velocity amplitudes of
three loading functions—F}, F,, and F3— to the expected values. The expected values and
obtained results (Ezp/0bt) for the acoustic loading functions are shown in Table 8.2.
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Table 8.2: Acoustic Velocity Values

Frequency (Hz) || Fy (Exzp/Obt) | Fy (Ezp/Obt) | F51 (Exp/Obt)
1 10.0/10.0 5.0/5.0 1.0/1.0
2 10.0/10.0 5.0/5.0 2.0/2.0
3 10.0/10.0 5.0/5.0 3.0/3.0

Acoustic velocity for loading functions F} and F; matched the expected values of 10.0
and 5.0, respectively. The acoustic velocity of loading function F3 demonstrated linear
dependence on frequency, also as expected. Optimization using ROL allowed for appreciable
convergence of the objective function and gradient; the convergence history of the objective
function and gradient, minimized in three iterations, is illustrated in Figure 8.6:

ROL Optimization for Force Inversion Model
T

10° T
B —=8— Objective Function
g —oa— Gradient
1072
10~4 -
1078

Function Value
=
o
=y
T

10-14 L

10716

10-18 -

10720

Iteration

Figure 8.6: ROL Optimization of Objective Function and Gradient

For input deck see Appendix A.59.
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8.3 Force Identification from Temporal Pressures

The temporal force identification capability is demonstrated using synthetic displacement
data generated from a 1 Hertz pressure field. The cubic geometry of this test is shown in
Figure 8.7.

Figure 8.7: Pressure Inversion Test Geometry

The model consists of 64 Hex-8 elements, arranged in a 4x4x4 cube , and was assigned
as a solid material. One boundary condition constrained the model, with one side assigned
as a fixed boundary. A distributed pressure load acted normal to the side opposite of the
fixed side. Figure 8.8 shows the sides with boundary (yellow) and loading (pink) conditions.

Figure 8.8: Fixed (yellow) and pressure-loaded (pink) sides in model

Synthetic input data was generated by performing a forward problem on the model, using
a periodic distributed pressure load function with a known magnitude of 1 and frequency
of 1 Hz. The data generated represented elastic displacements measured at element nodes.
The data was used in the inverse problem to verify that the code could recover the original
time history of the pressure loading. The test, which used a full Newton method with cubic
interpolation linesearch, was analyzed by comparing the obtained pressure loading time-
history with the original loading function. Figure 8.9 compares the inverse-problem results
with the original function.
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Figure 8.9: Inverse-problem results for elastic pressure loading time-history

As shown in Figure 8.9, the inverse problem results nearly exactly matched the orig-
inal forcing function. The optimization method ran through four iterations and achieved
significant convergence for the objective function and gradient. The test was conducted in
both series and parallel; Figure 8.10 shows the convergence history for the serial run, though
parallel results essentially matched the serial results.

For input deck see Appendix A.60.

215



ROL Optimization for Pressure Force Inversion
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Figure 8.10: ROL Optimization of Objective Function and Gradient
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8.4 Force Identification from Temporal Tractions

The temporal force identification capability is demonstrated using synthetic displacement
data generated from a 1 Hertz traction field. The cubic geometry of this test is shown in
Figure 8.11.

Figure 8.11: Force Inversion Test Geometry

The model consists of 64 Hex-8 elements, arranged in a 4x4x4 cube , and was assigned
as a solid material. The model was constrained by one boundary condition, one side assigned
as a fixed boundary. A traction load, including a normal component and two orthogonal
shear components, acted on the side opposite of the fixed side and had a direction of (z =
1,y = 2,2 = 3). Figure 8.12 shows the sides with boundary (green) and loading (orange)
conditions.

Figure 8.12: Fixed boundary (yellow) and traction loaded (pink) sides in model

Synthetic input data was generated by performing a forward problem on the model,
using a periodic traction load with a known magnitude of 1 and frequency of 1 Hz. The
data generated represented displacements measured for element nodes. The data was then
used in the inverse problem to verify that the code could recover the original time history
of the traction load. The test, which used a full Newton method with analytic Hessians,
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Figure 8.13: Inverse-problem results for traction loading time-history

was analyzed by comparing the obtained traction load time-history with the original loading
function. Figure 8.13 compares the inverse-problem results with the original function:

As shown in Figure 8.13, the inverse problem results exactly matched the original forcing
function. Optimization using ROL provided for significant convergence of the objective
function and its gradient. The test was conducted in both series and parallel, each run
undergoing three iterations; Figure 8.14 shows the convergence history for the serial run.

For input deck see Appendix A.61.
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Figure 8.14: Convergence History for ROL Optimization of Transient Traction Load Inver-
sion
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8.5 Force Identification from Temporal Acoustic Pres-
sures

The temporal force identification capability is demonstrated using synthetic displacement
data generated from a 1 Hertz acoustic pressure field. The cubic geometry of this test is
shown in Figure 8.15.

Figure 8.15: Force Inversion Test Geometry

The model consists of 64 Hex-8 elements, arranged in a 4x4x4 cube, and was specified
as air for its material. One boundary condition constrained the model: one side was as-
signed with an absorbing boundary, creating a non-reflecting condition. Acoustic loading
was applied to the opposite side, and consisted of one forcing function. Sides with boundary
(green) and loading (orange) conditions are shown in Figure 8.16.

Figure 8.16: Side of model with applied acoustic loading represented in blue

Synthetic input data was generated by performing a forward problem on the model, using
a forcing function with a known amplitude of 1 and frequency of 1 Hz. The data generated
represented acoustic pressures measured for element nodes. The data was then used in the
inverse problem to verify that the code could recover the original time history of the acoustic
loading. The test, which used a full-Newton method with analytic Hessians, was analyzed
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by comparing the obtained acoustic loading time-history with the original loading function.
Figure 8.17 compares the inverse-problem results with the original function:

Acoustic Loading at 1 Hz
T T T T T
©  Original Function

Inverse Prob. Results

Amplitude

-0.5

-1.5
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (s)

Figure 8.17: Transient Acoustic Pressure Identification

As shown in Figure 8.17, the inverse problem results exactly matched the original forcing
function. The optimization of the objective function and gradient, run in both serial and
parallel, performed four iterations and achieved appreciable convergence in both runs. Figure

8.18 shows the convergence history for the serial run.

For input deck see Appendix A.62.

221



ROL Optimization for Transient Force Inversion Problem

Error Measure

10° T T ‘

—=&— Objective Function
—+=— Gradient

1072 F

1074 F

10—6 .

10—8 -

10—10 1 1 |

0 5 10 15 20

Iteration Number

Figure 8.18: ROL Optimization of Objective Function and Gradient
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8.6 Force Identification using Modal Transient

The temporal force identification capability for modal transient is demonstrated using
synthetic displacement data generated from a 1 Hertz traction field, using the direct transient
forward solution method. The cubic geometry of this test is shown in Figure 8.19.

i

Figure 8.19: Force Inversion Test Geometry

The model consists of 64 Hex-8 elements, arranged in a 4x4x4 cube , and was assigned
as a solid material. The model was constrained by one boundary condition, one side assigned
as a fixed boundary. A traction load, including a normal component and two orthogonal
shear components, acted on the side opposite of the fixed side and had a direction of (z =
l,y = 2,z = 3). Figure 8.20 shows the sides with boundary (yellow) and loading (pink)
conditions.

Figure 8.20: Fixed boundary (yellow) and traction loaded (pink) sides in model

Synthetic input data was generated by performing a forward problem (direct transient)
on the model, using a periodic traction load with a known magnitude of 1 and frequency
of 1 Hz. The data generated representes displacements measured for element nodes. The
data is then used in the modal-transient inverse problem to verify that the code can recover
the original time history of the traction load. The test, which used a full Newton method
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with analytic Hessians, was analyzed by comparing the obtained traction load time-history
with the original loading function. Figure 8.21 compares the inverse-problem results with
the original function, with increasing numbers of modes. Note that as the number of modes
increase the ability for the modal transient solution to match the direct transient solution
increases, and the magnitude of the objective function drops.
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Figure 8.21: Inverse-problem results for traction loading time-history

Figure 8.22 shows the convergence of the final objective function with increased number
of modes. Note that for this case, the objective function does not converge to zero, as not all
of the modes can be calculated, so some truncation error exists in the problem. One possible
solution is to use the modal transient optimization solution as the initial guess for a direct
transient run. Figure 8.22 shows the convergence for the serial run. Note that the Tikhonov
Parameter is used to maintain stability in the early time period.

Convergence with NModes

10°
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Converged Objective Function
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Figure 8.22: Convergence of Final Objective Function with Increasing Number of Modes

For input deck see Appendix A.63.
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Chapter 9

High Cycle Fatigue and Damage

9.1 Random Vibration Moments

Stress moments are output from random vibration analyses for use in high cycle fatigue
calculations. This is frequently useful as a faster alternative to calculating damage to a
structure during a transient analysis.

9.1.0.1 Modalranvib Method

In the current modalranvib method, a model is given an input PSD and modal superpo-
sition is used in conjunction with the noSVD methodology in Salinas to give the 0%, 2"¢ and
4" moments of Von Mises stress defined as:

M; = /wiSde

Where:
M; " moment of stress

w  Frequency
Sye Stress PSD

Note: this is not the function used to calculate these values in Salinas. Instead, the
noSVD method uses the equations outlined in reference.'*

9.1.0.2 Transfer Function Method

The transfer function method directly calculates the stress PSD for each element using
the equation below, then integrates the PSD across the frequency band.

Soo = [U)[H (@))[®)" [Sy][@][Hr (w)]" [¥]"
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Where:
v Stress modes

d Eigen Vector
H,(w) Transfer Function
S¢r Acceleration PSD

9.1.1 The Model

The model is shown in Figure 9.1. The green cutout represents the specific subset of
elements that are being compared between the two previously described methods. The
model is excited via a 3-axis random vibration signal (provided as a PSD to salinas) applied
at a conmass. The conmass is attached to the rest of the model by rigid elements on the
outer surface of the cylinder.

Figure 9.1: Model Geometry

For reference, the magnitudes of the first and second moment from Salinas are shown on
the mesh in figure 9.2.

9.1.2 Acceleration PSD Comparison

Figure 9.3 illustrates acceleration power spectral responses at the input location (nodeset
10), and output location (nodeset 20). The input PSD is compared with the acceleration
specified on the input. Because the inertial mass is only about 100 times the mass of the
structure, resonances in the structure are seen in the driving point. Increasing the mass
would reduce that resonance, but at the cost of decreased solution accuracy overall.
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Figure 9.2: Salinas Output Colormap
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Figure 9.3: Acceleration PSD Comparison. The graph on the left is the driving point PSD
output, and is nearly identical to the input specification. The graph on the right shows the
acceleration on structural nodeset 20, which is located along the outer surface of the model,
at the base of the fillet, and in-plane with the section view of figure 9.1.
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9.1.3 Zero Moment Comparison

The RMS of the stress, which is defined as v/ My, is output from both calculation methods,
and compared in Figure 9.4. Note that the error remains below 2x1075%.
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Figure 9.4: Stress RMS (v/M,) Comparison. The figure on the left shows the value of RMS
stress across the elements in question, and the figure in the right shows the percent difference
in the RMS stress between the two calculation methods. X-axis of both plots is the element
number within the selected region.

9.1.4 Second Moment Comparison

The second moment of stress is output by Salinas as "VRMS2", which is defined as the
square root of My. The data comparison between the two calculation methods is shown in
figure 9.5. Note that the inclusion of the w? term in the integration has exacerbated the
error by several orders of magnitude, and is now on the order of 2%.

9.1.5 Fourth Moment Comparison

As with Ms, /M, is given by "VRMS4", which is plotted in Figure 9.6. Note that the
error has increased with each successive moment calculation, and is now on the order of
2-10%. It is worth noting that not all damage methods use My, but it is not uncommon.

9.1.6 Zero-Crossing Rate Comparison

The zero-crossing rate is a common metric of stress cycling frequency in the frequency

domain, and is calculated by 1y = 4/ %, or vy = Kﬁ%gg. As this value can be directly related

to the damage calculated in an analysis, the error was examined and plotted in figure 9.7.
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Figure 9.5: Stress RM Sy (v/M,) Comparison. The figure on the left shows the value of
VRMS2 stress across the elements in question, and the figure in the right shows the percent
difference in the VRMS2 stress between the two calculation methods. X-axis of both plots
is the element ID number within the selected region.

10
35 210 4
3 -
725 g
a =S
" g
< U
= 27 £
b o
£ xR
S L
g 1.5 EV
£ -
g1 =
0.5 ¥
i—SaIinas
|-Transfer Function Method
0 . . . n n -12 . . . .
0 50 100 150 200 250 300 0 50 100 150 200 250 300

Elements Elements

Figure 9.6: Stress RMS,; (v/M,) Comparison. The figure on the left shows the value of
VRMS4 stress across the elements in question, and the figure in the right shows the percent
difference in the VRMS4 stress between the two calculation methods. X-axis of both plots
is the element ID number within the selected region.
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Figure 9.7: Zero Crossing Rate Comparison. The figure on the left shows the value of zero-
crossing rates across the elements in question, and the figure in the right shows the percent
difference in the zero-crossing rates between the two calculation methods. X-axis of both
plots is the element ID number within the selected region.

For input deck see Appendix A.64.
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9.2 Fatigue Output of Single DOF in Random Vibration

A single hex (and single degree of freedom) model is used to verify the computations of
the random vibration problem. Four nodes of the 8 node brick are clamped. The remaining
nodes are constrained to move in only the X direction. In addition, mutipoint constraints
tie three nodes to a single master node. The model has only one active degree of freedom,
and a single element. Each of the results may be examined individually without a need for
a summation over mode shapes.

Comparison is made to a Matlab” calculation found in “byhand.m”. Each result is listed
in following paragraphs.

9.2.1 Ensure Normalization of Eigenvectors

From the output of Maa.m, the mass is 8.6333e-5. The eigenvector, ¢, is of length 1, and
value 107.6244. Then,

¢Tme = 107.6244 - 8.6333e-5 - 107.6244 = 1

The eigenvalues and vectors may be compared with results in onehex-eig.exo.

9.2.2 Determine the modal transfer functions, H;

The physical force, F, is transformed to modal space by premultipling by ¢*. The modal
transfer function at frequency w describes the contribution of one mode to the resulting
displacement.

W= Y HWRE) 9.1
where Z (9.2)
Hiw) = wgiwz (9.3)

In our example the sampling frequency is 10:100 Hz, while the modal frequency is 62,846.
Thus w; >> w. We can approximate,

H; = 1/(2m - 62846)* ~ 6.4133e-12

Thus, the modal amplitude, u;, is given by u; = H;F; ~ ¢T F/w? ~6.2121e-9. The modal
amplitude for FRF is not directly output, but the physical amplitude is output.
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9.2.3 Determine the physical transfer function, H(w) and Displace-
ment

Physical space is simply related to modal space, © = ¢q. Likewise,
U=HF

or,
H(w) = ¢H,; = ¢°/ (2 f)?

Thus, the physical transfer function, H ~ 7.4286E-8. Likewise, the amplitude is the transfer
function multiplied by the force. U(w) = H(w) * Force ~ ¢F ¢’ /w? ~ 6.685TE-7 and is
essentially independent of frequency. This physical amplitude may be compared with results
in onehexran-frf.frq.

Salinas computes: 6.6857E-07.

Likewise the acceleration response can be predicted. The acceleration is simply w? times
the displacement. At f = 10, U = 47%¢°F/w;. At f =10, U(10) = 0.0026394. At the the
top end of frequency band, U(100) = 0.26394.

Salinas computes 0.0026394 and 0.26394.

9.2.4 Determine the Displacement and Acceleration Spectral Den-
sity

The output is generated by a computation of a modal sum.

Nmodes

ers = Z ¢Z¢]FZ]
2]
Here I' contains the integral of the frequency component of the load.

r, — /O " Hi(w) Hy (@) S(w)dw

And, S is the PSD of the input force. A similar relation exists for acceleration, but the
integration includes w?, i.e.



We use a simple trapezoidal integration strategy. Thus, we can weight the final and initial
intervals at half the value of the central intervals.

I ~ 2nY H:SAfw (9.4)
f

~ 2rH29.0[510101010101010105]
27 (2.7249¢-8)%(9.0)(90)
3.7789%-12

Q

Q

Likewise

Ta ~ (21)°)  HISf'Afw; (9.8)
f

Q

(2m)°H29.0[10 20 30 40 50 60 70 8090 100]*[5101010 10 10 10 10 10 5]
(27)°(2.7249¢-8)%(9.0)2.0332¢9
0.13306 (9.9)

Q

Q

The ratio of GammaA /Gamma is 3.5211e10. This same ratio should be found in the square
of Ayms/Xpms found in the random vibration output of onehex-ran.exo.

Salinas has: X,,,s = 1.4799E-5. A,,,s = 2.7770. These are found in onehex-ran.exo. The
ratio (Ayms/Xyms)? = 3.5212E10.

9.2.5 Fatigue Parameters

For fatigue life predictions, we are interested in several parameters. The first of these is
the stress moments, M,, My and M,. These are important as the ratios of these moments
provide information on the rate of zero crossing, v, and the number of zero crossings,

_ ot
Ne=V,T.

The ratio of Vrms2/Vrms is related to ratios of moments. In particular,
VRMS2/VRMS = /My/M,. These are related to the ratios of I', /T

Ty ~ (2m)*) HSfAfw (9.10)
f
~ (27r)3H§9.0 [1020 30405060 708090 100]2[5 1010101010101010 5]
~ 5.5447E-7 (9.11)
Salinas has VRMS = 1.1384E2 and VRMS2 = 4.3607E4. Therefor

(VRMS2/VRMS)? = 1.4673E5, which can be compared to the closed form ratio 5.5447E-7
/ 3.7789E-12 = 1.4673E5.
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This is Salinas_rtest/verification/fatigue/onedof/onehexran.test.

9.2.6 Fatigue Solution

We verify the fatigue analysis on a single, 1x1x1 Hex8 element. This is an entirely
contrived example, with material properties invented to simplify the calculation. Results
from within Sierra/SD are compared to independent Matlab computations.

9.2.6.1 Assumptions

We begin the solution with a previously verified random vibration solution with results
in Table 9.1.

Variable | Value

Vrms 113.8421029
Vrms?2 4.360736489E+04
Vrms4 2.136176695E+07

Table 9.1: Input Moments

We also construct a fictitious material with fatigue parameters (i.e. S-N curves) that
make computation simple. The S-N curve is represented in Figure 9.8. It is constructed
such that with an RMS value of stress equal to 113.8421029, a solution of N of 1 million is
obtained. The associated material parameters are listed in Table 9.2.

Log(S)
113.84

6
10 Log(N)

Log(N) = A1 + A2 Log(S)

Figure 9.8: S-N Curve for Fictitious Material
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Variable | Value

A2 -3

m 3

Al Log(N)-A2*Log(113.84)
~12.1

Table 9.2: Fatigue Material Parameters

9.2.6.2 Damage Rate Calculation

The narrow band damage rate is,

+
Yo

— o (V2Vims) T (1 m/2)

DNB

This may be evaluated in terms of the above parameters.

V: = 2‘;7‘/—”;;2 ~ 61.0
104 ~ 1.475 x 102
(V2Vps)™ ~ 4.173 x 10°

I'(14+m/2) =T(25) =~ 1.3293

For which we have Dyp ~ 2.2919 x 10~

This is the test Salinas_rtest/verification/fatigue/onedof/onehexfatigue.test
onehexran.test. For input deck see Appendix A.65.

9.2.7 Fatigue Stress Scaling

We verify the fatigue analysis scaling on a single, 1x1x1 Hex8 element. This is an entirely
contrived example, with material properties invented to simplify the calculation. The model
is identical to a fatigue example previously verified, we simply scale the geometry and loads,
and verify the solution. The experimental material data is unchanged.

9.2.7.1 Model Definition and Scaling

e The model is a 1x1x1 in® cube. It is scaled to SI units 0.0254 meters on a side.

e Input pressure is 7 psi, multiplied by a frequency function. In SI units, this becomes 7
X 6894.76 = 48263.32 pascals, multiplied by the same function.

e Young’s Modulus of 1e7 psi becomes 68.947573e9 pascals. Handbook value is 69 GPa.
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e Density of 0.000259 slinch/in® (0.1000776 1bm/in®) becomes 2770.138kg/m®. Hand-
book values of 2700 kg/m?.

9.2.7.2 Results

The damage rate and stress must be independent of units. This is ensured by using the
same comparison file for both. In addition, we have the following correspondence.

Result English Units SI Units Status
Eigen Frequency 62846.1 Hz 62820.8 Hz v
max(Axrms) 2.7770in/s* 0.070537 m /s* v
Vrms 113.84 psi 0.78492x 10 Pa v
ZeroCrossingRate 60.965 60.965 v
PeakFrequency 77.965 77.965 v
NbDamageRate 2.2923E-13 2.2923E-13 v
DamageRate 1.9324E-13 1.9324E-13 v
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9.3 Fatigue Output of Dogbone Test

9.3.1 Scope:

Verification of Sierra/SD in the frequency domain builds upon a verification of “Siesta”,
a python post-processing tool for evaluation of high cycle fatigue damage. These solutions
represent evaluation of the same damage quantities through a variety of means. Sierra/SD
will evaluate the damage using frequency domain methods only.

Siesta has been evaluated using both the time domain and frequency domain. Com-
putations were performed to individually compare both domains to an analytical solution
for the simple case of a 5 Hz sine wave input. Two additional computations were conducted
with the same model verifying that time domain and frequency domain both result in the
same solution when provided more complex inputs. These evaluations were conducted on an
element by element basis, and so some discrepancies to the single DOF analytical solution
are expected.

9.3.2 Methodology:

The dog-bone specimen described by Anes et al.'® was chosen as a sufficiently simple

model to solve damage analytically, with the additional benefit that experimentally derived
results were available for our load case. Note that calculations were done using English units:
IPS in Salinas, converted to Ksi during import into Siesta.

N |
12 6.3
T !
34 34
R50
101

Figure 9.9: Dog-bone Specimen Dimensions (mm)
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Figure 9.10: Boundary conditions of mesh

For all tests, the mesh is constrained via two points at either end of the specimen. Both
points are fixed in all degrees of freedom except axial translation, and affixed to the mesh

237



by rigid elements to the surfaces of the mesh near the ends. Results are output only for the
narrow highlighted potion at the center of the model. Forces are applied at the end points
with equal and opposite magnitudes. There are no point masses in the system; frequency
domain input PSDs are truly provided as force squared per Hz.

To verify the results in both time domain and frequency domain, three test scenarios were
evaluated, as illustrated by the PSDs shown in Figure 9.11, with details in Tables 9.3 through
9.5. The first was a 5 Hz fully reversed sine wave with 3141 lbf peak magnitude, the second
was an example input matching a test specification with relatively narrow band frequency
content, and the third was an example test specification with a wide band of frequency
content. Note that the first elastic mode of the system occurs at 929 Hz, and modal random
vibration solves included calculation of 150 modes to capture what is effectively a static
solution at 5 Hz. Modes are computed to about 340 KHz.

100: i T GETET E LT Y L T L | T L B
i —5Hz
Narrow Band
= \Nide Band
107" F 3

PSD (Ibs?/Hz)
o
N

1073 F

107
100 10" 102 108 104

Frequency (Hz)

Figure 9.11: Power Spectral Density of Input Force

In the absence of an easy way to define a single-frequency PSD, the 5 Hz test was repre-
sented in the frequency domain using a PSD with the appropriate RMS magnitude, centered
around 5Hz, and with a band width of 1 Hz. Time domain realizations of the wide and
narrow band test PSDs were generated such that their RMS values could not differ from
the specification by more than 1dB, the PSD of the generated signals could not differ by
more than 6 dB at any frequency, and could not differ by more than 3dB over 80% of the

frequency range.

Table 9.6 shows the preliminary results of the 5 Hz test of frequency and time domains.
Sierra/SD and Siesta results are very close for this model. However, it is important to note
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Frequency (Hz)

PSD (Ibs?/Hz)

4.00
4.49
4.50
5.50
5.51
6.00

le-13
le-13
4.93128¢e6
4.93128e6
le-13
le-13

Table 9.3: 5 Hz PSD representation

Frequency (Hz)

PSD (Ibs?/Hz)

10

12

23

37

102
153
500

0.1400
0.4000
0.4000
0.0110
0.0110
0.0002
0.0002

Table 9.4: Narrow-Band PSD

Frequency (Hz)

PSD (Ibs?/Hz)

10
28
41
72
112
221
237
265
285
581
650
1000
1200
1700
2200
3000

0.0200
0.0200
0.0400
0.0400
0.0029
0.0029
0.0060
0.0060
0.0029
0.0029
0.0075
0.0075
0.0200
0.0200
0.0800
0.0800

Table 9.5: Wide-Band Force PSD
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Domain Damage Vrms Cycling Damage Rate

Model (ksi) Rate (Hz)
Time Minor’s 44.3-47.1 4.17 1.8E-6 - 4.2E-6

Rule
Steinberg 3.0E-3 - 8.7TE-3

Frequency Narrow 42.9-46.3 5.01 9.4E-3 - 2.7TE-2
Band
Wirsching- 4.8e-3 - 1.4e-2
Light

Documentation | Experiment | 46.36 5.00 5.0E-6

Table 9.6: Preliminary 5 Hz Results. Ranges indicate spatial changes.

that neither domain’s damage formulations are intended to be used on a sine input. Because
this is a sine input, three adjustments must be made to the raw data.

1. The rainflow algorithm consistently misses one half cycle on the input, and interprets

a 0.6 second 5Hz tone as a 4.17 Hz tone instead. As the time history in increased in
length, the recorded cycling rate converges to 5 Hz, so we will act as though it detected
5Hz. It is recommended that you use the longest time history feasible, preferably
50-100 cycles of the lowest frequency.

. Narrow band damage, and Wirsching-Light by extension, includes a scale factor of
['(1 + m/2) on the damage, where I' is the gamma function, and m is the fatigue
exponent. For a sine input, this is not appropriate, as it makes the calculated damage
wildly conservative, so we will reduce the damage by this same factor.

. The Steinberg method for calculating damage includes the assumption that the mag-
nitude of Vrms is a one sigma event, and adjusts the damage to reflect the influence
of 2-sigma and 3-sigma events as well. These cycles do the majority of the damage
on a system, and so this approach is not appropriate for modeling a strictly controlled
experiment with 100% of the cycles at the same value.

After adjusting the results and removing Steinberg from the chart, we are left with Table
9.7. It is worth noting that the Wirsching-Light damage metric is intended to compensate
for conservatism on wide-band signals; as this signal is very narrowband, the correction is
unnecessary. In summary, the narrow band results are as expected.

v The preliminary results for Siesta and Sierra/SD agree very well.

v With appropriate corrections, these results are consistent with both rainfall computa-

tions and with experiment.
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Domain | Damage Vrms Cycling Damage Rate
Model (ksi) Rate (Hz)
Time Minor’s Rule | 44.3-47.1 ) 2.2E-6 - 5.0E-6
Narrow Band 1.7E-6 - 5.0E-6
Frequency Winsdhing 42.9-46.3 5.01 0.9E6 - 2556
Anes Experiment 46.36 5.00 5.0E-6

Table 9.7: 5 Hz test after adjustments. Ranges indicate spatial variation.

9.3.2.1 Narrowband and Wide-Band Evaluation

Tables 9.8 and 9.9 show the results under representative wide and narrow-band PSD
inputs. Narrow band damage represents the time domain solution well, and is strictly con-
servative in our selected band of elements, but the wide band test revealed that the frequency
domain is only an estimate of damage expected from the time domain analysis under wide-
band loading. Why this discrepancy exists is not well understood, but may be caused by
the shape of the wide-band PSD used. It may be possible to better represent the wide-band
test with 2-3 narrow band tests under the order-independent assumption of Minor’s rule,
but this was not tested.

As with the 5 Hz test, the rainflow algorithm used in the time domain calculated an in-
accurate cycling frequency when provided with a narrow-band signal. This is not considered
to be a problem because the overall damage appears to be well accounted for.

Domain | Damage Vrms (ksi) | Cycling Damage Rate
Model Rate (Hz)
Time | Minor’s Rule | 0.046-0.049 532 5.6E-43 - 1.76-42
Steinberg 2.0E-43 - 5.8E-43
Frequency | Narrow Band | 0.051-0.055 47 6.3E-43 - 1.8E-42
Wirsching 2.9E-43 - 8.4E-43

Table 9.8: Narrow-Band Test Results. Ranges indicate spatial variation.

Narrow-band and Wide-band results are very similar for Siesta and Sierra/SD, but they
are not identical. We expect that there are round off errors and integration differences
leading to those differences. These are particularly difficult in an undamped system with
numerical integration crossing peak resonance. Table 9.10 compares these results. Overall,
the comparison is good, and well within the differences of the other methods.

9.3.2.2 Integration and Damping

The PSD spectrum is integrated through frequency to determine the RMS stress and the
stress moments. For undamped systems, that function is singular at the resonance points.
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Domain | Damage Vrms (ksi) | Cycling Damage Rate
Model Rate (Hz)

Time | Minor’s Rule | 0.22-0.24 | 2486 - 2487 | 21E-33 - 56E-33
Siesta results

Steinberg 2.2E-33 - 6.3E-33
Frequency | Narrow Band | 0.20 - 0.22 2293 6.8E-33 - 20E-33
Wirsching 3.1E-33 - 9.0E-33
Sierra/SD results
Narrow Band 6.5E-33 - 19E-33
Frequency Wirsohing 0.201 - 0.217 2293 3 0E-33 - 8.6E-33

Table 9.9: Wide-Band Test Results. Ranges indicate spatial variation.

Parameter Narrow-Band Wide-Band
Siesta | Sierra | Diff | Siesta | Sierra | Diff
Vrms (psi) 55 55.45 0 220 220 0%
v 47 47 0 2293 2293 0%
NB Damage || 1.8¢-42 | 1.74-e42 | 3% || 2.0e-32 | 1.9E-32 | 5%

Table 9.10: Maximum of Siesta and Sierra/SD Computions

Two factors influence the accuracy of that solution. First, damping removes the singularity
in the solution. Second, the size of the frequency step addresses the accuracy of the integral.

Figure 9.12 provides some information on the convergence of the solution as these param-
eters are varied. The figure on the left shows variation of the narrowband damage, Dyp, as
damping is increased. For damping below 1%, there is no significant impact on the solution.
The graphic on the right illustrates the same data, sliced another way. We observe that the
frequency step, AF, has a significant affect on the solution. For our problem, independent of
damping, the frequency step should be below 1 Hz. However, with no damping and a small
frequency step, very different (non-convergent) results are obtained. This is consistent with
numerical integration across a singularity. For input deck see Appendix A.66.

9.4 Fatigue Output of Pinned Shell

Both a narrowband and wideband example are evaluated. The verification test ensures
the following.

e The stress is evaluated at all three surfaces (top, middle, bottom), and the larger of
these values is used for evaluation of damage.

e The zero crossing and peak frequency make sense in the context of the PSD inpt. This
is easier to evaluate for narrowband processes.
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Figure 9.12: Convergence of PSD Integration

e Von Mises stress is consistent between modalranvib and FRF solutions.

e The von Mises stress is consistent with a static solution.

e Damage Rate is consistent with independent Matlab calculations.

We also have no

We do not have a comparison with time domain rainfail calculations.

convergence study, either with mesh, or with modes.

9.4.1 Narrow Band Pinned Plate

The model is a simple rectangular plate, shown in Figure 9.13. The plate is 10 units in
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Figure 9.13: Pinned Plate Geometry, and First Mode
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X, 1 unit in Y, 0.01 units thick, and all deformation is in the Z direction. In modal analysis,
only the first mode is retained, which is a bending mode, shown in the lower portion of
Figure 9.13. The +/- X surfaces are pinned, with no other Dirichlet boundary conditions.
Loading is a uniform pressure in the —Z direction. The narrowband loading in shown in
Figure 9.14, where the entire loading is in the 4 Hz to 5 Hz range. The first mode is at about
8.9 Hz, so this loading is below that first mode.

1 2 3 4 5 6 7 8
Frequency

Figure 9.14: Pinned Plate. Random Vibration Loading

9.4.1.1 Statics:

The static response on the bottom surface, to a uniform pressure load is shown in Figure
9.15. Stress on the top surface is the negative of this, and there is no stress on the midplane.

9.4.1.2 FRF:

The input is modified, and a modal FRF computed from 0.01 to 8 Hz, as shown in Figure
9.16. The stress response is very similar to the static solution, as evidenced in Figure 9.17.
There are expected deviations, as the FRF response includes only a single mode. However,
the stresses are as expected, and they increase at the sample frequency of 4.55Hz, as the
solution approaches resonance.

v FRF and Statics displacements and stresses are consistent.
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Figure 9.15: Pinned Plate. Statics Response
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Figure 9.16: Pinned Plate. Modal FRF Response
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Figure 9.17: Pinned Plate. Comparison of Static and FRF Solutions

9.4.1.3 Random Vibration Analysis:

The next step of the computation is evaluation of the RMS von Mises stress through the
modal random vibration analysis. The peak value of this stress is 1.037x10°, which occurs
in the center of the structure. This value is consistent with the stresses computed in the
FRF and Statics portions of the analysis. The following are confirmed.

v' The zero crossing and peak frequency, determined from Vrms;, are both about 4.5 Hz,
consistent with the narrow band sweep in this analysis.

v" RMS stresses are consistent with the FRF values. Note however, that these are all

axial stresses.

9.4.1.4 Fatigue Damage Analysis:

The final step is the fatigue analysis. Output of this analysis confirms,

v' The zero crossing and peak frequency are correct.
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v' Damage rates are consistent with hand calculations.
v s (T
Dyg = =-(V20,Fss)"T (5 n 1)

For our structure, Dyg &~ 5 in the center of the plate.

A, = 12.1689
A =104 =1.475x 10™
m ES 3
Fss = 0.0001
v = 4.534
r/2) = 1.3293
o~  1.0377 x 10°
Dyg = 12911 x107° (from hand calcs)

The value from the output is Dyg = 1.291125933 x 1075,

9.4.2 Wideband Calculations

Wideband calculations use the same model as narrowband. Only a single mode is retained
as shown in Figure 9.13, however the band selected is from 10-100 Hz. Figure 9.18 shows
the displacement response over this band, with a 1% damping. Above the 8.9 Hz mode, the
response rolls off.

For this model, the zero crossing rate at all locations is v = 12.351. The peak frequency
is somewhat higher (as expected), at v, = 20.115Hz. Both reflect the much higher energy
at lower frequency because the dominant mode is at 8.9 Hz.

v" The zero crossing and peak frequency are reasonable.
The peak Damage occurs in the middle of the plate. Peak values for NbDamageRate and

DamageRate are 6.8259 x 10~* and 5.6715 x 10~ respectively.

The RMS von Mises stress can be computed in two ways. First, the modal random
vibration method can be used. Second, a frequency response method is used. Each of these
methods is applied here for the element 51, which is found at the center of the plate where
the stress is maximum.

ModalRanVib: This method, described in the Sigrra/ SD manuals, computes the RMS von
Mises stress. The value from the method is Vizag = 2.7886 x 106.
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Figure 9.18: Pinned Plate. Wide Band FRF Response

FRF: This method uses the transfer functions. From the output of the modalFRF calcula-
tion,

Vs = /000 H'(w)Spp(w)H (w)dw

where H(w) is a stress transfer function, and Spp is the force input power spectral
density. For element 51, Vipys = 2.8695 x 10°. Here we assume that the stress is
uniaxial, and H applies to o,,, the axial portion of the stress. The Matlab code to
approximate this integral is,

hl = evar23(51,:) + sqrt(-1)*evar01(51,:);
hi = hil.’;
df = 0.1;

Sff =1,

Vrms2 = h1’*Sffxhlx*df;

Vrms = sqrt(Vrms2)

The difference between these two values is about 3 percent. That would appear to be too
large. However, evaluation of convergence as the frequency step is decreased indicates much
less error in the modal random vibration solution. See Figure 9.19. The RMS stress depends
on damping. Setting the damping ratio to 50%, results in stresses of 1.2721e6 and 1.262251e6
using an FRF and random vibration method respectively. As expected, the integration error
is lower for these values, and relative error is about 0.8%.
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v' Computation of the RMS stress is consistent between the two methods.
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Figure 9.19: Convergence of Frequency Integrals

For input deck see Appendix A.67.
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Chapter 10

Legacy Sierra/SD Verification Problems
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10.1 Element Verification Tests

The purpose of this section is to report the verification calculations that have been
performed on the Sierra/SD software. Test models and calculations were performed to
ensure that Sierra/SD performs as required. Element patch tests are described, convergence
studies for the elements are performed, and code to code comparisons are made to ensure
that the software meets the requirements for analysis of hypersonic vehicles used in Sandia’s
nuclear weapons program.

The tests described in this document were performed in support of release 1.1 of
Sierra/SD . This covers capabilities for linear structural dynamics, linear statics, and lin-
ear transient dynamics. Specifications and requirements for this release are identified in the
Requirements document,'® and summarized in a technical report.!”

Verification tests can never cover the full aspects of the software. Analysis shows that
there are simply too many paths through the software to ever adequately cover all such paths
(see Beizer'® or Myers'?). However, these tests are essential to provide confidence that with
proper input, solutions to the fundamental equations of mechanics are solved properly.

Note that verification tests address mesh discretization only indirectly.

10.1.1 Element Patch Tests

The element patch tests in this study are derived from MacNeal’s monograph.?’ These
tests are designed to ensure that the element formulations are independent of element orien-
tation, and that the elements are capable of solving exactly the equations on which they are
based. As a minimum, elements should be able to represent a constant strain field exactly
since the linear shape functions of the elements are the minimum required to do this exactly.

All of the 2D and 3D elements in the Sierra/SD element library are tested. The 2D
elements are: QuadT, Tria3, TriaShell, and Tria6. The 3D elements are Hex8b, Hex8, Hex20,
Wedge6, Tet4, and Tet1l0. The 2D elements are tested using a membrane patch test and
a bending plate patch test. The 3D elements are tested using the solid patch test. These
patch tests are defined in MacNeal.?°

All the 2D elements pass the membrane and bending patch tests. All the 3D elements pass
the solid patch test. These patch test problems are located in the Salinas test repository
in the Salinas test/patch tests subdirectory. The results for the patch tests are shown in
Table 10.1.
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Table 10.1: Patch Test Results

Element Type Patch Test

Membrane | Bending | Solid

QuadT Passed Passed | N/A

Tria3 Passed Passed | N/A

TriaShell Passed Passed | N/A

Tria6 Passed Passed | N/A
Hex8 N/A N/A | Passed
Hex8b N/A N/A | Passed
Hex20 N/A N/A | Passed
Wedge6 N/A N/A | Passed
Tet4 N/A N/A | Passed
Tet10 N/A N/A | Passed

10.1.2 Element Accuracy Tests

Accuracy tests are designed to stress test elements. These are not convergence tests.
The purpose of the test is to provide information about how badly the element performs in
common (but under meshed) environments. It can be noted in the results below that Tet4
elements are way too stiff in almost all loadings. This is expected, and the test results are
provided to help analysts determine the applicability of this element for their analysis. Below
are test results for the accuracy tests (Tables 8 through 15 of MacNeal [20]). All tabulated
results are the ratio of the numerical solution to the exact solution, i.e. a value of 1.00 is
a perfect result. The test problems are described and illustrated in the reference, Figures 4
through 10.

The first test from MacNeal is a straight beam with a length of 6.0, an in-plane cross
sectional dimension of 0.2 and an out of plane cross sectional dimension of 0.1. There is
a single element at any given point along the length of the beam and total of 6 elements
along the length of the beam. The Young’s Modulus, £ = 107, the Poisson ratio, v = 0.30,
and the loading is a unit force at the free end of the beam. Reported table values refer
to displacement at the loaded tip of the beam. Tables 10.2, 10.3 and 10.4 show results for
rectangular, trapezoidal, and parallelogram shaped elements, respectively.

Table 10.5 below shows results for a curved beam, also with a 6 by 1 element mesh. The
inner radius is 4.12, the outer radius 4.32, the arc 90 degrees, and the thickness 0.1. The
Young’s Modulus is &/ = 107 , the Poisson ratio is 0.25. The tip load is of unit magnitude.

Table 10.6 shows results for a cantilever beam that twist a total of 90 degrees along the
length of the beam. The beam length is 12.0, the in-plane cross sectional dimension 0.32
and the out of plane cross sectional dimension is 1.1. The Young’s Modulus is 29.0e6 and
the Poisson ratio 0.22. The tip load is of unit magnitude.

253



Table 10.2: Straight Beam — Rectangular Elements

Element Type | Extension | In Plane | Out of Plane | Twist
Hex20 0.994 0.970 0.961 0.904
Hex8b 0.988 0.978 0.973 0.892
Hex8 0.986 9.22 2.50 89.2
Tet10 0.998 0.960 0.959 0.910
Tet4 0.979 0.0219 0.0119 0.00264

Wedge6 0.991 0.0326 0.0882 0.0257
QuadT 0.839 1.05 0.979 0.704
Tria6 0.999 1.00 0.988 0.716
Tria3 1.01 1.06 0.978 0.704
TriaShell 0.966 0.224 .0978 0.720
Table 10.3: Straight Beam — Trapezoidal Elements

Element Type | Extension | In Plane | Out of Plane | Twist
Hex20 0.977 0.731 0.714 0.863
Hex8 0.988 0.734 0.307 51.4
Hex8b 1.009 0.0475 0.03 0.623
Tet10 0.999 0.277 0.208 0.667
Tet4 0.978 0.0144 0.00691 0.00755

Wedge6 0.992 0.0187 0.0302 0.0546
QuadT 1.00 0.559 0.980 0.0226
Tria6 0.999 1.00 0.988 0.716
Tria3 0.999 0.733 0.980 0.705
TriaShell 0.996 0.208 0.979 0.721

Tables 10.7 through 10.10 show results for a rectangular plate with either simply sup-
ported or clamped boundary conditions and either a point load of 4x10* at the center of the
plate or a uniform pressure of 1x10* over the plate. The plate has either a width-to-height
aspect ratio of 1.0 or 5.0. The plate height is 4.0. The plate thickness is 0.01 for solid ele-
ments (Hex20, Hex8, Hex8b, et10, Tet4, and Wedge6) and 0.0001 for shell elements (QuadT,
Tria6, Triad, and TriaShell). The Young’s Modulus is 1.7472x107 and the Poisson ratio 0.3.
The quantity N in these tables denotes the number of node spaces on half the edge of the
plate. If the element has midside nodes, e.g., the Hex20, Tet10, or Tria6, then the number
of elements along this portion of the edge of the plate is half the value of N. These tests
are not particularly well-suited for the Tet elements (Tet10 and Tet4) as the aspect ratios of
the elements is very large due to the small thickness. Nastran’s Tet10 performs in a similar
fashion to Sierra/SD ’s Tet10 on the remaining problems in this section.

Table 10.11 shows the results for the Scordelis-Lo Roof tests. This test involves a curved
plate. The radius of curvature is 25.0 and the associated arc 80 degrees. The length of the
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Table 10.4: Straight Beam Tests — Parallelogram Elements

Element Type | Extension | In Plane | Out of Plane | Twist
Hex20 1.01 0.404 0.280 0.758
Hex8 0.983 1.60 0.943 38.68
Hex8b 0.977 0.623 0.528 1.27
Tet10 0.998 0.289 0.213 0.744
Tet4 0.981 0.0122 0.00708 0.00779

Wedge6 0.991 0.0148 0.0558 0.154
QuadT 0.985 0.407 0.981 0.141
Tria6 0.998 0.816 0.988 0.716
Tria3 1.00 0.535 0.978 0.702
TriaShell 0.996 0.190 0.978 0.720

Table 10.5: Curved Beam Tests

Element Type | In Plane | Out of Plane
Hex20 0.879 0.937
Hex8 7.06 22.8
Hex8b 0.879 0.952
Tet10 0.839 0.776
Tet4 0.0174 0.00738

Wedge6 0.0255 0.0557
QuadT 1.09 0.867
Tria6 1.01 0.893
Tria3 1.07 0.864
TriaShell 0.185 0.895

plate is 50.0 and the thickness 0.25. The straight edges of the plate are free and the curved
edges are constrained so that they are not able to move in the plane in which the curved
edge is contained. The loading is a traction in the z-direction on the face of the plate of
magnitude 90.0 per unit area. The Young’s Modulus is 4.32e8 and the Poisson ratio 0.0.
The quantity N still represents the number of node spaces along half of one of the edges of
the plate.

Table 10.12 gives the results for the spherical shell tests. This is a semi-spherical shell
with a hole cut out of the top. The angular size of the hole is 36 degrees. The radius is
10.0. The thickness is 0.04. The Young’s Modulus is 6.825e7. The Poisson ratio is 0.3. The
loading is made up of four equally spaced radial point loads of magnitude 2.0 at the equator.
Two of these point loads are radial inward and two are radially outward. The quantity N
represents the number of node spaces along a quarter of one of the edges of the shell.

The next table (Table 10.13) shows the results for the thick walled cylinder tests. This
is a donut shaped, thick plate of thickness 1.0, inner radius 3.0, and outer radius 9.0. The
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Table 10.6: Twisted Beam Tests

Element Type | In Plane | Out of Plane
Hex20 1.01 0.995
Hex8 14.2 10.7
Hex8b 0.744 0.741
Tet10 1.00 1.01
Tet4 0.0947 0.162

Wedge6 0.0877 0.283
QuadT 31.5 25.0
Tria6 19.6 15.5
Triad 30.9 24.6
TriaShell 11.4 8.99

Table 10.7: Rectangular Plate with Simple Supports and Uniform Pressure Load, Aspect
Ratio 1.0

Element Type | N=2 N=4 N=6 | N=8
Hex20 0.0167 | 0.691 0.831 0.976
Hex8 0.220 0.904 2.02 3.11
Hex8b 0.04 0.412 0.782 0.92
Tet10 0.00116 | 0.00331 | 0.00752 | 0.015

Tet4 4.42e7 | 8.00e6 | 4.10e5 | 1.29e4
Wedge6 0.228 | 0.0824 | 0.0568 | 0.0543
QuadT 0.966 0.922 0.997 | 0.998
Tria6 1.01 0.974 0.987 | 0.992
Tria3 0.978 0.992 0.997 | 0.998
TriaShell 0.958 0.987 0.994 | 0.997

Young’s Modulus is 1000, and the Poisson ratio is either 0.49, 0.499, or 0.4999. The loading
is a unit radial pressure on the inner radius. The mesh has five elements along the radius at
10 degree intervals and one element through the thickness, for a total of 180 elements.

10.1.3 Element Convergence Tests

Mesh convergence studies establish confidence that the accuracy of the solution increases
as the mesh is refined. They also establish the rate of convergence of the solution. They may
be performed with or without a known analytical solution for the problem. Fortunately, for
many structural dynamics problems, analytic solutions are available.

In structural dynamics, unstructured grids are necessarily used. While standard Richard-
son extrapolation®! is not directly applicable to unstructured meshes, related methods can
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Table 10.8: Rectangular Plate with Simple Supports and Uniform Pressure Load, Aspect

Ratio 5.0

Element Type | N=2 N=4 N=6 N=8
Hex20 0.503 0.649 1.04 1.02
Hex8 0.130 0.515 19.21 2.03
Hex8b 0.024 0.302 1.10 0.917
Tet10 0.000702 | 0.00181 | 0.00424 | 0.00852
Tet4 1.57e7 2.52e6 | 1.28eb | 4.05eb
Wedge6 0.179 0.0977 | 0.0474 | 0.0470
QuadT 0.978 0.993 0.994 0.999
Tria6 0.658 1.02 1.01 1.00
Tria3 0.945 0.991 0.997 0.999
TriaShell 0.960 0.995 0.999 0.999

Table 10.9: Rectangular Plate with Clamped Supports and Concentrated Load, Aspect Ratio
1.0

Element Type | N=2 N=4 N=6 | N=8
Hex20 0.00106 | 0.072 0.553 0.822
Hex8 0.120 0.578 1.33 2.36
Hex8b 0.0195 0.246 0.614 | 0.824
Tet10 0.00110 | 0.00329 | 0.00624 | 0.0109
Tet4 1.46e6 | 2.31eb | 1.15e4 | 3.52¢4
Wedge6 0.0037 | 0.0186 | 0.0373 | 0.0561
QuadT 1.08 1.03 1.02 1.01
Tria6 1.06 1.17 1.01 1.01
Tria3 0.778 1.03 1.02 1.01
TriaShell 0.860 1.02 101 1.01

be used to determine truncation error (see Alvin®? for example). Some detail is provided in
Appendix C.

Convergence testing is usually used either to explore the properties of newly designed
elements or to assure the adequacy of a candidate mesh. Use of it to verify the correct
implementation of an element is not universally done; instead the patch test and the accuracy
tests are usually considered sufficient. Convergence testing is performed as part of this
verification suite to provide consistency with verification efforts in other Sandia codes.

In its simplist form, convergence analysis involves performing an analysis with at least
three levels of mesh fineness and assessing the rate at which the error goes to zero. For the
elements under consideration, convergence is known to be geometric: quadratic for the low
order elements and quartic for the high order elements once the elements are small enough.
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Table 10.10: Rectangular Plate with Clamped Supports and Concentrated Load, Aspect
Ratio 5.0
Element Type | N=2 N=4 N=6 N=8
Hex20 8.51led | 0.0396 | 0.220 0.374
Hex8 0.0362 | 0.138 0.551 0.992
Hex8b 0.00585 | 0.083 0.247 0.415
Tet10 3.39e4 | 0.00141 | 0.00282 | 0.00475
Tet4 2.26e7 | 3.60e6 | 1.80e5 | 5.61eb
Wedge6 0.00320 | 0.0181 | 0.0241 | 0.0297
QuadT 0.613 0.919 1.00 1.01
Tria6 0.606 0.910 0.998 1.01
Tria3 0.603 0.915 1.00 1.01
TriaShell 0.666 0.945 1.01 1.02
Table 10.11: Scordelis-Lo Roof Tests
Element Type | N=2 | N=4 | N=6 | N=8 | N=10
Hex20 0.0583 | 0.276 | 0.645 | 0.870 | 0.956
Hex8 0.563 1.43 2.17 2.73 3.16
Hex8b 0.125 | 0.574 | 0.889 | 0.967 | 0.981
Tet10 0.0198 | 0.0526 | 0.0770 | 0.101 | 0.149
Tet4 0.00599 | 0.0108 | 0.0196 | 0.0333 | 0.0472
Wedge6 0.0608 | 0.0847 | 0.0999 | 0.113 | 0.130
QuadT 1.58 1.05 1.06 1.02 1.00
Tria6 1.45 1.13 1.06 1.02 1.00
Tria3 1.45 1.13 1.06 1.02 1.00
TriaShell 1.35 1.04 1.01 0.995 | 0.984

The convergence tests for the Hex8 elements was the static deformation of a cantilevered
beam. The meshes employed are shown in Figure 10.1 and the appropriate plot of con-
vergence error is show in Figure 10.2. It was seen that the convergence slope increased in
magnitude as the meshes were refined and that for both the fully integrated and the selec-
tively integrated element, the slopes found through this numerical experiment approximate
the theoretical value of -2. That one needs to go to extremely small meshes to achieve this
geometric convergence would appear to result from focusing on convergence at a single point
— a very rigorous criterion.

Element convergence for Hex20 and Tet10 elements was preformed focusing on the cal-
culated first eigenvalues. The resulting convergence plot for the Hex20 is shown in Figure
10.3. Here we see that the convergence rate is -3.8, very close to the theoretical value.

The convergence test of the Tet10 element was a bit more difficult. Here it is impossible
to refine the mesh through sectioning to create new elements all of approximately the same
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Figure 10.1: Meshes for convergence test for Hex8 elements
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Figure 10.2: As the meshes are progressively refined, the slope of the log-log plot of the error
approaches -2, as predicted by theory.
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Convergence of Hex20 Element in Eigen Test

- Error
- Lin Fit to Log-Log

log, ,(Error)

Slope = -3.858

Richardson Extrap. = 3896094074.0741

Iog10(1/A xk)

Figure 10.3: The convergence plot of the Hex20 element for the first eigen value shows a
slope very close to the theoretical value of -4.
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Table 10.12: Spherical Shell Tests

Element Type | N=2 N=4 N=6 N=8 | N=10 | N=12
Hex20 — 0.00129 | 0.00662 | 0.0209 | 0.0500 | 0.0974
Hex8 0.00573 | 0.0547 | 0.133 0.238 0.371 0.531
Hex8b .000303 | 0.0104 | 0.056 0.162 0.319 0.491
Tet10 — 2.21ed | 3.83e4 | 6.73e4 | 0.00107 | 0.00167
Tet4 2.22eb | 3.18eH | 3.78eH | 4.46e5 | 5.62e5 | 6.94eb

Wedge6 0.0153 | 0.00447 | 0.00645 | 0.00660 | 0.00708 | 0.00781
QuadT 0.0423 | 0.0834 | 0.263 0.502 0.697 0.820
Tria6 0.0194 | 0.0879 0.263 0.502 0.697 0.819
Triad 0.0445 | 0.0891 0.266 0.499 0.693 0.816
TriaShell 0.436 0.199 0.226 0.378 0.560 0.708
Table 10.13: ThickWalled Cylinder Tests
Element Type | v = .4900 | v = .4990 | v = .4999

Hex20 1.03 1.04 1.04

Hex8 0.445 0.437 0.406

Hex8b 0.437 0.437 0.437

Tet10 0.444 0.442 0.442

Tet4 0.393 0.356 0.349

Wedgeb 0.408 0.399 0.398

QuadT 0.416 0.414 0.413

Tria6 0.438 0.436 0.436

Tria3 0.419 0.417 0.417

TriaShell 0.425 0.423 0.423

size and also retain the aspect ratios of the coarser mesh. Instead, it was necessary to entirely
remesh the numerical beam each time a mesh of finer element size was required. Still the
resulting slope of the log-log error plot (shown in Figure 10.4 is very close to (though a bit
larger than) the theoretical value of -4.
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Convergence of Tet10 Element in Eigen Test
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Figure 10.4: The convergence plot of the Tet10 element for the first eigen value shows a
slope very close to the theoretical value of -4
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Figure 10.5: Box on a Bar test object

The convergence rates of the various elements are listed in Table 10.14.

Table 10.14: Element Convergence Rates

Element Type | Ideal | Measured | Comments
Rate Rate
Hex8 2 2 Beta=1.0, Alpha=1 — /1 — 2v
Tria3 2
TriaShell 2
QuadT 2 derived from Tria3
Quad8T 2 derived from Triad. Not truly higher order.
Beam2 2
Tet4 .
Hex20 4 4 using eigen analysis
Tet10 4 4 using eigen analysis
Tria6 2 derived from Tria3. Not truly higher order.

10.1.4 RBE3 - comparison with Nastran

Verification of the RBE3 pseudo-element necessarily requires comparison with nastran,
because no physical model exists. The RBE3 is designed to function like the nastran
pseudo element. A very simple model was constructed for evaluation of an RBE3 link.
The structure consisted of a cube placed on the end of a beam. The beam terminates
in the center of the cube, and is connected to the eight corners of the cube with an
RBE3 as illustrated in Figure 1. The model is named BoxOnBarRbe3.inp. The test is
Salinas_rtest/test_tool/fast_regression_tests/mpc/BoxOnBarRbe3.test.

There are slight differences in the beam models used by Nastran and by Sierra/SD . A
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summary of the modes is included in the table. As can be seen in the table, the agreement
is quite good. All the modes of the structure are preserved by the RBE3.

# | Nastran | Sierra/SD | Description
Frequency | Frequency
1 2354.8 2354.4 1st bending
2 2354.8 23544 1st bending
3 6833 6832.7 pogo stick, axial mode
4 9942 9939.4 2nd bending
5 9942 9939.4 2nd bending
6 13697 13335 torsion
7 22367 22365 hex deformations
> 20,000 > 20,000 | hex deformations

10.1.5 Verification of hexshells

In this section we list the results of several verification examples for hexshell elements.
These verification examples were taken from Professor Carlos Felippa, the developer of the
element, (see reference 12). The goal here was to reproduce the results obtained in that
report.

10.1.5.1 Example 1

This example corresponds to section 9.5 in the report 12, and consists of a circular ring
subjected to equal and opposite forces acting along the vertical direction. The exact solution
for this problem is given in both reference 23 and reference 24 as

2 —8 PR?
47 EI

(10.1)

We note that this solution is the total change in diameter for the ring.

For modeling purposes, we only model a quarter of the ring, and we apply appropriate
boundary conditions on the symmetry planes. We note three details for comparing the
results to the exact solution. First, the exact solution as given is for the total change in
diameter for the ring. Since we are only modeling a quarter ring, this result must be divided
by 2. Second, since the ring is cut at the top surface and we are applying a point load on
the symmetry plane, the applied load P will produce twice the deflection in a quarter ring
as in the full ring. This is explained in more detail in reference 24. However, since there is a
need to both divide by two and multiply by two, these factors effectively cancel one another
out, and thus equation 10.1 is the solution for comparison in the case of a quarter ring.

The results obtain by Sierra/SD are compared with those of Dr. Felippa in Table 10.15.
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Table 10.15: Normalized Deflections for the Pinched Composite Ring

N, | & =20 Felippa | #£ = 20 Sierra/SD | £ = 100 Felippa | £ = 100 Sierra/SD
4 | .5746 5771 0062 062
6 4322 4376
8 |.9582 9631 7813 7971
16 | .9896 9947 9659 9886
32 | .9955 1.00072 9753 9981

For this example, Dr. Felippa also reported results for a two-ply case. Since we do not
have an analytical solution to compare with, and since the reported results are normalized by
the exact solution, we have no reference point and thus we did not run the two-ply case. We
did, however, run a two-ply example where the modulus and Poisson’s ratio were the same
in both plies. The results were the same as running a single ply with those same material
properties, and so this provided a very weak verification of the multi-ply implementation.

10.1.5.2 Example I1

This was the pinched cylindrical shell example (section 9.6). Only one eighth of the shell
was considered. The computed results were divided by four to account for the fact that the
load was only applied to a quarter section. The results are shown in Table 10.16.

Table 10.16: Normalized Deflections for the Pinched Cylindrical Shell

mesh Felippa | Sierra/SD
4x4 0762 ail.

8x8 .2809 45

16x16 .5366 .81

32x32 .8029 .87
128x128 897

10.1.5.3 Example III

The Scordelis-Lo Roof example. We note that, although in this example only a quarter of
the roof is modeled, there is no need for dividing the answer by any multiple(as in previous
examples) since the applied load is a gravity load rather than a point load. We note that the
boundary conditions at the rigid diaphragms were incorrectly reported in Carlos’s writeup.
The correct ones are u, = u, = 0. With these conditions, the results as shown in Table
10.17 agree well with the expected values.
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Table 10.17: Normalized Deflections for Scordelis-LLo Roof example

mesh | Carlos | Sierra/SD
252 1.2928 | 1.29

4x4 1.0069 | 1.011

8x8 9844 | .984
16x16 | 9772 | .979

10.1.5.4 Example IV

This is the twisted beam model. The normalized results, compared with those of Carlos,
are given in Table 10.18.

Table 10.18: Normalized Deflections pretwisted beam example

mesh Carlos Sierra/SD

in plane | out of plane | in plane | out of plane
1x6 1.0257 9778 1.014 929
2x12 | 1.0041 .9930 .985 975

10.1.6 Verification of TriaShells for Composite Modeling

Laminate composites modeling in Sierra/SD is implemented by coupling Allman’s trian-
gle?® with the DKT triangle.? Simply combining these elements together does not capture
the coupling that can occur between bending degrees of freedom and membrane degrees
of freedom. An additional stiffness that couples these degrees of freedom is generated as
documented in References 27 and 28.

In the next sections we list the results of several verification examples for composite
TriaShell elements.

10.1.6.1 Example 1

The first verification example is taken from Reference 27. A rectangular plate with
dimensions 6" x 1" x 0.005" is modeled using 2 triangular elements (Figure 10.6). Looking
at figure 10.6, the left side is clamped (nodes 1 and 3) while node 4 has a unit load in the
positive z-direction, and node 2 has a unit load in the negative z direction. Each element
is composed of 3 layers. Each layer has the following orthotropic material properties: F; =
10e6, Fy = 0.3¢6, 1o = 0.25, and G5 = 4e6. The fiber orientation for each layer is 45°, 0°,
and —45°, respectively.
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Figure 10.6: Two Element Test

This mesh is refined 6 times to create 6 other test cases. The convergence of the displace-
ments and rotations at nodes 2 and 4 is compared with the STRI3 element in ABAQUS as
shown in figures 10.7 thru 10.12 These figures show that the convergence of the Allman/DKT
element is good. Both elements have similar convergence rates as the mesh is refined with the
exception of the drilling degree of freedom. Figures 10.13 and 10.14 compare the z, y, 2, 0.,
6,, and 0, displacements at nodes 2 and 4 (see figure 10.6. Again, the Allman/DKT element
compares very well with the STRI3 element as the mesh is refined. The only exception is
the drilling degree of freedom.

The 4th mesh refinement model is stored as a test in the
“Salinas/test_tool/fast_regression_tests/triashell” subdirectory, and is named
“mesh4_test”.

10.1.6.2 Example 11

The second verification example for laminate composite modeling is taken from Reference
29. A rectangular plate is subjected to a uniform pressure load of q = 0.003 psi. The plate,
shown in figure 10.15 has dimensions 12 in. x 8 in. and is simply supported on each edge. The
antisymmetric angle-ply stacking sequence is | -30,/30 -30/30 -30/30 -30/30]. Each layer has a
thickness of 0.01 in. The orthotropic material properties for each layer are: F; = 26.25e6psi,
FEy = 1.49¢6psi, nus = 0.28, and G152 = 1.04€e6 psi.

The transverse displacement at the center of the plate is compared with the analytical
solution developed in reference 29. Sierra/SD calculates a value of -2.377e-4, while the
analytical solution is -2.38e-4. Again, the DKT /Allman triangle produces a good comparison
with the analytical solution.

This test is kept in the Salinas_test repository in the verification /composite subdirectory
and is named plate test.
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Convergence Of X—displacement At Node 2
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Figure 10.7: Comparison Of X-displacement Between Sierra/SD and ABAQUS
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Convergence Of Y-displacement At Node 2
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Figure 10.8: Comparison Of Y-displacement Between Sierra/SD And ABAQUS
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Convergence Of Z-displacement At Node 2
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Figure 10.9: Comparison Of Z-displacement Between Sierra/SD And ABAQUS
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Convergence Of Rotation About X—axis At Node 2
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Figure 10.10: Comparison Of Rotation About X-axis Between Sierra/SD And ABAQUS
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Convergence Of Rotation About Y-axis At Node 2
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Figure 10.11: Comparison Of Rotation About Y-axis Between Sierra/SD And ABAQUS
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Convergence Of Rotation About Z-axis At Node 2
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Figure 10.12: Comparison Of Rotation About Z-axis Between Sierra/SD And ABAQUS
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Figure 10.13: Convergence Of Displacements and Rotations At Node 2
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Figure 10.14: Convergence Of Displacements And Rotations At Node 4
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Figure 10.15: Finite Element Model Of A Flat Plate
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Figure 10.16: Finite Element Model Of A Cylindrical Panel

10.1.6.3 Example III

This verification example for laminate composite modeling is also taken from Reference
29. A cylindrical panel is subjected to a uniform pressure load of ¢ = 0.003 psi. The
cylindrical panel (i of model is shown in figure 10.16) has a length of 80 in., while the arc
length of the other side is 41.89 in. corresponding to an angle of ¢ = 24° and radius of
100 in. The stacking sequence is [0/90/90/0]. Each layer has a thickness of 0.08 in. The
orthotropic material properties for each layer are: F; = 18e6psi, Fy = 1.4ebpst, nuy = 0.34,
and G5 = 0.9¢6 psi.

The transverse displacement of the free corner is compared with the analytical solution
developed in reference 29. Sierra/SD calculates a value of 6.958¢e-4, while the analytical
solution is 6.945e-4. Again, the DKT /Allman triangle produces a good comparison with the

analytical solution.

This test is kept in the Salinas_test repository in the verification /composite subdirectory

and is named cyl panel test.
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10.1.7 Joint Modeling: Joint2g Element with Iwan Constitutive
Model

The Joint2g element permits independent specification of the constitutive relations be-
tween each of the relative displacements. Currently, the most prominent of the constitutive
equations employed for the “whole joint” modeling approach is the 4 parameter Iwan model.
Both the Joint2g element and the Iwan constitutive model are thoroughly documented in
the User’s manual and Sandia reports specifically addressing the 4 parameter model.

There exists a closed form expression for the energy dissipation per cycle resulting
from harmonic excitation imposed on a joint of this nature. That expression (presented

in SAND2002-3828% ) is,

TX+3 4Fs¢maz(x + 1)

(B+X5(x +2)(x +3)

D=

(10.2)

where 5, X, Omaz, and Fs are model parameters, and r satisfies

Fo _ (B+1)—r"/(x+2)
R A GIDG+D) e

where F;, is the amplitude of the harmonic excitation. Comparison of the exact solution and
Sierra/SD predictions is presented in Figure 10.17.

There is one integration parameter in Sierra/SD , the number of spring-slider pairs used
to approximate the continuous distribution of Jenkins elements. The relevant SAND report
provides guidance as to the number of elements necessary to manifest proper dissipative
response to loads of given size. Figure 10.18 shows that desired accuracy is achieved with
the number spring slider pairs predicted by theory.

10.1.7.1 Iwan Macroslip

To evaluate the Iwan model in Sierra/SD when it hits macro-slip, a 1D MATLAB test
case involving macro-slip and simple dynamics was developed. It was compared with the
results of the corresponding 1D Sierra/SD analysis.

The problem looks like the following:

my

ma
O—/\/\/—o—‘ Iwan ModeH—@

source k=9.74e5

Here the source is a 100g wavelet base excitation, m; = 0.051b, and mo = 4 (b.
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Verification Test of lwan Model in Joint2G Element
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Figure 10.17: Sierra/SD Iwan Element: Comparison to Analytic Solution.
The Sierra/SD predictions for unidirectional load on a simple joint agrees with the exact
solutions.
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Verification Test of lwan Model in Joint2G Element
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Figure 10.18: Significance of Number of Spring-Slider Pairs Used
The number of spring-slider pairs necessary to demonstrate sensitivity to given levels for
load in Sierra/SD is that predicted by theory.
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Figure 10.19: MATLAB and Sierra/SD calculation of M, acceleration.

Analysis is performed both within Sierra/SD and MATLAB . The acceleration of the
four pound mass for each analysis method is compared in figure 10.19. We see very good
agreement, though there seems to be slightly better resolution of the macro-slip in the Matlab
result.

The stretch of the Iwan joint is another good indicator of agreement, and is shown in
figure 10.20. The stretch is the relative displacement across the Iwan element. Again, the
agreement is good, but not perfect.

In both analyses, the acceleration of the spring mass shows significant high frequency
response (or hash) as shown in figure 10.21. The high frequency noise is undesirable, but
is a feature of the model constructed of a finite number of slider/spring elements. As the
elements begin to slide, high frequency noise is generated.

10.1.8 Verification of Membrane Elements

Membrane elements are similar to shells, except that they have no rotational degrees of
freedom, and have no out-of-plane stiffness in the unstressed state. When they are pulled in
tension, an out-of-plane stiffness appears, and takes the form of a geometric stiffening. In
the following test cases, we examine the response of the membrane element to both in-plane
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Figure 10.20: MATLAB and Sierra/SD calculation of joint extension.
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Figure 10.21: Sierra/SD calculation of M; acceleration.
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exact (Hz) | computed
13.178 13.230
20.83 21.126
20.83 21.126

Table 10.19: Eigenvalue convergence for a fixed-fixed, prestressed membrane. The values
given are the natural frequencies, in Hz.

and out-of-plane deformation. We consider these two loading cases separately.

The first example consists of a square membrane of dimension 1x1, which is subjected
to a uniform tension 7' in both in-plane directions. After the application of the tension,
the membrane boundaries are either fixed, or placed on rollers, and an eigenanalysis is
performed about the stressed state. Since these elements are intended to be used in transfers
between Adagio and Sierra/SD , we perform the static preload in Adagio, and then transfer
the stresses and displacements to Sierra/SD . In this way, we also exercise the transfer
capabilities for these elements.

The exact eigenfrequencies for stretched square membranes are given in.?' In the case of
a membrane that is clamped along all boundaries, the frequencies are

w. C n . m 2

where ¢ = , /pZ is the speed of sound in the membrane, T is the tension per unit length in

the membrane, and p; is the surface density. Note that in the case of a square membrane
L, = L,. Also, the indices m = 1,2,3,... and n = 1,2,3,.... In the case of a free-free
membrane, the expression for the frequencies is the same, except that both m and n start
at 0. In this way, they allow for a rigid body mode.

Table 10.19 shows a comparison of the first three exact and computed eigenvalues of the
square clamped membrane, and Table 10.20 shows the same for the free-free membrane. In
both cases, good agreement is seen. For the free-free case, we do not compare rigid body
modes in the table, but we verified that they came out to be numerically zero. Note that for
both cases, repeated modes are observed.

Since they are coupled tests, they have to be located in the tempo test are under sierra. In
a tempo project checked out under sierra, these tests are located in the following directories

tempo/tempo/rtest/tempo/membrane_free_free
tempo/tempo/rtest/tempo/membrane_free_free_par
tempo/tempo/rtest/tempo/membrane_clamped
tempo/tempo/rtest/tempo/membrane_clamped_par

For in-plane loading, there are 2 verification tests located at
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exact (Hz) | computed
9.3169 9.3553
13.178 13.230
18.634 18.941
18.634 18.941

Table 10.20: Eigenvalue convergence for a free-free, prestressed membrane. The values given
are the natural frequencies, in Hz.

Salinas_test/patchtests/quadt/quadt-patch8_test
Salinas_test/patchtests/quadt/quadt-patch9_test

These tests involve in-plane tension only, and simply verify that the corresponding deforma-
tion of the membrane is correct.

10.1.9 Verification of Tangent Stiffness Matrix for Sierra Transfers

In this section, we present numerical experiments to confirm the implementation of the
tangent stiffness matrix following a Sierra transfer. We note that the tangent stiffness matrix
is the sum of contributions from internal forces as well as external forces. In some texts, the
contributions from the former is referred to as the material/geometric stiffness, while the
former is referred to as the follower stiffness. In the following experiments, all components
of the stiffness matrix are being exercised.

10.1.9.1 A Cantilever Beam Subjected to Large Deflection Via End Load

In this example we consider a cantilever beam that is subjected to a large deflection from
a concentrated end load. We note that in this case, the follower stiffness is zero, since the
load does not depend on the deformation. In this example, Adagio was used to model the
deformation of the beam to the large deflection state, and then the results were passed to
Sierra/SD for modal analysis. Table 10.21 shows the modal frequencies of the beam in the
deformed state, compared with those obtained from abaqus. Excellent agreement is seen
between the two codes.

10.1.9.2 A Cantilever Beam Subjected to Large Deflection Via Pressure Load

In this section, we consider the same cantilever beam as in the previous example, except
in this case the beam is loaded with a distributed pressure load rather than a point load.
Since the pressure will follow the beam’s deformation, we expect a contribution from the
follower stiffness in this case. Table 10.22 shows the comparison of Sierra/SD with Abaqus
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Table 10.21: Comparison of Sierra/SD and Abaqus modal results for a cantilever beam
subjected to large deflection via point load.

mode | Abaqus | Sierra/SD | % difference
1 56.219 56.236 0.029
2 245.720 246.106 0.154
3 274.010 274.159 0.054
1 358.280 358.316 0.010
d 400.030 399.916 0.028
6 630.540 630.113 0.058
7 649.890 650.113 0.034
8 803.580 803.389 0.024
9 933.100 933.198 0.011
10 1069.80 1070.180 0.036

for the first ten modes of the pressure-loaded beam. In this case, follower stiffness was
not included in the Sierra/SD results. Some significant differences in the frequencies is
observed.

In table 10.23, the same comparison is presented, only in this case the follower stiffness
matrix is included in the Sierra/SD tangent stiffness matrix calculation. In this case,
excellent agreement with Abaqus is obtained. We note that this example is included in the
Sierra/SD test suite, in the following location

Salinas_test/verification/follower/beam_test

Table 10.22: Comparison of Sierra/SD and Abaqus modal results for a cantilever beam
subjected to large deflection via pressure load, with no follower stiffness in the Sierra/SD
tangent matrix.

mode | Abaqus | Sierra/SD | % difference
1 59.015 57.019 3.382
2 60.472 59.858 1.015
3 252.140 230.927 8.413
4 306.200 304.988 0.396
) 322.590 322.217 0.116
6 493.650 492.184 0.297
7 742.200 736.837 0.723
8 770.830 769.096 0.225
9 773.340 771.410 0.250
10 1230.500 1227.530 0.241
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Table 10.23: Comparison of Sierra/SD and Abaqus modal results for a cantilever beam
subjected to large deflection via pressure load, with follower stiffness in the Sierra/SD tangent
matrix.

mode | Abaqus | Sierra/SD | % difference
1 59.015 59.053 0.064
2 60.472 60.470 0.003
3 252.140 252.194 0.021
4 306.200 306.141 0.019
) 322.590 322.651 0.018
6 493.650 493.719 0.013
7 742.200 742.064 0.019
8 770.830 771.112 0.036
9 773.340 773.366 0.003
10 1230.500 1230.25 0.020

10.1.10 Tied Joint

The tied joint provides a means of connecting two surfaces together while allowing com-
pliance in the shear behavior. The tied joint allows more flexibility in the specification of
the normal behavior than previous methods that required a fully rigid surface pair to which
a whole joint model (such as a joint2g) is attached.

A first step in developing the tied joint is replicating the old model behavior. This is
done with the two test cases “2x2tied” and “2x2whole”. The first of these couples a block of
elements using the new methodology. The “2x2whole” example uses the old approach. The
solutions are shown to be identical.

Next, we present transient simulations on a single-leg model. This single leg model was
taken from a more complicated three-leg model. The surfaces that join the two pieces are
modeled with a tied joint, and then we compare those results with a truth model where
the constraints on the interface were implemented manually using the “old" approach of an
RBE3 element.

The first example compares the two approaches in the case when the tied joint model is
modeled with the following block

TIED JOINT
normal definition = slip
side = free

END

Figures 10.22, 10.23, 10.24 shows the comparison of the X, Y, and Z displacements as a
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x—direction response
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Figure 10.22: X displacement comparison for tied joint versus truth model, tied=slip,
side=free
function of time, for the tied joint and truth models. Excellent agreement is observed.

The second example compares the tied joint and truth model approaches when the tied

joint model is modeled with the following block

TIED JOINT
normal definition = none
side = rigid

END

Figures 10.25, 10.26, 10.27 shows the comparison of the X, Y, and Z displacements as a
function of time for this case, for the tied joint and truth models. Excellent agreement is
observed.

These tests are located in the verification test suite in the directory

Salinas_rtest/verification/tiedjoint
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y—direction response
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Figure 10.23: Y displacement comparison for tied joint versus truth model, tied=slip,
side=free
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z—direction response
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Figure 10.24: Z displacement comparison for tied joint versus truth model, tied=slip,
side=free
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x—direction response
2500 T T T T T T T T

Truth model
A —— TiedJoint model

2000

1500 B

1000 - I

500 //\ /A

-1000

acceleration in/sec®
o

-1500

-2000

_2500 | 1 1 1 1 1 1 1 1
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

time (s)

Figure 10.25: X displacement comparison for tied joint versus truth model, tied=none,
side=rigid
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Figure 10.26: Y displacement comparison for tied joint versus truth model, tied=none,
side=rigid
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10.1.11 Rrodset

The rrodset mimics a kevlar type material in that in does not oppose bending in any way,
but it does oppose tension. Fundamentally, it is identical to placing a collection of rrods
along every edge of a surface. One use is to distribute the shear loading of a tied joint.

To verify that it does not oppose bending, a simple example with 2 connected plates
on top of each other was created. The left side was fixed and the right side had loads
applied. The top plate was pulled while the bottom plate was pushed with equal force,
causing a kind of pivot around the center where the rrodset can be placed. It was shown
that a statics solution produced the same results whether or not an rrodset was placed in
the middle. The test is in the fast regression tests suite and is called rrodset. The test is
Salinas_rtest/test_tool/fast_regression_tests/traction/rrodset.test.

10.1.12 Elements Provided by the Navy

As part of the Navy/CREATE program,®*33 various elements are being introduced to
Sierra/SD. These elements fall into two categories: specialty connector element and legacy
elements pulled from Nastran.

The legacy elements are designed to exactly mimic elements in the Nastran capabilities.
Typically these come from the open literature. Because of the nature of these elements,
verification is naturally a code to code comparison.

Connector elements are all two node elements provided to enhance special Navy needs.
For example, connection of rafts to a hull is best defined using a nonlinear spring dashpot.

The names for all Navy provided elements begins with “N”. For example, the navy beam
element is the “NBeam”.

10.1.12.1 NBeam

The NBeam is both a connector and a legacy element. The Beam?2 element has
most of the same functionality, but does not include offset moments (I12) or shear factors.
The static tests included are detailed in Table 10.24. Table 10.25 summarizes some of the
results of the tests. In this section of tests, the Nastran results are treated as the truth
model. Models were translated using “Nasgen”.
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Test Section | Description

btestl | rectangular | simple test of end loaded cantilever
btest2 | rectangular | tests rotational invariance

btest3 | rectangular | tests beam tower

btest4 channel tests I

btestb channel rotational invariance of I,

btest6 [-beam end loaded offset

btest7 | rectangular | one element test

btest8 C offset, rotated C beam

Table 10.24: Static Tests for NBeam

Test | Maximum Error
btest1 0.02%
btest2 0.01%
btest3 0.05%
btest4 %

btestb %

btest6 %

btest7 %

btest8 %

Table 10.25: Results of Static Tests for NBeam. The maximum error in deflection is shown.
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The tests are Salinas_rtest/test_tool/navy/nbeam/btestl.test,...
Salinas_rtest/test_tool/navy/nbeam/btest8.test.

10.2 Acoustics

In the following examples computational results are compared to analytic solutions.

10.2.1 Eigen Analysis of Wave Tube

10.2.2 Eigen Analysis with Multiple Fluids

10.2.3 Eigen Analysis of Elliptic Tank

10.2.5 Direct Frequency Response

10.2.5 Transient Acoustics with Pressure Release

10.2.6 Nonconforming Acoustic-Acoustic Discretizations

10.2.7 Direct FRF of Tied Structural/Acoustics

10.2.8 Radiation from a uniformly-driven spherical shell

10.2.9 Radiation from a spherical acoustic surface

10.2.10 Scattering from a Flat Plate

10.2.11 Transient Scattering from a Flat Plate

10.2.12 Scattering a Plane Step Wave by a Spherical Shell
10.2.13 Infinite Elements on Ellipsoidal Surfaces

10.2.14 Comparison of spherical and ellipsoidal infinite elements
10.2.15 Absorbing Boundary Conditions for Infinite Elastic Spaces.
10.2.16 Impedance Boundary Conditions

10.2.17 Point Acoustic Source

10.2.18 Moving Point Source

10.2.19 Infinite Elements for Transients

10.2.20 Comparison with Absorbing Boundary Conditions

10.2.21 Acoustic-Structure Directfrf with Viscoelastic Material

296



(vO)sin(wt) —»'

rigid termination

L=10

\

Figure 10.28: Acoustical waveguide with rigid end cap.

exact (Hz) | 80 elements | 640 elements | 5120 elements | 40960 elements
16.6 16.61707 16.60426 16.601065 16.600265
33.2 33.33669 33.23414 33.20853 33.20213
49.8 50.26197 49.9153 49.828799 49.8072

Table 10.26: Eigenvalue convergence for a piston-driven tube with rigid cap at end. The
values given are the natural frequencies, in Hz.

10.2.1 Eigen Analysis of Wave Tube

The first example consists of a convergence study for the natural frequencies of an acous-
tical tube that is driven at the left end and has a rigid cap the right end, as shown in
Fig. 10.28. The eigenvalue problem for this configuration was solved using several linear
hexahedral meshes, each with half the edge length of the previous.

Table 10.26 shows the numerical results, and demonstrates that the first three natural
frequencies approach the exact values. Table 10.27 demonstrates quadratic convergence for
the natural frequencies, as expected for linear elements.

80 elements | 640 elements | 5120 elements | 40960 elements
.0103 .0257 6.415e-3 1.596¢-3
4117 .10283 .0257 6.416e-3
9277 2315 .05783 .01446

Table 10.27: Relative error in computation of natural frequencies for a piston-driven tube
with rigid cap at end. The reduction by a factor of 4 each time the element size is halved
demonstrates quadratic convergence in natural frequencies.

297



10.2.2 Eigen Analysis with Multiple Fluids

A subtlety when working with fluids of spatially varying properties is that the linear wave
equation, which is typically written in the form

L.
i Ap=0 (10.5)

is no longer valid. Assumptions were made in the derivation of this equation that restricted
its applicability to a homogeneous fluid. When density and speed of sound change with
position in the fluid, the linear wave equation takes the form3*

V- (%Vp) — g —0 (10.6)

where p is the fluid density, B is the fluid bulk modulus, and p is the acoustic pressure. If

we assume that the speed of sound is ¢ = \/% , then this equation can also be written as

oV (%Vp) _ Py (10.7)

Next, we consider how the heterogeneous wave equation is implemented in Sierra/SD.
We note that Sierra/SD actually uses the form in equation 10.7. Since we want to allow the
density to vary with position, we have to first divide by density before multiplying by a test
function and integrating by parts. This is because the factor of p in front of the first term in
equation 10.7 varies with position, and thus we will not be able to move the V symbol over
to the test function. Thus, we have

V- (lvp> Py (10.8)

p pc?

We actually solve for the time derivative of pressure in Sierra/SD. Thus, we substitute p = b
into equation 10.8, and then integrate in time to obtain

j -
v-(ve) - % —0 (10.9)
P pc
Now we see that the gradient V can be moved to the test function in equation 10.9. Thus, this
is the formulation that is used in Sierra/SD to construct the finite element implementation.

In deriving the analytic solution, we note that the analytical solutions to equations 10.6,
10.7, 10.8, and 10.9 will all be the same (assuming we converted the final analytic solution
from equation 10.9 into pressure), since these equations are just different by a scale factor.
Thus, we simply use equation 10.6 to derive the analytical solution. If we consider the
eigenvalue problem, equation 10.6 becomes

1 P
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Figure 10.29: Acoustical waveguide containing two fluids.

This equation will serve as the basis for deriving the analytical solution.

We consider three cases. All three cases involve the geometry shown in Figure 10.29.
An exact solution for the eigenvalues of the geometry in Figure 10.29 can be derived by
considering each fluid separately and applying appropriate compatibility conditions on the
fluid-fluid interface. The equations are as follows

L

d> L

TR AAEp =0 S<a<L (10.12)
(10.13)

L

ldap _1ldpp L (10.15)

p1 dr  ps dx 2 ‘
(10.16)

where B; and By are the bulk moduli of the two fluids. At the endpoints, there are two
options. Either we could have rigid caps (g—g = 0), or we could have pressure release boundary
conditions (p = 0). The solution will have the form

pl(x)zclcos<(a:—§) %T>+C2Sin<(x_§)ﬂ/%pll> 0

L. o , L. P\ L
— 3 _ _ _ — _ — < < .
pa(z) = Cj cos ((m 2) B ) + Cysin <(m 2) B ) 5 ST L (10.18)
(10.19)

IN

z < (10.17)

no| b

Inserting these into equations 10.12, applying the compatibility conditions 10.15, and using
the appropriate boundary conditions at the endpoints, we get two transcendental equations
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exact (Hz)

computed, h=1

computed, h=0.5

17.7322 17.7505 17.7333
34.1990 34.3411 34.2079
53.1689 23.6642 53.1998

Table 10.28: Eigenvalue convergence for a two-fluid system with rigid cap at end. The values
given are the natural frequencies, in Hz.

exact (Hz) | computed, h=1 | computed, h=0.5
17.0965 17.1143 17.0976
35.4575 35.6039 35.4666
51.3135 51.7932 51.3435

Table 10.29: Two-fluid eigenvalue convergence with pressure release BC.

that give the exact eigenvalues. For the pressure release (Dirichlet) end cap case, we obtain

cos [ Ly /220 gin (£, /202 ) Z_ [eBr o (L /A2 o (£ 220} (q0.00)
2 Bl 2 BQ prg 2 BQ 2 Bl ’

(10.21)

For the rigid (Neumann) case, we obtain

sin EUM Ccos éw/@ = — plBlsin EH@ Ccos E\/M (10.22)
2 B1 2 B prg 2 Bg 2 Bl )

(10.23)

Equations 10.20 and 10.22 can be solved to obtain the exact eigenvalues of the system shown
in Figure 10.29.

First, we consider the case p; = 1.293, py = 2.5860, ¢; = 332.0, c; = 366.0. Table 10.28
shows the comparison when rigid walls are placed at either end of the tube, and Table 10.29
shows the comparison with pressure release conditions at both ends. Convergence is seen in
all cases.

The next case is an impedance matching condition, in which p;c; = poc2. In this case,
we take p; = 2po, and ¢; = 0.5¢3. Thus, the parameters are different but the impedances
are the same. The computed and theoretical results are shown in Table 10.30. Again, good
convergence behavior is observed.

Finally, we consider a case with air and water. The same two-fluid case from the previous
example was used, with rigid boundary conditions. The comparison between theoretical and
computed eigenvalues is shown in Table 10.31.
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exact (Hz) | computed, h=1 | computed, h=0.5
11.0667 11.0797 11.0675
22.1333 22.2632 22.1414
33.2000 33.6067 33.2256

Table 10.30: Eigenvalue convergence for a two-fluid system with rigid cap at end. The values
given are the natural frequencies, in Hz.

exact (Hz) | computed, h=1 | computed, h=0.5
33.1974 33.3341 33.206
66.3825 67.4755 66.4506

Table 10.31: Eigenvalue convergence for an air/water system with rigid cap at ends. The
values given are the natural frequencies, in Hz.

10.2.3 Eigen Analysis of Elliptic Tank

This section written by Jerry Rouse.

The acoustic eigenanalysis capability of Sierra/SD was further verified using a three dimen-
sional elliptic cylindrical tank. The dimensions of the tank are shown in Figure 10.30. The
verification involved two boundary condition configurations. For the first configuration all
boundaries of the enclosure were rigid, which requires the normal component of acoustic
velocity be zero at all points along the boundary. For the second configuration, the endcaps
of the tank were rigid, and the sidewall of the tank was a pressure release surface. A pressure
release boundary requires that the acoustic pressure be zero at the boundary.

118 -

Figure 10.30: Dimensions of the elliptic cylindrical tank model. All dimensions in inches.

To determine theoretically the resonance frequencies for the elliptic cylindrical tank, the
linear wave equation was solved in elliptic cylindrical coordinates. The coordinate system
is illustrated in Figure 10.31. This coordinate system is not commonly encountered, and
therefore the solution of the wave equation is described. The linear wave equation in terms
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Figure 10.31: The elliptic cylindrical coordinate system.

of acoustic pressure is given by

1 0%
p+ =—= =0. 10.24
\ p + 62 atQ 0 ( 0 )
In elliptic cylindrical coordinates the Laplacian has the form
1 Pp  p 9p
V? = += | +== 10.25
h2(sinh®(u) + sin?(v)) (3u2 81}2) 022 ( )

where x = hcosh(u) cos(v), y = hsinh(u)sin(v), and h = va? — b?> with a equal to half the
major axis, and b equal to half the minor axis. For the tank dimensions shown in Figure

10.30 a = 921, b=24, h = 7‘/21T5, and ug = sinh™! (7\;&75). Assuming the acoustic pressure p

to be harmonic in time p = P(u, v, z)e™*, which upon substitution into Eq. (10.24) produces
the Helmholtz equation:

V2P + KPP =0, (10.26)

where & = w/c with w the angular frequency, and ¢ the phase speed. Using separation
of variables P(u,v,z) = U(u)V(v)Z(z). Substituting this expression into the Helmholtz
equation and dividing the result by UV Z gives

1 1 d?U 1 d?V 1 2%
7 dz?

- = — + Kk =0. 10.27
h2(sinh?(u) + sin?(v)) \U du? * V' dv? * ( )

Equating the term containing U and V to the separation constant —m? and the term con-
taining Z to —k? gives the system dispersion relation

k® = k2 +m?. (10.28)
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The differential equation for Z,

d*Z
—— 4+ k2Z =0 10.29
dz2 + K > ( )
has solution
Z(z) = Apcos(k,z) + By sin(k,z). (10.30)
Simplifying the differential equation for U and V' gives:
1 d? 1 d?
ﬁd—ug + m?h? sinhz(u)l + [Vd—v‘g + m2h?sin*(v)| = 0. (10.31)

The first term is independent of v and the second term is independent of u, therefore each
term must equal a constant. Letting c represent this constant:

1 2 2

U% +m?h?sinh?(u) = ¢ — % — [e = m?h?sinh®(u)] U = 0 (10.32)
1 d*V d*V

V do + m?h?sin®(v) = —c — T + [e+m*h?sin®(v)| V =0 (10.33)

The trigonometric relations

sinh?(u) = = (cosh(2u) — 1) (10.34)

DO —

sin?(v) %(1 ~ cos(20) (10.35)

are used to simply Eq. (10.32) and Eq. (10.33). Substitution of these relations into the
differential equations for U and V gives:

d*U m?2h? m?h?
S - h(2 - 10.
e {(c—i- 5 ) 5 cos ( u)} U=0 (10.36)
d*V m?2h? m?2h?
e — 2 = 0. 10.
7o + Kc—i— 5 ) 5 cos( ’U):| V=0 (10.37)
Letting a = ¢+ # and g = # gives:
d*U
-z [a — 2g cosh(2u)]U =0 (10.38)
d2
—dv‘Q/ + [a — 2qcos(2v)] V =0 (10.39)

These are the canonical forms of the differential equations Mathieu obtained solving for the
vibration of an elliptical membrane. The solution to the differential equation for V' is given
by

V = C,ceq(a,q,v) + D,se.(a,q,v), (10.40)
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where the Mathieu function of the first kind ce has been termed the ’cosine-elliptic’ and the
Mathieu function of the first kind se has been termed the ’sine-elliptic’ by E. T. Whittaker.
The solution to the differential equation for U is

U= E.Ce.(a,q,u) + F.Se,(a,q,u), (10.41)

where C'e and Se are termed the modified Mathieu functions of the first kind. The following
relates the Mathieu functions to the modified Mathieu functions:

Ce,(a,q,z) = ce(a,q,iz) (10.42)
Se,(a,q,2) = —iser(a,q,iz), (10.43)

where 1 = /—1.

For the majority of the physical problems encountered, the solution in v is periodic by
either 7 or 2. This periodicity requires that a relationship exist between ¢q and a for each ce,
and se,, such that for each non-zero value of ¢ a characteristic value of a exists allowing for a
periodic solution in v. Common among authors today is to denote the characteristic values
for ce, by a,, and the characteristic values for se, by b,. Methods for determining a, and b,
based on ¢ are presented in McLachlan, and Gradshteyn and Ryzhik, with formulas for r up
to 8 given in Abramowitz and Stegan. For the two cases described here, Mathematica was
used to determine the characteristic values.

For both boundary condition configurations considered, the ends of the elliptical tank
were rigid, i.e. acoustic velocity is zero at z = 0 and z = L. The solution obtained above
gives the acoustic pressure in the tank. To apply the zero velocity boundary condition,
the momentum equation was used to relate acoustic pressure to acoustic velocity. The
momentum equation is

ou -

~ = —Vp, 10.44

Po ot p ( )
where 4 = €,u, + €,u, + €,u,. The gradient operator in elliptic cylindrical coordinates takes

the form

( aa —|—eU§ ) + e*zag. (10.45)
h\/smh ) + sin?(v) Y v &

Subsitution of the z component of pressure in Eq. (10.30) into Eq. (10.44), and applying
the u, = 0 boundary condition gives

= iA" cos(k.z), (10.46)

nm

where k, = “F.

The boundary condition configuration having rigid boundaries on all sides of the elliptic
cylindrical tank requires the €, acoustic velocity component be 0 at u = ugy. Subsitution of
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Eq. (10.41) into Eq. (10.44) and applying this boundary condition gives

= d9Ce,(a,q, 95e,(a, q,
Z ETM CGT(CL, q, U) + Frw Ser(av q, U) = 07 (1047)
— Ju — ou .
where %&L’q’”) = 0. To satisfy this equation requires each term of the series equal zero,
giving
oCe,(ar, ¢y, u)
=0 10.48
ou — ( )
aS@r(bra dr, u)
—_— =0 10.49
ou o ’ ( )

where the resonance frequencies are determined from the values of ¢ which satisfy Eqgs.
(10.48) and (10.49). The complete set of resonance frequencies for the elliptic cylindrical
tanker having all boundaries rigid is determined from the dispersion relation using the values
of k, in Eq. (10.46) and m = # obtained from Egs. (10.48) and (10.49)

c nm\2 4q,
_ 10.
/ 27 < L> i h?’ (10:50)

where ¢ = 58724 in/s. Table 10.32 compares the first 24 resonance frequencies between the
exact determination and the Sierra/SD prediction for the case of completely rigid boundary
conditions.

The boundary condition configuration having pressure release boundaries p = 0 on the
sidewall of the elliptic cylindrical tank (and rigid endcaps) requires the acoustic pressure be
zero at p(ug, v, z). Applying this condition to Eq. (10.41) gives

Z [E,.Ce.(a,q,up)cer(a,q,v) + F.Se,(a,q,up)se(a,q,v)] = 0. (10.51)

r=0

As before, to satisfy this condition each term of the series must equal zero, giving

Cer(ar, gryug) =0 (10.52)
Se,(by, qr,ug) =0, (10.53)

where the resonance frequencies are obtained from the values of ¢ which satisfy Eqs. (10.52)
and (10.53). The complete set of resonance frequencies for the elliptic cylindrical tanker
having rigid endcaps and pressure release sidewalls is determined from Eq. (10.50) with
¢ = 58724 in/s. Table 10.33 compares the first 24 resonance frequencies between the exact
determination and the Sierra/SD prediction for this boundary condition configuration. Note
that since C'ey # 0 the modes cut-on at a higher frequency compared to the rigid boundaries
configuration.
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Exact (Hz) | Sierra/SD | Percent Error
248.832 248.832 0
361.1 361.1 0

438.532 438.533 2.28e-4
497.664 497.665 2.00e-4
614.868 614.87 3.25e-4
659.152 659.156 6.07e-4
687.876 687.879 4.36e-4
704.556 704.56 0.68e-4
731.499 731.503 0.47e-4
746.497 746.501 5.36e-4
825.925 825.932 8.48e-4
829.247 829.253 7.24e-4
849.025 849.035 1.18e-3
900.831 900.843 1.33e-3
934.566 934.58 1.50e-3
950.48 950.495 1.58e-3
982.512 982.529 1.73e-3
995.329 995.346 1.71e-3
995.861 995.878 1.71e-3
1015.1 1015.12 2.00e-3
1029.16 1029.18 1.94e-3
1058.81 1058.83 1.89e-3
1072.88 1072.91 2.80e-3
1130.71 1130.74 2.65e-3

Table 10.32: Comparison between the exact analytical resonance frequencies and Sierra/SD
predictions for the elliptic cylindrical tank with completely rigid boundary boundaries.
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Exact (Hz) | Sierra/SD | Percent Error
733.807 733.811 0.45e-4
774.849 774.853 5.16e-4
886.647 886.657 1.13e-3
970.884 970.898 1.44e-3
1002.26 1002.28 2.00e-3
1046.77 1046.8 2.86e-3
1224.69 1224.75 4.90e-3

1225.4 1225.45 4.08e-3
1236.59 1236.65 4.85e-3
1250.41 1250.47 4.80e-3
1322.61 1322.68 5.29e-3
1332.8 1332.89 6.75e-3
1355.83 1355.92 6.64e-3
1390.43 1390.53 7.19e-3
1422.68 1422.81 9.14e-3
1434.88 1434.99 7.67e-3
1444.44 1444.57 9.00e-3
1491.07 1491.19 8.05e-3
1511.69 1511.82 8.60e-3
1527.61 1527.8 1.24e-2
1550.06 1550.23 1.10e-2
1569.9 1570.08 1.15e-2
1571.93 1572.09 1.02e-2
1578.15 1578.34 1.20e-2

Table 10.33: Comparison between the exact analytical resonance frequencies and Sierra/SD
predictions for the elliptic cylindrical tank having rigid endcaps and pressure release bound-
ary conditions on the sidewall.

307



10.2.4 Direct Frequency Response

The second example involves the previous configuration, only that a direct frequency
response is computed rather than an eigen analysis. Also, in this case two types of boundary
conditions are considered, the rigidly capped configuration of the previous example (a Neu-
mann boundary condition), and a pressure release condition (a Dirichlet condition). For the
two types of boundary conditions on the right end,?* gives the exact resonance frequencies.
When the tube is rigidly capped, they are

ne

fa=g7 n=0123.. (10.54)

and when the tube is open (pressure release) they are

(n+3)c

n=012.. (10.55)

where f, is in Hz, ¢ is the speed of sound, and L is the length of the tube. In this example,
¢ =332.0m/s, and L = 10.0m, which results in the frequencies

£, =0.0,16.6,33.2,49.8, ... (10.56)

and
fn=28.3,24.9,41.5, ... (10.57)

Figures 10.32 and 10.33 show the direct frequency response computations, and it is seen
that the peaks in these plots correspond to the natural frequencies given above, for both
types of boundary conditions.

The pressure at the piston, as a function of frequency, is given in*! as

p = —jpcVycot(kL) (10.58)

In Figure 10.34, we plot the computed and exact pressure at the piston, as a function of
frequency. The two curves are virtually identical, except at the point of resonance. At
resonance, however, the computed solutions are known to be very inaccurate, and thus some
difference there is expected.

10.2.5 Transient Acoustics with Pressure Release

This example was very similar to the previous case, except that the far end of the tube
was assigned a pressure release boundary condition, rather than rigid. Also, in this case the
velocity of the piston was assigned as

v(0,t) = v,(t) = sin(wt) (10.59)
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Figure 10.32: Direct frequency response of an acoustical waveguide with rigid end cap.
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Figure 10.33: Direct frequency response of an acoustical waveguide with pressure release
end.
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Figure 10.34: Direct frequency response of an acoustical waveguide with rigid end cap. A
comparison of computed and exact acoustic pressure at the piston.
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Figure 10.35: Transient simulation of an acoustical waveguide with pressure release end
condition.

where w = 607. The exact solution is given in** as
— n 2nL
p(0,8) = pe |up(t) +2 ) (=1)"p(t — =) (10.60)
n=1

where again the terms in the summation only become nonzero when their arguments are
positive. This behavior was implemented in matlab using Heaviside functions, and the
results were compared with Sierra/SD. Figure 10.35 shows the results. Excellent agreement
between exact and computed solutions is observed.

10.2.6 Nonconforming Acoustic-Acoustic Discretizations

In this example, we test our simple method for coupling two acoustic domains that have
mismatched meshes on the interface between them. In this case we chose an acoustic eigen-
value analysis, since the resulting eigen frequencies can be conveniently used in a convergence
analysis. A three-dimensional example consisting of two adjacent acoustic domains with dif-
ferent discretization densities was investigated, as shown in Fig. (10.36). The nearly cubic
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volume having dimensions L, = 5 m., L, = 10v/2/3 m., and L, = 15/(2v/2) m. was used
to avoid repeated eigenvalues. The model was divided in half by an xy-plane located at
L./2, as shown in Fig. (10.36), and the two halves were connected together using the in-
consistent tied contact approach described in the previous section. This configuration was
chosen to investigate the convergence of inconsistent tied contact for mode shapes having
pressure variations in the plane of the interface. The fluid in both regions had sound speed
¢ = 343 m/s and fluid density p = 1.20 kg/m?. We only consider the case of rigid walls,
which for acoustics corresponds to homogeneous Neumann boundary conditions. Equations
3.29 from®® were solved with zero forcing on the right hand side, thus corresponding to the
acoustic eigenvalue problem with mismatched meshes on subdomains.

o, 255590

Figure 10.36: Three-dimensional model

Four master /slave element size ratios at the interface were investigated: 2:3, 2:4, 3:4, and
4:5. Problems with convergence can arise in inconsistent tied contact when the master surface
is more finely discretized than the slave, see for example.?%3” In all cases, the master surface
was chosen as the side with the coarser discretization. The convergence study consisted of
uniformly refining the meshes several times, while keeping these discretization ratios (and
hence element size ratios) at the nonconforming interface fixed. Only linear hexahedral
elements were considered. The eigenvalues of the first thirty modes in the model were
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compared to the theoretical eigenvalues given by

c [N2 Ny2 N2
f=3 FE R bzt (10.61)

where N,, N,, and N, are non-negative integers. For comparison of the convergence rates,
the eigenvalues of a fully conforming model were also obtained. In Figs. (10.37)-(10.39)
the convergence plot for the four discretization ratios are shown along with the conforming
case. The horizontal axis is the common logarithm of the largest dimension of the master
side elements. The eigenvalue error is given by 100(A" — \)/\. Figures (10.37), (10.38), and
(10.39) illustrate convergence for an axial, tangential and oblique mode, respectively. For
the conforming case, theory predicts that the eigenvalues will converge at a rate of 2.0 for
linear elements. For comparison purposes, an additional line with a slope of 2.0 is added
to the three previous figures, using the triangle symbol. For all of the cases presented, the
convergence rates for the nonconforming meshes are close to those of the conforming meshes.
The exceptional the 2:3 case, in which the nonconforming meshes convergence rate is greater
than 2, is believed to be an abnormality. The theoretical convergence rate of 2.0 is based on
conforming theory, and thus does not apply in the nonconforming case.
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Figure 10.37: Convergence plot for an axial mode (N, =1, N, = N, =0)
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Freq = 47.1408 Hz., Tangential
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Figure 10.38: Convergence plot for a tangential mode (N, =1, N, =0, N,
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Freq = 59.5467 Hz., Oblique
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Figure 10.39: Convergence plot for an oblique mode (N, = N,
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10.2.7 Direct Frequency Response of Structural Acoustics with
Tied Surfaces

This section written by Jerry Rouse.

In this case, the acoustic pressure and structural particle displacement of a one dimensional
structural acoustic model is compared with theory. The model consists of a waveguide of
square cross-section, (.25 meters on a side, having an overall length of 20 meters. The
length is equally divided between fluid and structure, each of length 10 meters. To the free
end of the fluid is applied a harmonic particle velocity (forcing), and the free end of the
structure is fixed. Inconsistent tied contact is used at the solid-fluid interface, where the
fluid is treated as the master surface. The model was investigated using the direct frequency
response solution in Siera/SD running in serial. The Siera/SD prediction was verified at the
tied interface between the fluid and solid regions.

The theoretical reponse of the system was obtained by solving the wave equation for
longitudinal wave propagation in the solid and acoustic wave propagation in the fluid. The
two solutions were coupled at the solid-fluid interface through the continuity of elastic stress
and pressure, and the continuity of structural particle displacement and acoustic particle
displacement. The longitudinal wave equation for the solid is given by

Pu 1 0%

—— = =0 10.62
g & a? ’ ( )

where u is the particle displacement, the phase velocity ¢, = /p%, E is Young’s modulus,

and p; is the material density. The coordinate system for the solid was aligned such that the
rs-axis was directed down the center of the waveguide, with z, = 0 at the fixed end of the
solid and =z, = —L, at the solid-fluid interface. The fixed end boundary condition for the
solid is expressed u(zs = 0,t) = 0. Application of this boundary condition to the general
solution of Eq. (10.62), expressed in terms of left and right traveling waves, gives

u = Asin(k,z,)e*", (10.63)

where the wave number ks = w/cs, i = /—1 and A is a frequency dependent coefficient
which shall be determined from the continuity conditions at the solid-fluid interface.

The acoustic wave equation is given by

Pp  10%

oa2 @ = (1064)

where p is the acoustic pressure, the phase velocity ¢ = ,/%, where Py and p, are the

undisturbed atmospheric pressure and density, respectively, and v is the ratio of specific
heats, here equal to 1.4. The coordinate system for the fluid was aligned such that the
x4-axis was directed down the center of the waveguide, with xy = 0 at the forcing end of the
fluid and 2y = Ly at the solid-fluid interface. The forcing boundary condition at the free
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end of the fluid in terms of the applied particle velocity V; is expressed

0
= 2P (10.65)
wp Ox =0
Application of this boundary condition to the general solution of Eq. (10.64) gives
Vowpo ks iwt
p= | ¢ 11 + Bcos(kyxy)| e, (10.66)
f

where the wave number ky = w/c and B is a frequency dependent coefficient which shall be
determined from the continuity conditions at the solid-fluid interface.

The coupling conditions at the solid-fluid interface ensure no net pressure and no net
velocity across the interface. The continuity condition on pressure is given by

E@u

- , (10.67)

zp=L¢

=D
rs=—0Lg

where tensile stress in the solid is considered positive, and the continuity condition on veloctiy
is given by
Ju

at

Substitution of Eqgs. (10.63) and (10.66) into Eqgs. (10.67) and (10.68), and solving for the
frequency dependent coefficients A and B finds

d o (10.68)

Jis:—Ls wlOO 81‘ $f:Lf

1Vowpo

A —_—
w?posin(ksLs) cos(kgLg) + Ekskycos(ksLs)sin(ksLys)’

(10.69)

and ,
~ —Voepo sin(k:fo)e_”“fo [w?po + i Eksky cot(ksLy)]

w2pg cot(krLy) + Ekskycot(ksLy)

With these coefficients now determined, the structural particle displacement is given by

B

(10.70)

iVowpg sin(kszs)e™?

‘= w?pg sin(ksLs) cos(ksLy) + Ekgky cos(ksLy) sin(kyLy)’

(10.71)

and the acoustic pressure given by

_iVoeposin(kyLyg)e™ [w?pysin(kp(Ly — x5)) — Ek,ky cot(ks L) cos(kr(Ly — zy))]
&= w2pg cot(krLy) + Ekskycot(ksLs)
(10.72)

The Siera/SD verification was performed with the following properties for the system.
The fluid was modeled as air: ¢ = 343 m/s and py = 1.2 kg/m?. The solid was modeled
as steel: F = 200 GPa., ps = 7850 kg/m?, and Poisson’s ratio v = 0. The value of
Poisson’s ratio was intentional. In Figure 10.40 the Siera/SD prediction of structural particle
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displacement at the solid-fluid interface is compared to the theoretical result given by Eq.
(10.71) evaluated at 4 = —Ls. The Siera/SD prediction was obtained over the frequency
range 1 to 60 Hz. using a frequency step of 1 Hz. In Figure 10.41 the Siera/SD prediction
of acoustic pressure at the solid-fluid interface is compated to the theoretical result given by
Eq. (10.72) evaluated at 2y = L. In both figures the Siera/SD prediction shows excellent
agreement with the theoretical result.

x 107

Structural Particle Displacement, m.

ks srmen s o N A ........... . Theoretical |
‘ ‘ : : O Salinas
_7_, SE% 48 ¥ % SERIE R it FEREE LTI REY FERE ERER EEETE 5 B I ..... % et
I e 1 ] ] ]
0 10 20 30 40 50 60

Frequency, Hz.

Figure 10.40: Comparison of the Siera/SD prediction of structural particle displacement at
the solid-fluid interface with the theoretical result.

10.2.8 Radiation from a uniformly-driven spherical shell

In this example, we considered a spherical shell that was surrounded by an infinite acous-
tic fluid. The shell was composed of triad elements, and the acoustic fluid was modeled with
tet4d elements. On the wet interface, the shell /acoustic meshes were fully conforming. The
radius of the spherical shell was 1.0(m), and the radius of the truncated acoustic domain
was 5.0(m). An absorbing boundary condition was applied to the exterior surface of the
truncated acoustic domain, to simulate the infinite fluid.

A uniform, periodic pressure was applied to the inside surface of the spherical shell,
and the resulting shell displacements and acoustic pressures were measured in the frequency
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Figure 10.41: Comparison of the Siera/SD prediction of acoustic pressure at the solid-fluid
interface with the theoretical result.

domain. The analytic solution to this problem was derived in.*® First we define some physical
quantities. The impedance of the shell structure is given as

Zy = L (wmy — ky) (10.73)

w

where m, = 4ma’h, ky = Sl’rih, h is the thickness of the shell, a is the radius of the shell, £
is Young’s modulus, and v is Poisson’s ratio. The impedance of the infinite fluid (as seem

by the spherical surface that defines the shell) is

_iwpdma®

o P 10.74
I~ 1 Y ika ( )

where k = ¢ is the wavenumber, p is the fluid density.

With the above quantities defined, the exact expression for the complex-valued radial

displacement is
47ra’p,

= = 10.75

w(Zs+ Z f) ( )

Figure 10.42 shows the comparison of the numerical results and analytic solution, for the

real and imaginary components of radial displacement of the shell. The results show good

agreement.
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Figure 10.42: Direct frequency response of a spherical shell immersed in an infinite fluid.
The real and imaginary parts of the analytical solution are compared against Sierra/SD. The
results show good agreement.
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10.2.9 Radiation from a uniformly driven spherical acoustic surface

This example is very similar to the previous example, except that the shell is removed,
and we instead apply a uniform, periodic particle velocity to the inside surface of the spherical
acoustic space. As in the previous example, an absorbing boundary condition is applied to
the exterior surface of the truncated acoustic space, to simulate the infinite fluid. Once
again, the radius of the inner spherical void is 1.0(m).

In this case, the analytic solution for the acoustic pressure on the driven surface is given
by34
Wowpa® i)

- r(1 +ika) (10-76)

where vy is the amplitude of the imposed particle velocity on the driven surface.

Figure 10.43 shows the comparison of the numerical results and analytic solution, for the
real and imaginary components of the acoustic pressure. The results show good agreement.

10.2.10 Scattering from a Flat Plate

This example involves scattering from a flat plate. The geometry consists of a uniform,
acoustic tube of length 10(m), which is terminates by a flat plate. The acoustic tube is dis-
cretized with 3D acoustic elements, and the flat plate is discretized with quad shell elements.
Plane waves are initiated inside of the acoustic tube, which then scatter off of the flat plate.

There is no analytical solution to this problem. However, we can still verify that the
resonances of both the acoustic tube and the plate are excited at the correct excitation
frequencies. This checks that the structural acoustic coupling between the plate and acoustic
fluid is working correctly.

In the first example, we consider the fluid to be air, and the plate to be composed of steel,
with a thickness of 0.1(m). In that case, the plate looks like a rigid surface to the fluid, and
hence the resonance frequencies of the tube should match exactly that of a tube with rigid
end caps. Figure 10.44 shows the acoustic pressure in the tube as a function of frequency.
It is seen that the first resonance is predicted correctly, which according to theory should be
16.6Hz.

In the second example, we consider a very light fluid that has a high speed of sound
(p = 1.0, ¢ = 1500.0). We also consider a thin plate, with thickness of 0.001(m). This lowers
the natural frequencies of the plate well below those of the previous example. In this case,
the fluid imparts no added mass effect onto the plate, since its density is so low. Also, due to
the high speed of sound, the natural frequencies of the tube are much higher than those of
the plate. Consequently, the resonances of the plate should be the first observed resonances
of the overall system. The first two exact resonances of the plate are at 3.5Hz, and 4.7Hz.
Figure 10.45 shows the displacement of a corner point on the plate as a function frequency.
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Figure 10.43: Direct frequency response of a spherical shell immersed in an infinite fluid.
The real and imaginary parts of the analytical solution are compared against Sierra/SD. The
results show good agreement.
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Figure 10.44: Acoustic scattering from a plate. In the case when the plate is very rigid
compared with the fluid, the first resonance of the fluid tube, 16.6Hz, is reproduced quite
well.

The numerical results correctly predict the first two resonances of the plate.

10.2.11 Transient Scattering from a Flat Plate

In this example, we evaluate transient scattering from a flat plate. The test consists of
an acoustic domain that is a perfect cube of dimensions 1 x 1 x 1, which is attached with
tied surfaces to a flat plate of dimension 1 x 1. The acoustic domain is given properties
of air, and the flat plate is made of steel. Given the material property mismatch between
the structural and acoustic domains, the coupling between these domains is negligible. This
allows us to test the effect that the scattering waves have on the acoustic and structural
components separately, without having to consider coupling.

The structural acoustic system is subjected a harmonic plane wave with frequency of
10Hz. The wet surface is located at the origin, and thus the incident pressure at the wet
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Figure 10.45: Acoustic scattering from a plate. In the case when the fluid is given a low
density and high speed of sound, the first resonance of the plate appears before the acoustic
tube resonances. In that case, the first two resonances of the plate, 3.5Hz and 4.7Hz, are
reproduced well.
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surface is given by
p(t) = cos(wt) (10.77)

The corresponding velocity input on the acoustic domain is given by

1
w(t) = " cos(wt) (10.78)
An absorbing boundary condition is placed at the far-end of the acoustic domain, and thus
the acoustic response should resemble that of an infinite tube. In that case, the acoustic
pressure response should be equal to the input velocity times pc. Figure 10.46 shows a
comparison of the analytical and computed acoustic pressure on the wet surface. Excellent
agreement is observed.

In the case of the structural response, we can use a simple force balance to determine the
acceleration response of the plate, since we are ignoring coupling between the structural and
acoustic components. In this case, the total pressure on the plate is equal to the sum of the
incident and scattered pressures. The area of the plate is 1.0, and thus the force is equal to
the pressure. Thus, we can compute the acceleration of the plate as follows

F  2cos(wt)
— e 10.
a=_ =5 (10.79)

Figure 10.47 shows the comparison of the analytical and computed acceleration of the plate.

This test case can be found at

Salinas_rtest/verification/acoustic/hexplane.xml

10.2.12 Transient Scattering of a Plane Step Wave from a Spherical
Shell

Acoustic analysis often includes the concepts of a “scattering” solution. By this, we mean
an analysis where it is relatively easy to specify the incident wave at all points in space,
and we solve for the reflected wave. Such scattering solutions are useful in a variety of
contexts. For example, a submarine in the ocean may be struck by an incident “ping” from
a neighboring ship. Such a ping is nearly a plane wave, and calculation of the outbound
wave is the item of interest. Because the incident wave is known, we do not need to model
the vast region of space between the incident source and the scattering object. This greatly
reduces the cost of the computation.

The theory manual details the formulation. Here we address verification of a simple
sphere in an infinite medium. The example is taken from the USA LS-Dyna verification
manual found in 39. The model includes a steel sphere of radius 10 inches and thickness
0.1inches immersed in sea water. The parameters of the problem are given in Table 10.34.
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Figure 10.46: Comparison of Sierra/SD result with analytical solution of the scattered acous-
tic pressure for a simple 1D problem.

parameter value
shell radius 10.0 in
shell thickness 0.1 in
shell modulus 0.29¢ + 08
shell density 0.732e — 031=sec
water density 0.96e — 04%
water speed of sound 600002
step wave amplitude 100;1—1’2
hit point z = —10in

Table 10.34: Parameters from Verification Model of Spherical Shell Subjected to Plane Step
Wave
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Figure 10.47: Comparison of Sierra/SD result with analytical solution of the acceleration for
a simple 1D scattering problem.
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Figure 10.48: Sphere Impacted by Step Wave. The incoming step wave arrives from the —Z
direction. Dashed lines are the analytic solution.

The solution is shown in Figure 10.48. Clearly there are discrepancies. The FEM solution
excites higher order modes not seen in the analytic solution. It is also quite likely that there
are reflections from the boundaries of the fluid mesh. The verification example (found in
verification /acoustic/scattering), is “quarter-sphere”.

We note that the quarter-sphere model just described utilized the standard absorbing
boundary condition for the exterior surface of the acoustic mesh. Identical results are ob-
tained using infinite elements, and so we do not duplicate the plot here, but we mention that
this additional test can be found in the location

Salinas_rtest/verification/acoustic/scattering/quarter_spherelE.inp
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Name Eccentricity | Acoustic Elements
sphere-m1 1:1 672
sphere-m2 1:1 5088
sphere-m3 1:1 40128
sphere-m4 1:1 323856
ellipse-m1 3:1 672
ellipse-m2 3:1 5088
ellipse-m3 3:1 40128
ellipse-m4 3:1 323856

Table 10.35: Mesh Parameters of Infinite Elements on Ellipsoidal Surfaces

10.2.13 Infinite Elements on an Ellipsoidal Surface - Transient Scat-
tering

It is often advantageous to mesh the area about a structure with an ellipsoidal (or prolate
spheroid) mesh, and use infinite elements on the ellipsoidal boundary to model the effects
of an infinite fluid. This is the case if a submarine is modeled. A spherical mesh about this
long cylindrical structure can be huge, while an ellipsoidal mesh greatly reduces the acoustic
mesh size. To verify the behavior of the infinite elements on this boundary, we use the
spherical structure of section 10.2.12 and compare with the closed form solutions obtained
by Huang,*’ and referenced in the USA verification manual.®

The standard formulation of infinite elements is built on radial basis functions. In the case
of a sphere, these basis functions can be defined using a common source location at the origin
of the sphere. When the infinite element surface is an ellipsoid, a common source location
yields basis functions that are not orthogonal to the infinite element surface, resulting in poor
performance and spurious reflections. To alleviate this shortcoming, the basis functions for an
ellipsoidal can be defined using a variable source location, such that each element (or rather
each node on the surface) has its own source point for expansions of the basis functions.
This ensures that the basis is orthogonal to the ellipsoidal surface.

To evaluate the reflection of the infinite elements, several meshes were composed. Details
of the meshes are shown in Table 10.35. All meshes are quarter symmetry models. A
representative mesh is shown in Figure 10.49. Results from the analyses are shown in Figures
10.50 through 10.52.

10.2.13.0.1 High Frequencies. There are two reasons why it is necessary to eliminate
high frequencies from the comparison. First, the analytic solution is a series summation (see
equation 17 of Huang). It contains only the first few structural modes in the solution, and
thus effectively filters the higher frequency solution. Second, high frequencies are introduced
through of the mesh discretization. We observe that while the frequency of these spurious
solutions increases with mesh density, the amplitude typically decreases. It is impractical to
refine the mesh sufficiently to eliminate all such mesh dependent responses.
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Figure 10.49: Representative Mesh of Quarter Symmetry Sphere in Ellipse

The higher frequencies could be eliminated in a variety of ways. The input loading can be
filtered to “smooth” the step function and eliminate high frequency excitation. The integrator
could introduce artificial numerical damping which removes high frequency energy during
the computation. Or, the signal could be post-processed by filtering. We use post-process
filtering in this case because it is straightforward to implement and does not introduce
unknown phase shifts. We use the MATLAB™, “filtfilt” function on a Butterworth lowpass
filter of order 6. The cutoff frequency is 10 kHz.

The radial response of an unfiltered and filtered responses is shown in Figure 10.53.
Clearly, even with increasing mesh density, high frequency oscillations continue to dominate
the response.

10.2.13.0.2 Dependence on Loading Decay. The analytic solution loadings include
an exponential decay following a step wave response.! The previous analysis was analysis
performed with no decay. Figures 10.54 and 10.55 show the response for various decay factors
as observed on the leading and trailing edges of the sphere. The analytical solutions for this

!The pressure can be written as,
P = H(t— ) exp (B[t — 7))

where H() is the heavyside step function, ¢ is the measurement time, 7 represents the travel time from the
source to measurement location and 3 is the decay constant.
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Figure 10.50: Filtered Front Node Response and mesh convergence for both a spherical and

ellipsoidal acoustic region.
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Sphere in Sphere, Side Node: Radial velocity
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Figure 10.51: Filtered Side Node Response and mesh convergence for both a spherical and
ellipsoidal acoustic region.
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Figure 10.53: Sphere in Ellipsoid. Unfiltered response at 90° location.
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case were taken from Sprague and Geers.*!

The purposes of these plots is to determine the dependence of the solution on the decay
parameter “beta”. While this dependence seems well represented in a general way, there
are significant discrepancies in the plots. Notably, there is an apparent phase shift between
the analytical and numerical solutions. Figure 10.56 compares numeric solution with the
analytic solution of Geers and the results published in the USA verification manual for the
case of f = 0. The numeric results are much closer to the USA prediction. There are some
issues here that have not been completely identified at this time. The two analytical solutions
should be identical, but clearly differ. We can guess that perhaps a different number of terms
were retained in the series expansion. Unfortunately, the USA solution is only available for

B =0.

10.2.14 A comparison of spherical and ellipsoidal infinite elements
on a model problem

In this section we examine the results of a simple test problem designed to compare the
results of infinite elements on spherical and ellipsoidal meshes. For the purposes of these
comparisons, we will use the results on the spherical meshes as the truth model, and the
goal will be to show that for sufficiently fine acoustic meshes and sufficiently high infinite
element order, the results on the spherical and ellipsoidal meshes are the same.

Figures 10.57 and 10.58 show the geometry of the test case. In the case of the ellipse, two
different aspect ratios were studied, 10 : 1 and 3 : 1. Figure 10.58 only shows the aspect ratio
of 10 : 1. An acoustic mesh is defined on a spherical (Figure 10.57) and ellipsoidal (Figure
10.58) geometry. In both cases a cylindrical hole is cut out from the mesh, and an applied
acoustic velocity is applied to the outermost surface of the cutout. The applied velocity is
the same on the entire surface, and consists of the hat function shown in Figure 10.59.

Figure 10.60 shows the results of acoustic pressure along a 45° angle relative to the major
axis, for a spherical mesh and an ellipsoidal mesh of aspect ratio 3 : 1. For the ellipsoidal
meshes, results are shown using two different source location algorithms of the plane-line
intersect method, and the constant offset method. The results from a previous Sierra/SD
release that involved a fixed source location is also shown. Both the plane-line intersect and
constant offset ellipse algorithms replicate the results produced on the sphere, but the fixed
source location algorithm from the previous Sierra/SD release shows significant differences.
This is expected, since that algorithm required a zero mass matrix even when the mass matrix
was non-zero, as in this case. Figure 10.61 shows the same results, but for an ellipsoidal mesh
of aspect ratio 10 : 1. Similarly, the plane-line intersect and constant offset source location
algorithms for the ellipsoidal meshes yield identical results to the sphere.

Figure 10.62 shows the results of acoustic pressure along the major axis, for a spherical
mesh and an ellipsoidal mesh of aspect ratio 3 : 1. For the ellipsoidal meshes, results are
shown using the two different source location algorithms of the plane-line intersect method,
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Figure 10.54: Comparison of Sierra/SD result with analytical solution of the scattered acous-
tic pressure on the leading surface of a sphere. Mesh=m4.
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Figure 10.55: Comparison of Sierra/SD result with analytical solution of the scattered acous-
tic pressure on the back surface of a sphere. Mesh=m4.
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and the constant offset method. The results involving a fixed source location that was
implemented in a previous Sierra/SD release are also shown. Both the plane-line intersect
and constant offset ellipse algorithms replicate the results produced on the sphere, but the
fixed source location algorithm shows significant differences. This is expected, since that
algorithm required a zero mass matrix even when the mass matrix was non-zero, as in this
case. Figure 10.63 shows the same results, but for an ellipsoidal mesh of aspect ratio 10 : 1.
In this case, the initial behavior of the results on ellipsoidal meshes are identical to that of the
sphere, but later times show some small discrepancies. Further increases in infinite element
order did not resolve these discrepancies, and thus it is likely that one or more additional
mesh refinements of the acoustic mesh are necessary to bring these results into agreement.

10.2.15 Absorbing Boundary Conditions for Infinite Elastic Spaces.

In this example we consider a perfect cube, of dimensions 1 x 1 x 1, which is subjected
to a pressure wave and a shear wave along one of its faces. The opposing face is designated
to be an absorbing boundary condition. In both cases, we apply the loads in the frequency
domain, since we have analytical solutions for the corresponding particle displacements. We
note that for the shear wave loading, we needed to constrain the motion of the space to be
zero in the orthogonal directions in order to match the analytical solution. This is expected,
since this solution assumes no rigid body rotation of the space. We note that these tests can
be found at
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Figure 10.57: Spherical acoustic mesh for cylindrical cutout problem.

Figure 10.58: Ellipsoidal mesh with aspect ratio 10:1 for cylindrical cutout problem.
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Figure 10.59: Amplitude function used to scale input acoustic velocity for cylindrical cutout
problem.

Salinas_test/verification/acoustic/infinite_elastic_space_frf_test
Salinas_test/verification/acoustic/infinite_elastic_space_frf2_test

In the case of a pressure wave, the amplitude of the particle displacement at the forcing
boundary is given by

u=— (10.80)

where P is the pressure wave amplitude, w is the circular frequency, p is the material den-
sity, and c is the dilatational wave speed in the material. Note that this solution is only
valid for the infinite space, and hence will test the performance of the absorbing boundary
condition for pressure waves. Figure 10.64 shows the comparison of this exact solution with
the displacements obtained by Sierra/SD. The results are indistinguishable.

In the case of a shear wave, the amplitude of the particle displacement at the forcing

boundary is given by
T

wpCs

u =

(10.81)

where T is the traction wave amplitude, w is the circular frequency, p is the material density,
and ¢, is the shear wave speed in the material. Note that this solution is only valid for the
infinite space, and hence will test the performance of the absorbing boundary condition for
shear waves. Figure 10.65 shows the comparison of this exact solution with the displacements
obtained by Sierra/SD. The results are indistinguishable.
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Figure 10.60: A comparison of results along a 45° angle from cylindrical cutout problem on
spherical and ellipsoidal meshes of aspect ratios 3:1
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Figure 10.61: A comparison of results along a 45° angle from cylindrical cutout problem on
spherical and ellipsoidal meshes of aspect ratios 10:1
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Figure 10.62: A comparison of results along the major axis from cylindrical cutout problem
on spherical and ellipsoidal meshes of aspect ratios 3:1
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Figure 10.63: A comparison of results along the major axis from cylindrical cutout problem
on spherical and ellipsoidal meshes of aspect ratios 10:1
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Figure 10.64: This plot shows the comparison of Sierra/SD prediction with the analytical
solution of particle displacement at the forcing boundary, for a perfect cube subjected to a
pressure load at one end and an absorbing boundary condition at the opposite end.
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x107 Comparison of Salinas with exact solution for shear loading on an elastic space
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Figure 10.65: This plot shows the comparison of Sierra/SD prediction with the analytical
solution of particle displacement at the forcing boundary, for a perfect cube subjected to a
shear load at one end and an absorbing boundary condition at the opposite end.
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We also test the verification of the far-field evaluation. In the frequency domain, the
exact solution for an outwardly propagating spherical wave is given by

A
P = ¢ (10.82)
r

If we prescribe the value P = P, at some value of a, as in the time-domain example described
above, then we have

A .
P, = Zgtka (10.83)
a
This implies that A = P,ae’*®, and thus
_ a —ik(r—a)
p=rprle (10.84)
r

Equation 10.84 was used to compute the far-field solution to the frequency-domain version
of the

10.2.16 Impedance Boundary Conditions

A simple impedance boundary condition has been implemented in Sierra/SD. This bound-
ary condition relates the acoustic pressure and particle velocity on the surface. In the im-
plementation, it results in a damping matrix with a multiplicative coefficient that depends
on the impedance. For more details, we refer to the theory notes.

We consider an air-filled acoustic waveguide of length L. At the left end, we apply
a prescribed particle velocity V', and at the right end, we apply an impedance boundary
condition with an impedance of Z. The exact solution to this problem is given by Kinsler®!
as
Z + jtan(kL)

1+ jZtan(kL)

p=Vpecx (10.85)

where p is the acoustic pressure at the left end, p is the density, ¢ is the speed of sound,
k = % is the wave number, and j is the imaginary number.

We consider an example with the following properties: L =5, ¢ = 332.0, p = 1.293, and
Z = 0.5pc. Given these parameters, we ran a directfrf analysis in Sierra/SD and compared
in Figure 10.66 the Sierra/SD results against the analytic solution in equation 10.85. An
excellent agreement is observed.

This example is located in the test suite at

Salina_rtest/verification/acoustic/waveguide_impedance.inp
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Figure 10.66: This plot shows the comparison of Sierra/SD prediction with the analytical
solution of acoustic pressure, for a piston-driven acoustic wave tube with an impedance
boundary condition at the opposite end.
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10.2.17 Point Acoustic Source

In order to verify the acoustic point source in Sierra/SD, we consider a spherical domain
with a point source at the center. The spherical domain is given absorbing boundary condi-
tions around its boundary, so as to make the space look infinite in all directions. With this
arrangement, we have the problem of a point source in an infinite domain.

The analytical solution to this problem is given by Pierce,?* as follows

R R

p(R,1) = o=t = D)H(t - ) (10.86)

c
where p(R,t) is the pressure at a distance R from the source and at time ¢, p is the fluid
density, ¢ is the speed of sound, H (t) is the Heaviside function, and Q(t) is the time derivative
of volume change of the source, i.e.

av

In this problem, we chose Q(t) = sin(507t), and we examined the solution at the exterior
boundary of R = 2. Inserting this into equation 10.86 gives

50p 2 R
t) = 2F A HE -2 10.
p(R, 1) 5 cos(50m (¢ 343) (t C) (10.88)

Figure 10.67 shows a comparison of the Sierra/SD results for this problem compared
against equation 10.88. Excellent agreement is obtained, except for the initial time where
the numerical solution shows some difficulty resolving the abrupt change in the exact solution,
which comes from the Heaviside function in equation 10.88. We note that this test can be
found in

Salinas_rtest/verification/acoustics/point_source.inp

10.2.18 Moving Point Source

In this section, we study a similar example as the previous one, except that the point
source has a translation superimposed on the sinusoidal volume change. For simplicity, we
assume that the point source is moving in a straight line with velocity V. The exact solution
for this problem is given as*?

P Qt — ) R, pQ(t—2%) (cosf — M)V R
piR, g = 47 R(1 — M cos H)QH(t a ;> T R?(1 — M cos H)QH(t a ;) 058

where () is the same as the preceding example, M = % is the Mach number of the point
source, R is a vector going from the field point of interest to the source location, and € is
the angle between the direction of motion of the source and the vector R.
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Figure 10.67: Comparison of computed and exact solution for a point source in an infinite
medium.

We note that in the case when the velocity V' = 0 of the source is zero, we have that
M = 0. In that case, the second term in equation 10.89 is zero and equation 10.89 reduces
to equation 10.86. Also, we note that equation 10.89 is derived by assuming that the point
source is moving subsonically, i.e. that the Mach number M < 1. In the case M > 1, a
similar equation can be derived (see,’? but we will not consider it here.

Figure 10.68 shows the geometry for the test problem in this case. It consists of a single
hex element that moves in the = direction, along the centerline of an acoustic half-space. The
second time derivative of the volume of this hex element is mapped to the acoustic space,
creating an image of a moving source. The hex element moves with a constant velocity. Its
volume is given by the equation

8 3
t) = ——= (ro + Asin(wt 10.90
Q1) = 5= (o + Asin(ut) (1090)
where 79 = 0.01 * \/Z3), A = 0.01, and w = 100 x 27. Two subsequent time derivatives of
this function give the necessary expressions for () and @) for the time derivatives of volume
that are mapped to the acoustic space. Given these, equation 10.89 can be used to compute
the exact solution.

Figure 10.69 shows the comparison of computed and analytical solutions for the case
when the hex is given a velocity of 207, and the measurement point is at the bottom of the
acoustic hemisphere. Generally the agreement is good, with both solutions showing increas-
ing amplitude as the hex approaches the measurement point (at ¢ = 0.025), and decreasing
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Figure 10.68: Geometry for verification example of moving point acoustic source in an
infinite medium.
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Figure 10.69: Comparison of computed and analytic solutions for verification example of
moving point acoustic source in an infinite medium.

amplitude as the hex passes and travels away from the measurement point (0.025 < ¢ < 0.05).
Better agreement could likely be obtained by refining both the acoustic and hex meshes, but
that is not pursued here. We note that this example can be found in the performance test
suite (it was too large to be placed in the verification suite) at

Salinas_rtest/performance/moving_source.inp

10.2.19 Infinite Elements for Transients

The infinite element implementation was verified on a single element transient example.
This element was a hex element that was aligned with a spherical surface of radius a = 100m.
A surface acceleration excitation of sin(27t) was applied to the free face of the hex element,
and a third order infinite element was defined on the opposite face. Since this element was
aligned with a spherical coordinate system, its exact solution should be the same as that of
the sound pressure radiated from a pulsating sphere of the same radius. This exact solution
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is given in®* as

t
o(t) = a/ e~y s (1) dr (10.91)
where a is the radius of the sphere, ¢ is the speed of sound, and vg(t) is the applied surface
velocity on the inner surface of the sphere. Once ¢(t) is found, the acoustic pressure can be
recovered as follows

p(r,t) = 2% (10.92)
r
If we define an input surface acceleration as
as(t) = sin(27t) (10.93)
Then we have an implied input velocity of
(t) ! (27t) + ! (10.94)
= — Cos — .
vs 27 i 27
Substituting this into equation 10.91, we obtain
—a [ —1 il
¢ = 2—5 [ . e~ (e/a)(t=T) {% cos(2mt) + o | d (10.95)
Simplifying, and using the identity
/ec”” cos(ca) = % (¢1 cos(c1z) + ¢ sin(cax)) (10.96)
]+ ¢
we obtain
—a 1 c 2ma’ et
St) = 2~ [— cos(2rt) + (2r)? sin(27rt)] + e (10.97)
27 (97 + @7 La (O + 2y

Inserting this expression into equation 10.92, we obtain the exact solution on the surface of
the sphere (R=a)

ome s + < sin(2nt) — 2 Cos(27rt)} (10.98)

p(rt) = (2)2 N [ a

22+ (2m)?)
We note that there is both a transient and a steady-state component to the solution in
equation 10.98. The transient term dies out after sufficient time, and then the steady terms
persist.

Figure 10.70 shows the comparison of the exact solution of equation 10.98 and the com-
puted solution using Sierra/SD. Excellent agreement is seen between the curves.

A second verification example was considered that consisted of a piston mounted on an
infinite baffle. Figure 10.71 shows a schematic of the geometry. A 3D hemispherical domain
of radius 0.5(m) was constructed and meshed with tetrahedral finite elements. A normal
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Figure 10.70: A comparison of an exact solution for spherical wave radiation and the
Sierra/SD computation using transient infinite elements.

354



Acceleration
Boundary Condition
i

T

~_ Infinite
T — ~
Element Surface

Figure 10.71: A schematic of the geometry of a piston mounted on an infinite baffle for
verification of transient infinite elements.
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acceleration boundary condition was applied to a circular portion of the flat face, of radius
0.25(m). The flat plane of the hemisphere was set at y = 0, as shown in Figure 10.71. The
remaining part of the flat surface was treated as acoustically rigid (zero particle acceleration).
Infinite elements were then applied to the curved surface, thus making the geometry appear
to be a semi-infinite space with a piston mounted on the (rigid) baffle.

The analytical solution to this problem is given as*
p [ an(Ts,ys,t — R/C)
t) = — dsS 10.99

where p(z, t) is the acoustic pressure at an arbitrary point x in space and time ¢, p is the fluid
density, a,(zs,y.,t — R/c) is the normal acceleration on the piston surface, zs and y, are
points on the piston used in the surface integration, R = \/[(z — 25)2 + (y — ys)? + (2 — 25)?]
is the distance from a point on the piston surface to the point x where the solution is desired,
and c is the speed of sound. Thus, we see that for an arbitrary point in space x, and an
arbitrary time history of accelerations a,,, the integral in equation 10.99 must be carried out
numerically.

We consider 2 points in space for the comparison with analytical solution. The first
point (point A) is located along the axis of the piston at z = 0, y = —0.5, and z = 0.
The second point (point B) is located off-axis as z = 0.5, y = 0 and z = 0. Figures 10.72
and 10.73 show comparisons of the analytical and computed solutions for the case when
a,(t) = sin(2007t), which corresponds to the case when the piston is rigid and moving
harmonically at a frequency of 100Hz.

10.2.20 Variable Order Infinite Element Implementation

Before making comparisons of the infinite element and Kirchoff integral approaches, we
first examine the dependence of the infinite element approach on the order of the radial
expansion used in the approximation. If the implementation is correct, the computed solution
should converge to the analytical solution for sufficiently high order of radial expansion in
the infinite element approximation.

Figure 10.74 shows the geometry of the mesh used for the baffled piston. It consists of
a hemispherical geometry with a circular surface defining the area over which the piston
makes contact with the air. An applied acceleration time history is given to the piston,
which acts as a Neumann boundary condition. The flat face of the hemisphere is a subset
of the infinite baffled plane. The infinite elements are placed on the curved part of the
hemispherical surface. The piston is given a uniform, time-dependent acceleration in the
direction of its surface normal. We denote this acceleration as ap(t), and the exact form of
the time dependence will take two different forms, as described below.

The exact solution to this problem can be computed from the Kirchhoff integral

t— B
pla,t) = % /5 %ds (10.100)
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Figure 10.72: A comparison of computed vs. analytic solution for a piston mounted on an
infinite baffle. Field point is at x =0, y = —0.5, 2z = 0.
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Figure 10.73: A comparison of computed vs. analytic solution for a piston mounted on an
infinite baffle. Field point is at x = 0.5, y = 0.0, z = 0.
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where p(a,t) is the acoustic pressure at point « and time ¢, p is the density of the fluid, S is
the surface area over which the piston interacts with the fluid, ap(xg,t — %) is the normal
acceleration of the piston at the point g, and at the delayed time t — %, R = |x —xg| is
the distance from the surface point xg to the far field point @, and c¢ is the speed of sound.
The evaluation of equation 10.100 was carried out numerically, and this provided the exact
solution for comparison with the computations.

In all of the following examples, we consider standard conditions for the air surrounding
the piston, p = 1.293, ¢ = 332.0. The piston has a radius of 0.25(m). The mesh consists
of 1,800,000 linear tetrahedral acoustic elements with an approximate element diameter of
0.0026 m. For a wave at 2000 Hz, the wavelength is about 0.166 m, and thus this consists
of about 50 elements per wavelength. The time step for the transient analysis was taken
at 5.0x10%s, which is much finer than needed to resolve a frequency of 2000 Hz. Thus, we
expect both spatial and temporal resolution to be sufficient to capture the wave response,
and thus allow the infinite element and Kirchhoff solutions for far-field pressures to be easily
compared.

Figure 10.75 shows a comparison of the exact vs. computed transient response at the
particular point x = —0.25, y = 0, z = 0 for increasing order of the infinite element
approximation. In this case, the piston was given an acceleration of the form ap(t) =
sin(2r ft)H(t), f = 2000(Hz). As expected, the infinite element solution converges to the
exact solution as the order is increased. For the examples that follow, a similar approach was
taken in that the order was increased until subsequent increases in the order of the infinite
elements made no difference in the obtained results.

10.2.21 Coupled Acoustic-Structure Directfrf with Viscoelastic Ma-
terial

This example compares the solution from ABAQUS with that of Sierra/SD for a coupled
acoustic-structure interaction directfrf problem with a viscoelastic material. The problem
consists of a thick plate fixed on the edges and loaded on one face. The opposite side of the
solid is coupled a prism with a prescribed acoustic pressure equal to zero on the opposite face.
A sketch of the problem domains is shown in Figure 10.76. The pressure contours for both
the Sierra/SD and ABAQUS outputs are shown in Figures 10.78 and 10.77, respectively,
while a comparison of peak values are shown in Table 10.36.

Peak Pressure (Pa) | Peak Uy (m)
ABAQUS -10811.5 1.031e-6
Sierra/SD -10818.16 -1.030e-6
Table 10.36: . Peak pressure and displacement for coupled acoustic-structure interaction

problem with viscoelastic material.
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Figure 10.75: A convergence study for infinite element order, demonstrated on the baffled
piston problem
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Figure 10.76: Problem sketch. The bottom part is the solid, the top part is the fluid
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Figure 10.77: Vertical displacement distribution from ABAQUS.
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Figure 10.78: Vertical displacement distribution from Sierra/SD.
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10.3 Nonlinear Acoustics

In Sierra SD nonlinear acoustics is modeled using the Kuznetsov Equation. For ver-
ification purposes, we consider the same sequence of simulations given in**** involving a
piston-radiation problem. This example is shown in Figure 10.79. It consists of a long
air-filled tube that has a sinusoidal boundary condition at the left end. This boundary con-
dition can either be in the form of a pressure (Dirichlet) condition or a velocity (Neumann)
condition, which are given as

p(0,t) = po sin(wt) (10.101)
v(0,t) = vg sin(wt) (10.102)

In order to simulate the infinite condition at the right end of the tube, an absorbing boundary
condition is used. The exact solution to this problem is given by the Fubini solution (see
section 11.2 of**) in the pre-shock regime and by the Fay solution in the post-shock regime.

(vO)sin(Wt)—>l
|

I
| Tube of infinite length

\

Figure 10.79: A wave tube example for verification

In the case of a plane wave, the distance to shock formation is given as

C
<1 —f- 'BQﬁ> U[)k'

g =

(10.103)

where vy is the amplitude of the velocity of the source, and k is the wave number. As
expected, for larger amplitude sources, and for more nonlinear fluids (larger B/A), the shock
forms closer to the source. Interestingly, we see that the shocks also form closer to the
source for high frequency waves, since k is in the denominator. In the numerical experiment,

we chose vg = 207, and k = % = .3, which resulted in a shock formation distance of
0= 52 =46.1m.
The Fubini solution*>4% is given by
p(z,t) = po i iJn(ni‘) sin(nwr) (10.104)
’ c=ng
where J,,(z) is the Bessel function of order n, z = 7, and 7 = ¢ — Z. The Fay solution is
2 — sin(nwr)
t) = pg— 10.105
p(z,t) o ; sinh [n(1 + o)T)] ( )
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where I is the ratio of the absorption length to the shock formation distance (see®). The
Fubini solution assumes a lossless media, and thus it is only valid for < ¢. For the post-
shock regime, x > 3.50, the Fay solution must be used since it accounts for absorption.
Transition solutions have been derived*” that provide exact solutions for ¢ < z < 3.50, but
we do not consider those here.

For all of the results presented next, the fluid is air at ambient conditions, with ¢ =
332.0%, p = 1.293%. Also, if we only account for viscosity and thermal conductivity as loss
mechanisms, the absorption parameter can be calculated from the following equation3?

b 1[4 k
- = — |z —1)— 10.106
5 - Ll+o-vg] (10100

1 4 2.624¢2

= ——— | -1.846e " + (0.4)———— 10.107
1.29323322 {3 e+ 0955 ( )
= 7.017e %z [2.461e™° 4 1.0496e°] = 2.46e"° (10.108)
(10.109)

For air, C% is so small that it was found to have virtually no effect on the numerical results.
Note that this estimate neglects additional loss mechanisms such as molecular relaxation,
and wall losses.

Figures 10.80, 10.81, and 10.82 show the solution at * = 0, x = o, and * = 40, re-
spectively. In all cases, the computed solution is compared with the exact solution, and
convergence is obtained. In these results, three- dimensional linear finite elements were
used, with element diameters of 0.125(m). The time steps were 1.0 x 1072, 2.5 x 107*, and
1.25 x 1074 for Figures 10.80, 10.81, and 10.82, respectively.

In order to demonstrate the significant difference between linear and nonlinear solutions,
in Figure 10.83 we show the results for the previous problem using linear and Kuznetsov wave
equations. In this case, we plot acoustic pressure with distance along the tube, rather than
with time. It is seen that linear theory is not sufficient for capturing the correct response.

Next, we examine the nonlinear convergence properties of the algorithm. Since we are
using Newton’s method to solve the nonlinear system of equations, we examine the number
of iterations required for convergence. The criteria for convergence is based on a relative

tolerance of 1079, e.g.

| Resy| -6

——— <10 10.110

IFext| ( )
Also, we mention that the starting point for the Newton iterations is the value of velocity
potential from the previous time step. Figure 10.84 shows the number of Newton iterations
required to satisfy the inequality 10.110, for various levels of input velocities of the piston.
As expected, for larger input velocities, more iterations are required for convergence. The
highest level that was considered, 120", is beyond the limitations of the Kuznetsov equation,
but we show it anyway to illustrate the divergence of the Newton scheme. For reasonable
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Figure 10.84: The number of Newton iterations required for convergence of the piston radi-
ation problem.
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levels of piston velocities (i.e. 207), the Newton iterations converge very rapidly, leveling
off at about 4 iterations per time step. Interestingly, for source amplitudes that are within
the range of validity of the Kusnetsov equation, the formation of shocks does not seem to
influence the number of iterations required for convergence.

A test case for the Fubini solution with the shock wave is currently in the verification

test suite

Salinas_rtest/verification/acoustics/shockwave_SI.test for SI units and
Salinas_rtest/verification/acoustics/shockwave_english.test for english units

10.4 Material Identification

These verification problems are too computationally expensive to include in the automatic
verification suite.

10.4.1 Elastic Material Inversion for a Tunnel

This verification problem is too computationally intense for the automatic verification
suite.

In this section, we describe a materials inversion test performed on a hemispherical solid
containing an embedded cylindrical tunnel of different material. Figure 10.85 shows the
geometry of the model.

Figure 10.85: Force Inversion Test Geometry

In the model, a hemispherical solid contained a cylindrical tunnel region of a different
solid material. A Dirichlet boundary condition was assigned on the solid, setting a fixed
boundary on the hemispherical face of the model. A periodic structural loading was applied
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to a circular region on the flat face of the model. Figure 10.86 shows the side with the fixed
boundary condition (pink) and the region of loading (orange). It was desired to determine
the elastic material properties—the shear (G) and bulk (K) moduli- of the two material
regions

Figure 10.86: Sides with boundary (pink) and loading (orange) conditions

Synthetic input data for the inverse problem was generated by performing a forward
run on the model. The data represented elastic displacements for element nodes caused
by the loading on the hemisphere’s face. In the forward run, the hemispherical and tunnel
regions were assigned their true material properties, {Gy, K} and {Gy, K;}, displayed in
Table 10.37. For the inverse run, initial guesses were chosen for the properties of the two
material regions, also shown in Table 10.37. The two regions were designated as having
heterogeneous, isotropic elastic materials, allowing the bulk and shear moduli to vary by
element. The initial guesses, along with the input data, were used to verify that the true
material properties could be recovered by the code. Figures 10.87 through 10.90 show results
of the heterogeneous material-identification; cross-sections of the model are colored by the
computed results for the shear or bulk moduli of the elements in the model. Figures 10.87
and 10.88 show results using a least-squares objective, while figures 10.89 and 10.90 show
results using a Modified Error in Constitutive Equations (MECE) objective funcitonal.

Table 10.37: True material properties and intial guesses for tunnel-model material identifi-
cation

Property || Exact | Initial Guess
G 150.0 90.0
Ky, 150.0 90.0
Gy 50.0 90.0
K, 50.0 90.0
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Figure 10.87: Shear modulus values of model elements, using least-squares objective
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Figure 10.88: Bulk modulus results for model elements, using least-squares objective
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Figure 10.89: Shear modulus results, using MECE objective
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Figure 10.90: Bulk modulus results, using MECE objective
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As shown in Figures 10.87 and 10.88, the elastic material properties calculated using the
least-squares objective generally differentiate the two blocks and recover the blocks’ original
material properties. Due to the heterogeneous conditions on the block elements, element
properties vary through the block volumes and include outliers. The properties recovered
using the MECE objective, shown in Figures 10.89 and 10.90, much more closely recovered
the original material properties of the two regions, though still demonstrated heterogeneous
variations. The least-squares optimization, performed using a BFGS method, ran in parallel
and underwent 30 iterations. Both the gradient and objective function were found to converge
appreciably, though the objective function achieved much smaller error terms. Figure 10.91
shows the convergence behavior of the objective function and gradient for the least-squares
optimization. The continuous optimization problem is solved using the Rapid Optimization
Library (ROL) package in Trilinos.

ROL Optimization for Material Inversion Test
T
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—=+&— Gradient
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Figure 10.91: ROL optimization of objective function and gradient, using least-squares ob-
jective

10.4.2 Frequency Domain Viscoelastic Material Inversion

In this section, we describe a frequency-domain material inversion test performed on a
solid assembly of two steel blocks joined by a region of viscoelastic foam material. Figure
10.92 shows the geometry of the test model.

As shown in Figure 10.92, the model assembly consists of two equally-sized steel blocks,
depicted in yellow and green, joined by a region of viscoelastic foam material, shown in red.
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Figure 10.92: Foam block model with finite element mesh and force location

The model was discretized with a finite element mesh of Hex-8 elements. A periodic point
load with a frequency of 500 Hz was applied to the yellow block, also as shown in the figure.
It was desired to calculate the frequency-dependent viscoelastic material properties of the
foam block, including complex values for the bulk (K) and shear (G) moduli.

Synthetic input data for the inverse problem was generated by performing a forward run in
the frequency domain on the model. The data represented elastic displacements for element
nodes caused by the point load acting on the model. Exact values for the foam block
material properties, shown in Table 10.38, were used to generate the displacement data. For
the inverse run, initial guesses were chosen for the complex valued properties of the foam
block region. The foam block region was designated as isotropic and viscoelastic, the entire
block sharing the same complex-valued material properties. The initial guesses, along with
the input data, were used to verify that the code could recover exact material properties
of the foam block. Results for the computed material properties of the foam block are also
shown in Table 10.38.

Table 10.38: Exact and computed values for foam block’s complex material properties

Property || Exact | Initial Guess | Computed
G Real || 4000 2000 40000.001556
G Imag. 0 0 -0.005484
K Real | 16000 8000 15999.999388
K Imag. | 5000 0 5000.000827

As shown in Table 10.38, despite halved initial guesses for the real moduli and poor
assumptions of no damping behavior, the code was able to recover material property values
very well. The optimization, performed in parallel using a BFGS method, ran in parallel and
underwent 95 iterations. Both the gradient and objective function were found to converge
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appreciably, the error decreasing especially rapidly following 80 iterations. Figure 10.93
illustrates the convergence behavior for the objective function and gradient. The continuous
optimization problem is solved using the Rapid Optimization Library (ROL) package in
Trilinos.

o Convergence Behavior for Foam Block Material Inversion
10 1 T T T T T T T T T
.-

—&— Objective Function
—=o— Gradient
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Error Value

10—14
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10716 & ]
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Figure 10.93: Convergence Behavior of Foam Block Material Inversion

10.5 Solution Procedures

10.5.1 Verification of Time Integration
10.5.1.1 Verification of generalized alpha damping

Though it is not always done in finite element code verification, it was deemed appropriate
to verify that the generalized alpha time integrator*® was implemented correctly. To isolate
that feature, a single degree of freedom simple harmonic oscillator problem was solved. In
this problem, the mass and stiffness were each set to unity so that the period of free vibration
would be 2. A unit load was imposed for a half a period and the resulting free vibration was
calculated. The exact solution to this problem is

u(t) = 2cost
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Figure 10.94: The time integrator is tested against a simple harmonic oscillator. Values of
displacement at time 87 are compared and tested for convergence.

The Sierra/SD results for time steps 27/200, 27 /400, 27 /800, and 27 /1600 were computed.
The resulting displacements for all four cases are almost identical and are shown in Figure

10.94.

Values at time 87 were compared and the resulting convergence plot is shown in Figure
10.95. We see that the convergence rate is almost exactly two — the theoretical value.

10.5.1.2 Verification of prescribed acceleration capability

In this section we present an example of verification for the prescribed acceleration capa-
bility. The example consists of a cantilever beam model 10 meters in length, with a square
cross section of 1 meter dimension. The beam is subjected to an end-loaded acceleration in

the axial direction given by
a(t) = cos(wt) (10.111)

where w = 27 f, and f = 16Hz. The initial conditions, including initial displacement and
initial velocity of the beam are set to zero. Given these conditions, we can integrate the
acceleration equation twice to obtain the following expression for the displacement at the

loaded end .
D(t) = Gan)? (1 — cos(32nt)) (10.112)
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Figure 10.95: Convergence of Simple Harmonic Oscillator.

Figure 10.96 shows a comparison of the analytical solution for displacement against the
Sierra/SD result. Excellent agreement is observed. We note that this example can be
found in the test suite at the following location.

Salinas_rtest/verification/transient/bar_prescribed.xml

10.5.2 Direct Frequency Response

In this section we give two examples of verification of the direct frequency response
driver in Sierra/SD . Both examples involve mass spring systems. The first is a mass
spring system with stiffness proportional damping, and the second is a mass spring system

with mass proportional damping.

The exact solution to this problem is given by equation 4.21a in Craig’s book, 49.

U 1
R e oD )

where U is the displacement of the mass, Uy is the magnitude of the forcing function, r = -
C

is the ratio of the circular frequency to the fundamental resonant frequency, and ( = o
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Figure 10.96: Comparison of Sierra/SD result with analytical solution of a beam with
end-loaded prescribed acceleration.
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spring—mass system with proportional damping
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Figure 10.97: Comparison of exact and computed responses from direct frequency response
of a damped spring mass system.

is the level of damping, normalized with respect to the stiffness and mass of the spring mass
system. See Figure 3.1 in Craig 49 for a diagram of the problem.

For proportional damping, we have ¢ = am + Sk. The exact solutions corresponding to
equation 10.113 were computed and compared with simulations in Sierra/SD for two cases.
In case 1, « = 0.0 and § = 1.0. In case 2, @ = 1.0 and 8 = 0.0. Also, for convenience we
set k = m = Uy = 1 for this problem. In this way, the exact solutions for both mass and
stiffness proportional damping were exactly the same.

Figure 10.97 shows the comparison of the computed and exact solutions for the case of
stiffness proportional damping. The mass proportional damping case was exactly the same,
and thus is not shown. We see that proportional damping decreases the peak of the resonant
frequency, and shifts the frequency slightly to the left. Excellent agreement is seen between
Sierra/SD and the exact solutions.
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10.5.3 Modal Frequency Response

This section presents verification examples for modal frequency response. The truth
model used in these tests is the result from the corresponding direct frequency response
analysis, and thus we are only verifying that the modal expansion is converging.

The first test involves a free-free beam composed of 222220 hex8 elements. The beam is
subjected to a uniform pressure load on both ends and a modal frequency response solution
is computed. The comparison of the results at a point in the center of the beam, versus
the results from direct frequency response is given in Table 10.39. The modal frequency
response results converge to the direct frequency response results as the number of modes in
the modal expansion increases.

The second test involves the same geometry as the previous test, and instead has one
end fixed and the other subjected to a traction load of 111. Also, in this test, the modal
acceleration method is used instead of modal frequency response. The results, compared with
a direct solution, are given in Table 10.40. The modal frequency response results converge
to the direct frequency response results as the number of modes in the modal expansion
increases. We note that both of these tests are located in the Sierra/SD test suite under

Salinas_test/verification/frf

Table 10.39: Convergence of Modal Frequency Response Method

quantity | direct frf modal
14 modes | 30 modes | 50 modes | 100 modes
accx 12.7659 14.28 13.5 13.9 12.79
accy -12.7659 -14.28 -13.5 -13.9 -12.79
accz 117.309 139.0 111.0 118.0 117.353

Table 10.40: Convergence of Modal Acceleration Method

quantity | direct frf | modal accel, 14 modes | modal accel, 30 modes
accx -2350.82 -2349.75 -2350.81
accy -2415.098 -2414.12 -2415.097
accz -718.587 -718.321 -711.578
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10.5.4 Eigen Analysis

Eigen analysis is performed as part of the verification of the element quantities. Prac-
tically speaking, it is rather difficult to verify the analysis independent of the element. For
example, the hex20 and tet10 element convergence studies utilize eigen analysis for the con-
vergence study. See Figures 10.3 and 10.4 for example.

Similarly, the elastodynamics tests examined in section 10.7.1 are built on the structure
of eigenanalysis procedures. As these tests correspond to semi-analytic solutions (such as
those from Blevins [8]) they constitute true verification.

10.5.5 Quadratic Eigen Analysis

There are several different solution approaches within the package that computes the
solution to the quadratic eigenvalue problem. Each requires its own verification.

10.5.5.1 QEP — Proportionally Damped
The proportionally damped system is straightforward because the eigen vectors of the
real system diagonalize the complex (or damped) solution. Consider
(K —w*M)p=0 (10.114)

For this system ¢? K¢ = A is diagonal, and ¢? M¢ = I. The proportional damping matrix
is given by C' = aM + BK. Clearly ¢*C¢p = ol + BA.

The solution to the j* mode of the damped system is given by,
Ajj +wla+ BAj) +w? =0 (10.115)
All quantities are known from the real eigenvalue analysis, and we can solve in terms of w.

o —(a+ BA;) £ \/éoz + BA;;)? — 40y, (10.116)

Table 10.41 lists the eigenvalues and errors for a proportionally damped system with
a=0and S =0.001. This is a small Hez§ model for which the eigenvalues are known from
real eigen analysis.

These solutions are well within the expected round off. Notice that as the natural frequency
increases, the fractional damping is increasing to almost 25%.
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Table 10.41: Eigenvalues of Proportionally Damped Model

# A VA2 w/2m error
1 | 5375.07 | 11.6684 | (-0.427735,11.6606) | 1.6e-6
2
3

108926 | 52.5275 | (-8.66809,51.8074) | 2.7e-6
219052 | 74.4893 | (-17.4316,72.4209) | 4.1e-7

10.5.5.2 QEP — Viscoelastically Damped

There are no verification tests yet for this solution.

10.5.5.3 QEP — Discrete Dampers

There are no verification tests yet for this solution.

10.5.6 SA eigen

Verification of the SA_eigen solution is complicated by the model reduction inherent in
the process. Kinsler®' has a closed form expression for a coupled one dimensional structural
acoustic system. The finite element solution will approach this solution as,

a the finite element mesh converges, and

b the modal truncation is eliminated.

Without both of these considerations, there will be no convergence of the solution. Unfor-
tunately, while we can show a 1/h type convergence for the FE mesh, no such convergence
can be expected for modal truncation. For some forms of basis functions the convergence
will be very rapid. In other cases, convergence may not be acceptable until the entire space
has been spanned.

Because of model size issues, such convergence is demonstrated independently. Thus,
we first show convergence of the mesh to the analytic solution. Then, with a coarse mesh,
we demonstrate convergence of the method to the untruncated solution, as the number of
modes in the basis is increased.? Figure 10.98 shows the mesh convergence study. We note
that for 1/H > 100 the solution no longer appears to be converging. The polyeig() routine
in matlab does a full factorization, and is not likely to be the source of this issue. At this
time, we believe the problem stems from round off in transferring data from Sierra/SD to
matlab.

2 A subset of the tests in this section are stored in the repository in the
Salinas_test/verification/acoustic/sa_eigen directory.
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Figure 10.98: Mesh convergence to 1D Structural Acoustics Example. The example, taken
from Kinsler®! uses a = 1/25 and b = 8/3, where a and b are defined in the reference. The
eigen solution is found using MATLAB’s polyeig() function. The analytical solution from
equation 9.42a of Kinsler[31] is 125.2783.

Convergence of the modally reduced model to the first coupled modal frequency when
using 2 structural and 10 acoustic modes is indicated in Figure 10.99. Note that this mode
converges to a value about 1% higher than the untruncated solution. Interestingly, the mode
converges from below.

Figure 10.100 shows the convergence of the modal frequency as the number of basis modes
is increased. There is no damping for this system. Introducing radiation damping to the
right side of the acoustic system impacts the modal convergence rate. As shown in Figure
10.101, with radiation damping (or non-reflecting boundary conditions), the convergence is
not as rapid and the ultimate solution less accurate than the undamped system.

To examine the dependence of this error on the coupling, we sweep through various struc-
tural mass quantities while holding all other parameters fixed. Sweeping the mass results in a
change of structural resonant frequency. In addition, the type of coupling experienced by the
acoustic cavity changes from approximately unbounded to fully fixed boundary conditions.
Results shown in Figure 10.102, show variation as the parameter a of Kinsler is varied. The
error is highest, and the coupling is greatest, when the structural and acoustic domains have
similar resonant frequencies.

To examine the effects of impedance matching while maintaining the resonance frequen-
cies, the structural mass and stiffness are varied together such that the resonance frequency
is maintained at 160 Hz, just below the acoustic resonance (166 Hz). Figure 10.103 pro-
vides the results. The error is largest when the impedance approximates an open acoustic
termination.
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Figure 10.99: Mesh convergence to 1D Structural Acoustics Example using a modal basis.
The example is that of Figure 10.98. The quadratic eigen solution is computed using 2
structural and 10 acoustic modes in Sierra/SD .
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Figure 10.100: Modal convergence to 1D Structural Acoustics Example using a modal basis.
The example is that of Figure 10.98, with 1/h = 80. The quadratic eigen solution is computed
using 2 structural modes, while the number of acoustic modes varied. Computation is
in Matlab, with selective comparison to Sierra/SD . Convergence is not rapid as a full
solution requires components of all axial modes. Clearly after about 80 modes, no further
improvement is obtained.
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Figure 10.101: Mesh convergence to Damped 1D Structural Acoustics Example using a modal
basis. The model is unchanged from Figure 10.100 except that there is a non-reflecting
boundary condition applied on the end opposite to the structure. Matlab comparisons with
polyeig truth model, with direct verification to Sierra/SD solution.
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Figure 10.102: Modal convergence of 1D Structural Acoustics Example using a modal basis.
The example is that of Figure 10.98, with h = 1/80. The quadratic eigen solution is computed
using 2 structural modes and 10 acoustic modes in Sierra/SD , while the mass parameter,

a 1s varied.
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Figure 10.103: Modal convergence of 1D Structural Acoustics Example using a modal basis as
the impedance is swept. The example is that of Figure 10.98, with A = 1/80. The quadratic
eigen solution is computed while both the mass parameter, a and the stiffness parameter, b,
are varied. We maintain a structural resonance of 160 Hz.

10.5.7 Buckling

Most analytic solutions for linear buckling are derived using Euler-Bernoulli beam the-
ory. These solutions are ideal for meshes built with beam and shell elements, but are only
approximate verification examples for 3D solid meshes. In this section we present two widely
used buckling analytic solutions: buckling of a cantilever beam, and buckling of a circular
ring. For now we only present the results using 3D solid elements. Once buckling for beams
is fully implemented in Sierra/SD , we will generate the results using those elements as
well.

10.5.7.1 Buckling of a Cantilever Beam

The geometry for this example consists of a cantilever beam with one end clamped, and
with the other subjected to a compressive load P. Euler-Bernoulli beam theory predicts the
critical buckling load to be

| 24674EI

- 7 (10.117)
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A simple mesh of this example was created, consisting of a 2 x 2 x 10 hex elements. The
critical buckling load is predicted to be

2.4676 x 30 x 105 x &
by = T = 61675 (10.118)

The computed buckling load was 61370.1.

10.5.7.2 Buckling of a Circular Ring

In this example, we consider buckling of a circular ring subjected to a uniform, external
pressure. See section 5.9 for details.

10.5.8 Thermal Expansion

In this section we give verification examples for thermal expansion.

10.5.8.1 Free beam

This example consists of a free floating beam that is subjected to a uniform temperature
increase of 178°. The built-in end is such that expansion can occur without generating any
stresses. In the end, the beam is stress free but undergoes a uniform expansion. The exact
solution for the tip displacement is

AL = oLAT = 0.0001 x 50 x 178 = 0.89 (10.119)

where « is the coefficient of thermal expansion, and L is the length of the beam. Sierra/SD
gives the exact answer of 0.89. This test is included in the verification test suite in the
following directory

tests/Salinas_rtest/verification/thermal/thermal_beam.xml.

10.5.8.2 Free beam with linear temperature distribution

This is also a free floating beam example, except that the temperature variation is linear
along the length of the beam, instead of the uniform temperature of the previous example.
The exact axial displacement of the end of the beam is given by (thanks to Jason Hales for
the derivation of this equation)

1,2

u(z) = a(To —T;))x + (T, — TO)QL

(10.120)
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where Tj is the temperature of the beam at the fixed end, T}, is the temperature of the beam
at the free end, and 7; is the initial (uniform) temperature of the beam. Plugging in the
parameters for this example gives

w(L) = 0.0001 % 1 % 50 + 0.0001 * 1 % 25 = 0.0075 (10.121)

This example is also included in the verification test suite in the following directory,
tests/Salinas_rtest/verification/thermal/thermal_beam?2.xml.

A note about the boundary conditions for these tests may be useful. These examples simulate
free expansion. The boundary conditions are applied at one end to eliminate rigid body
modes which generate solution difficulty. The example with linear temperature distribution
results in a free expansion solution that is concave at the constraint end. Original boundary
conditions constrained that surface to be planar, and resulted in a solution that was about
1% in error. Relaxing the boundary conditions to the minimal set results in a much better
solution.

10.5.8.2.1 User Evaluation: A code to code comparison for a single thermal load is
described in section 10.8.6.1.

10.5.9 Direct Energy Deposition at Gauss Points

Energy deposited in the body (as by an X-ray event) can result in an instantaneous change
in temperature. For consistency with other applications, the energy is applied as a specific
energy, i.e. the energy per unit mass, £ = Q/(pV). Because such energy typically decays
exponentially, it is very important that energy be provided at the gauss points especially for
larger, higher order elements.

10.5.9.1 Two Element Linear Variation Hex20

The example consists of two unit Hex20 elements forming a beam of dimension 2x1x1.
The specific energy varies as the long dimension of the beam, X. The geometry is shown in
Figure 10.104. We have verified the following.

1. The specific energy is properly read into Sierra/SD , as verified with line sample
output.

2. The specific energy is properly converted to temperature using the specific heat of the
material.

3. The total energy input is determined properly.
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4. Resulting displacements meet the analytic solutions (see Figure 10.105). The numerical
results are obtained by using Ensight to post process the displacements through the
center of the body. The analytic displacement may be obtained by using the one
dimensional ODE generated by the thermal stress.

du
€thermal = ﬁ:atT(X) (10.122)
= aX/C, (10.123)
w(z) = ;g X2 (10.124)

Figure 10.104: Simple Energy Deposition Test Geometry

The example is found in,
tests/Salinas_rtest/verification/thermal/edep_lin.xml.

Resulting displacements are quadratic as from equation 10.120, with o = 0.001, and T, = 1.

10.5.9.2 Two Element Quadratic Variation Hex20

This test uses the same geometry described in section 10.5.9.1 and Figure 10.104, but
with specific energy variation, E(z,y,2) = z* + y* + 2%. The example ensures the following:

1. Exact representation of the energy and temperature as shown in linedata.

2. The total energy is p felem(x2 + 3% + 2%)dz dy dz, which is 3p, where p is the density.

3. Ensures numbering of the gauss points.

4. The displacement is inexact, as the analytic solution is cubic.
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Figure 10.105: Displacements Resulting from Linear Temperature Profile

10.5.9.3 Two Element Exponential Decay Variation Hex20

This test uses the same geometry described in section 10.5.9.1, but with specific energy
variation, E(x,y, z) = e *. The example ensures the following:

1. Approximate representation of the energy and its error can be extracted using line
sample (linesample) data and is represented in Figure 10.106.

2. The total energy is E; = p(1 — e2). The solution is approximate, because the energy
is represented by a quadratic in each element, but the error is less than 1075,

3. The displacement is inexact. The one dimensional thermal strain equation provides
the ODE for the solution. We use T'(x) = E/C,. Then,

du oy

ermal — T~ — ~ 10.125
€th ! X C, € ( )

The solution for this equation is,

. O _ X
u=G (1— ™) (10.126)

Numeric and analytic solutions for this solution are shown in Figure 10.107.

The test is edep_expx.
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Figure 10.106: Exponential Energy Deposition. Comparison of exact and interpolated solu-
tions from the Gauss Points.

10.5.9.4 Two Element, Two Material Hex20

Again, the same geometry is used, but with two different materials for the Hex20 elements.
We require that temperature be a linear function of X, and compute specific energy, E = C,T
to meet that requirement. This provides a simple solution for the quadratic displacement.
The specific energy is shown in Figure 10.108, as extracted from line sample (linesample
. The resulting quadratic displacement (and corresponding analytic solutions) is shown in
Figure 10.109. For these solutions, the heat capacity is 1 in the first element, and 2 in the
second.

10.5.10 Craig-Bampton Model Reduction

10.5.10.1 OTM Verification

The following steps are to be used for verification. The model used is the multi-
element /olio _cbr_ test.

1. ensure eigenvalues are consistent between models (reduced versus full)

This is the only portion of the test that is evaluated as part of the automated test.
2. check to ensure OTM is OK for displacement in serial.

(a) Is data consistent with ¢ and ?
This is checked in the debugger.
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Figure 10.107: Exponential Energy Deposition, computed Displacements. The numerical
results are measured at gauss points and interpolated within the elements. Displacements
are interpolated from nodal values.

(b)

does the product make sense (i.e.)
z, = [OT M][x4]

Ty = K71$1

and,

T =~ Ty,

This is done as follows.

(a)

The model is clamped away from the interface to eliminate the confusion caused by
redundant modes and zero energy modes. The full system response is computed
for mode 1 (a flexible mode). This is done by pulling in Kssr and Mssr and
computing the eigenvalues, E, and eigenvectors, V.

The reduced model is also computed for mode 1. We do this by computing the
eigenvalues and eigenvectors of Kr and Mr.

[vr, er]=eig(Kr,Mr);

We ensure that the eigenvalues are approximately the same. See figure 10.110.

The first eigenvectors is expanded to the full system from both systems. The
reduced eigenvectors contain both a physical coordinate and a modal coordinate
component. Matlab code to do this expansion is shown in Figure 10.112. A
comparison of the two vectors is shown in Figure 10.111. Note that there is a
scale factor difference of -1 in the two vectors. This is acceptable as eigenvector
scaling is arbitrary to that factor.
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Figure 10.108: Linear Deposition on 2 Blocks. The sampled specific energy and temperature
across the two blocks is shown.

10.5.11 Residual Vectors

As a small problem to test the residual vector computations in SALINAS, two beams are
connected to each other to simulate a longer beam. To keep the overall number of DOFs
as small as possible, the finite element mesh of the beam cross-section is limited to two
elements in each direction. This is the bare minimum required to model bending vibrations.
The physical parameters for the beams are listed in Table 10.42.

Table 10.42: Physical parameters for the beams

Parameter Beam 1 Beam 2
Density 7860 Kg/m3 7860 Kg/m3
Poisson Rs Ratio 0.29 0.29
Modulus of Elasticity 200 Gpa 200 Gpa
Width (Y-direction) 0.01 m 0.01 m
Height (Z-direction) 0.005 m 0.005 m
Length 0.25 m 0.225 m

When the two beams are combined the overall length is 0.475 m. Analytical solutions
for the resonance frequencies are available in the book by Weaver, Timoshenko and Young®®
for a variety of boundary conditions.

Before beginning the analysis, a few words are probably necessary to explain the general anal-
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Figure 10.109: Linear Energy Deposition. The displacement response and associated error
is shown.

ysis strategy. Component modes synthesis (CMS) has been in use for a long time and many
variations on the general analysis procedure are available. The basic idea of all CMS compu-
tations is to divide the structure into Scomponents T whose displacements are represented
as a summation of Snormal modes T with the mode sets truncated above an upper limiting
frequency. This representation is usually adequate to accurately compute displacements, but
not nodal forces or stresses (which represent spatial derivatives of the displacement field).
Thus, some method must be used in a CMS analysis to account for truncated modes, es-
pecially at locations where the forces must be computed accurately. One relatively simple
method is to add Sresidual T or Smodal truncation augmentation T vectors to the analysis
for specified nodal locations and DOFs. An excellent derivation of modal truncation aug-
mentation vectors is given in.”! These vectors are derived to be orthogonal to the normal
modes with the same normalization so that they can simply be added to the overall basis
set.

In the most general form of CMS analysis, interfaces are defined between each of the com-
ponents and Sinterface modes T are used to represent the connections themselves. Here,
a simplified form of CMS is used where the connections between components only occur at
discrete nodal locations rather than over interfaces. This eliminates the need to compute
Sinterface modes T, but is only applicable to problems (and frequency ranges) where the
interfaces can be considered to vibrate as rigid bodies. For the current example of two
connected beams, rigid elements are used to make all the nodes at the ends of the beams
dependent on nodes at the beam centerline. Figure 104 illustrates the implementation of
one of the rigid elements in NASTRAN.
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function [dispgr,nodes]=expandRmodel( cbmap, OTM, OutMap, vr )

b
b
b
b
b
b
b
A
b
b

expands a vector in the reduced, craig-bampton space into the

full physical space.

cbmap - map to interface dofs. Output into cbr.m

0TM - Output transfer matrix. also in cbr.m

OutMap - map to interior (and perhaps interface) nodes in output.

vr - the reduced space vector.
vr(l:numeig) is the amplitude of the fixed interface modes
vr(numeig:end) is the amplitude of the constraint modes (physical

degrees of freedom).
results are output sorted by node number. 6 dofs per node are output.

nodes=[cbmap(:,1)’ OutMap];
nodes=unique(nodes) ;
nout=size(nodes,?2) ;
nr=max(size(vr));
nc=size(cbmap, 1) ;
nmodes=nr-nc;

dispgr=zeros (nout*6,1) ;
ur=0TM*vr; % compute vector on OTM space, ur

)

store components from OTM space.

for i=1:size(OutMap,2)

n=0utMap (i) ;
k=find(nodes==n) ;
for cid=1:6
k2=(k-1)*6+cid;
ki1=(i-1)*6+cid;
dispgr (k2)=ur (k1) ;
end

end

% transfer interface dofs directly
for i=l:nc

n=cbmap (i, 1) ;
cid=cbmap(i,2);
k=find(nodes==n) ;
k2=(k-1)*6+cid;

dispgr (k2)=vr (i+nmodes) ;

end

Figure 10.112: Matlab code to convert from reduced space.
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L,

Figure 10.113: Tllustration of a rigid element making all the nodes at the end of the beam
dependent on a single node

This is a reasonable assumption for the beams under consideration because modes with
significant variations across the cross-section occur well above the frequency range of interest.

As mentioned previously, the user must specify the nodes for the residual vectors calculations.
The connection forces between the components must be computed accurately in a CMS
solution, and thus residual vectors are included in the basis set for all 6 DOFs at any location
where two components are connected to each other. It is often useful to also include residual
vectors for nodal locations where boundary conditions are to be applied rather than explicitly
including the boundary conditions as nodal constraints in the finite element analysis. This
allows the normal modes and residual vectors to only be extracted once, and a variety of
boundary conditions can be applied subsequently. Since forces also have to be computed
accurately at the locations where boundary conditions are to be applied, residual vectors are
also included for all the DOFs at these nodes. For the present case, one end of each beam
connects to the other beam and the other end may possibly be used to apply boundary
conditions. Rather than extracting residual vectors for all the nodes at the ends of the
beams, rigid elements are used to make all the nodes dependent on a single node at the
beam centerline. Ultimately, this means that residual vectors are extracted for nodes at
both ends of each beam, thus adding 12 residual vectors to the basis set for each beam.

The computations for the single beam were performed in a variety of ways and validated
in NASTRAN first before proceeding with the component modes synthesis (CMS) analysis.
Since the eventual goal is to only allow 6 DOF for each beam at the connection location and
at the ends, RBAR elements are used at the ends of the beams to force all the nodes to move
together as rigid entities. This representation does not allow the cross-section at the beam
ends to deform, so it is first compared to a contiguous model without RBARs to verify that
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it does not significantly change the resonance frequencies for the bending modes. Table 10.43
lists the analytical solution for the resonance frequencies assuming free boundary conditions
along with the two NASTRAN computations.

Table 10.43: Analytical solution for the resonance frequencies of a free-free beam along with
solutions from NASTRAN

N Primary Direction Analytical Contiguous RBAR at Connection
2 Y 114.9 Hz 114.8 Hz 115.0 Hz
2 Z 229.8 Hz 229.3 Hz 229.6 Hz
3 Y 316.7 Hz 316.2 Hz 316.3 Hz
4 Y 621.0 Hz 619.3 Hz 620.0 Hz
3 Z 633.5 Hz 630.0 Hz 630.0 Hz
5) Y 1026.4 Hz 1022.4 HZ 1022.6 Hz
4 Z 1242.0 Hz  1229.5 Hz 1230.7 Hz
6 Y 1533.4 Hz  1525.0 Hz 1526.5 Hz

The integer N in the table lists the number of nodal lines along the beam’s length. The
table does not include N = 0 and N = 1 modes because they represent rigid body vibrations
(and are at 0 Hz). The beam’s width was chosen to be twice its height, and thus the
resonance frequencies in the Z-direction are double those for the Y-direction. The results
show that the mesh is refined enough to give reasonably accurate results, although it is not
clear why the resonance frequencies from NASTRAN are actually lower than those for the
analytical solution.

The next step is to perform the calculations as a CMS analysis with the resonance
frequencies, mode shapes and residual vectors computed separately for each beam. For both
beams in both CMS analyses, 10 normal modes are retained and residual vectors are included
for all 6 DOFs for a single node at both ends of the beams. For reference purposes, Table
10.44 lists the resonance frequencies for both the normal modes (excluding rigid body modes)
and residual vectors for the two shorter beams.

For the CMS analyses, a separate computer program is used to combine the mode sets
and apply the connections between the components and the boundary conditions. The
calculations are performed in "modal space" similar to that discussed in the NASTRAN
Basic Dynamics User’s Guide.”® The connections and boundary conditions are applied with
user-specified stiffnesses between two nodes or between a single node and ground. Specifying
large stiffnesses (1x1012 N/m for the current analysis) has the effect of rigidly constraining
two nodes to each other or constraining specific DOFs to zero displacement at a single node.

Once the CMS analysis is set-up, it is possible to rapidly perform the computations for
the full beam with a variety of specified boundary conditions. The NASTRAN solution with
the two beams connected to each other with a rigid RBAR element is used as the reference
since the CMS analysis should produce identical results. Table 10.45 Table 10.46 Table 10.47
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Table 10.44: Resonance frequencies for the normal modes and residual modes and residual

vectors in NASTRAN and SALINAS

Type Beam 1 Beam 1 Beam 2 Beam 2
NASTRAN SALINAS NASTRAN SALINAS

Normal Mode 414.5 Hz 414.5 Hz 511.7 Hz 511.7 Hz
825.7 Hz 825.7 Hz 1018.3 Hz  1018.3 Hz

1142.1 Hz  1142.1 Hz  1409.6 Hz  1409.6 Hz

2237.7THz 22379 Hz 2761.4 Hz  2761.7 Hz

Residual Vector 2335.3 Hz 23352 Hz  2877.5 Hz  2877.4 Hz
4030.5 Hz  4030.8 Hz  4976.4 Hz  4976.9 Hz

4684.9 Hz  4684.7 Hz  5767.6 Hz  5767.3 Hz

5521.6 Hz  5520.6 Hz  6133.1 Hz  6131.8 Hz

6181.5 Hz 6182.3 Hz  7634.8 Hz  7636.1 Hz
11174.2 Hz 11164.8 Hz 12422.1 Hz 12410.5 Hz
12270.5 Hz 12265.1 Hz 13622.0 Hz 13615.9 Hz
16403.7 Hz 16399.7 Hz 20131.7 Hz 20126.7 Hz
22639.3 Hz 22627.8 Hz 27801.1 Hz 27789.8 Hz
25214.8 Hz 25151.2 Hz 28060.7 Hz 27981.9 Hz
28419.4 Hz 28412.3 Hz 34774.4 Hz 34766.1 Hz
32990.6 Hz 32980.5 Hz 40458.6 Hz 40453.8 Hz

Table 10.48 list the beam resonance frequencies for various boundary conditions using the
NASTRAN solution with an RBAR connection and for the two CMS analyses.

The results in the tables show good agreement between the NASTRAN model and the
CMS analyses that include residual vectors. Without residual vectors, the resonance fre-
quencies are considerably too high. While the CMS analyses require some extra effort to
set-up, it is possible to perform all the computations with a single model by simply changing
the stiffnesses applied at the ends of the beams. The NASTRAN computations for the full
model required a separate mode extraction analysis for each boundary condition.

402



Table 10.45: Comparison of the NASTRAN solution with an RBAR connecting the beams
to the CMS solutions using NASTRAN and SALINAS for free-free boundary conditions.

N Primary RBAR at CMS, CMS, CMS, NASTRAN
Direction Connection NASTRAN SALINAS w/o Residual

Vectors

2 Z 115.0 Hz 115.1 Hz 115.1 Hz 132.4 Hz

2 Y 229.6 Hz 2298 Hz  229.8 Hz 319.3 Hz

3 Z 316.3 Hz 316.7 Hz  316.7 Hz 319.2 Hz

4 Z 620.0 Hz 621.3 Hz 621.4 Hz 706.1 Hz

3 Y 630.0 Hz 631.3 Hz  631.3 Hz 654.6 Hz

5 Z 1022.6 Hz  1025.9 Hz  1026.0 Hz 1053.9 Hz

4 Y 1230.7 Hz 12355 Hz  1235.6 Hz > 2000 Hz

6 Z 1526.5 Hz  1533.7 Hz  1533.9 Hz 1769.0 Hz

Table 10.46: Comparison of the NASTRAN solution with an RBAR connecting the beams
to the CMS solutions using NASTRAN and SALINAS for clamped-clamped boundary con-

ditions.

N Primary RBAR at CMS, CMS, CMS, NASTRAN
Direction Connection NASTRAN SALINAS w/o Residual

Vectors

2 7 115.2 Hz 115.3 Hz 115.3 Hz 167.3 Hz

2 Y 229.9 Hz 230.0 Hz 230.0 Hz > 2000 Hz

3 Z 317.2 Hz 317.4 Hz 317.4 Hz 411.3 Hz

4 Z 622.0 Hz 622.7 Hz 622.9 Hz 877.8 Hz

3 Y 631.2 Hz 631.8 Hz 631.8 Hz > 2000 Hz

5 Z 1026.1 Hz 1028.2 Hz  1028.4 Hz 1346.5 Hz

4 Y 1232.8 Hz 1235.4 Hz  1235.6 Hz > 2000 Hz

6 Z 1532.0 Hz  1537.0 Hz  1537.4 Hz > 2000 Hz
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Table 10.47: Comparison of the NASTRAN solution with an RBAR connecting the beams
to the CMS solutions using NASTRAN and SALINAS for simply-supported boundary con-
ditions

N Primary RBAR at CMS, CMS, CMS, NASTRAN
Direction Connection NASTRAN SALINAS w /o Residual

Vectors

2 Z 50.7 Hz 50.7 Hz 50.8 Hz 56.5 Hz

2 Y 101.4 Hz 101.4 Hz 101.4 Hz 126.8 Hz

3 Z 202.6 Hz 202.7 Hz 202.8 Hz 203.9 Hz

3 Y 404.4 Hz 404.7 Hz ~ 404.7 Hz 412.8 Hz

4 Z 456.2 Hz 456.7 Hz  456.7 Hz 527 6 Hz

) Z 809.5 Hz 811.0 Hz 811.1 Hz 839.5 Hz

4 Y 907.7 Hz 909.4 Hz 909.5 Hz > 2000 Hz

6 Z 1264.6 Hz  1268.3 Hz  1268.4 Hz 1444.3 Hz

Table 10.48: Comparison of the NASTRAN solution with an RBAR connecting the beams to
the CMS solutions using NASTRAN and SALINAS for clamped-free boundary conditions.

N  Primary RBAR at CMS, CMS, CMS, NASTRAN
Direction Connection NASTRAN SALINAS w/o Residual

Vectors

1 Z 18.1 Hz 18.1 Hz 18.1 Hz 20.4 Hz

1 Y 36.1 Hz 36.2 Hz 36.2 Hz 46.1 Hz

2 Z 113.4 Hz 113.4 Hz 113.4 Hz 148.1 Hz

2 Y 226.3 Hz 226.4 Hz  226.4 Hz 458.6 Hz

3 Z 316.9 Hz 3172 Hz 3172 Hz 362.1 Hz

4 Z 621.0 Hz 622.0 Hz 622.1 Hz 798.1 Hz

3 Y 630.9 Hz 631.8 Hz  631.8 Hz > 2000 Hz

5 Z 1024.3 Hz 1027.0 Hz  1027.2 Hz 1172.5 Hz
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10.6 Mass Properties Verification Tests

The following problems were used to verify the mass properties calculations in
Sierra/SD. These problems cover most element types, however superelements are not ad-
dressed here. The tests and results described here were generated with release 2.9.

10.6.1 0D Verification Test

The following test was used to verify mass properties for conmass elements. The test
consists of an assembly of three conmass elements as shown in Figure 10.114. In the finite
element model, the masses were connected with rbar elements which do not add mass to the
system.

The total mass of the assembly is My = 3m. The center-of-gravity is

Teg = (mb+ 0 —mb)/Myptar = 0 (10.127)
Yeg = (0 + mb + 0)/Mypter = b/3 (10.128)
Zeg = (0 + mb + 2mb) /myptar = 1 (10.129)

The components of the inertia tensor are
Ly = Ly + 107, (
= Ly +m [(20)% + (b* + %) + 0] = I, + 6mb? (
Iy = Iy + mri (
= Ly +m [(b* + (2b)*) + 0% + b°] = Iy, + Tmb? (
L.=1I.+mr? (
=L, +m [0+ +b°] = L, + 3mb° (10.135
Iy = Ipy + mdyd, (
= Ly, +m[0+0+40] =1, (
L. = L. + md,d, (
=L, +m[0+0—2v] =, — 2b° (
I, = ‘yz +md,d, (
=T, +m [0+ +0] = I, +b° (

A comparison between these answers and the Sierra/SD predictions is shown in Table
10.49. Parameters used for this problem were m =1, b =1, and I, = I,y = 1., = I, =
Ing = L= (.
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Figure 10.114: Verification problem for conmass elements

Table 10.49: Comparison of Sierra/SD with exact solutions for the 0D verification problem.

| Property | Exact | Sierra/SD |

| Muota | 3.0 | 3.0 |
Bieg, 0.0 0.0
Yo 0.3333 0.3333
2o 1.0 1.0
y - 6.0 6.0
T,y 7.0 7.0
;9 3.0 3.0
L, 0.0 0.0
- -2.0 -2.0
I, 1.0 1.0
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10.6.2 1D Verification Test

The following test was used to verify mass properties for the 1D elements which include
the beam2, Obeam, Nbeam, and truss. This test case consists of a beam offset in all three
dimensions from the coordinate frame as shown in Figure 10.115.

The total mass of the beam is
Miotar = PV = prr’l = 0.60kg (10.142)

where V' is the volume of the beam, r is the radius of the beam taken to be 5mm, [ is the
length of the beam, and p is the beam material density taken as 2.8294 x 10~°kg/mm? to
give a total mass of 0.6kg. The center-of-gravity is

180 90
Zeg = 180mm — ( mm;— mm) = 45mm (10.143)
Yeg = 150mm (10.144)
Zeg = 90mm (10.145)
The components of the inertia tensor are
Iy = Ly + mr? 10.146

( )
— 1 2 2 2\ __ 2
= gmr +m(d, + d;) = 18367.5kg - mm (10.147)
By = Iy 7 (10.148)
h L
= Zmﬁ - ﬁmﬂ +m(d? + d?) = 9723.75kg - mm? (10.149)
I.=L.+mr] (10.150)
_1 L
= Zmr2 - 1—2ml2 +m(d + d;) = 18363.75kg - mm” (10.151)
Ly = L+ vl (10.152)
= 0+ md,d, = 4050.0kg - mm? (10.153)
I, =1,,+md,d, (10.154)
=0+ md,d. = 2430.0kg - mm? (10.155)
L. =1, +md,d, (10.156)
= 0+ md,d, = 8100.0kg - mm?® (10.157)

A comparison between these answers and the Sierra/SD predictions for the 1D elements
is shown in Table 10.50. The finite element model used to generate these results contained
27 elements.
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Figure 10.115: Verification problem for 1D elements

Table 10.50: Comparison of Sierra/SD with exact solutions for the 1D verification problem.

‘ Property ‘ Exact ‘ Beam?2 ‘ Nbeam ‘ Obeam ‘ Truss ‘

[ Mg | 060 | 060 | 0.06 | 060 | 0.60 |
Teg 45 45 45 | 44875 | 45
Veo 150 150 150 150 150
Zeq 90 90 90 90 90
L. 18367.5 | 18367.0 | 18367.0 | 18368.0 | 18360.0
I, 0723.75 | 9732.2 | 9733.7 | 9723.8 | 9720.0
I.. | 18363.75 | 18372.0 | 18374.0 | 18358 | 18360.0
Lo, 4050.0 | 4050.0 | 4050.0 | 4050.0 | 4050.0
L. 2430.0 | 2430.0 | 2430.0 | 2423.3 | 2430.0
I,. 8100.0 | 8100.0 | 8100.0 | 8100.0 | 8100.0
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10.6.3 2D Verification Test

The following test was used to verify mass properties for the 2D elements which include
all the triangular and quadrilateral elements. This test case consists of an L-shaped plate as
shown in Figure 10.116.

The total mass of the plate is
1
Miotal = M1 + Mo = p <abt + §bct> (10.158)

where m; and msy are the masses of the rectangular section and triangular section respectively.
Both sections have the same material density, p, and the same thickness, t. The center-of-
gravity is

1 t
Doy = = [mla + my (a + 5)] (10.159)

Myotal

1 b 2
Yeg = Mtotal |:m1 <§> e (gb)‘| (10160)

g —— 0+ms (3)] (10.161)

Miotal 3
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The components of the inertia tensor are

Lz = Lz + mar2) + (Lo + mar}) (10.162)
= (pit1 Ly + mud2) + [(Lyy + L) +ma (42 + d3) ] (10.163)
(b mgb? mec®  mob?

—(12+ 4>+<6 + 2) (10.164)

mib®  mac?  mob?

= 10.165
3t T (10.165)
Iy = (Iyy + murl) + (Iy + mor)) (10.166)
= (it L, + myd> ) + [patal, + mo (&2 + d2)] (10.167)
2 2
mla mla (T2 T2 (10.168)
18 9
_ 3 méc + maa® (10.169)
L. = (L. +mir?) + (L. + mor?) (10.170)
2 2 2 2
mia mlb mgb 8m2b 2
= 10.172
(3+3>+(18+18 +m2a> (10.172)
2 2 2
N mia mlb mzb 9
= t—g t—5 tma (10.173)
Ly = (Iny + mudydy) + (Ioy + madad,) (10.174)

_ {o s (-2) (g } N [0 + ma () (-2;)] (10.175)

myab  2moab

= - 10.176
_ 4 3 (10.176)
L. = (Is + madyd.) + (Lpz + mod,d.) (10.177)
C
—(0+0)+ [0+m2(—a) (g)] (10.178)
= —m?fw (10.179)
_ b rty
Iy, = (Iy. +mudyd.) + pata / / yzdzdy (10.180)
0 0
t 2 b
= (0+0)+ 22 / yPdy (10.181)
22 J,
= mflbc (10.182)

A comparison between these answers and the Sierra/SD predictions is listed in Table
10.51. The finite element model of the plate contained 1679 elements. Parameters used for
this problem were a = 40in, b = 50in, ¢ = 30in, t = 0.1in, and p = 0.11b/in®.
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Figure 10.116: Verification problem for shell elements

Table 10.51: Verification of 2D Mass Properties

|Pr0perty‘ Exact ‘ Tri |Triashell ‘ QuadTM‘
| Myotaw | 275 | 275 | 275 | 215 |

Teg | -25.4682 | -25.455 | -25.455 | -25.455
Yeg | 27.2727 | 27.273 | 27.273 | 27.273
Zeq 27273 | 2.7273 | 27273 | 2.7273
Lo 27167 | 27178 | 27167 | 27167
Iy, 23792 | 23801 | 23792 | 23792
L. 48708 | 48726 | 48708 | 48708
Loy 20000 | -20000 | -20000 | -20000
L. -3000 | -3000 | -3000 | -3000
I,. 2813 | 28124 | 28125 | 28125
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10.6.4 3D Verification Tests

The following tests were used to verify mass properties for the 3D elements which include
the hexahedral, tetrahedral, and wedge elements. Solutions for these problems were mostly
taken from the dynamics text by Meriam and Kraige.”

10.6.4.1 Offset Block

The first 3D test consists of an offset cube as shown in Figure 10.117. The total mass of
the block is given by
Myotar = pI° = 3.375. (10.183)

where p is the density of the block and [ is the length of each side of the block. The
center-of-gravity is

1
Teg = Yeg = 7y = 0.8+ 5(1.5) = 1.55. (10.184)

The components of the inertia tensor are

Loy = Ijw + mrl (10.185)
1

= M (2%) +m (d + d2) = 17.4825 (10.186)

=1, =1, (10.187)

Ly = Ly, + md,d, = 8.1084375 (10.188)

=Ly = (10.189)

A comparison between these answers and the Sierra/SD predictions is listed in Table
10.52. The tet model contained 26,430 elements, and the hex model contained 343 elements.
Parameters used for this problem were p = 1.0 and [ = 1.5

10.6.4.2 Half-torus

This test consists of a half-torus as shown in Figure 10.118. The total mass is
Myotar = pV = prr? (TR) = 0.61685. (10.190)

where V' is the volume of the body, and r and R are the radii as shown in the problem figure.
The density, p, was taken as 1.0 in this non-dimensional problem. The center-of-gravity is

xcg ] ycg == 0 (10191)
r? + AR?

g = " = —0.64657. 10.192

“eg 2R ( )
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Cube
1.5%x1.5%x1.5
p=10

z 5

Y (0.8, 0.8, 0.8)

Figure 10.117: Verification problem for solid elements

Table 10.52: Comparison of Sierra/SD with exact solutions for the 3D block.

‘Propertyl Exact ‘ Tetd ‘ Hex8 ‘
| Muota | 3375 | 3.375 | 3.375 |

Teg 155 | 1.55 | 1.55
Yeo 155 | 1.55 | 1.55
Zeg 155 | 1.55 | 1.55

Lo 17.4825 | 17.48 | 17.482
Loy 17.4825 | 17.48 | 17.482
I.. 17.4825 | 17.48 | 17.482
[x
Ix
1y

i 8.1084 | 8.1084 | 8.1084
" 8.1084 | 8.1084 | 8.1084
” 8.1084 | 8.1084 | 8.1084
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Figure 10.118: Verification problem for solid elements

The components of the inertia tensor are

1 5

Ip=1,= 5mR2 + ngQ = 0.3474875 (10.193)
3

I, =mR* + ZmrQ = 0.645765 (10.194)

L= Ly = Ly =0 (10.195)

A comparison between these answers and the Sierra/SD predictions is listed in Table
10.53. The tet model contained 175,592 elements. The hex model contained 62,300 elements.

10.6.4.3 Hemispherical Shell

This test consists of a hemispherical shell as shown in Figure 10.119. The total mass is

1[4
Miotal = PV = 3 {gw (rg — rf)] = 0.318348. (10.196)

where V' is the volume of the body, and r, and r; are the outer and inner radii as shown in
the problem figure. The density, p, was taken as 1.0 in this non-dimensional problem. The
center-of-gravity is

= 0.25 (10.197)
Yeg = Zeg = 0. (10198)



Table 10.53: Comparison of Sierra/SD with exact solutions for the 3D half-torus.

‘Property‘ Exact ‘ Tet4 ‘ Hex8 ‘

| Muotw | 0.61685 | 0.6153 | 0.61634 |
Teg 0.0 0.0 0.0
Yeg 0.0 0.0 0.0
Zeg -0.6466 | -0.6465 | -0.6465
Lox 0.3475 | 0.3315 | 0.3321
I, 0.6458 | 0.6440 | 0.6451
. 0.3475 | 0.3315 | 0.3321
L, 0.0 0.0 0.0
L. 0.0 0.0 0.0
I,. 0.0 0.0 0.0

The components of the inertia tensor are

2
I = oy = ey = gmr2 = 0.053058
Loy = L = T =10

(10.199)
(10.200)

A comparison between these answers and the Sierra/SD predictions is listed in Ta-
ble 10.54. The finite element model used to generate these results contained 108,000 hex
elements.

10.6.4.4 Tetrahedron

This test consists of a tetrahedron with side lengths of a, b, and ¢ as shown in Figure
10.120. The total mass is

1
Miotal = PV = p=abc (10.201)

6

where V' is the volume of the tetrahedron. The density, p, was taken as 1.0 for this non-
dimensional problem. The center-of-gravity is

b
Yop = (10.203)
Zeg = Z (10204)



Figure 10.119: Verification problem for solid elements

Table 10.54: Comparison of Sierra/SD with exact solutions for the 3D hemispherical shell.

‘Property‘ Exact ‘ Hex8 ‘

[ Mot | 0.3183 | 0.3182 |
By 0.25 0.2566
Yeg 0.0 0.0
Zog 0.0 0.0
Y - 0.05306 | 0.05653
Ee 0.05306 | 0.05653
Iy, 0.05306 | 0.05653
- 0.0 0.0
1y, 0.0 0.0
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(x3Y325)

(xpYpZy)

(X252,

Figure 10.120: Verification problem for solid elements

The components of the inertia tensor are

y ——— % (62 + 02)
1
Iy = 10 (az + 02)
L= oo (@ + )
. :/ :I:ydm—p/ xydV

/ / /1____ xydydzdx = —Omab
Loz = / rzdm = p/ xzdV
1-2  .1-2_% 1
/ / / xzdzdydr = %mac
Iy :/ yzdm:p/ yzdV
—% p1-z_
/ / / yzdzdxdy = %mbc

(10.205)
(10.206)
(10.207)
(10.208)
(10.209)

(10.210)

(10.211)

(10.212)

(10.213)

A comparison between these answers and the Sierra/SD predictions is listed in Table
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Table 10.55: Comparison of Sierra/SD with exact solutions for the 3D tetrahedron.

‘ Property ‘ Exact ‘ Tet4 Coarse ‘ Tet4 Fine ‘

[ Muga | 027 | 027 | 027 |
Teg 0.3 0.3 0.3
Yy | 0.225 0.225 0.225
2 | 0.375 0.375 0.375

L 0.08262 0.08249 0.08262
I, 0.09963 0.09950 0.09963
L 0.06075 0.06062 0.06075
[I
[LL'
‘[y

y 0.01458 0.01458 0.01458
" 0.0243 0.02430 0.02430
. 0.01823 0.01823 0.01823

10.55. The finite element model used for this problem used tet elements. Two different mesh
densities were used and results for both are presented. The models contained 3933 elements
and 26,650 elements respectively.
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10.7 Phenomenon Based Testing

Each of the phenomena identified in the Phenomenology Identification and Ranking Table
(PIRT) from the V&V plan has specific tests for evaluation of the predictability of the
software. Details are described in the sections below.

10.7.1 Elastodynamics

The requirements for elastodynamics are detailed in the requirements document and the
computational plan. They may be summarized in Table 10.56. Verification aspects for each
requirement will be detailed in sections of this chapter.

10.7.2 Verification With Respect to Semi-Analytical Static Tests

Analytic and semi-analytic solutions for static deformation problems have been deter-
mined for many geometries and reported in Roark.?® Note that these solutions are usually
for idealized models. Thus, the beam models are appropriate to Euler Beams, but are exact
for beams made of solid elements only in the limits where shear terms can be neglected.

Tables 10.57 and 10.58 will be used for Beam Elements: For Shell elements Tables 10.59
through 10.61 are used. The reference table is from Roark.?

For solids, we employ Table 10.7. In addition, examples from the beams and shells may
be computed using solid elements and a suitable discretization.
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Table 10.56: Elastodynamics Requirements

] # ‘ Requirement

1 | Compute static responses
2 | Compute eigenanalysis for large models (10M DOFS or greater). In-
clude:
- Frequency Response Functions
- Random Vibration inputs and Response
- Shock Spectra
3 | Compute Time domain analysis of these models, using direct time in-
tegration. An interface to facilitate time domain analysis using modal
superposition will also be provided.
4 | Output Stresses, Strains, Displacements, Velocities and Accelerations
5 | Provide a platform for development of additional structural dynamics
capabilities. These will include system identification, design optimiza-
tion, nondeterministic methods, coupled/multi-physics solutions and
others.
6 | Provide portability and scalability to allow effective use on ASCl-red
and ASCI-white. Data file compatibility with other ASCI codes.
7 | Loads:
- point loads (applied though node sets)
- gravity loads on elements
- pressure loads
8 | Support standard elements from FE analysis
- solid elements (HEX,WEDGE, TET)
- shells (Triangle, Quad)
- Beams
- point masses, springs
- MultiPoint Constraints
9 | Support linear, elastodynamic material models with full anisotropy.
10 | Documentation:
- a users manual
-programmers manual
- software engineering practices
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Table 10.57: Straight Beam Element Analytic Solutions

Roark | Description Case | Max | Max
Table Disp | Rot.
3 la | cantilever free. Applied point force Roark | -13.33 | 20.0
Beam?2 | -13.33 | 20.0

Tria3 | -12.13 | 18.2

Tria3 L | -13.33 | 20.0

Hex8 |-13.44 | N/A

3 le | simply supported simply supported. | Roark | .6356 | 2.311
Applied point force Beam2 | .6356 | 2.312

Tria3 | .5783 | 2.104

Tria3 L | .5785 | 2.104

3 3b | cantilever guided. Roark | 4.032 | -8.064
Applied point moment Beam?2 | 4.032 | -8.064

The “Tria6_L” model is rotated so a pure membrane deformation occurs. A finer mesh is

required.

Table 10.58: Curved Beam Element Analytic Solutions

Roark | Description Case Dv
Table
171 | opposed radial loading on circular ring | Roark | -5.9513
Beam2 | -5.950
17 2 | opposed in-line loading on circular ring | Roark | .8263
(measured at 0 = 30°) Beam?2 | .8259
17 3 | opposed moments on circular ring Roark | 7.9743
(measured at 0 = 30°) Beam2 | 7.967

Table 10.59: Annular Plate with Uniform Annular Line Load

The test of having the outer edge simply supported and the inner edge free cannot be done
at this time because the loading would require a non-cartesian coordinate system.

Roark | Description Case Max
Table Disp
24 1a | Outer edge simply supported. Inner edge free Roark | 0.01701

Tria3 | 0.01696
24 1b | Outer edge simply supported. Inner edge guided | Roark | .0068853

Tria3 | .006885
24 le | Outer edge fixed. Inner edge free Roark | .0034952

Triad | .0034946
24 5a | Outer edge simply supported. Inner free
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Table 10.60: Square Plate

Roark | Description Case | Max | Center
Table Disp Stress
26 1la | Simply supported. Roark | 5.3280 | 1.0346e7
Uniform load over plate Triad | 5.3225 | 1.03327e7
QuadT | 5.3225 | 1.03327e7
26 8a | Fixed edges. Roark | 1.6560 | 4.9896e6
Uniform load over entire plate | Tria3 | 1.6590 | 4.9407e6
QuadT | 1.6590 | 4.9406e6

Table 10.61: Thin Walled Pressure Vessels

The second half of this table cannot be computed at this time because the pressure load
would require using a non-cartesian coordinate system.

Roark | Description Case Max Max | Comment
Table Disp Stress
28 la | uniform axial load on | Roark | -4.074e-6 | 407.4 | AZ =2.037E-
cylinder 5
Triad | -4.626e-6 | 408.4 | AZ =2.039E-
5
Hex8 | -3.67e-6 | 408.0 | AZ =2.057E-
5
28 1b | uniform radial pressure | Roark | 3.333e-7 10.0 | R=1, h=1.5,
on cylinder =1

Tria3 | 3.333e-7 | 10.035
Hex8 | 3.445e-7 | 10.231
28 3a | uniform  pressure on | Roark

sphere
Triad
28 5 | uniform  pressure on | Roark
toroid
Tria3

30 1a | uniform radial force on | Roark
edge of partial sphere
Tria3
30 1b | uniform edge moment on | Roark
partial sphere

Tria3
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Table 10.62: Solid Spheres

Roark | Description Exact | FE | Exact FE
Table Disp | Disp | Stress | Stress
33 1A | Sphere on a flat plate

33 1B

Sphere on a sphere
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In—Plane Extension Mode, Clamped—-Clamped In—Plane Flexural Mode, Pinned—Pinned

Figure 10.121: Blevins Table 9-2.1 and 9-2.2 Geometries

10.7.3 Verification With Respect to Semi-Analytical Eigen Analysis

Analytic and semi-analytic solutions for eigensolutions have been determined for many
geometries and have been reported in Blevins.® Note however, that these solutions are usually
for idealized models. Thus, the beam models are appropriate to Euler Beams, but are exact
for beams made of solid elements only in the limits where shear terms can be neglected.

An eigensolution provides information about the global solution. A correct solution
requires both a correct stiffness and mass matrix. Further, accuracy of the solution is easily
determined by examination of the eigenvalues alone. On the other hand, the load vector is
irrelevant, which simplifies the test matrix.

The “truth” model for these analyses are the eigenfrequencies obtained from analytic
and semi-analytic solutions tabulated in Blevins. Note that the accuracy of the textbook
solutions is limited to about 0.5% in most cases. Spring and Mass analysis matrix is detailed
in Table 10.63. For beam elements, eigensolutions are described in Tables 10.64 through
10.66. Shell elements use Tables 10.67 through 10.69. Note that beams and shells have
simplifying assumptions which may cause the solid based solutions to differ from the textbook
solutions. For example, the “beams” built of solid elements will contain shear effects that
are not present in a standard beam element. The geometry for these tests is illustrated in
Figure 10.121.

The computational results represent the converged solution. In most cases a Richardson
extrapolation has been performed to arrive at the minimum error due to discretization.

For all the following examples in this section (i.e. Tables 10.63 through 10.69, unless
otherwise noted we use material properties for steel, i.e. E = 30x10° psi, v = 0.30 and
p = 0.288 Ibs/in? (7.4592x10~* slugs/in?).

10.7.4 Linear MultiPoint Constraints

MultiPoint Constraints (MPCs) are applied in structural dynamics for a number of rea-
sons. Typical uses include spreading a load over many input nodes, attaching dissimilar
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Table 10.63: Spring Mass System Eigenproblems

Blevins | Description Sol'n Mode Number
Table Type 1 2 3
6-2 2 | two equal masses, Exact | .0983632 | .2575181 N/A

two equal springs FE | .0983632 | .2575181 N/A
6-2 18 | Three equal masses, | Exact | .159155 | .3183100 | .3183100
six equal springs FE 159155 | 3183100 | .3183100

Note: The Lanczos solver (in ARPACK) cannot find all the modes of the system. Some
modes were found by exporting the matrices and solving in matlab

Table 10.64: Beam Mass System Eigenproblems

Massless beam has square cross section with 11=1, L=20, 100 elements.

Table | Description Sol’'n | Mode 1
6-2 19 | End mass on cantilever beam Exact 16.88
FE 16.88
6-2 20 | Center mass, pinned-pinned beam Exact 67.52
FE 67.52
6-2 22 | Center mass, clamped-clamped beam | Exact | 135.05
FE 135.05

meshes, connecting lumped structures, applying boundary conditions and approximating
rigid structures. The variety of uses for MPCs makes verification of their application quite
difficult. Only very small problems may typically be solved analytically.

Analytic problems for which some degrees of freedom may be eliminated using constraints
will be compared with solutions from Sierra/SD . The problems for which these comparisons
may be made are still to be determined at this time.

In addition to analytic problems, code comparisons for practical problems will be made.
While code comparisons suffer from a number of problems, they have the advantages of
comparing solutions to the type of problems expected in practice, and they provide some
level of verification for components of the software which could otherwise not be tested.
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Table 10.65: Straight Beam Eigenproblems - Using Beam?2

The sample beam has a square cross section with area=1, length=20. 100 elements. No
torsion spring is yet available.

Blevins | Description Sol’'n Mode Number
Table Type 1 2 3 4
8-1 1 | Free-free bending Exact | 515.36 | 1420.6 | 2785.0 | 4603.7
FE | 515.15 | 1419.6 | 2781.9 | 4596.9
8-1 2 | Free-sliding bending | Exact | 128.84 | 696.24 | 1719.3 | 3197.0
FE | 128.83 | 696.05 | 1718.5 | 3194.7
8-1 3 | Clamped-free Exact | 80.99 | 507.56 | 1421.2 | 2784.9
FE 80.98 | 507.44 | 1420.6 | 2783.2
8-1 5 | Pinned-pinned Exact | 227.34 | 909.37 | 2046.1 | 3637.5
FE | 227.34 | 909.29 | 2045.7 | 3636.4

Table 10.66: Uniform Shaft Torsional

Note. The discrepancy in this table stems from a mismatch of geometry (which we intend to
clear up soon). The analytic results apply strictly only to circular cross sections. We have
a square cross section in the FE results. It is clear that the frequencies should be ratios of
1,3,5,7, etc. This holds quite well for the FE results.

Blevins | Description Sol’n Mode Number
Table Type 1 2 3 4
8-19 2 | Fixed-Free analytic | 1427.93 | 4283.78 | 7139.64 | 9995.5
FE-Beam2 | 1554.68 | 4663.66 | 7771.49 | 10877.4
FE-Hex8 | 1545.97 | 4642.1 | 7750.76 | 10880
Table 10.67: Circular Arcs
Blevins Description Sol’'n Mode Number
Table Type 1 2 3 4
9-2 1 Extension Mode analytic 52632 N/A N/A N/A
Clamped-Clamped | FE Beam2 | 52693 N/A N/A N/A
9-2 2 | In-Plane flexural mode | analytic | 2579.35 | 13137.2 | 30989.4 | 56026.3
Pinned-Pinned FE Beam?2 | 2587.73 | 13189.5 | 30671.7 | 54445.7
9-2 5 | Out-of-Plane Flexural | analytic | 1763.56 | N/A N/A N/A
Clamped-Clamped FE Beam2 | 1741.11 | N/A N/A N/A
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Table 10.68: Circular Plates - Bending

Circular disk made of QuadT elements.

Blevins | Description Sol’n Mode Number
Table Type 1 2 3 4
11-1.1 | Free edge Exact | 126.84 | 219.35 | 295.32 | 495.50
FE 129.31 | 217.25 | 300.16 | 493.72
11-1.2 | Simply supported edge | Exact | 120.18 | 336.61 | 619.37 | 718.61
FE 119.20 | 335.69 | 618.69 | 718.64
11-1.3 | Clamped edge Exact | 246.78 | 513.36 | 842.25 | 960.32
FE 246.62 | 513.00 | 841.97 | 961.03
11-1.12 | Clamped edge with | Estim. | 25.98 | N/A | N/A | N/A
point
mass at center (M large) | FE 2583 | NJA | N/JA | N/A
Table 10.69: Rectangular Plates - Bending
Using Tria3 elements, aspect ratio a/b = 1.5 in all cases.
Blevins | Description Sol’n Mode Number
Table Type 1 2 3 4
11-4.1 | Free-free-free-free Exact | 864.14 | 927.25 | 2002.59 | 2158.85
FE 862.61 | 919.15 | 1989.43 | 2142.13
11-4.21 | Clamped-clamped- Exact | 2608.74 | 4029.22 | 6387.69 | 6428.04
clamped-clamped.
FE | 2608.29 | 4027.90 | 6387.04 | 6425.11
11-4.16 | Simply supported Exact | 1377.13 | 2648.23 | 4237.00 | 4765.01
(all 4 edges) FE | 1376.97 | 2648.01 | 4237.05 | 4766.57
11-4.6 | Clamped-free- Exact | 652.94 | 1103.68 | 2127.08 | 2747.82
simply  supported- | FE 648.82 | 1100.31 | 2113.90 | 2733.90
free

427




Viscoelastic Relaxation
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Figure 10.122: Viscoelastic Relaxation. The Sierra/SD results reproduce the exact solution
viscoelastic relaxation after ramp and hold deformation.

10.7.5 Linear Viscoelasticity

Linear viscoelasticity is a physics whose implementation in structural dynamics code is
not uncommon. The most conventional implementation is that which employs Prony series
(see Theory and User’s manuals.) Again, the purpose of verification is to assure that the
conventional implementation is done correctly.

For this test, we consider a beam of isochronic, isotropic viscoelastic material subject to
normal displacements in one direction consistent with a uniform compression. The imposed
displacement is ramped up and held at a fixed value. After the material is deformed at a
rate ¥ for a period At and then held, the resulting stress will be,

o(t) = YEAt — 4 Y (Eg — Eoo)To(1 — e2/™)e=(HA0/m (10.214)

n

A plot of the above exact solution and the predictions of Sierra/SD are presented in
Figure 10.122.
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10.7.6 Code to Code Comparisons

Extreme care must be used when using code to code comparisons. They are no replace-
ment for more rigorous verification techniques (see Trucano®). However, they may be useful
when the following conditions are met.

e The “truth” model code has been adequately verified.
e The two codes can be determined to solve exactly the same differential equations.

e Comparisons are made to asymptotic quantities, i.e. quantities for which the accuracy
of the truth model code must ultimately converge.

e The value gained by the comparison provides important insight not readily obtained
by solution of analytic problems.

It should always be remembered that verification can never be complete, i.e. it is impos-
sible to fully test or verify any but the simplest of applications. Therefore, any method that
can provide additional examination of the application provides a value.

A number of benchmark problems exist in the literature (see for example MacNeal).
Some of these benchmark problems will be solved using Sierra/SD and using MSC /Nastran,
an industry standard for elastodynamics. Comparisons of the mesh-refined solutions will be
made. Other codes may be used for other phenomena.

The list of such code to code comparisons will necessarily grow over time. An example
includes a mock-AF&F which was analyzed for eigen response. This is a 500,000 degree
of freedom model designed for optimization studies. It is a real design with the level of
detail anticipated in practical models of this structure. It contains mostly Tet10 elements
with shells constructed of Tria6. Much of the model was constructed using automatic mesh
generation methods. Comparisons of the first 4 modes of this model are shown in Table
10.70.

Table 10.70: AF&F code to code comparison

# | Description Nastran | Sierra/SD | Difference
1 | Aft plate drum mode 434.3 Hz | 437.0 Hz 6%
2 | First bending, X 627.4 Hz | 629.1 Hz 3%
3 | First bending, Y 657.2 Hz | 659.2 Hz 3%
4 | torsion 793.6 Hz | 793.2 Hz 05%
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Figure 10.123: Tire Analysis Model

10.7.6.1 Membranes and Transfer from SierraSM

In this case, analyses of a preloaded (inflated) tire from Sierra are compared to Abaqus™™.
The tire model (Figure 10.123) consists of a rim, and multiple layers of rubber and mem-
branes. The tire is preloaded using Sierra/SM. The Sierra/SD analysis in this test case
involves reading the results from that SM analysis, transferring material parameters, and
computation of the eigenvalues of the system.

Eigenvalue results are shown in Table 10.71. As seen in the table, there is excellent
agreement between Abaqus and Sierra/SD for this problem.
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# | Abaqus | Sierra | % difference
1 39.912 | 40.3718 LA
2 53.586 | 51.3133 4.3
3 55.650 | 53.5655 3.8
5 75.071 | 73.3562 2.3
7| 97.202 | 96.6323 0.6
9 98.984 | 98.6028 0.4
11| 119.35 | 119.045 0.3
13| 142.54 | 142.219 0.2
15| 142.56 | 142.287 0.2
17| 167.07 | 166.891 0.1
19| 171.37 | 171.045 0.2
21| 193.59 | 193.372 0.1
23 | 193.75 | 193.540 0.1
25 | 214.47 | 214.001 0.2
27 | 221.77 | 221.814 0.0
29 | 235.20 | 234.640 0.2

Table 10.71: Comparison of Eigen Frequencies of the Mooney-Rivlin Inflated Tire. As many
of the modes come in pairs, only the first of the paired frequencies is listed.
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10.8 User Evaluations

While not rigorous in the same sense as closed form solutions, most analysts would agree
that evaluation by independent outside analysts is a very valuable criteria in determining
the suitability of an analysis package. Such evaluation measures not only the answers to well
defined problems, but it provides confidence in the entire process and product. For example,
if the tools are lacking to provide a reasonable model, this becomes readily apparent.

Where outside evaluations have been performed, we provide a summary and contact
information so the analyst may follow up on the data.

10.8.1 Newport News Shipyard

Contact: Travis Kerr kerr_te@nns.com and Jay Warren warren_je@nns. com

On two separate occasions, Newport News shipyard has worked with Sandia to model
their aircraft carriers. In October of 2000, and then again in October of 2002, they sent
analysts to Sandia to perform a whole ship model eigen and transient dynamics analysis.
Part of the first visit involved evaluation of a suite of tests. Unfortunately, Sandia was not
provided with any report on this evaluation. NNS has continued interest in using Sierra/SD

10.8.2 British Atomic Weapons Establishment (AWE)

Contact: Trevor Hensley. Trevor.Hensley@awe.co.uk

From June to December of 2002, Trevor Hensley of the AWE evaluated Sandia’s ASCI
applications in Albuquerque. Sierra/SD was among the first evaluated. One problem
was identified in statics. While Sierra/SD converged to the proper displacement, it did
not appear to have the proper stress concentration. This turned out to be an issue of
understanding Sierra/SD ’s stress output which on shells is in the element coordinate
system.

The AWE is currently negotiating to obtain a copy of Sierra/SD for their analysis at
their site.

10.8.3 NASA

Contact: Lloyd Purves, lpurves@hist.nasa.gov

This evaluation did not go well for several reasons.
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1. There was a shortage of manpower. Lloyd had a summer student who was doing most
of the work, but the student did not have sufficient expertise to finish.

2. There were hardware and software installation problems. NASA personnel were not
able to visit us here, nor were Sierra/SD personnel given access to NASA machines.
Thus installation of the software became a real road block.

3. Probably most importantly, the goals did not match well. Sierra/SD is not a plug-in
replacement for NASTRAN. It has a wide variety of elements, but it also lacks ca-
pability that may be unique to NASTRAN. For example, Sierra/SD has no axially
symmetric elements. Other translation issues (such as differences in spring formula-
tions) caused a good deal of difficulty.

10.8.4 Lockheed Martin — Denver

Contact: Dan Morganthaler, daniel.r.morganthaler@lmco.com

This interaction was funded under the Lockheed Martin shared vision program. It met
only limited success. The main impediments were with the difficulty in getting Sierra/SD
to run properly on the parallel platforms. Dan visited Sandia for a few days, but our parallel
machines were too heavily used to get the runs through. Eventually, Dan was able to get
the analysis done using superelement capabilities in Nastran. The report is available in draft
form.5?

10.8.5 Advatech Pacific

Contact: Peter Rohl, peter.rohl@advatechpacific.com

Advatech prepared a fairly extensive study comparing the results of Sierra/SD and
NE/Nastran on a variety of structures. This is available as conference proceedings.>

10.8.6 Sandia Labs

10.8.6.1 Thermal Strains: comparison with Abaqus

In December 2005, Wil Holzmann performed a code to code comparison of abaqus and
Sierra/SD for thermal expansion. This provides a real world comparison — most would not
consider it a verification.

Figures 10.124 and 10.125 relate to the analysis of a thin walled frustum for thermal
loads. Two model versions were created, one in abaqus and the other in Sierra/SD . The
energy deposition data was provided by mapping the data from the element centroids to the
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nodes using paraview. A scaling term was applied to convert energy deposition to equivalent
thermal loads. The figures compare plots of e33 volumetric strains. The two approaches
compare very well.

The model is about 135,000 degrees of freedom, which is too large for our standard test
suite. However, it is available for comparison purposes.

vstrainz
1.396e-03
1.009¢-03
6.212e-04

2.337e-04
-1.538e-04

Figure 10.124: Sierra/SD Thermal Strains

10.8.6.2 Superelement User Verification

Superelement insertion was examined by Fernando Bitsie, the product manager for
Sierra/SD, and a lead analyst in a sister organization. A nonlinear time domain analy-
sis was used to compare results between a full model and a greatly reduced superelement
model (using two superelements). Of particular concern is the generation of high frequency
response. The coupling element between the two superelements is an [wan element, which
generates shot noise as the spring/sliders alternatively open and close. This can be amplified
as it is fed into a superelement. In most respects, this is an extremely challenging test of
model reduction. We do not anticipate that the high frequency response of the reduced order
model will be correct, and loading may generate significant contributions in this part of the
spectrum.
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The full and reduced order models are illustrated in Figure 10.126. In the reduced model,
the top and bottom solid sections are replaced by superelements. There are only 8 nodes in
the reduced model, while the full model is composed of about 33,000 nodes.

Figure 10.127 shows the acceleration of the top and bottom as a function of time. Clearly,
there is a much greater response for the superelement than for the full model. This is also
illustrated in Figure 10.128, where the force across the joints is examined in the time domain
for both the full and reduced models. Again, there is a significant difference.

However, examination of the response of the model in the frequency domain reveals
that the differences are primarily in the high frequency. Figure 10.129 shows the frequency
response of the accelerations in Figure 10.127. As seen in the figure, there is very good
agreement between the models at lower frequencies. The discrepancies occur at the Nyquist
frequency (50 kHz), and twice that (the sampling frequency). The response at 100 kHz is
extremely strong for the CMS model, and it is this reponse which is dominating the time
response.

Figure 10.130 illustrates the same issue for the loading across the fwan element. Compare
this with the time domain in Figure 10.128. Again, the low frequency response is reasonably
accurate, while there are significant issues at the sampling frequency.

Overall, the response of the reduced order model is entirely as expected. Agreement
with the full order model is not attained at higher frequencies, but at lower frequencies the
agreement is good.

435



E33

1.365¢-03
9.898e-04
6.148e-04
2.397e-04
-1.354¢-04

Figure 10.125: Abaqus Thermal Strains

images currently not available. under review and approval.

Figure 10.126: Exploded view of 3 Leg structure with the full model on the left and the
reduced model on the right. Iwan elements connect the top and bottom structures of both
models. These Iwan elements are not shown because they connect co-located nodes.
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Figure 10.127: Time Domain Acceleration Response of Comparative Model
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Figure 10.128: Time Domain Element Force of Comparative Model
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Figure 10.130: Frequency Domain Element Force of Comparative Model
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10.9 Other Tests

The goal of any software verification effort is to ensure that the equations are being
solved properly. This includes input and output, and to an extent documentation as well.
The crucial question is whether analysts can trust the results of the calculations. Any test
or evaluation which improves confidence in this process is of value. As stated by Myers,'”
“A good test is one that has a high probability of detecting an as-yet undetected error.”
Interestingly enough, the tests that catch most of our errors are emphatically not those that
have been presented in previous sections!

10.9.1 Regression Tests

Part of the process development for Sierra/SD is a nightly regression test. These are
typically small tests that have been assembled to examine parts of the code. These examples
are usually results of either artifacts of development, or of bugs that have been identified
and fixed in the code. They are in no way rigorous verification tests; instead they report
only when results have changed for some reason. These changed results may be introduced
by additions or changes in the software, or they may be introduced by operating system
variations (including new libraries and new platforms). These regression tests are evaluated
and reported on our web site nightly, and they have been responsible for identifying the vast
majority of the issues in the software.

At the time of this writing (October 2003), we evaluate approximately 800 regression
results. Approximately half of these tests are repeated in parallel. Detailing these tests is
well beyond the scope of this document. Indeed, the nature of the regression test is different
from the nature of standard verification tests, and it is not clear that we can easily break
the tests down into categories that verify element formulations for example.

10.9.2 Static Tests

Static tests provide a mechanism for evaluating the software outside of the operational
environment. They include source code evaluations as well as software to test our software.
Source code compliance with standards as well as dangerous practices may be evaluated.

We have found limited to no value in source code evaluations in our group. They are also
extremely resource demanding. As a consequence we have discontinued source code evalua-
tions. We use source code walk through occasionally only as an aid in our understanding of
the development.

However, there has been some evidence of improved software though other static tests.
As specified in our Procedures® document, Some sections of the code are subjected to this
type of evaluation at each release. To date, we have performed a full evaluation of all lines
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of the finite element portion of the code at each release.?

10.9.3 Dynamic Testing

Another important aspect of software testing includes memory errors in the code. As
part of our release process, we run the regression tests through memory checking software
before release. Typically all the regression tests are run through the software, and if the
tools are available, we run through both serial and parallel tests. These tests are also run
periodically through the development process. They are effective in finding bugs that are
not readily apparent through other tests.

3 In other words, we look at all the code except the third party libraries.
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Appendix A

Input Decks For Verification Problems

A.1 Parallel Distribution of Load through Rbars

Refer to section 4.1
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A.2 RigidSet Compared to Rbar

Refer to section 4.2
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A.3 Multiple Tied-Surfaces and Curved Surfaces

Refer to section 4.3
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A.4 Craig Bampton Reduction

Refer to section 3.1
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A.5 Superelement Damping

Refer to section 3.2
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A.6 FEuler Beam Bending

Refer to section 6.1

SOLUTION
solver=gdsw
statics
title ’single beam model. 100 elements. xy only’
lumped
END

FILE
geometry_file temp%1d/100.par.2.%.1d
END

BOUNDARY
nodeset 1
fixed
nodeset 3

END

LOADS

nodeset 2

force = 0. .25 0.
END

OUTPUTS

// warninglevel O
deform

// eorient

END

ECHO
// MATERIALS
//ELEMENTS
// JACOBIAN
// ALL_JACOBIANS
TIMING
// MESH
// INPUT
// NODES
// FETI_INPUT
// DISP
// STRAIN
// STRESS
// MFILE
// mass
//none
END

BLOCK 1

material 2

Beam?2

Area 0.1
orientation 0 .1 0
I1 .2

I2 .3

J .5

END
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Material 2

name ’Aluminum’
E 10.0E6

nu 0.33

density 253.82e-6
END
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A.7 FEuler Beam Properties

Refer to section 6.2
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A.8 A Navy Beam

Refer to section 6.3
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A.9 Two Layered Hexshell

Refer to section 6.4
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A.10 Spring Dashpot

Refer to section 6.21

A.10.1 General Spring Dashpot: static solution
A.10.2 General Spring Dashpot: transient solution

A.10.3 General Spring Dashpot: transient solution with coordinate
transformation
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A.11 Preloaded Beam

Refer to section 6.5
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A.12 Partial Cylinder Patch

Refer to section 6.6
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A.13 Membrane Geometrical Stiffness

Refer to section 6.7
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A.14 Membrane Quad

Refer to section 6.8
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A.15 QuadM membrane Patch

Refer to section 6.9
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A.16 QuadS GY Shear Membrane Shell

Refer to section 6.10
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A.17 QuadS GY Shear Membrane Shell - Geometric
Stiffness and Preload

Refer to section 6.11
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A.18 Hex Membrane Sandwich

Refer to section 6.12
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A.19 SierraSM to SierraSD Coupling

Refer to section 3.3

A.19.1 Sierra/SD input file for SM/SD Coupled Simulation

460



A.20 Waterline of a ship

Refer to section 5.1
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A.21 Transient Convergence

Refer to section 5.2
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A.22 Modal Transient Temporal Convergence

Refer to section 5.3

463



A.23 Transient Restart Examples

A.23.1 Linear Transient in Step 1

Refer to section 5.4 for results of the tests.

A.23.2 Restarted Modal Transient in Step 2
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A.24 Eigenvalue Restart with Virtual Nodes and Ele-
ments

Refer to section 3.4
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A.25 Filter Rigid Modes from Loads

Refer to section 3.5
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A.26 Q Modal Transient

Refer to section 5.5
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A.27 Q Modal Frequency Response

Refer to section 5.6
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A.28 Sensitivity to Parameters

Refer to section 3.6
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A.29 Sensitivity Analysis with a Superelement

Refer to section 3.7
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A.30 Shock Tube SI

Refer to section 3.8
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A.31 Fluid Structure Interaction Added Mass

Refer to section 5.7
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A.32 Fluid Structure Cavitation

Refer to section 5.8
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A.33 Higher Order Hex Acoustic Element Convergence

Refer to section 6.13
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A.34 Higher Order Tet Acoustic Element Convergence

Refer to section 6.14
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A.35 P-elements on 1-D waveguide up to order 6

Refer to section 6.15

476



A.36 P-elements on Acoustic Sphere for Multiple Refined
Hex-Meshes

Refer to section 6.16
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A.37 P-elements on Acoustic Sphere for Multiple Refined
Tet4-Meshes

Refer to section 6.17
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A.38 Tied-Joint with Joint2G and Spring

Inputs for comparison of manually generated constraints with TiedJoint.

A.38.1 Manual Constraints

A.38.2 Tied Joint Constraints

Refer to section 6.18 for details of the test.
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A.39 Beam CBR

Refer to section 3.9 for details of the test.
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A.40 Slide RBE2. Selected DOFS

Refer to section 6.19 for details of the test.
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A.41 Thin Plate Bending

Refer to section 6.20 for details of the test.
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A.42 Modal Force on a Biplane Model

Refer to section 3.10 for details of the test.
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A.43 Lighthill Analogy - Helmholtz Resonator

Refer to section 3.11 for details of the test.
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A.44 LightHill Tensor Verification Input

Refer to section 3.12 for details of the test.
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A.45 Superelement Superposition

Refer to section 3.42 for details of the test.

A.45.1 Full Model
A.45.2 CB Reduction

A.45.3 System Analysis with Superelement
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A.46 Superelement Inertia Tensor Input

Refer to section 3.14 for details of the test.

beam model
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A.47 Nastran/SierraSD Interoperability with Superele-
ments

Refer to section 3.15 for details of the test.

Sierra/SD full model

Nastran full model
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A.48 Contact Verification

Refer to section 4.4 for details of the test.
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A.49 Buckling of Constant Pressure Ring Input

Refer to section 5.9 for details of the test.
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A.50 Rotating Dumbbell Statics

Refer to section 7.1
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A.51 Rotating Beam Statics

Refer to section 7.2
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A.52 Rotating Shell Statics

Refer to section 7.3
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A.53 Rotating Ring Statics

Refer to section 7.4
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A.54 Rotating Ring Acceleration

Refer to section 7.5
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A.55 Rotating Superelement Statics

Refer to section 7.6
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A.56 Rotating Superelement Beam Statics

Refer to section 7.7
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A.57 Point Mass in a Rotating Frame

Refer to section 7.8
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A.58 Force Identification from Structural Acoustic Fre-
quency Responses

8.1
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A.59 Force Identification from Frequency Responses

8.2

500



A.60 Force Identification from Temporal Pressures

8.3
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A.61 Force Identification from Temporal Tractions

8.4
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A.62 Force Identification from Temporal Acoustic Pres-
sures

8.5
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A.63 Force Identification with Modal Transient

8.6
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A.64 Random Vibration Moments

Refer to section 9.

505



A.65 Fatigue Output of Single DOF in Random Vibra-
tion

A.65.1 Modal Random Vibration

A.65.2 Fatigue Solution
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A.66 Fatigue Output of Dogbone

Refer to section 9.3
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A.67 Fatigue Output of Pinned Shell

Refer to section 9.4
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Appendix B

Making the Verification Document

This appendix provides instructions to developers to assist in building this reference. It is not of general use to analysts.
The reference is,

http://sierra-trac.sandia.gov/trac/sierra/wiki/Modules/APS/VerificationDocumentGeneration

There are two steps. If an issue arises, and its necessary to repeat this process, it is necessary to restart from step 1 if one or
more tests have changed significantly.

Step 1 is to run the tests. Remove a pre-existing results directory and everything below it. Be aware that even if
makeLocalDocuments.py claims success, one or more on the individual LaTeX files may be broken.

bake Salinas adagio -e release

rm -rf results

assign -p Salinas_rtest -k self-documenting

testrun -e release --save-all-results

pushd results

pushd latest

module load viz seacas

export PATH=$PATH:/scratch/$USER/toolset/contrib/testTools/adagio/
makeLocalDocuments.py

The makeLocalDocuments.py step accomplishes two things. First, any necessary local scripts are run. That may include blot
for example to generate figures. Second pdflatex is run locally to generate a local document. Note that testrun ... -r
wrong is compatible.

If it is necessary to repeat the second step, and no tests have changed, then (fortunately) skip the first step and start here.
Generation of a single, concatenated verification document is the last step. As many supporting files are in the docs/Salinas/doc
directory, we go to that directory to run the scripts.

cd /scratch/$USER/docs/Salinas/doc

1n -s /scratch/$USER/code/results .

make clean

make cleantex

make snllineblk.pdf > makedoc.log

make SANDbackground.pdf >> makedoc.log

make verificationAutodoc.pdf >> makedoc.log
acroread verificationAutodoc.pdf

If step 2 fails, the tail of an .aux will point to the cause.

Finally, you may clean up that directory.

make cleantex
rm results
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Note however, the verificationAutodocSrc and verificationAutodoclInp files may need to be manually updated. There is a
tool to help! Use “gatherLocalTests.sh” to generate a list of all tests in the results directory. These are in the right format to
be added to verificationAutodocSrc, but must be copied over by hand. I’ve also recently found that the graphicspath should
be terminated with “/”, and not with a space. LaTeX is picky about that.
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Appendix C

Richardson Extrapolation

Richardson extrapolation?! is a numerical technique whereby the convergence of a solution is identified and used to provide

an improved accuracy solution. We here discuss this technique as applied to a finite element model.*

Assume that an exact solution, a, is sought and that the mesh with a characteristic element length h is within the region
of geometric convergence.! The solution, a,, may be an eigenvalue for example. In that region, the error may be written,

errp, =a(h) —a, =Ch"™ (C.1)
where C' and n are unknown.

Take another mesh of characteristic element size, ah.}

a(ah) —ao = Ca™h"™ (C.2)

We further refine the mesh.
a(a?h) — ap = Ca®™h" (C.3)

There are thus three equations to solve for the three unknowns, C, n and a,.

a(h) — a(ah) = Ch"™ — a"Ch™ = Ch™(1 — ™) (C.4)
a(ah) — a(a?h) = a"Ch™ — &*"Ch™ = Ch"a™(1 — a™) (C.5)
Thus, )
n _ a(ah) —a(a®h)
" a(h) —a(ah) (c.6)
And,
_— log (a(ah) — a(a?h)) — log (a(h) — a(ah)) ©.7)
log («)
Knowing n, we solve for a,.
Gy = a(eh) — a™a(h) (C.8)

1—am

Having a,, one may plot a(h) — a, versus mesh size on a log-log plot and achieve a line. A fourth mesh is necessary to confirm
that we are in the region of geometric convergence.

* Richardson extrapolation was first developed in 1910. It is a well established technique. This description
is based on notes from Dan Segalman.

 The region of geometric convergence is that part of the solution where the error is decreasing monotoni-
cally, and may be well represented by a decaying exponential. Richardson’s extrapolation allows an approach
either from above or below (i.e. the error may have either sign). This write up describes convergence from
above.

! Usually we take a = 1/2, but other values are sometimes useful. Also, the mesh need not be uniform,
but the mesh does need to be scaled uniformly. For example, slicing each element in half in each dimension
does result in a uniform refinement with o = 0.5.
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The extrapolation must be performed using the FEM predictions at a node or element center which does not change spatial
location during mesh refinement. If a nodal variable is chosen, 1/ will be even (most likely 2). For element centroids, odd
values of 1/« are needed so the element centroid does not move during refinement.

Richardson extrapolation is valuable not only because it provides an improved estimate for a,, but also because it provides
a formal means of determining the rate of convergence, n. Typically a priori estimates for this rate exist. While it is not
practical to accomplish 4 levels of mesh refinement on most real models, the technique can be valuable for determining the
convergence rates of simpler examples.
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Appendix D

Legacy Test Matrix

The following tables identifies the verification tests for Sierra/SD, and provides a cross reference between the descriptions
in this document and the tests run. Tests are found in two major test systems. The Salinas/test_tool tests contain the
regression tests, and some of the verification tests. The Salinas_tests directory contains the remainder of the tests.

Table D.1: Test Matrix

Dir/Name of Test | Doc. | Row | Ref | Element

Table Table Type

beam analytic/cantilever free beam2 test | 10.57 3 1a Beam?2
./cantilever free tria3 test | 10.57 3 1a Triad

./cantilever free triadr test | 10.57 3 1a Triad L

./simply simply beam?2 test | 10.57 3 le Beam?2
./simply _simply tria3 test | 10.57 3 1a Tria3

./simply _simply triadr_test | 10.57 3 1a Triad L

./cantilever guided beam2 test | 10.57 3.3b Beam?2

beam-curved /roark tablel7 1 test | 10.58 17.1 Beam?2

.Jroark tablel7 2 test | 10.58 17.1 Beam?2

./roark tablel7 3 test | 10.58 17.1 Beam?

beam eigen/free free test | 10.65 8-1.1 Beam?2

beam eigen/free sliding test | 10.65 8-1.2 Beam?2

beam eigen/clamped free test | 10.65 8-1.3 Beam?2

beam eigen/pinned pinned test | 10.65 8-1.5 | Beam?2

beam-mass/blevins table6-2 19 test | 10.64
beam-mass/blevins table6-2 20 test | 10.64
beam-mass/blevins _table6-2 22 test | 10.64

6-2.19 Beam?2
6-2.20 | Beam?2
6-2.22 | Beam?2

plate annular/roark table24 1la_test | 10.59 24.1a Tria3
plate annular/roark table24 1b _test | 10.59 24.1b Tria3
plate annular/roark table24 1le test | 10.59 24.1e Tria3
plate rectangular/roark table26 la_test | 10.60 26.1a | QuadT
plate rectangular/roark table26 la t test | 10.60 20.1a Tria3
plate rectangular/roark table26 8a test | 10.60 26.8a | QuadT
plate rectangular/roark table26 8a t test | 10.60 26.8a Tria3
spring-mass/blevins _table6-2 2 test | 10.63 0-2.2 spring

%M@@MW@%MQ%M%@%M@%[\D:@OO\I%OJL\D

spring-mass/blevins table6-2 18 test | 10.63 6-2.18 | spring
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Table D.2: Test Matrix (cont)

Dir/Name of Test | Doc. | Row | Ref | Element

Table Table Type
thinShellsOfRevolution/.
./roark table28 la hex8 test | 10.61 28.1a Hex8
./roark table28 la_tria3 test | 10.61 28.1a Triad
./roark table28 1b hex8 test | 10.61 28.1b Hex8
./roark table28 1b tria3 test | 10.61 28.1b Tria3

8-19.2 Beam?2
8-19.2 Hex8

shaft /fixed free beam2 test | 10.66
shaft /fixed free hex8 test | 10.66

11-1.1 | QuadT
11-1.2 | QuadT
11-1.3 | QuadT
11-1.12 | QuadT

plate eigen circ/free test | 10.68

plate eigen circ/simple test | 10.68

plate eigen circ/clamped test | 10.68

plate eigen circ/clamped mass test | 10.68

11-4.1 Tria3
11.4.21 Triad
11-4.16 Triad

11-4.6 Tria3

plate eigen rect/all edges free test | 10.69

plate eigen rect/all edges fixed test | 10.69

plate eigen rect/all edges simple test | 10.69

plate eigen rect/sFixed IFree sSS l1Free test | 10.69

CO O = D00 O = DWW Nt O N W
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