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Abstract

This report summarizes the result of the LDRD Exploratory Express project 211666-01,
titled ”Coupled Magnetic Spin Dynamics and Molecular Dynamics in a Massively Parallel
Framework”.
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Summary

This work aimed at developing the first computational capability of its kind. Integrated
within Sandia’s LAMMPS code, the numerical tool presented in this report enables the
simulation of coupled magnetic and mechanic phenomena with previously unachievable fi-
delity and scale. Sandia researchers will now be able to deeply understand and exploit these
phenomena for predictions of advanced functional materials, in applications such as remote
sensing, quantum computing, or energy devices.
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Chapter 1

Introduction and Motivation

Two standard methodologies for numerical studies of magnetic and mechanical properties
of materials are spin dynamics (SD) and molecular dynamics (MD), respectively [1, 2]. Both
methods simulate materials at the atomic level, modeling electron-mediated interactions
and integrating the equations of motion of the spins/atoms. Standard MD simulations can
directly simulate a material containing > 10° atoms, or equivalently ~1pm?® on modern
leadership computing platforms. The coupling of SD and MD enables simulations of coupled
lattice and magnetic degrees of freedom, making it possible to tackle a broad range of
phenomena related to magneto-elasticity [3]. Early studies have revealed very promising
results. Notable examples are the influence of vacancy formation on the ferromagnetism of
BCC iron, and simulations of magneto-caloric effects [4, 5, 6].

However, very few research groups have implemented this coupled methodology, and
existing SD-MD codes are impeded by at least four strong restrictions:

e their level of parallelization is very limited, which prevents the simulation of large
magnetic systems [7],

e none of them has been released as part of an open source, commonly used MD code,
which is preventing Sandia researchers from adopting this method [8], and from a larger
user-base to grow and develop new potentials,

e those implementations lack physical models accounting for the spin-orbit coupling
(SOC), which is essential to simulate magneto-elasticity [9],

e none of them account for the long-range magnetic dipolar interaction, which is funda-
mental to stabilize magnetic domains that play a key role in magnetic materials.

An initial SD-MD package is currently being developed at Sandia in the LAMMPS code
[10], and already overcomes the two first restrictions. The lack of the last two points still
prevents from performing device-level simulations needed at Sandia. Developing and im-
plementing them are the two key improvements that will come out of this work. For the
long-range interaction, an Ewald summation technique exists in LAMMPS. However, this
method, only implemented for electrical dipoles, scales very poorly with the number of
particles and is not suitable for large-scale simulations. Another method, known as particle-
particle particle-mesh (P3M), will be added. Relying on fast Fourier transforms, P3M scales
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much better while still accurately modeling the long-range interactions. Simultaneously, new
terms accounting for SOC will be developed and implemented. In order to ensure accurate
predictions for a given material, the SOC model must be parameterized from ab initio tech-
niques such as density functional theory. Early feedback from Sandia experimentalists has
identified iron, cobalt and iron-cobalt alloys as useful materials for this model development.
Test simulations that can be directly compared to experimental results will be designed at
each step in this process.
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Chapter 2

Initial Release into LAMMPS of a
Symplectic and Scalable Algorithm
for Coupled Spin Dynamics and
Molecular Dynamics

The initial step in this project consisted in releasing an open source package to allow
scalable coupled spin dynamics and molecular dynamics calculations. To this end, an initial
package, referred to as SPIN, was released in LAMMPS. The associated source files can be
found within LAMMPS, in the following directory : lammps/src/SPIN. All the technical
details associated to this implementation were presented in an article published in Journal
of Computational Physics [11].

From lammps/src, LAMMPS can be built with the SPIN package by typing the following
commands :

$ make yes-spin # add the SPIN package to LAMMPS

$ make serial  # build a serial LAMMPS executable

$ make mpi # build a parallel LAMMPS executable with MPI

We refer to the LAMMPS documention pages for more information on how to build LAMMPS.

A documentation on how to use this package was added to the LAMMPS documentation.
In lammps/examples/SPIN, a set of examples were provided. They provide the input to run
simple spin-lattice calculations of magnetic transition metals (iron, cobalt and nickel), or to
use other functionalities, such as the read/restart options.

The release of this package embedded within LAMMPS provides a broad scientific com-
munity and Sandia researchers with an open-source, scalable implementation of SD-MD.
The following chapters of this report present two ongoing improvements of this initial devel-
opment, that will both be released into LAMMPS as part of the SPIN package.

11
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Chapter 3

Implementation of Ewald Sums and
P3M for Long-Range SD-MD
Simulations

The functional properties of magnetic materials are known to result from a combination
of short- and long-range interactions. Local magnetic alignment, induced by the exchange
interaction or by the magnetocrystalline anisotropy, can usually be accounted for by short-
range (or even ultra-local) models. They allow the SD-MD framework to scale as order
O(N) (with N the number of simulated particles). The initial SPIN package released into
LAMMPS accounts for most of the usual magnetic short-range interactions.

When larger magnetic configurations are simulated, magnetic domains and domain walls
can become a fundamental feature and even define the properties of the simulated magnetic
devices. The stabilization, or even nucleation, of magnetic domain configurations usually
requires accounting for the magnetic dipolar interaction. As the energy associated to the
dipolar interaction decays as 1/r3, it has to be treated as a long-range interaction [12].
When long-range interactions are taken into account in an MD or SD-MD formalism, a
direct calculation of the associated forces and energy scales as O(N?) and quickly becomes
computationally intractable for all but the smallest simulations.

In order to reduce this computational cost, spectral methodologies relying on accounting
for periodic virtual images of the simulation cell have been developed. In this section, we
present how two of those methodologies, referred to as Ewald sums and P3M, can be applied
to the simulation of magnetic dipolar interactions. The Ewald sum cost scales at best as
O(N®/?) and at worst as O(N?). P3M cost scales as O(N log N), making it computationally
feasible for very large systems.

The expressions of the energy and forces associated to the magnetic dipolar interaction are
first provided. Then we describe the two implemented methodologies. Finally, a description
of the methods used to verify correctness of the implementation along with preliminary
numerical results probing the scaling.

13



Magnetic Dipolar Energy and Forces

The magnetic dipolar energy can be expressed as :

2 N
Mo (MB) 9i9;
Haipolar = == > = [Blei; - si)(ew; - 85) — i+ 8] (3.1)

iga#tg Y

with pg = 47-1077 T m A~! the vacuum permeability and pp ~ 5.788-107° eV T~! the Bohr
magneton. For two sites 7 and j, e;; is the unit vector pointing from 7 to j, the inter-atomic
distance is denoted 7;;, s; and s; are two unit vectors giving the direction of the atomic
magnetic spins, and g; and g; are their associated Lande factors.

As discussed in the introduction, the magnetic dipolar energy corresponds to a long-range
potential. Therefore, in general, the sums in eq. (3.1) are not restricted to a given radius
cutoff, but apply to all spins present in the system.

From the energy provided by eq. (3.1) and by applying a spin-lattice Poisson bracket as
presented in Appendix A, the associated equations of motion (EOM) can be derived. For a
given spin ¢, this derivation gives a magnetic precession vector w; :

fo( ,UB gi9
wi="— Z J( ew"sj)eij—sa) (3.2)

and a mechanical force F; :

F,= MO(ZTB)Q Z g;?j [((31' -8;) — 5(ei; - 8:)(ei; - Sj)) e+ (e si)s; + (e - Sj)Si] (3:3)

The mechanical stress generated by the force given by eq. (3.3) is probably negligible
in most materials. However, its effects can be fundamental for other types of magnetic
simulations (such as the simulation of magnetic particles in suspension in a fluid). Therefore,
we decided to include its computation within our framework.

Ewald Sums and P3M Methods

For periodic three-dimensional systems, the Ewald and P3M methods can be considered
to account for the magnetic dipolar interaction. The very basic idea of both methodologies
is based on the following decomposition :

1 erf(ar) erfc(ar)

7’_3 = 3 + .3 (3.4)

where 1/r® schematically represents the dipolar energy given by eq. (3.1), and « is referred
to as a splitting parameter, which defines the mutual influence of the two terms in the
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right-hand side of eq. (3.4). The erfc component in eq. (3.4) is rapidly decaying, and is
therefore evaluated as a short-range interaction in the real-space. On the other hand, the erf
component is containing most of the long-range effects, and is computed in the reciprocal-
space by generating virtual periodic images of the simulation cell. The two methodologies
presented here (Ewald and P3M) only differ on how they evaluate this reciprocal-space
component.

Applying this decomposition to the dipolar energy, eq. (3.1) can be recasted into the
following sum :
%dipolar = Hgipolar + Hﬁipolar + H(siipolar (35)

where Hj; o1 and HE ., are the real- and reciprocal space components respectively, and
Hipolar 13 @ self-interaction correction (as the reciprocal-space component accounts for an
interaction of each particle with itself). According to refs. [13, 14], these three different terms
can be expressed as follows :

2 N
r Mo (UB 9:9;
dipolar = %ﬂ) > 5 [91(%’) (si-85) =392(rij) (€i; - 8:) (ey; - Sj)] (3.6)
ity
e _ Mo (MB)Q 4m _ W_]f ’
dipolar T Ar I3 L2 eXp al,
k#0
N .
2mik - 1y
Z gigj (k- s;) (k- sj)exp (TJ> (3.7)
ij=1
20° &
Hgi olar — Z 812 (38)
o 3T =

with ¢y (r;;) and go(r;;) defining two radial functions such as:

erfe(ar;;) 200 P
o AT 3.9
91(7"]) 7“% + \/7—1_7,;2] € ( )
erfc(ar;;) 1 (4 20\ (.2
) = i) 2 (200 20 ey 3.10
gQ(TJ) r?j + ﬁ ( E? + 7’1-2]- € ( )

and k = |k| with k denoting a vector of the reciprocal-space.

Note that the real-space term defined by eq. (3.6) is evaluated up to a given radius cutoff
re, and is assumed to be negligible beyond this cutoff (which is consistent with the rapid
decay of the erfc function).

The computation of the reciprocal space term defined by eq. (3.7) involves the resolution
of a Poisson equation [15], such as :

—Vo(r) =4np (r) (3.11)
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where ¢(r) is a magnetostatic potential and p () a spin density function [16]. In practice, the
resolution of this Poisson equation is performed in the reciprocal-space, as the differentiation
becomes trivial [15]. The two methodologies (Ewald and P3M) mainly differ by the way they
evaluate this spin density function, which will have a strong influence on the numerical tools
that can be used to solve the above Poisson equation, as detailed below. In simple Ewald
sums, one has the following definition for p (r) :

p(r)= 25 (r—mr;) s; (3.12)

with » € V, and 0 (r — 7;) denoting the Dirac ¢ function. In the P3M methodology, a mesh
M is created and superposed to the simulation cell prior to the evaluation of the real-space
density. Then, the on-mesh spin density function p,, (r,,) is defined as :

P (Tm) = Z W (r, —ri) s; (3.13)

i=1

where W (r,,, — ;) is an assignment function whose definition and tabulation can be found
in refs. [17] and [18].

When performing the reciprocal-space resolution of the Poisson equation, the reciprocal
spin density function needs to be evaluated first. Within the Ewald framework, the reciprocal
spin density has to be computed by the application of a Fourier transform, and one has :

b (k) = FT{p (1)}. (3.14)

The scaling of this FT is O(N?) in the general case. Even if the choice of an appropriate
splitting factor can reduce the cost of the overall operation to O(N?®/2), it remains extremely
costly for large simulations.

On the other hand, the definition of an on-mesh spin density function allows the P3M
methodology to use Fast-Fourier-Transform (FFT) routines. One has :

Pm (k) = FFT{pm (rm)}~ (3'15)

This greatly improves the scaling of the calculation, which drops down to O(N log V), making
simulations of large systems much more tractable.

Finally, we also note that corrections of the Ewald and P3M methodologies accounting
for two-dimensional slab geometries were also implemented [19].

The two methodologies were implemented into LAMMPS, and the associated source files
can be found in the following repositories : lammps/src/SPIN and lammps/src/KSPACE (the
routines evaluating the short-range real-space components are part of the SPIN package,
whereas the routines evaluating the Ewald and P3M reciprocal-space components are parts
of the KSPACE repository). Those new implemented routines were documented, and illus-
trative examples of how to use them can be found in lammps/examples/SPIN/pppm_spin/.

16



Verification and Scaling Tests

In order to verify the new P3M long-range solver for dipoles was implemented correctly,
a system of two interacting dipoles was used. Values for the energy, forces, and torques from
P3M were compared to two reference calculations: the first was a highly-refined Ewald sum,
and the second was a direct pair-wise calculation with an extremely large cutoff. The error
estimator for P3M was then verified using 100 dipoles placed randomly in a cubic box, and
the error in the P3M forces was compared to a highly refined Ewald sum to obtain true and
estimated force errors.

Cost vs Size

200

——Ewald Sum

150 F |——P3M

100

time (s)

50 | -

atoms

Figure 3.1: Cost of Ewald vs P3M for increasing system size on a single CPU core.

Strong Scaling
) I(E.\ —#—Ewald Sum
e .
64 B
= 16 | - ‘gr‘
v <
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0.25 l . | l I
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Figure 3.2: Time vs number of CPU cores for 32K dipoles.

As shown in Figure 3.1, the cost of P3M vs an Ewald sum was compared for 4K to 32K
dipoles distributed on an face-centerd cubic lattice using a relative force accuracy metric
of 107%. P3M is much faster than an Ewald sum for large systems due to its superior
O(Nlog N) scaling. The parallel scalability of P3M was also checked by strong-scaling a
32K dipole system from 1 to 32 CPU cores on a single Intel Haswell node. As shown in
Figure 3.2, P3M strong scales well up to 32 cores for this system size.
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Chapter 4

Development of Magneto-Elastic
Interactions Accounting for the SOC
Effects in HCP Crystals

In this chapter, a numerical model accounting for effects of the SOC is presented. To this
end, two well-known magnetic effects arising from the SOC are studied: the magnetocrys-
talline anisotropy and the magnetostriction. The magnetocrystalline anisotropy corresponds
to the presense of prefered axis for the magnetization in magnetic crystals. It strongly
depends on the symmetries of the crystal at stake. The magnetostriction corresponds to a
generated stress in response to a change of the magnetization orientation, or, on the contrary,
to a change of the magnetization orientation in response to a directional stress.

Our study focused on hcep crystals. Two reasons justified this choice. The first one is
that the Néel pair interaction has already proven to be a good candidate for the simulation
of both the magnetostriction and the magnetocrystalline anisotropy in hcp crystals [20, 21].
Therefore, we hope to build on these former studies and develop a more accurate magne-
tostriction model than previously achieved, which can be used for large scale magneto-elastic
simulations. Besides, this pair interaction is well-suited for an implementation in a coupled
SD-MD code, and it depends on radial functions (see in the following section) which can be
parametrized to match ab initio or experimental results. The second reason is that two very
common ferromagnetic materials, cobalt and gadolinium, have hcp lattices at room temper-
ature, and are known to exhibit strong SOC effects. Cobalt is a very common ferromagnetic
material, and is used as a component of numerous magnetic devices. Gadolinium is currently
being studied as a potential candidate for magneto-caloric devices. Therefore, developing the
numerical capability of performing sufficiently accurate simulations of those two materials is
of practical relevance for researchers at Sandia and in other DOE laboratories.

In this work, the parametrization of the Néel pair interaction was performed using ab
wnitio calculations.

In the first section of this chapter, the fundamental equations associated to the Néel
pair anisotropy are recalled. The second section summarizes how spin-dependent density
functional theory accounting for the SOC effects was used to compute the magnetostriction
in hep cobalt. Finally, the expression of the magnetostriction is related to the Néel pair
interaction and a fit of the numerical ab initio results is presented.
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Definition of the Néel Pair Anisotropy

The Néel pair anisotropy is represented by a pair interaction which couples the lattice
with the direction of magnetization. It was initially developed by Néel to simultaneously
reproduce both magnetostrive and anisotropic effects [20].

For a given site 7, the interaction can be expressed as the following sum over the first
neighbors labeled 7, such as:

P = —%g () (con(@)? = 3 ) + () (cost)* = eosto + ) @)

with g(r;;) and ¢(r;;) two radial functions of the interatomic distance r;;, and ¢ the angle
between the magnetization vector s and e;; = (r; — r;)/|r; — r;|?, the normalized vector
connecting site ¢ and j, and ¢ the defined as :

cos(p) = s - ey, (4.2)

where the magnetization vector s is defined as a global averaged quantity, being the same for
every magnetic spin. This first definition is convenient for the magnetostriction calculations
and parametrizations presented in the next sections of this chapter. However, it is not
suitable for an SD-MD definition, where the orientation of neighboring spins can vary and
differ due to thermal effects, or antisymmetric interactions. In this case, eq. (4.1) can be
recast into :

Si'Sj

Hyeer = — i:gl(rij) ((eij - si)(ei; - 85) — 3 > + q1(ry) ((ez’j - 8:)" — SZ—38j>2

+ qa(rij) ((ez‘j -si)(eij - 85)° + (e - 85) (e - 37:)3> (4.3)

with :
g1 (i) = Q(Tij)+;—§q (rij) (4.4)
0wl = Zalry) (4.5)
@2 (rij) = —%q(w) (4.6)

This interaction was implemented as part of the SPIN package and the associated source
files can be found in the following repository : lammps/src/SPIN. This interaction was
documented in the LAMMPS documentation, and an example of how to use it can be found
in lammps/exampls/SPIN/hcp_cobalt.

In the next sections of this chapter, a methodology for the parametrization of this inter-
action for cobalt is presented.
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Spin-Dependent DFT Calculations

The strength of the spin-orbit coupling for a particular material is highly sensitive to
the local environment around each atom-centered spin. An example of this sensitivity is the
large lattice strains that are imposed by a change in external magnetic field. In a classical
MD simulation, the equations of motion of each atom is propagated by calculating forces
from a Born-Oppenheimer potential energy surface called an interatomic potential, or just
potential for short. For the present work, these potentials need to be adapted by adding an
extra energy (and forces when differentiated) term that corresponds to the magnetic degrees
of freedom. The base potential that we are using for Cobalt uses the Embedded Atom Model
(EAM) developed by Foiles et. al. [22] and the specific parameter set used here is taken from
Pun et. al. [23]. Simpler, but still effective, potentials formulate the energy of an atomic
configuration that is solely based on a sum pair-wise interactions between atoms. We aim
to develop a simple pair-wise functional that only captures the spin-orbit interactions and
subsequently add this to the existing EAM potential for Cobalt.

In order to translate the analytical form of the spin-orbit coupling in equation 4.1 into a
form compatible with LAMMPS a set of DF'T calculations is needed to construct a database
of energies to constrain the fitted g(r;;) and ¢(r;;) functions to. This section will detail
how this DFT database is constructed and how a fit was optimized. Since the focus is on
crystalline Cobalt in the HCP phase, a DFT code using a plane wave basis is optimal and the
Vienna Ab initio Simulation Package (VASP) is used here [24, 25, 26]. Each of these training
geometries was calculated with a 15 x 15 x 15 Monkhorst Pack k-point mesh, 600eV plane
wave cutoff energy, 0.1eV Gaussian smearing, PBE exchange-correlation functional [27] and a
GW pseudopotential that captures core electrons leaving the outermost d- and s-orbitals for
the basis set. A convergence test on the number of k-points and energy cutoff was performed
to arrive at these final values. Calculations were performed using the orthorhombic unit cell
containing four atoms. Within VASP there are three different treatments of the magnetic
state of the material, the simplest being the non-magnetic solution. While the non-magnetic
solution is not interesting to this work, these calculations were initially performed as a
sanity check on the subsequent magnetic calculations performed. The other two treatments
of the magnetic state within VASP are known as the collinear and non-collinear solutions.
Collinear solutions to a spin-polarized calculation are that of freely rotating spins but spin-
orbit interactions are not included. Conversely, spin-polarized calculations that include spin-
orbit interactions are categorized as non-collinear solutions. Therefore, the energy difference
between these two types of calculations is the energy associated with the spin-orbit coupling.

While DFT is a powerful ab initio tool for studying materials physics, certain approxi-
mations need to be made. These approximations fall into two categories, those made on the
physical model and those related to ease of computation. The main approximations within
DFT come down to the choice of pseudopotential and exchange-correlation functional, the
former being mainly a computational convenience and the latter an approximate physical
model. Also the theory that underlies DF'T does not universally capture strongly correlated
electron effects, f-electron shells are examples of this shortcoming. Due to these approx-
imations, it is not guaranteed that a well done DFT calculation will match with known
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Figure 4.1: (Left) Variation of the Bohr magneton per Cobalt atom calculated using
VASP with a Hubbard on-site correction applied to d-electrons. Dashed horizontal line at
1.72 indicated the experimental prediction that this calculation aimed to match. (Right)
Relaxed cell volume prediction with respect to experiment as the +U correction is varied. A
PBE-GGA exchange and correlation functional is used in these calculations, a discrepancy
of a few percent in cell volume is to be expected using DF'T regardless of XC functional used.

experimental quantities. In the present work an additional, but adjustable, approximation
is needed in order to make our DFT calculations agree with the experimentally observed
Bohr magneton per atom in Cobalt. Here we have opted for the use of the Hubbard on-site
correction term in the style of Dudarev et. al. [28] and have only applied this correction term
to the d-electrons in the calculation. The Hubbard on-site correction, or simply called the
+U correction, is an extra energy penalty on electrons that biases the solution toward fully
occupied or unoccupied bands. In the VASP implementation of Dudarev’s approach, there
are two adjustable scalar parameters (U and J), but only the difference between them enters
the energy penalty expression. Therefore, we leave J = 0 and only optimize U in order to
reproduce the experimentally observed Bohr magneton per atom of 1.72. With increasing U
there is a monotonic increase in the Bohr magneton per atom, but the relaxed cell volume
has a minima just below U = 2.0eV, these results are presented in Figure 4.1. From this we
settle on U = 1.95eV as the Hubbard screening strength for all subsequent spin-polarized
calculations, this includes collinear and non-collinear states.

Following the derivations of Mason [29] the magnetosriction of an HCP material can be
calculated given a set deformations on the lattice. Each deformation that Mason identifies
also has a corresponding spin polarization. We have carried out VASP calculations that
match these conditions for both collinear and non-collinear spin states. An example of one
of these calculations is shown in Figure 4.2 wherein each spin in the unit cell is initialized in
the direction of its nearest neighbor in the basal plane and the cell is expanded (strain greater
than one) and contracted (strain less than one) along this spin direction. What is clear from
this figure is that both calculations, with and without spin-orbit coupling, have very similar
energy changes due to this elastic deformation. Furthermore, the energy difference between
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them is on the order of tens of meV/atom, or equivalently less than one-percent strain in
this direction. The strain on the lattice is varied over a very large range in order to properly
sample a set of interatomic distances needed for fitting the continuous SOC energy functions
(g(rs;) and q(r4;)) for use in MD. In truth, any set of DFT calculations that sample the
spin orbit energy landscape as a function of interatomic distance can be used, we decided
to reproduce Mason’s theoretical derivation for a later validation of our MD predictions, see
Appendix B for more details. One of the main concerns with following Mason’s method
for calculating the magnetostriction is the ad hoc way that VASP defines the initial spin
state. Physically, if the spin state deviates from its preferred axis (perpendicular to the
basal plane in HCP) it is due to the presence of an external magnetic field. However, VASP
does not have the capability to perform calculations in the presence of an external field.
Additional calculations were needed in order to confirm that the initial spin states that
Mason proposes are physically realizable without the need of a strong magnetic field. Here
we define ’strong’ as the field strength needed to cause significant population change between
the up and down spin channels. To evaluate this, we launched a set of simulations using the
Elk electronic structure code [30] which has the capability to study the spin sate of a material
in the presence of an external magnetic field. Our local Elk expert, Attila Cangi of 1444,
reproduced the VASP results using the Hubbard +U term, and then set out to determine
the field strengths need to cause significant changes in the electronic structure. For a spin
state perpendicular to the easy axis in HCP Co, the VASP predicted energy change is on
the order of 10meV. In contrast, the Elk calculations find that (details in Appendix C) the
Zeeman energy threshold to see significant changes in the spin-polarized band structure is
greater than 4eV or equivalently 4.7 - 105 Tesla. This result gives confidence that the VASP
calculations mimicking Mason’s derivation are physically reasonable since the energy scale
difference between spin polarizations is significantly smaller than the onset of field induced
changes in the band structure.

The last step in defining the spin-orbit interactions in MD comes down to fitting the g(r;;)
and ¢(r;;) functions of the Néel interaction Hamiltonian. In principle these two functions
are empirical and can be any functional form that is continuous in 7;;, but also goes to zero
as the atom separation goes to infinity. The second of these requirements, locality of the
spin-orbit interaction, is needed to maintain efficient calculation (order N) as the size of the
simulated system grows. In the present work we decided to use a a polynomial expansion
up to order four to fit both g(r;;) and ¢(r;;), with switching functions applied to both the
short-range(< 1.0A4) and long-range(> 4.0A) interactions.

g(r) =ag + Z a; - (r—mp)" (4.7)

i=1

q(r) = by + Z by (r — )" (4.8)

i=1
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Figure 4.2: VASP calculations mimicking the first of Mason’s analytical expressions for
magnetostriction in HCP metals. The simulation cell is varied along the nearest neighbor
direction in the basal plane in both a compressive and tensile distortion. While most of the
energy change is due to the deformation, the remaining difference between the collinear (blue
points) and non-collinear (red points) is the energy contribution of the spin-orbit coupling.
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The switching functions are defined as :

(0.0 ¥ L Papos — AP
Sshort = (1 — sin (%)) /2 |7 — Tehort| < AT (4.9)
(1.0 T > Tshort + AT
and :
(1.0 P L P — AP
Slong = (1 — sin (%)) /2 |1 — Tiong| € Ar (4.10)
(0.0 T > Tiong + AT

with Tgnory = 1.04, Flong = 4.0A, and Ar = 1.04. Those functions will smoothly taper the
dipolar and quadrupolar functions to zero, with the added benefit that the derivatives are
continuous as well. The free parameters in equation 4.8 are each of the a;, b; and ry meaning
the fit has eleven free variables to minimize the regression error on. To efficiently solve for
the optimal parameter set, and to avoid local minima in this overdetermined fit, a genetic
algorithm within DAKOTA [31] is used. After one-hundred generations of three-hundred
candidates each, an optimal set of parameters was achieved with the mean absolute error
of 0.0031eV. The resultant fitted functions are plotted in Figure 4.3 wherein the Dipolar
(g(745)), Quadrapolar (g(r;;)) and their summation are shown. The summation of these two
spin-orbit interactions shows a minima very close to the nearest neighbor distance in the
equilibrium HCP crystal.

With the Néel interaction Hamiltonian now fully defined, this model can be implemented
into the SPIN package of LAMMPS, completing the desired magnetic model for the coupled
SD-MD simulation tool. Moving forward, we see an opportunity to use the same procedure
outline here to produce similar models of spin-orbit coupling in other HCP materials such
as Gadolinium. Also, given the arbitrary nature of the DFT database needed to fit these
models, we aim to also produce SOC functions of BCC materials such as Iron.
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Figure 4.3: DAKOTA optimized spin orbit interaction functions. Each of the functions is a
polynomial of order four with each of the coefficients taken as free variables during fitting.
Single black point indicates the minima of the sum of dipolar and quadrapolar terms, this

equilibrium distance is very close to the relaxed nearest neighbor distance of 2.49A in HCP
cobalt.
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Chapter 5

Summary and Outlook

In the introduction, four limitations of existing coupled SD-MD implementation were
discussed. This project allowed us to provide Sandia and the DOE with a new numerical
tool tackling those four limitations.

Indeed, a scalable numerical tool allowing to perform coupled SD-MD simulations was
released as a package in LAMMPS, and is now pubicly available. Two extensions of this first
version of the SD-MD implementations were also presented in this report : models accounting
for long-range magnetic dipolar interactions, and the developement and paramatrization of
inter-atomic potentials accounting for spin-orbit coupling effects. Future publications will
provide more details about those two developments.

This new numerical tool should be greatly beneficial to many ongoing and future projects
at Sandia for the development of functional magnetic materials, such as tagging applications
or quantum-computing devices.

Extending the impact of this new SD-MD tool will depend strongly on the available
material models to interested users, the desired material specificity for these users comes
down to the exchange and spin-orbit Hamiltonian terms. At the conclusion of this work, we
have demonstrated to the broad audience of LAMMPS users a generalizable example of how
one such spin-orbit coupling model can be developed and implemented.
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Appendix A

Poisson Bracket for Spin-Lattice
Equations of Motions

The equations of motion (EOMs) and the magnetic and mechanical forces can be derived
from the spin—lattice Hamiltonian. Yang et al. derived a generalized formulation of the
Poisson bracket for spin-lattice systems [32]. With f (¢, 7, p;, s;) and g (¢,7;,p;, Si) two
functions of time, position, momentum and spin :

Nrof 99 of ag s [(Of Og

i=1

Its application to a spin—lattice Hamiltonian H,; (typically, the one defined by eq. (3.1) leads
to the following set of EOMs for the spin-lattice system :

dri D;

o =B (A2)
dp;

(Z = {pi,Ha}=F, (A.3)
Ci;i = {s;,Hg} = w; X s; (A.4)

where the mechanical force F; is given by :

aHSl
F—=— A5
B (A.5)
and the magnetic precession vector wj; is given by :
1 0Hg
;= —= . A6
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Appendix B

Sixth-Rank Magnetostriction
Coefficients

In chapter 4, magnetostriction results were obtained from density functional theory cal-
culations. This appendix aims at providing a bridge between those magnetostriction calcu-
lations to the radial functions g(r) and ¢(r) defined in eq. (4.1).

By following the work of Mason (up to the sixth rank magnetostriction tensor) [29] and
combining it to the work of Bruno [33], the magnetostriction can be expressed as follows :

A —

A [2@104251 + (a1 — 042)2 62]2 + BO‘% [(04151 + 04252)2 — (132 — a251)2}

+C [(onfr + @)’ = (012 + C¥251)2} +D(1-a3) (1-53)

+Eaif: (1 — a%) + Faj (1 — ag) +Gp? (1 — ag)

+Hasfs (a1fy + azfa) + Ia36s (a1 1 + azfs) (B.1)

where « is the direction of the averaged magnetization, and 3 is a unitary vector giving the
direction in which the lattice strain is measured.

The nine magnetostriction coefficients (A tol) in eq. (B.1) can be expressed as functionals
of g(r) and ¢(r), and are given by :

~ T Q" O Q W
|

Nagzo — Niiy
3 (V131 — Nis2 + Nia1) + N1 — 2Na99

(2N2g2 — Ni11 — 3N121) + % (M1 — Mo) (B4
(2N111 — 2N392 + 3N121 — Nagi) + % (Myy + Mip — 2Ms3,) (B.5)
2 (N111 — Nagz) + 3 (N2 — Nigi 4+ Niga — Nigs) + 6Nisg + N3z — Nagz (B.6)
2 (Nag2 — Ni11) — Naz1 + 3 (Nisy + Nisa — Nig1) + 6Ni3g + Nz — Nagz (B.7)
(3N123 — Nagz) + (My3 — Mss) (B.8)
8N1i55 + 2Myy (B.9)
8 (N344 — Nis5) (B.10)
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where the M;; and N;j;, coefficients are derived from the expression of the Néel pair anisotropy
and geometrlc considerations associated to the hep cell.

For the M;; coefficients, one has the following expressions :

M, = (5’11 — 5'1111> (g(r) — gq(r)) + %5’1111 (7’% - g%) (B.11)
Ms3 = (5’33 - 5'3333> (g(r) - g (r)) + %5’3333 (r% - g%) (B.12)
My = Spa (gq(r) —g(r)+ % (r% - g%)) (B.13)
Mz = Siss (gq(r) —g(r) + % (T% - g%)) (B.14)
Mg = Mg (B.15)
My = <§22 - 252233) (9(7") - %CI( )) + Sass ( gi g%) (B.16)

where g(r) and g(r) are the two radial functions associated to the Néel pair anisotropy (see
eq. (4.1)), and the S;;x are geometric coefficients.

We now provide a definition for those geometric coefficients. The S 17K coefficients repre-
sent nearest neighbor shell (NN) sums, presenting 2 to 6 indices, and are evaluated according
to the following expression :

zyk:l Z /87,/8]/8]6/61 (B17)

with beta; For symmetry reasons, the indices in gijkl... will always appear by pairs, and the
Voigt notation system is used :

11 = 1,222, 833 — 3,
23 — 4, 13—>5, 12 -6, (B.18)

reducing the number of indices in the S coefficients from 2 to 6, to 1 to 3, respectively.
Geometric considerations of the hep lattice allow to evaluate (using trigonometric functions)
the values of those coefficients. Table B.1 provides the values of all necessary S coefficients.

Finally, the two tables below provide all the Nijk coefficients (also as functionals of g(r),
q(r), and the Sy k coefficients).
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Table B.1: Values of the second, fourth and sixth order S’ijm”

SIZ~S2:S3: S11~2522:g
B 533 - % ~Sl2 - %
S13 = So3 = % @111 = lgz
51222 = % 5:333 = 1#,6
~ Sii2 = % ~ S122 = %
5113~: Sog3 = é S133 = Sa33 = %
S1a3 = 1—18

_ o _
4Q(7”ij)51111 + Tz'j—q - Q(Tz‘j) St
87“Z-j
dq =
Tij o — q(n)) S
( jarij j 111122
_ dq .
2(](7"2'3‘)51122 F\Tijg— — Q(Tij) Stii122
8Tij
1 0 -
2 (T’U) <51111 + 351122) <7'ijW(jj - Q(Tij)> Sti1122
o -
(rUW(Zj - Q(Tz’j)) S112222
N dq N
2q(rij)S122 + Tija— —q(135) | S112222
rij
1 0 ~
24 q(rij) (52222 + 351122) <Tij¥(jj = Q(Tij)> S112222
15 ~
(Tijyi - Q(Tij)> 5922233
_ dq _
2q(rij)Siss + Tija— —q(ri;) ) S111133
’f'z'j
1 0 -
54 q(ri;) (Snu + 351133) <7“z‘j67i_ — Q(Tz‘j)> S111133
0 -
(ﬁjyi - Q(Tz‘j)) S113333
. dq .
2q(rij)Siss + | rij=— — q(ri;) ) S113333
67“Z~j
1 0 -
54 q(ri;) <53333 -+ 351133) <Tij872 — Q(Tij)> S113333
o _
(T’iganj - Q(Tij)) S113333

_ o _
2Q(Tij)52233 <Tij87q-- - Q(ﬁ'j)> 5929233
ij
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(B.19)
(B.20)
(B.21)
(B.22)
(B.23)
(B.24)
(B.25)
(B.26)
(B.27)
(B.28)
(B.29)
(B.30)
(B.31)
(B.32)

(B.33)



1 0 -
Nogy = 2 (TU) <52222 ~+ 352233) <7‘ij£ - Q(Tz'j)> 5922233 (B-34)

15 ~
N33y = (Tija—q—Q(Tz‘j)> S923333 (B-35)
7“1']'
- dq -
Nozz = 2Q(Tij)52233 Tz‘jW—Q(sz) 5923333 (B-36)
ij
Naus = 2q(r ) ((Ssans + 355205 ) + rioL — g(ry) ) 8 (B.37)
344 5 I\ 3333 2233 ij (97“15 q\Tij 223333 .
dq ~
Nigz = Tz‘ja——q(ﬁ‘j) S112233 (B-38)
Tij
dq ~
Nizp = Tija__Q(Tij) S112233 (B-39)
rij
dq ~
Nog1 = Tij——CI(sz) S112233 (B-40)
('9rl-j
1 = ~ 0 ~
Ny = 5 (%)(S 122+51133 ( aq ng)) S112233 (B-41)
1 8q ~
Nayss = 5 (TU)<S1122+52233 + (9 —q(ri;) ) St12233 (B.42)
1 ~ ~ 8q ~
N3es = §Q(Tij) (51133+S2233 + Tij g q(rij) ) Sti22s3 (B.43)
Tij
- dq
Nagpy = 4Q(7“ij)52222+ Tijﬁ_qw'ij) 5222222 <B~44)
ij
N dq N
N3z = 4Q(7”ij)53333+ Tijﬁ_QOAij) S333333 (B-45)
ij

In this appendix, we only provided the results, and do not detail the associated calcu-
lations. Future publication will provide more explanation about the associated analytical
evaluation of those coefficients.
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Appendix C

Magnetic Field Dependent Density of
State Calculations using the Elk Code

This Appendix breifly reviews some of the calculations performed by Attila Cangi (org.
1444) using the Elk code [30].

Those calculations aimed at probing how the density of state (DoS) evolved for a magnetic
system submitted to a large magnetic field (which can be the case in magnetostricition
experiments). Figure C.1 below presents the obtained results.

B=0.0 [a.u. B=40 [au]
spin up spin down| spin up spin dewn)|
04 1.4
0.2 {
R [
Es 0 s
04 —0.4
—200 —150 —100 =0 0 a0 100 154 200 —20) — 14l B ] — il il 5 L) 150 200
Total DOS Total DOS

B=2.0 [a.u]

B=8.0 [a.u]
Spin up spin down| spin up spin down|

=200 —150 — 100 —4n 1] Al JIVIII 150 200

= _1;|||J = II.'yLI - 100 - :':ll 1] o) l':.-.:' 150 200
Total DOS

Total DOS

Figure C.1: Density of states plots for both spin-up (series in blue) and spin-down (series in
red) channels calculated using Elk. Each panel represents a different magnetic field strength
with the top-left panel being the DoS in the absence of an applied field. Above 4.7 -10° T,
shown in the right two panels, there is a significant change in the occupied states(shaded
curves) with respect to the zero field DoS.
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