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Abstract

Structural dynamic testing is a common method for determining if the design of a component
of a system will mechanically fail when deployed into its field environment. To satisfy
the test's goal, the mechanical stresses must be replicated. Structural dynamic testing is
commonly executed on a shaker table or a shock apparatus such as a drop table or a resonant
plate. These apparatus impart a force or load on the component through a test fixture that
connects the unit under test to the apparatus. Because the test fixture is directly connected
to the unit under test, the fixture modifies the structural dynamics of the system, thus varying
the locations and relative levels of stress on the unit under test. This may lead to a false
positive or negative indication if the unit under test will fail in its field environment depending
on the environment and the test fixture. This body of research utilizes topology optimization
using the Plato software to design a test fixture that attaches to the unit under test that
matches the dynamic impedance of the next level of assembly. The optimization's objective
function is the difference between the field configuration and the laboratory configuration's
frequency response functions. It was found that this objective function had many local
minima and posed difficulties in converging to an acceptable solution. A case study is
presented that uses this objective function and although the results are not perfect, they are
quantifiably better than the current method of using a sufficiently stiff fixture.
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Nomenclature

Field Configuration The setting where the designed hardware is in its designed assembled
state

Field Environment The external force(s) imparted on the design configuration while the
field configuration is in its designed use and the corresponding response by the field
configuration

Component The hardware or subsystem of interest within the field configuration that
needs to be tested prior to release into its field environment

Laboratory Environment The setting where the component is imparted by a controlled,
prescribed force to cause a desired response of the component

Next level of assembly The structure to which the component is connected in its field
configuration

Test fixture The piece of hardware to which the component is connected in its laboratory
configuration

Frequency Response Function The Frequency Response Function (FRF) is a ratio between
a motion response (i.e. displacement or acceleration) and the forcing function that
caused it.
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Chapter 1

Introduction

Many of Sandia's components and systems experience a vibration or shock environment
that can cause structural damage or failure. To make the assertion that our systems meet
their requirements, Sandia must qualify our components and systems to all environments
they will experience, including vibration and shock environments. Testing a full system in
all field shock and vibration environments to determine if it functions as intended is one
method of qualification, however, this method is impractical in that it would be cost and
time prohibitive and several iterations of testing would have to be done during the design of
the system.

Instead of testing the entire system, individual components and subsystems are tested
in a laboratory in a way that represents the environment that they would experience in the
assembled system. The laboratory test requires a derived input function from an exciter such
as a shaker table and a method of connecting the component or subsystem to the exciter in
the form of a test fixture. The test fixture is critical because it changes the mode shapes
and, therefore, possible stress states of the system. Figure 1.1 shows a flow chart of the
two dynamic systems and the goal of producing the same stresses in the laboratory as was
experienced in the field. If the stresses are not the same or bounded in the laboratory test,
then the laboratory test will not necessarily exercise the same failure modes of the component
or subsystem under test. If the laboratory test causes too high of stresses or stresses in the
wrong location, then the test could produce a false failure mode. If the test does not excite
the same failure modes, then the test fails its purpose.

The history of methods and means of performing structural dynamic tests range back
to World War II [2]. Shaker devices used sinusoid outputs to test the equipment that was
failing on naval ships during shocks from battle. This era also brought the development
of the Shock Response Spectrum. It was not until the 1960s that environmental testing
became more critical with respect to mission risk and some individuals began to recognize
the impedance mismatch between the field configuration and laboratory configuration. The
decades since brought several strategies for tailoring the input spectrum such as force limiting
and multi-input control as methods of addressing some of the symptoms of impedance
mismatch.

Through all the research and advancements, the guidelines for connecting the test article
or unit under test to the shaker table or shock apparatus via a test fixture remain the same.
Test fixture design guidelines state that the test fixture's first elastic natural frequency
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Figure 1.1: Flow chart highlighting the structure and goal of a structural dynamic laboratory
test.

should be outside the range of the testing frequency. Although the rigid test fixture design
ensures a constant transfer function from the source forcing function to the unit under test, it
potentially modifies the laboratory configuration's frequency response functions with respect
to the field configuration's frequency response functions. If the frequency response functions
change, the mode shapes between the two configurations most likely will not remain the
same and, therefore, the stresses cannot be the same.

Figure 1.2 is a layout of how the inputs for components are derived and tested today.
The top row of Figure 1.2 shows a measurement taken at the base of the component.
This measurement or base excitation is replicated in the laboratory environment on a rigid
fixture. The bottom row of Figure 1.2 shows the displacement of the component in its field
configuration. Because its connection points do not fall on a plane, the rigid fixture cannot
replicate this stress state because all of the connection points stay on the same plane due to
the fixture being rigid.

Topology optimization is a proposed method for designing a test fixture. Topology
optimization is a finite element based method that either modifies the mesh or density of
the elements to provide an optimized design based on a given objective function. Topology
optimization is the basis for the research presented in this report. The goal of this research
is to improve the fidelity of in-service component environments simulation through topology
optimization. This research's focus is on the tools and prospective processes of developing a
test fixture and not necessarily the implementation in today's qualification procedures. This
research can be accurately described as a feasibility study.

This research supports a DOE Level 2 milestone objective. The completion or success
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Figure 1.2: Example process of testing components in the laboratory.

criteria for this research is the following: Design a test fixture providing improved replication
of mechanical environments will be designed using PLATO topology optimization for a test
bed component. Using SIERRA finite element analysis, evaluate the component using (1)
the test bed assembly, (2) a rigid fixture, and (3) the optimally made test fixture. The
optimally made fixture must provide an improvement over the rigid fixture when compared
to the test bed assembly.

This report gives an overview of the physics of the structural dynamics with respect to
component and fixture interaction. It then provides an overview of topology optimization
along with several strategies of implementing the tool to design a test fixture. It covers the
examination of using the laboratory configuration's frequency response functions compared
to the field configuration's frequency response functions as the objective function of the
optimization problem.

This report then introduces a case study for which a test fixture is designed using topology
optimization. The optimized fixture's performance with respect to stress is compared to a
rigid fixture's performance. The result of this comparison shows that the optimization fixture
provides an improvement to the stress levels when compared to the truth stresses, but not
identical stresses. The results also show that optimization using the frequency response
functions prove to be problematic due to the objective function containing numerous local
minima.

The report concludes by examining other metrics and methods proposed during the
research and their effects on the effort toward the design and utilization of test fixtures for
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structural environmental testing. A metric was developed during this research that calculates
the error that the test fixture introduces to the system in modal space to determine how
the structure changed from its field configuration to its laboratory configuration. Another
objective function is proposed in lieu of the frequency response function match. This
objective function would be to match the Craig-Bampton constraint modes between the
field and laboratory configurations. This would encompass the structure's mode shape space
while optimizing on static solutions instead of dynamic solutions.
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Chapter 2

Theory and Background

As stated in the Introduction, the goal of the laboratory test is to induce the same
stresses on the component in the laboratory that the component experiences in the field. To
determine if the laboratory test is successful, a method of experimentally determining stress
is needed. Experimental stress is a difficult parameter to measure, but it is known that stress
is proportional to strain for linear elastic materials through the elastic modulus shown as

asx = E€XS (2.1)

where axx is the stress in the x direction, E is the elastic modulus in the x direction,
and Exx is the strain in the x direction. This relationship can be expanded to include three
dimensional stress and strain. Strain is defined as the derivative of displacement with respect
to its location shown as

du
Exx = 

dx
(2.2)

where u is the x component of the displacement of a point with respect to its x coordinate.

From equations 2.1 and 2.2, it can be stated that if the displacement or motion of the
component under test is the same in the field as in the laboratory, then the stresses in both
configurations are the same.

To further enhance our understanding between the dynamics of a structure and its
resulting displacement, one can transform the motion of an object to a linear combination
of its eigenvectors or mode shapes. This transformation is written as

00
f, = E c/),,qm

m=1
(2.3)

where Om are the mode shapes, qm are the modal coordinates of mode m, and ft is the
vector of displacements for the degrees of freedom.

Displacement can be viewed in the physical domain, the frequency domain, or the modal
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domain. If the motion is examined in the frequency domain in the form of frequency response
functions (FRFs), then the mode shapes are the imaginary parts at the component's natural
frequencies as shown in Figure 2.1. Figure 2.1 also shows that a given set of FRFs at degrees
of freedom that uniquely describe the mode shape with respect to the other mode shapes in
the given space are enough to identify the motion of the entire component.

MODE 1

—i? 
MODE 2 -TF

,J

Figure 2.1: Mode shapes of a plate calculated from the imaginary part of the FRF [1]

The work presented in this report is focused on creating a test fixture that matches
the same impedance as the next level of assembly in the field configuration. This matching
impedance is viewed in this report as having the same FRFs in both configurations. Throughout
this report, matching the FRF is the objective, however, it is seen in this section that
multiple FRFs must match in order to ensure that the mode shape at the appropriate
natural frequency matches in the field and laboratory configurations. The number of FRFs
needed to match is equal to the number of modes needed to be matched. The response
degrees of freedom of the FRFs must also make the mode shapes independent. This is to all
ensure that the correct shape is being excited which enforces the correct stresses.

Equations 2.1 through 2.3 show that the linear combination of the mode shapes of the
component or unit under test dictate the component's stresses. To enhance the insight on
the sources of error between the flight configuration and the laboratory configuration, the
component's mode shapes are transformed into Craig-Bampton space. Craig-Bampton space
states that the system's mode shapes can be transformed into its fixed base mode shapes
and Craig-Bampton constraint shapes. An example of these shapes is shown in Figure 2.2.
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Figure 2.2: Visual of a component's motion in Craig-Bampton space, a linear combination
of fixed base modes and Craig-Bampton constraint modes. Color plot is relative stress.
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Chapter 3

PLATO Development

In support of this milestone, various new capabilities were developed in the PLATO
topology optimization product. This section describes these new capabilities, illustrates the
magnitude of work that was accomplished and new capabilities in PLATO that resulted
from the milestone. Much of this development was driven by experience using commercial
topology optimization packages.

FRF Matching using Density Approach

Prior to the beginning of the milestone effort, PLATO did not have any capabilities
for matching FRFs or utilizing Levelset methods. The initial development focused on a
density-based capability. The density-based approach was easy/quick to implement while
leveraging existing Sierra/SD inverse methods FRF capabilities and allowed the analysts
to start running problems early in the milestone cycle while the levelset approach was
being developed. However, based on experience with commercial packages, the density-based
approach would ultimately not be sufficient and a levelset-based approach would be needed
to more accurately model the physics. Developing the density-based approach provided
foundational capabilities and frameworks that would be reused in the levelset approach so
the effort was not wasted. Furthermore, it provided the ability to make comparisons with
commercial packages.

FRF Matching using the Levelset Method

A critical feature of the levelset method is that an explicit representation of the material
boundaries (and geometry) are constructed from design variables. At each design iteration,
the response is computed using a finite element representation that abides by this geometry.
In density methods the geometry is smeared on the finite element mesh. Elements on the
boundary between materials are represented as a mixture between materials or material
and void, that is, density of intermediate value. If significant regions of intermediate value
exist, the finite element calculation of response is not an accurate representation of the
discrete material, material a, b, or void. Deterrence of intermediate densities is a function
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of the optimization problem formulation. As described elsewhere in this report, early
testing indicated that intermediate densities were not deterred by naive density method
formulations. Solid Isotropic Microstructure with Penalization (SIMP) was used here. Due
to this, using a levelset method, which does not suffer from this complication, was seen as an
appealing alternative and became the focus of the efforts. In the rest of this section we will
discuss the formulation and implementational details of the levelset FRF matching method
that was added to PLATO for this milestone.

Problem Definition

The PLATO development work was completed with the goal of solving an optimization
problem defined as:

minimize J(U, p)

subject to R(11km, P, fm, cok) = 0,

< 0,

where k = 1, . . . , Nf„q,

m = 1, . . . , Nloads

= 1, • • • , Nconstramts•

Here we seek to minimize an objective Aukm, p) that is a function of the Fourier Transform of
the displacements uk, at frequency Wk and for load m. This is subject to a set of constraints
(that we will leave undefined for the moment) gi and to the solution of the discretized
Frequency Response Function (FRF) equation R(fikm, P, fm, Wk), a function of the states,
design variables p, Fourier transformed loads fm and frequency Wk.

The governing equations (R) of the FRF can be written as:

R(ukm, 13, fm cuk) — (K + i Wk C — WI2c m) ukm — fm,

(3.1)

(3.2)

where the mass M, stiffness K and damping C matrices may all be functions of the design
variables p. This is equivalent to Equations (19) and (30) in [4].

Sensitivities

We will consider reduced-space optimization methods where the optimization algorithm
requires the following expressions:

• The objectives

• The constraints

• Derivatives (sensitivities) of the objective with respect to the design variables
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• Derivatives of the constraints with respect to the design variables.

In this section, we will show the calculation of the derivatives of a generic function
Z(fikm, p) with respect to the design variables. We will use Z here to highlight that the
derivation is applicable to either objectives or constraints which are functions of the states
resulting from the FRF solution case.

The total derivative of the criteria Z can be written as:

dZ OZ 
Nfreq E E  {Nloads ( az au= km 

dp Op .=
Ic 1 m=1 

'CIO km Op

where
az aukm az [aRkmi-1 aRkm 
ofikm afikm [ afikm _I OP •

We can compute the adjoint solution Akm:

rn 
Akm, 

[  az  iT
0Uk Ou.km

[aRkm]

so we can write the total derivative as:

dZ OZ 
Nfreq {Nloads

dp Op+E E
k=1 m=1

Akm ORkm 

Op

Equation 3.5 can be seen as (20) in [4] while Equation 3.6 is (21) in the same work.

Direct Derivative

(3.3)

(3.4)

(3.5)

(3.6)

In this section we discuss the details of computing the direct, partial derivative of the
criteria with respect to the design variables:

OZ

Op
(3.7)

Given the current driver, matching FRFs at nodes, it is expected that Equation 3.7 will
be zero.

State dependence

In this section, we discuss the details of computing the influence of the design variables
on the criteria, Z, via their influence on the state variables. This is:

{N f req Ntoads ( 
a Z  alakm)}E E 
Ofikm Opk=1 m=1
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or written using the adjoint,

N req {1\71004.3

E E Akm 
up /

k=1 m=1

• (3.9)

From Equation 3.9, it is observed that there will be an adjoint solve (and corresponding
adjoint vector Akm) for each load and frequency step. Given that many frequency steps are
likely necessary to achieve a good fit, this may indicate that it would be worth studying the
relative computational cost of performing topology optimization with modal methods for
FRFs.

As with common elasticity optimization problems, the adjoint calculation requires the
objective function gradient with respect to the states and the derivative of the residual
with respect to the states (frequently required by Newton solvers for the forward problem).
The second part of Equation 3.9 is the derivative fo the residual with respect to the design
variables, 8Rapk— , the calculation of which may have different implications based on the form

of the geometry definition (level-set, density method, etc).

In topology optimization, the full matrix form of aRapkm is not constructed. Rather, the
element-wise product with the adjoint is assembled into the gradient vector.

N f req Nloads N req etera

E
({

AkmaRkm)}
{Nloads

Akm3
kmj

(3.10)
ap ap

k=1 m=1 k=1 m=1 j=1

where Rkmj and Akm3 are the gradient and adjoint existing on the degrees of freedom for
a given element j. For current use cases where the load is not changing with the design
geometry the adjoint will be constant across all loads, that is that:

Ak1 = = • • • = AkNIoads • (3.11)

For density methods (such as SIMP), the gradient of the element residual with respect
to the design variables can typically be computed analytically. For SIMP, the material
properties may be interpolated as:

E = Eo pfP, (3.12)

where the element elastic modulus E is a function of the material elastic modulus E0, the
fictitious density pf and a penalty parameter pp. The resulting stiffness matrix gradient can
be computed as:

axe [
= 

apf 
Pp P 

p 
fp
-1

Pp Pp
(BT D(E0) B) dQe] ,Le (3.13)

where the standard element constitutive matrix D is computed using the material elastic
modulus E0 and the normal deformation gradients B.

For the eXtended Finite Element Method (XFEM) or Conformal Decomposition Finite
Element Method (CDFEM) we would expect to compute the element residual gradients
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partially by finite difference. The current work utilizes CDFEM in Sierra/SD, the finite
difference would be computed on node coordinate position. The resulting form would appear
as: aRkn, aRkm

(3.14)
ap axii Op

where xii is the j-th coordinate of node i. aaRxkrn having been computed by finite difference and

apaxz3 having been computed by the geometry engine that provides the element decomposition.
The geometry engine that provides the changing finite element discretization is the XFEM
Toolkit (XTK).

The PLATO team has a research contract with the University of Colorado in Boulder,
who are developing XTK. XTK is a library for generating a conformal mesh using XFEM
(eXtended Finite Element Method) techniques given a background mesh and a levelset field.
Along with the conformal mesh, XTK also outputs sensitivities of the geometry with respect
to changing the levelset values on the background mesh. The XTK library is an essential part
to providing a levelset-based topology optimization capability. The development of the XTK
library reached maturity during the milestone cycle and was utilized in the levelset-based
capability.

Objective Function J Details

In this section, we will discuss the objective functions that were considered during this
milestone. These are FRF mismatch or error measures. The baseline FRF error measure
from [4] is:

N f req Nioads Nmatch_do f

2
,i 

it- !krn) \ 'i km (CIL — fililm)2
7 (3.15)JFRF(1-17p) =E E

{

E
[(

Aikm
+

Aikm 

1

k=1 m=1 i=1

where the normalization term Aikm is based on the largest response at a given frequency.
That is:

Akm = maxi ftikm D. • (3.16)

The objective is a function of the reference response iiikm and the current response fLikm
where superscript i indicates the imaginary component and superscript R the real part. In
3.15 we highlight that the objective will seek to match the FRF for a particular set of degrees
of freedom (DOFs). For the current proposed use case this means all DOFs of a user-selected
subset of finite element nodes. The selected set of nodes will generally be small in number,
fewer than 1000.

The second and third objective formulations are simple variations on the first, where only
the real:

JFRF(U,p) =
N f req N1004, Nmatch_do f

(fdm 111!km)2 

Aikm
k=1 I m=1

25

i=1

(3.17)



or imaginary:

JFRF(117P) =

{Nfreq Nloads

Em=1k=1

parts of the response are matched.

(Nmatch_clof

Ei=i
[(771iikm ft!km)21

Aikm

One may also only measure error in the magnitude of response, that is:

JFRF(U,p) =
Nfreq NtoadsE (Nmrdof [(1 77tikm1

k 
I

m 
ftikmD2

J
1)} .

k=1 m=1 z=1

/

L Ai 

(3.18)

(3.19)

Finally an error measure on the magnitude of response was constructed where the
orthogonal or shortest distance between the current and reference response curves was
measured. In the previous measures the error at each frequency line is the vertical distance
between the responses. This orthogonal distance measure can be written as:

1V.freq

JFRF(111 p) = E 
uk 

(minj
k=1

)2 } (3.20)

where nk is the vector constructed by the frequency and natural log of the response magnitude
ln D] at frequency Wk while B3 is the vector corresponding to the reference response

at frequency LIJ3. Ck is a scaling coefficient, initially 1. This measure is the integration across
frequency of the shortest distance between the natural log of the current and reference
response curves.

Constraints and Regularizations

Surface Area Constraint and Gradient

In an effort to help regularize the objective function and make it more convex we
implemented an optional surface area constraint (and corresponding gradient) or objective
penalty. For some test problems this did aid in converging to sensible results but experience
was necessary to determine an appropriate constraint value. The surface area was computed
on the interface between the material and void in the design domain FD, that is:

1 dF.
rD
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Volume Penalty

Experience also indicated that volume is a useful geometric measure to penalize or
constrain in topology optimization problems. The volume is simply:

f1 c/S2, (3.22)

which may be used as a penalty on the objective:

Au, p) = JFRF(1-1, p) +c, f 1 cg-2, (3.23)

where cv is a scaling parameter or as a constraint as:

1
f 1 c/S2 — 1,g = ye 

where V, is the largest allowable volume.

Design Variable Filtering

(3.24)

The abstract set of design variables for the levelset method are nodal values of the
levelset field defined on the background finite element mesh. The CDFEM decomposition is
constructed from a levelset field that is the result of the application of a linear filter on the
abstract design variable field. The linear filter is that of Bruns and Torterelli[?], a weighted
distance measure.

Implementation Details and Features

Leveraging Sierra/SD Inverse Methods Framework

The Sierra/SD physics code contains capabilities for solving inverse problems using
gradient-based techniques, the same type of techniques used to solve topology optimization
problems. The inverse methods in Sierra/SD and topology optimization are similar in that
they use gradient-based optimization methods to solve problems that are constructed from
the output of a finite element method. Scalar objective functions are constructed from typical
finite element quantities of interest: stress, strain and displacement, and the derivatives of
these quantities must be calculated with respect to some optimization variables.

Topology optimization and inverse methods will almost always differ in the definition of
optimization variables and will often differ in the definition of the objective function. In this
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work the initial objective function for the FRF match was shared with an existing inverse
methods capability, in Equation 3.4 this means that:

az  FoRkmi 1
Of1km L allkm i

(3.25)

is identical in the existing inverse methods capability and the initial topology optimization
work. In an effort to not duplicate code and to save development time it was decided to
directly use portions of the existing inverse methods framework for this topology optimization
development. This meant that new objective function formulations were developed in the
inverse methods framework and that an interface between the inverse methods framework
and the topology optimization framework was developed for calculating partial derivatives
with respect to design variables.

Recent work on the Plato Engine MPMD framework was used for this work so that
the CDFEM decomposition was effectively a preprocessing step before each optimization
iteration's analysis in Sierra/SD. Partial derivative information of interface node coordinates
with respect to design variables was passed into Sierra/SD and used to complete the chain
rule so that the complete derivative of quantities of interest could be returned with respect
to the design variables. The interface linking the topology optimization framework to
the inverse methods framework utilized constructs that allowed for generic design variable
definitions, with the goal of minimizing code duplication between density and levelset methods.

Optimization Algorithms with Globalization Techniques

To provide a good opportunity for finding good solutions to the non-convex FRF matching
problem, we implemented two additional optimization algorithms that included globalization
methods to help avoid local minima in the solution space. These were the Globally Convergent
Method of Moving Asymptotes (GCMMA) and the Kelley Sachs Bound Constrained (KSBC)
algorithms. GCMMA requires a constraint as part of the problem formulation and KSBC
does not. The need to be able to switch between optimization algorithms also required the
implementation of an abstract interface to the optimization algorithm used in PLATO.

Levelset Initialization Methods

The levelset-based solution to a topology optimization problem is dependent on the
initial values of the levelset field. Additionally, as opposed to density methods where a
constant, intermediate density value may be used as the initial condition (imparting no
particular geometry), the levelset method requires a meaningful initial geometry. Therefore,
we developed a few different methods for initializing the levelset field. One method generates
a levelset with a number of voids on the interior (a " swiss cheese pattern) to give the
optimizer a complex initial topology. Another method allows the user to start with a levelset
field that is based on a simple parallel-piped primitive. The user can also select "surfaces" on
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the background mesh that will be prescribed to be void in the initial levelset field, effectively
placing a design interface next to this background mesh surface. These various methods
allowed the analysts to run the problems needed for the milestone but there are certainly
many other initialization methods that could be implemented and which would be useful.

Support for Tet10 Elements

It is common knowledge that 4-noded, tri-linear tetrahedral elements have poor accuracy
with coarse meshes for structural dynamics problems. The use of 10-noded, higher-order
tetrahedra was desired to allow for more accurate response estimation during the optimization
process. The XTK developers implemented a capability that added mid-side nodes to the
output CDFEM mesh. This capability was enabled in the PLATO software. Due to the
nature of the CFEM implementation in Sierra/SD only a few very minor changes were
necessary to support the new element type.

Restart Capability

One of the unique capabilities of previous versions of PLATO has been the ability to
restart a topology optimization run from an intermediate or final design of a prior run.
This can be useful when attempting continuation approaches where changing optimization
problem parameters are desired during optimization process. Continuation approaches are
frequently used to work-around problematic behavior in topology optimization problems.
This capability had not been enabled in the newly architected version of PLATO where all
of the FRF matching capabilities were being implemented. Therefore, the restart capability
was implemented in the new version of PLATO so that it could be used when doing FRF
matching runs.

Quantity of Interest Plotting

A Graphical User Interface (GUI) is a key feature of PLATO, allowing analysts to easily
interact with their optimization problem and solutions. To support the FRF matching
development, the ability to plot critical quantities of interest, like the FRF were added to
the PLATO GUI.
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Chapter 4

Designing a Dynamic Test Fixture
using Topology Optimization

This chapter covers all of the topology optimization work done to explore the use of FRF
matching as an objective function. The first section of this chapter documents the work
done using topology optimization and matching frequency response functions (FRFs) in the
Altair Optistruct software. Optistruct was explored because the software had the capability
for FRF matching as an objective function and it was readily available when PLATO was
developing its capabilities. The Optistruct runs framed the problem space and explored the
general difficulties of designing a test fixture with the FRF matching objective function.

The second section covered the optimization work done by the PLATO software. It
explored some of the effects of choosing different strategies for defining error and other
design parameters within the optimization space. This section also defined the final test bed
and analysis that satisfied the success criteria of the level 2 milestone.

Topology Optimization using Optistruct

Although the milestone for this report dictated that the PLATO software must be used, it
was determined in the onset of this research that an alternate software should be examined
for comparison of usability and results. Also, PLATO did not have the FRF matching
capability at the beginning of the research so the Optistruct runs were able to aid in the
design direction of the PLATO software.

The work presented in this section used the density method for topology optimization.
The hardware used as the test bed in this section was the Box Assembly with Removable
Component (BARC) hardware and is shown in Figure 4.1. The BARC hardware was
designed to be a challenge problem for the structural dynamics community with the intent
of developing methods of designing test fixtures. In relation to the problem description laid
out in the Introduction section in Chapter 1, the blue block box assembly was the next level
of assembly and the red removable component was the component or unit under test. Figure
4.1 shows the field configuration.

To set up the optimization analysis, the fixed space and the design space had to be
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Figure 4.1: Finite element model of the BARC system with the blue block being the box
assembly and the red block being the removable component. This is the field configuration
for the BARC.

32



............................................................................................... 

isi
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Figure 4.2: Finite element model of the removable component in red attached to the design
space in blue.

identified. The removable component was designated to be fixed space which meant that the
optimizer could not change its density or form. The removable component was attached to a
block which was the optimization space. In the density method, the optimization space was
the region where the elements' density was allowed to vary between 0 and 1 with 0 being
non-existent and 1 being fully present. This initial optimization configuration is shown in
Figure 4.2.

Initial runs of the optimization problem using the FRF matching objective function in
Equation 3.15 showed no or small changes to the error of the objective function and that the
solution had converged. This was problematic because the field and laboratory frequency
response functions chosen were barely improved upon visual inspection. An example of these
plots are shown in Figure 4.3. The lack of change in the topology design implied that the
initial condition was close to a local minima to which the solution converged. Different
aspects of the optimization problem were modified to determine if better results could be
obtained. Parameters changed were the amount of FRFs used, the frequencies of only around
the natural frequencies, convergence rates, SIMP penalty factor, and using the imaginary
part of the FRF in the error calculation.
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Figure 4.3: Example of an unacceptable local minima in a FRF matching optimization run.
Truth is the field configuration and Optimized is the converged solution.

Many runs showed that the many local minima in the optimization space were an issue in
matching frequency response functions. A contrived error from the FRF matching objective
function was created to illustrate these local minima in Figure 4.4. With no active means
to locate the global minima verses a local minima, it was of interest to create a test to
determine how close the initial condition needed to start to the global minima to find it.

The designed test to determine how close the initial condition had to be to the global
minima used the BARC system previously identified. The setup used the field configuration's
geometry as the initial geometry for the optimization. This would make the global minima
solution a density of 1 for all of the elements in the optimization space since the geometry
of the design space was the same as the field configuration.

The initial condition was changed by altering the initial density for the elements. Seven
runs with different initial densities were run. These runs and their results are documented
in Table 4.1. The FRFs for Runs 3 and 4 were plotted in Figure 4.5. There were two
conclusions from this series. The first was that to converge to the global minima, the initial
condition needed to be relatively close to the global minima as to not get stuck in a local
minima. The second conclusion was that there exists some (not all) parameters that alter
the objective function's error space that reduce the number of local minima.

Several other runs were executed in Optistruct with no improvement on the matching
of the frequency response function matching. Each run would quickly converge to a local
minima. It was observed on some of these runs that the higher order modes would be altered
so that their residuals would become an average line through the target frequency response
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Figure 4.4: Contrived error plot for a FRF matching objective function.

Table 4.1: Results of topology optimization trivial solution on BARC hardware

Run # Initial Density Result

1 1.0 The densities did not change
2 0.9 Almost all of the densities converged to 1.
3 0.8 The densities did not converge to 1 but converged to

overall different system dynamics
4 0.8 The SIMP penalty factor was changed from 3 to 1.

The densities converged to 1 in a single iteration.
5 0.5 Left the SIMP penalty factor at 1. The derivatives were

0 and the densities never changed.
6 0.5 Expanded the frequency range from (196 Hz-292 Hz) to

(20 Hz-1000 Hz) and the results did not change.
7 0.5 Changed the SIMP penalty factor from 1 to 1.2. The

densities of all elements converged to 0.95.

function.

Figure 4.6 shows a topology run with the target or truth data, the initial topology
optimization model, and the final optimized model. In the figure, one can see that a natural
frequency of the optimized model converged to one of the natural frequencies of the target
data at approximately 200 Hz. However, the source of most of the error calculated came from
the higher frequencies. The optimizer found a local minima that increased the acceleration
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Figure 4.5: Frequency Response Functions of optimization solution with initial density of
0.8. Run 3 is the solid green line and Run 4 is the green (x) marks

response at a natural frequency at approximately 15 kHz so that its residual crossed the
target data in the frequency range between 1200 Hz and 2000 Hz. This use of the residuals
of higher modes demonstrated how the design space of the optimization problem can change
so that a local minimum is quickly found.
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Topology Optimization using PLATO

Through this research, the PLATO software was enhanced to include a new objective
function for matching the Frequency Response Functions (FRF) of selected degrees of freedom
on an optimization finite element model to a target finite element model's FRFs. This
objective function was the same as was run in the Optistruct software. During the course
of the year, several enhancements were made to the PLATO software. These enhancements
included the implementation of levelset optimization, including higher order tet-10 elements,
and the restart capability so that continuation optimization would be an option.

Optimization runs using Optistruct demonstrated that optimizing on matching FRFs
between two systems is a very difficult problem due to the many local minima that exist in
the error space of the solution. It would be advantageous to examine the error space of this
optimization problem to learn about the sources and locations of the local minima, however,
the error space for a topology optimization problem has thousands of variables which make
it impossible for the analyst to examine. Due to the difficulty of examining the error space
of a full topology optimization problem, a simple cantilever beam example was developed.

Comparison of FRF Match Measures

A simple cantilever beam is used to demonstrate the differences between the FRF match
measures. The beam is 40 units in length, 1 in width and has a thickness varying between
0.05 and 0.5. A force along the free end is applied that has a constant magnitude in frequency.
The displacement response is measured at the end of the beam. The value of thickness equal
to 0.2 is chosen as the reference thickness, the 'truth' value. We evaluated a frequency range
from 0 to 100 Hz, which captures three modes in the reference configuration.

Figure 4.7 shows a comparison of the FRF match measures (Equations 3.15, 3.19, 3.17,
3.18 and 3.20 respectively) as the thickness varies. They are plotted here on a log scale due
to the large range of residual values of the different measures. All of the measures show
numerous local minima while the cluster of measures surrounding the 'baseline' measure
show very significant oscillation for small beam thicknesses. Plotting the measures on a
linear scale and zooming in, Figure 4.8, we see that nearly all of the measures also tail-off
for larger beam thicknesses. For this problem in particular it seems that the Log-Magnitude
Measure, produces the most non-oscillatory path to the global minima (closest to a convex
ob jective) .
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Figure 4.7: Comparison of FRF Match Error Measures on Log scale.

Ob
je
ct
iv
e 
Va

lu
 e
 

10000 -

9000

8000

7000 -

6000 -

5000

4000

3000

2000 -

1000

0 1 
0 05

— Baseline
— Magnitude Difference

Real Component
—Imaginary Component
—Log-Magnitude Orthogonal

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
Shell Thickness

0.5

Figure 4.8: Comparison of FRF Match Error Measures on Log scale.

39



Test Bed Fixture Optimization Setup

As stated in the Introduction, the purpose of this research was to satisfy a Level 2
Milestone. For convenience, the completion criteria is repeated here and is as follows: A test
fixture providing improved replication of mechanical environments will be designed using
PLATO topology optimization for a test bed component. Using SIERRA finite element
analysis, evaluate the component using (1) the test bed assembly, (2) a rigid fixture, and (3)
the optimally made test fixture. The optimally made fixture will provide an improvement
over the rigid fixture when compared to the test bed assembly.

The first task toward completing the Level 2 Milestone was to develop a test bed assembly.
Figure 4.9 is the proposed test bed assembly with the red and yellow blocks being the
component or unit under test and the green block being the next level of assembly. The
assembly in Figure 4.9 was the field configuration. The field configuration was in a free-free
condition with no displacement boundary conditions, i.e. free-free.

.

Figure 4.9: Test bed hardware and nodes used for the FRF matching optimization analysis.

For the purpose of this milestone, the typical method of testing with a "rigi& test fixture
was compared to testing with an optimized test fixture. A picture of the test bed assembly
with a rigid fixture can be seen in Figure 4.10. The rigid fixture was modeled by using
the next level of assembly and tying all of its degrees of freedom on its bottom face to a
concentrated mass with rigid bar elements. This forced all of the degrees of freedom on that
face to move with zero relative displacement, acting as a rigid fixture.
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Figure 4.10: Test bed hardware mounted to a "rigid!' fixture. The fixture was rigidized by
tying the next level of assembly to a concentrated mass via rigid bar elements.

Current methodology was used to develop the laboratory input environment. This
methodology measured an acceleration response at the base of the component of interest
in the field environment. The measured response was then enforced on the rigid test fixture
in the laboratory configuration so that the base of the component would have the same
acceleration profile as the field configuration. This method and process is illustrated in
Figure 4.11.
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Figure 4.11: Illustration of how a typical structural dynamics test derives its input for a
laboratory test with a rigid fixture.

To create a topology optimized test fixture that would replace the rigid fixture and the
method of testing using the rigid fixture detailed above, an initial model was created for
the topology optimization analysis. This initial optimization model can be seen in Figure
4.12. The initial model connects the component to a section of the next level of assembly
shown in the green section in Figure 4.12. At the edges of the green section were two large
bricks which were used as the design space for the topology optimization. A section of the
next level of assembly was used because it is common for the test engineer to have prior
knowledge of the next level of assembly. It is also worth noting that the field configuration
does not fit into the initial optimization model, so the trivial solution does not exist.
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x

Figure 4.12: Initial model for the topology optimization model. The cyan blocks were the
design space.

Exploration of Optimization Parameters

Initial Geometry Dependence

It is well known that the initial geometry impacts the optimization result for levelset
methods. This was studied with a simple example of either initially a) completely filling
the design domains with material b) only filling a volume in that is of similar size to the
next level assembly beam. The filled barbell geometry is shown in Figure 4.13, the smaller
initial geometry is shown in Figure 4.14. The FRF for the circled node in Figure 4.12 in the
Y-direction was the measurement point for the initial geometries is shown in Figure 4.15.
After 235 optimization iterations, which results in a stagnated geometry, the FRFs of the
resulting geometries are as shown in Figure 4.16. The filled design, which began with a close
match of FRF peaks has clearly done a relatively better job of matching the reference peaks.
The smaller initial design has stagnated after aligning only the 590 Hz peak in the reference
data. The final geometries for these results are shown in Figures 4.17 and 4.18, which are
also clearly quite different.
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Figure 4.13: Baseline Initial Design for Optimization Parameter Comparisons.

osmoull=awie

0-7

•

4-1 o
4Y 5-0

6-M

9-.
10.
11.

Figure 4.14: Small Initial Design for Optimization Parameter Comparisons.
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Figure 4.15: FRF comparison for beam midpoint with initial geometries.
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Figure 4.16: FRF comparison for different initial geometries.
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Figure 4.17: Final design geometry for baseline configuration.

. II

Figure 4.18: Final design geometry for configuration with small, beam-like initial geometry.

FRF Match Measure Influence

We show here the impact of changing between the two most interesting FRF match
measures: that of Equation 3.15, the baseline, complex FRF measure (used elsewhere in this
work); and that of Equation 3.20, the orthogonal distance measure. The resulting FRFs
are shown in Figure 4.19, similar in many ways, neither being obviously a much better fit.
The geometry resulting from the use of the orthogonal distance measure is shown in Figure
4.20. The initial design for this and all subsequent comparisons will be the fully filled design
domain.
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Figure 4.19: FRF comparison for varying error measures.

Figure 4.20: Final design geometry for orthogonal distance FRF match measure, Equation
3.20.

Optimization Algorithm Dependence

Two optimization algorithms were readily available for this problem: Kelly-Sachs Bound
Constraint (KSBC) and the Global Method of Moving Asymptotes. KSBC was used for all
other results shown in this report. The comparison of resulting FRFs is shown in Figure
4.21. The responses are very similar, the resulting geometry from GCMMA, Figure 4.22,
is notably different than that of KSBC, Figure 4.17. This demonstrates, as was implied
in earlier comparisons, that particular FRFs for this problem may likely not have unique
geometry solutions.
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Figure 4.21: FRF comparison for different optimization algorithms, KSBC and GCMMA.

Figure 4.22: Final design geometry for GCMMA Optimization Solver.

Impact of Volume Penalty

Volume penalties or constraints are commonly used to regularize topology optimization
problems. We demonstrate the effect of a volume penalty on this FRF match problem here,
choosing the penalty coefficient cv such that the initial volume penalty is 10% of the initial
FRF match objective term. The resulting FRF is shown in Figure 4.23. The volume penalty
has little impact on the FRF match but does have a noticeable impact on the resulting
geometry, shown in Figure 4.24.
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Figure 4.24: Final design geometry for configuration with volume penalty on objective.

Evaluation of Design for Milestone Criteria

The final solution used for the comparison to the rigid fixture to satisfy the completion
criteria of this Level 2 Milestone was done in two steps. The first was to match the FRFs
in the frequency band of 60 Hz - 160 Hz. There were no flexible modes in this frequency
range. Solving this frequency range optimized the model to match the mass properties of
the field configuration. The FRFs chosen for the objective function were the X, Y, and Z
degrees of freedom of the nodes highlighted in Figure 4.9 and 4.12 and the input shown in
field configuration in Figure 4.11. The difference between FRFs in the field configuration and
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the optimized configuration per frequency line was the definition of this objective function
and method of calculating the error.

The result of the optimization in the frequency band between 60 Hz and 160 Hz was used
as the initial configuration for a sequential optimization run that optimized on the same
objective function as before except it optimized over the 60 Hz to 300 Hz range. This range
included the first elastic mode of the field configuration. The optimization iterated twelve
times. The error was normalized to the error in the first iteration and the plots of the FRFs
for the specified iteration can be seen for six of the iterations in Figures 4.25 and 4.26. The
FRF plots in Figures 4.25 and 4.26 were of the magnitude of the displacement of the node
in the center of the component.
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Figure 4.26: Error and FRF plots for iterations 7, 9, and 12 of optimizing over the 60 Hz to
300 Hz range.

Upon examination of the error and FRF plots in Figures 4.25 and 4.26, there were several
aspects of the optimization that deserved to be noted.

• Iteration 1 showed generally good agreement in the lower frequencies. This was due to
the first optimization that was run between 60 Hz and 160 Hz.

• The error plot did not show smooth convergence to a minima. Instead, the error
increased and decreased multiple times into different areas of different local minima.
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This was due to the aggressive parameters chosen for the optimization algorithm. The
points chosen per iteration were few and they reached far from the initial location and
sometimes increased in error.

• The FRFs did not have a smooth transition from one iteration to the next. Modes
were introduced or eliminated depending on the iteration.

• The 9th iteration had a natural frequency at the correct frequency, however, the
optimization stiffened that natural frequency to lower the error in iteration 12. The
error for iteration 9 was 0.39 and 0.26 for iteration 12.

When selecting which iteration would provide the best test fixture, the result from
iteration 9 was selected over iteration 12 because iteration 12 had no natural frequency
in the frequency of interest. This meant that the fixture was rigid in the frequency of
interest and would be the same as the rigid fixture which would provide no benefit. The
finite element model of the optimized fixture for iteration 9 is shown in Figure 4.27 with the
compared point in the FRF figures identified.

Point used for
comparison

y

Figure 4.27: Topology optimized test fixture derived from iteration 9 optimized over the
frequency range 60 Hz to 300 Hz.

The note above that addressed the fact that iteration 12 had lower error than iteration
9 deserves additional investigation. In iteration 9, the lower frequencies matched and the
natural frequency was correct. The only deviation between the two FRFs was the amplitude
of the FRFs at the natural frequency. From the Theory section in Chapter 2, the amplitude
of the frequency response function at the natural frequency is the mode shape. Figures 4.25
and 4.26 only show the FRFs from one degree of freedom. If the amplitude at the natural
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frequency isn't scaled the same over all degrees of freedom, then the shape is different along
with the stress field for that shape. This raised the error calculated and no resonance was
calculated to be a lower error.

To determine the differences in the shapes, a modal analysis was computed on the field
configuration and the optimized model. Snapshots of the mode shapes at approximately 230
Hz are illustrated in Figure 4.28. At first glance, it appears that the two shapes were very
different as the majority of the motion in the field configuration is in the Y direction and the
majority of the motion in the optimization configuration was in the Z direction. After closer
examination, the nodes of each mode had similar locations and there was some deflection in
the Y direction in the optimization configuration's mode.
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Figure 4.28: First elastic mode shape of the field configuration (top) and the optimization
configuration (bottom).

To determine if the optimized test fixture was an improvement over the rigid fixture, both
were tested analytically in a simulated laboratory test. The method of how the environment
was calculated and how the laboratory test was designed for the rigid fixture was previously
described and illustrated in Figure 4.11.

The force input for the optimization configuration was placed at the same location as
it was for the optimization problem shown in Figure 4.29. To derive the laboratory test's
forcing function, the frequency response functions between the degrees of freedom used in
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the optimization problem in Figure 4.12 and the forcing function was used. These FRFs
were inverted using its pseudo-inverse to calculate the best forcing function to excite those
response degrees of freedom in the same way that they were excited in the field environment.

Figure 4.29: Laboratory setup for the optimization configuration.

With both simulated laboratory tests defined, the stresses from them were calculated.
The Von Mises stress was calculated per frequency line and the total stress was calculated
as a root mean squared (RMS) value per

1
Xrms — —

n \

n

E X2m
m=1

(4.1)

where x is the variable of interest, and n is the total number of discrete points in the
signal. The plots of the Von Mises stresses for the field, optimzation fixture laboratory, and
rigid fixture laboratory configurations can be found in Figure 4.30, 4.31, and 4.32 respectively.
Several comparisons can be drawn from these results.
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Figure 4.30: RMS response of Von Mises stress for the field configuration and environment.
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Figure 4.31: RMS response of Von Mises stress for the optimization configuration and
laboratory environment.
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LABORATORY CONFIGURATION
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Figure 4.32: RMS response of Von Mises stress for the rigid configuration and laboratory
environment. Common colormap to other configurations (top) and rescaled colormap
(bottom).

To quantifiably state the differences between the field environment and the two different
laboratory environments, the Von Mises stress was compared at 5 discrete locations and the
error was calculated. The five locations that were chosen for comparison are shown in Figure
4.33. The quantified difference between the environments can be found in Table 4.2.
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Table 4.2: Approximate RMS Von Mises stress of the Field Configuration, Rigid
Configuration and Optimized Configuration and their associated errors

Node #
VM Stress

Field
VM Stress

Rigid
VM Stress

Optimization
Rigid
Error

Optimization
Error

1 8 ksi 0.5 ksi 4 ksi 94% 50%
2 8 ksi 1 ksi 3 ksi 88% 63%
3 2 ksi 1 ksi 4 ksi 88% 50%
4 5 ksi 1 ksi 5 ksi 88% 38%
5 8 ksi 0.5 ksi 8 ksi 94% 0%

N2

N1

N3

LABORATORY NFIGURATION

Enforced
Motion

N4

N5

VonMises RMS (psi)

1000

750

500

250

0

Figure 4.33: Location of nodes used for stress comparisons between the different hardware
configurations.

Figures 4.30 through 4.32 and Table 4.2 show that even though the optimization laboratory
configuration was not a perfect match to the stress in the field configuration, it was an
improvement over the rigid laboratory configuration. Through qualitative examination of
the general stress field in Figures 4.30 through 4.32, the stress from the first elastic mode
shape was proportional to the result because only one mode for each configuration is excited.
With the rigid fixture, all of the motion concentrates to the 90 degree bends in the component
and the top part of the beam. In contrast, with the connection degrees of freedom allowed
to move like the field configuration, the optimized test fixture provided a more realistic
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boundary condition which spread out the stress on the component. Also, Figure 4.28 shows
the qualitative difference between the optimized fixture configuration's mode shape and the
field configuration's mode shape. The field configuration's mode shape had significant motion
in the Z direction which placed a even strain on the top member of the component that isn't
experienced by the field configuration. This result is seen when comparing Figure 4.30 and
4.31.

One could argue that if this information was known a priori to the laboratory test,
the input specification for the rigid fixture configuration could be amplified by a factor of
approximately 16 in order to make sure that the stress in the laboratory was at least as much
as it was in the field. However, due to the boundary conditions and the stress field of the
rigid laboratory configuration, the stress at the middle of the component would be an over
test by approximately a factor of 8 and could cause a failure that would not be experienced
in the field.

Chapter 2 stated that the responses, displacement and stress, are a result of a convolution
between the input forcing function and the dynamic frequency response functions of the
system which consists of the component and its next level of assembly or its test fixture.
Although the comparison between the optimized fixture and rigid fixture in Figures 4.31 and
4.32 reflect what test can be run on the optimized fixture and what is run on the rigid fixture
today, the methods for applying the forcing function in method and location were different
and, therefore, influenced the comparison between the rigid fixture and optimized fixture.

In an effort to remove the effect of the forcing function's effect on the comparison between
the rigid fixture and the optimized fixture, the method of deriving an input force that was
used on the optimized fixture was applied to the rigid fixture. Two changes were made to the
original laboratory configuration in order to modify it to match the laboratory configuration
of the optimized fixture. First, the rigid elements connecting the next level of assembly to
a concentrated mass and the concentrated mass were removed. Next, the modulus of the
next level of assembly beam was increased by a factor of 100. These steps created a "rigid"
fixture that had free boundary conditions which matched the configuration of the optimized
laboratory configuration.

With the new laboratory configuration, the process of applying a force that was derived
by multiplying the inversion of the rigid fixture assembly's frequency response functions with
the responses from the field environment was performed. This forcing function was applied
at the same location as was referenced in Figure 4.29 and was derived using exactly the same
method as was done to the optimized test fixture. The two forcing functions were compared
and can be seen in Figure 4.34.
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Figure 4.34: Calculated input forces for the optimized laboratory configuration and the free
rigid laboratory configuration.

Figure 4.34 shows that the forcing function calculated for the rigid fixture was approximately
a factor of 6 higher than the forcing function for the optimization forcing function. The reason
for this difference in force magnitude lies in the aforementioned force inversion process. The
force inversion process calculates a forcing function that gives a least squared error fit to
the response data it is given. Because the mode shape of the rigid fixture configuration
differs from the field configuration more than the optimized configuration, the derived forcing
function was larger in an attempt to compensate for the inappropriate boundary conditions.

Stresses were calculated using the forcing function for the rigid fixture shown in Figure
4.34 into its respective laboratory configurations. The resultant stresses are shown in Figure
4.35. They qualitatively show similar results to the rigid fixture with the enforced motion
input. This indisputably shows that the forcing function cannot change the response field.
This is due to the fact that the only elastic mode shape being excited in this frequency range
is not modified by the forcing function, but rather the mode shape is only modified by the
test fixture to which it is attached.
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Figure 4.35: Resultant stresses of the laboratory environment with a rigid fixture and a
calculated input force. Top figure's stress is scaled identically to the optimized laboratory
configuration and field configuration. Bottom figure's stress is scaled for qualitative
evaluation.
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Chapter 5

Quantifying and Calculating the Error
Caused by the Test Fixture

During the course of this research, what constituted a good test fixture was unknown.
This was due to there being no known quantity that defines a metric that ties the test fixture
to the success of a laboratory test. This section explores that question and defines a metric
that provides some insight into the fixture's ability to make a laboratory test successful.

To develop a metric to quantify the test fixture's ability to replicate the field environment,
a successful laboratory test needs to be defined. The majority of structural dynamic testing
that is executed in the laboratory has the purpose of determining if the component will
mechanically fail when it is in its intended field environment. This goal of replicating
the correct stresses in the correct locations to reproduce failure modes in the laboratory
environment is the basis of the success of the test. Although the test fixture design plays a
critical role in the responses, the responses of the component are the convolution between
the input forcing function and the system's transfer functions or frequency response matrix
shown as

H • F = , (5.1)

where F is the column vector of external forcing function vector acting on the degrees of
freedom of the system, H is the system's frequency response matrix and is the column
vector of responses of the system. The frequency response matrix is symmetric and is a
function of the mass, stiffness, and damping of the structure. If the frequency response
functions are examined in the modal domain, they are functions of the mode shapes, natural
frequencies, and modal damping.

Due to the responses of the component being a function of the external forces and
the configuration's frequency response matrix, it is inherently difficult to determine what
responses are possible to achieve from a given configuration or frequency response matrix.
The following theory examines the lab configuration in comparison to the field configuration
in the modal domain. The theory follows that if the mode shapes of the laboratory configuration
span the same space as the mode shapes excited in the field environment, then there exists
a forcing function that can excite the laboratory configuration to have the same responses
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as the field configuration.

To quantify the test fixture's ability to replicate the dynamics of the next level of assembly
in the field configuration, a successful laboratory test is defined as

XF = XL (5.2)

where x is a vector of response displacements, the subscript F designates the field environment
and the subscript L designates the laboratory environment. This criteria is acceptable
to determine a successful test because if the displacements between the two systems are
matched, the stress states at that given moment in time are matched given identical systems.
Linear modal analysis theory states that the displacements of a system can be defined by a
linear combination of all of the system's mode shapes. Practically this substitution is written
as

00

= E cj)mqm, (5.3)
m=1

where Om is the mth mode shape of the system and qm is the mth modal coefficient that
correspond to its respective mode shape. The displacements in Equation 5.3 can be represented
in the time or frequency domain and the designation is dropped for brevity.

Including an infinite amount of modes is impractical in most engineering applications,
therefore, a finite number of modes are made to approximate the physical displacement:

n

0 (5.4)
m=1

Only the modes up to the Tith mode are included in Equation 5.4. Since not all of
the modes are included in the modal substitution, the expression in Equation 5.4 is an
approximation and the error in the displacement is referred to as modal truncation error.
The modal substitution from Equation 5.4 is rewritten in matrix form and is substituted
into Equation 5.2

001, = .1)T4F. (5.5)

To determine the modal coefficients of the laboratory mode shapes, the pseudo-inverse
of the laboratory configuration's mode shapes are pre-multiplied to both sides

qi, = (1)},(/)FgF
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where the + symbol designates a Moore-Penrose pseudo inverse. At first glance, it appears
that Equation 5.6 calculates the qi, values that need to be excited to match the responses
of the laboratory configuration to the responses of the field configuration. However, the
multiplication of the pseudo inverse is only a projection of the field configuration's mode
shapes to the laboratory configuration's mode shapes. Because the mode shape matrix
introduced in Equation 5.4 is truncated, the mode shape matrix is rectangular and the error
of the projection is minimized in a least squared sense.

To determine the error created by this projection, one can compute the physical displacements
by using the given modal coordinate, qF, and calculated modal coordinate, qL, with their
respective mode shapes to get Equation 5.2 and then compute the difference between those
vectors. Although this would give you the error in the physical domain, it would be of
interest to know the error of the projection in the modal domain to determine the source of
the error and determine the error's impact with respect to the mechanical environment.

To calculate the error in the modal domain, the error per field mode is examined.
Equation 5.6 is rewritten as

qLn = (1)T,OFn• (5.7)

Equation 5.7 calculates what modal coordinates in the laboratory configuration are
needed to minimize the error of replicating the nth mode of the field configuration. The

OFn variable is a column vector of a single mode from the set of modes from the field
configuration's mode shapes for which the error is calculated. This would be equivalent to
assigning the q.,-, vector to be zeros with a one in the index corresponding to the mode shape
of interest.

With a calculated vector of modal coordinates from the laboratory configuration, the
expression

472(1)LqL = qFnReconstructed (5.8)

calculates the equivalent modal coordinate in the space of the single mode shape. Equation
5.8 is a projection from the laboratory mode shape space to the space of the field mode shape
under inquiry. The error in the modal domain can then be computed by

.75- 4)L(1)-i0F - E2. (5.9)

The error in Equation 5.9 is squared due to the projection from the mode shape space
from the field mode shape of interest to the mode shape matrix of the laboratory space
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combined with the projection from the laboratory mode shape matrix space to the space of
the field mode shape of interest.
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Chapter 6

Alternate Objective Function for
Designing a Test Fixture

The research presented in this report examines the use of using FRF matching as the
objective function for designing a dynamic test fixture. Although the FRF is a valid metric
for specifying the structural dynamics of a system, there are alternative representations to
specify the structural dynamics of a system. This chapter covers alternate objective functions
that were considered or proposed.

Chapter 2 states that stress is related to displacement which is a linear combination of the
system's mode shapes. Because of this relationship, if a linear combination of mode shapes
from the laboratory configuration span the space of the modes in the field configuration, then
it is possible to produce the same stresses. Optimizing on matching the mode shapes between
the field and laboratory configurations was presented as an option. However, calculating a
stable version of the derivatives was identified as a research topic. Tracking the derivatives
of the Eigen vectors of a dynamic system has difficulties and was determined to be time
consuming and wouldn't fit into our timeline for this L2 milestone.

Chapter 2 introduces the framework of transforming the mode shapes of the component
into the space of the component's fixed base mode shapes and it's Craig-Bampton constraint
shapes. The aforementioned constraint shapes are static shapes where one boundary degree
of freedom at a time is given unit displacement and the rest held fixed. It is a linear
combination of these static constraint shapes that span the space of any impedance of the
next level of assembly.

It is in this space that Randy Mayes first suggested that environments could be derived
and specified [3]. He proposed that the fixed base modes are the main sources of stress and
strain and, therefore, if they are excited to the correct levels in the laboratory test, then the
test is a success. This methodology neglects to include any stress that is from the constraint
shapes. From the definition above of the constraint shapes, if there is one connection from
the component to the next level of assembly, then the fixed base modes are the entire sources
of stress in the component.

The Craig-Bampton mode space framework can be used in the design of a dynamic
test fixture using topology optimization. If the modes of the component or unit under
test are transformed into Craig-Bampton shape space, it is trivial to prove that the fixed
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base mode shapes between the field configuration and the laboratory configuration are
automatically matched. With those shapes automatically matching, then the complete mode
shape space will match if the static constraint shapes match between the field and laboratory
configurations.

A static shape match objective function only needs to modify the test fixture's stiffness
properties at a single frequency. This theoretically greatly reduces the number of local modes
in the optimization space which plagued the FRF matching objective function. This method
was discovered toward the end of the research year and was not fully explored in this body
of research. In order to explore this option, the following steps would have to be executed
and analyzed.

1. Perform an optimization run with the constraint shapes as the objective function

2. Calculate the mode coordinates of the laboratory configuration needed to excite the
motion of the laboratory configuration to match the motion of the field environment

3. Determine the single or set of forcing functions needed to excite the modes of the
laboratory configuration to match the motion of the field environment

4. Determine the feasibility of being able to impart the calculated forcing functions on
an experimental set of hardware

5. If necessary, determine if optimizing on the constraint shapes solution creates a design
that can be optimized using a different objective function.

Although the objective function of matching the Craig-Bampton constraint shapes was not
fully explored, a single run within Optistruct was run on the BARC hardware with an
objective function that was similar to matching the constraint shapes. The setup parameters
for this static run is shown in Figure 6.1. Figure 6.1 shows that a single force applied at an
oblique angle with respect to the axes of the structure. Although this setup is not a pure
representation of the constraint shapes, it exercises a linear combination of six of the twelve
constraint shapes.

The resultant fixture calculated from the topology optimization with the static objective
function shown in Figure 6.2 was not subject to environment to determine how well it
matched the field configuration. The error of its mode shapes calculated by the error metric
from Chapter 5 was compared with the error from a rigid fixture. The error for the rigid
fixture was calculated to be 0.3 and the error for the optimized fixture was 0.001 for the first
elastic mode.
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Figure 6.1: Topology optimization result of static objective function.
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Figure 6.2: Topology optimization result using static shape matching as the objective
function.
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Chapter 7

Conclusions

The objective of this research was to satisfy a Level 2 milestone that addressed the design
on a structural dynamic test fixture that improved the quality of a structural dynamics
laboratory test. The success criteria of this milestone was that a new test fixture needed to
be designed via topology optimization and the PLATO software. The optimized test fixture
needed to show an improvement over a typical, rigid test fixture.

To satisfy this success criteria, the PLATO software developed the capability to optimize
based on matching the frequency response functions between two structures. This objective
function would satisfy the success criteria of the milestone and an ideal test fixture would
be made. The PLATO software also developed levelset optimization capability, multiple
element definitions, and a restart capability.

Through use of the PLATO software and an alternate topology optimization software,
Optistruct, it was discovered that the optimization space is non-convex and many local
minima exist in the domain. The extent and difficulty of the amount of local minima in
the error domain was explored by altering several optimization parameters to determine the
differences in results. These studies discovered that it is extremely difficult to converge to
the global minimum.

Even though there were difficulties of optimizing based on the objective function of
matching frequency response functions, a test fixture was developed for a test bed example in
order to meet the success criteria for the Level 2 milestone. A test fixture was developed using
the restart capability within PLATO's topology optimization algorithm using the frequency
response function matching objective function.

This topology optimized test fixture was integrated into the test bed. Analytical comparisons
were made between the field environment, the rigid test fixture attached to the component,
and the optimized test fixture attached to the component. Through quantitative comparison
to the field configuration, the optimized test fixture provided an improvement over the
rigid test fixture. Though the optimized fixture was an improvement, it did not identically
replicate the stress field in the field configuration because the mode shape that was excited
was not the same as the field configuration. The main conclusion from these results were
that using topology optimization in the same way as proposed here does not result in ideal
fixtures, but it can result in an improvement over todays fixtures and processes.
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In addition to completing the milestone, an error metric that quantifies the ability that
the component in the laboratory can match the stress in the field was developed. This error
metric was not implemented into the topology optimization process, but it provided a metric
on the effectiveness of the test fixture other than comparing the responses of the field and
laboratory configurations. Not only can the error metric be used for test fixture effectiveness,
but it can be used in other projection analyses such as structural dynamic substructuring.
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