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Abstract 

A Machine Learning–Genetic Algorithm (ML-GA) approach was 
developed to virtually discover optimum designs using training data 
generated from multi-dimensional simulations. Machine learning 
(ML) presents a pathway to transform complex physical processes that 
occur in a combustion engine into compact informational processes. In 
the present work, a total of over 2000 sector-mesh computational fluid 
dynamics (CFD) simulations of a heavy-duty engine were performed. 
These were run concurrently on a supercomputer to reduce overall 
turnaround time. The engine being optimized was run on a low-octane 
(RON70) gasoline fuel under partially-premixed compression ignition 
mode. A total of nine input parameters were varied, and the CFD 
simulation cases were generated by randomly sampling points from 
this nine-dimensional input space. These input parameters included 
fuel injection strategy, injector design and various in-cylinder flow and 
thermodynamic conditions at intake valve closure (IVC). The outputs 
(targets) of interest from these simulations included five metrics 
related to engine performance and emissions. Over 2000 samples 
generated from CFD were then used to train an ML model that could 
predict these five targets based on the nine input features. A robust 
super learner approach was employed to build the ML model, where 
results from a collection of different ML algorithms were pooled 
together. Thereafter, a stochastic global optimization genetic algorithm 
(GA) was used, with the ML model as the objective function, to 
optimize the input parameters based on a merit function so as to 
minimize fuel consumption while satisfying CO and NOx emissions 
constraints. The optimized configuration from ML-GA was found to 
be very close to that obtained from a sequentially performed CFD-GA 
approach, where a CFD simulation served as the objective function. In 
addition, the overall turnaround time was (at least) 75% lower with the 
ML-GA approach, as the training data was generated from concurrent 
CFD simulations and employing the ML model as the objective 
function significantly accelerated the GA optimization. This study 
demonstrates the potential of ML-GA and high-performance 
computing (HPC) to reduce the number of CFD simulations to be 
performed for optimization problems without loss in accuracy, thereby 
providing significant cost savings compared to traditional approaches.          

Introduction 

Consumer demand and government regulations are driving automakers 
to explore new engine designs that simultaneously reduce fuel 
consumption as well as emissions. To develop these new designs, 
automakers use a combination of experimental prototyping and 
numerical modeling. Of late, numerical simulation has assumed a 
much greater significance in engine design optimization, particularly 
with the impetus towards advanced and novel combustion concepts 
coupled with new fuels, where engineers cannot rely solely on past 

expertise to narrow down the design space for experimental 
prototyping. 

A commonly used approach to engineering design optimization is to 
employ the design of experiments (DOE) technique [1]. In a 
simulation-based DOE, the entire design space can be explored by 
running a large number of simulations to fill the DOE hyper-volume 
using suitable space-filling techniques. A response surface is then 
fitted to the simulation data and used for design optimization. This 
response surface connects the inputs to the outputs and is usually built 
based on linear regression. However, these linear regression based 
response surface methods (RSMs) are not well suited to characterize 
any non-linearities and interactions between various inputs without a 
tuning effort by the designer, such as adding cross-terms and higher 
order terms. This can often lead to large errors when dealing with 
inputs that non-linearly interact, as can often be the case in engine 
combustion. Another robust approach for design optimization is based 
on genetic algorithms (GAs) [2-7]. In a GA-based optimization, a CFD 
simulation is used as an objective function and the merit of this 
objective function is evaluated on completion of the CFD run. The 
CFD runs are performed sequentially in waves of several generations, 
where each generation has some prescribed number of 
individuals/samples to evaluate (i.e., CFD runs to perform). The more 
the number of samples in each generation, the fewer the number of 
generations needed to find the optimum. Using a stochastic approach 
where the population is varied using a set of genetic operations often 
leads to much better optimum solutions than DOE-based approaches. 
However, a GA may take a considerable amount of time (over two or 
three months) even with a reasonably sophisticated cluster (100-1000 
processors) for a problem with a moderate number of input or design 
features (5-10) to optimize for. This is attributed to the fact that 
physics-based CFD simulations tend to be very expensive.  

In this context, data-driven machine learning (ML) models can play an 
important role. An ML model can be thought of as a function that, after 
being trained, can learn from various patterns and structures in the data 
and capture input-output relationships. Depending on the complexity 
of the chosen ML model, it is possible to capture non-linear 
relationships including any interaction effects between the inputs. This 
results in a very reasonable fit of the input-output data space and 
provides an accurate and faster running surrogate model for CFD. Over 
the past few decades, there have been significant developments in 
using artificial neural networks (ANNs), a type of ML approach, in 
understanding and solving combustion problems [8-12]. Here ANNs 
are used for predicting various combustion related outputs after being 
trained on sample data. New applications for ML have been receiving 
substantial interest and as a result many new promising models have 
been developed [13-17]. ML models can be considered as fast-running 
surrogate models for the more time-consuming methods used in 
generating their training data viz., experiments or CFD models. In the 
past, ML models have been used in real-time control of engines [9, 10, 
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18-21]. Vaughan et al. [19, 20] used a form of support vector machine 
(SVM) to understand the bifurcation behavior of the combustion 
stability limit in a homogenous charge compression ignition (HCCI) 
engine and used it for prediction of cycle-to-cycle variations of 
combustion phasing and for misfire detection. Validi et al. [21] used 
an ANN approach to detect and optimize the start of combustion in 
HCCI engines. He et al. [10] created engine cylinder models by 
capturing various in-cylinder physical processes using ANNs, which 
were used in the prediction of engine performance and emissions over 
a transient federal test procedure (FTP) cycle.  

Recent efforts have coupled optimization techniques with ML models 
to optimize the system outputs within the target design space [1, 22-
24]. In these studies, the ML model served as the objective function 
for GA optimization, as opposed to a CFD model. Brahma et al. [23] 
used a set of ANNs together with a hybrid GA/hill-climbing type 
algorithm to optimize operating parameters over the entire speed-
torque map of a diesel engine. Alonso et al. [22] followed a similar 
approach while using experimental datasets for a high-dimensional 
diesel engine GA optimization problem. Costa et al. [24] looked into 
the diesel optimization problem from the point of view of soot-NOx 
trade-off and used an optimization code to obtain pareto fronts of soot-
NOx predictions by an ANN for various piston bowls. However, one 
of the common features of these studies was that only one type of ML 
approach was employed. Moreover, the optimization accuracy of these 
models was not validated.   

In the present work, a novel ML-GA model was employed to perform 
numerical optimization of a gasoline compression ignition (GCI) 
engine operating with a low-octane gasoline-like fuel. PPCI is an 
advanced combustion mode which has the potential to achieve diesel-
like fuel efficiency with ultra-low nitrogen oxides (NOx) and 
particulate matter (PM) emissions. However, the primary challenges 
for practical implementation of PPCI include achieving robust control 
of ignition timing, preventing excessive pressure rise rates, and 
mitigating hydrocarbon (HC) and carbon monoxide (CO) emissions. 
In this study, a total of 2048 samples were randomly generated using 
Monte-Carlo sampling and 3D CFD simulations for these samples 
were performed concurrently on Argonne’s Mira [25] supercomputer. 
The samples were distributed over nine input parameters related to the 
fuel injector design, injection strategy, initial in-cylinder chamber 
pressure and temperature, and swirl flow. A merit function was 
formulated consisting of 5 targets related to engine performance and 
emissions. A stacked generalization approach called “Super Learning” 
was employed to develop the ML model based on CFD simulations. 
Employing a stacked generalization approach instead of a stand-alone 
ML model (as in the above cited works) results in higher error 
compensation of the ML algorithm for robust performance. The 
stacked ML model was trained and tested on the input-output CFD 
data. The overall output of the ML model was the merit value after 
considering the individual outputs which constituted the merit 
function. The ML model was characterized by gauging the bias-
variance trade-off using learning curves. Subsequently, a stochastic 
global optimization GA was used with the ML model as an objective 
function to perform optimization of the merit value. The ML-GA 
approach was implemented using R programming language [26]; 
custom scripts were written to combine the approaches efficiently and 
to validate the concept. The ML-GA optimum was compared to that 
from a conventional CFD-GA run using CFD as the objective function. 
In addition, CFD simulation for the ML-GA-predicted optimum point 
was also performed to further validate the optimization. A parametric 
study with varying sample sizes for ML model training was also 
carried out to find out the minimum number of simulations needed to 
efficiently and accurately carry out the ML-GA optimization. Finally, 
the runtimes of the conventional CFD-GA and ML-GA approaches 
were compared keeping various computational resources in mind. 

Methodology 

Engine Design Space & Optimization Strategy  

The present numerical study aims to optimize a heavy-duty engine 
operating at medium load conditions with a low-octane gasoline-like 
fuel. The engine considered is a four-stroke, six-cylinder Cummins 
ISX15 engine with a variable-geometry turbocharger, high-pressure 
cooled exhaust gas recirculation (EGR) loop and charge air cooler [27, 
28]. The details of the engine configuration and baseline operating 
conditions are listed in Table 1.  
 
Table 1: Engine configuration and baseline operating conditions. 
 

Engine model Cummins ISX15 

Cylinders 6 

Displacement 14.9 L 

Bore 137 mm 

Stroke 169 mm 

Connecting rod 262 mm 

Compression ratio 17.3:1 

Engine speed 1375 rpm 

Intake valve closing (IVC) -137 0CA after top-dead center 
(ATDC) 

Exhaust valve opening (EVO) 148 0CA ATDC 

Start of injection (SOI) timing -9 0CA ATDC 

Injection duration 15.58 0CA 

Mass of fuel injected 0.498 g/cycle 

Fuel injection temperature 360 K 

Injection pressure 1600 bar 

Nozzle inclusion angle  1520 

IVC pressure  323 K 

IVC temperature 2.15 bar 

Exhaust gas recirculation (EGR) 41% 

Global equivalence ratio 0.57 

 
The design parameters considered in the present work are listed in 
Table 2, along with their respective ranges of variation.  

Table 2: Input parameter ranges for the engine design space. 
 

Parameter Description Min max units 

nNoz Number of nozzle holes 8 10 - 

TNA Total nozzle area 1 1.3 - 

Pinj Injection pressure 1400 1800 bar 

SOI Start of injection timing -11 -7 °CA ATDC 

Nang Nozzle inclusion angle 145 166 deg 

EGR EGR fraction 0.35 0.5 - 

Tivc IVC temperature 323 373 K 

Pivc IVC pressure 2.0 2.3 bar 

SR Swirl ratio -2.4 -1 - 

 
In total, nine input variables were chosen pertaining to fuel injector 
design (number of nozzle holes, total nozzle area, nozzle inclusion 
angle), fuel injection strategy (injection pressure, start of injection 
timing), and initial thermodynamic and flow conditions (intake valve 
closing temperature and pressure, exhaust gas recirculation fraction, 
and in-cylinder swirl). The ranges of variation included the baseline 
conditions. Note that in Table 2, the total nozzle area is normalized 
with respect to its baseline value, therefore the baseline value is 1. 
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Throughout the optimization study, the total mass of fuel injected, i.e., 
the engine load, was kept constant.  

For optimization, an objective merit function, as shown in Eq. (1), was 
defined using indicated specific fuel consumption (ISFC, g/kW-hr) as 
the performance variable (to be minimized), and constraint variables 
based on emissions (soot, NOx) and engine mechanical limits (peak 
cylinder pressure (PMAX), maximum pressure rise rate (MPRR)).  
The merit function incurs a penalty only if soot, NOx, PMAX and 
MPRR exceed their constraints of 0.0268 g/kW-hr, 1.34 g/kW-hr, 220 
bar, and 15 bar/0CA, respectively. No penalty is incurred if these are 
within their prescribed limits, in which case the merit function varies 
only with ISFC. In addition, the constraint variables are assigned 
different weights to reflect their relative importance in the optimization 
process. A similar merit function formulation was also employed in a 
previous engine design optimization study [1].  

𝑀𝑒𝑟𝑖𝑡 = 100 ∗  ቎

160

𝐼𝑆𝐹𝐶
− 100 ∗ 𝑓(𝑃𝑀𝐴𝑋) −  10 ∗ 𝑓(𝑀𝑃𝑅𝑅)

− 𝑓(𝑆𝑂𝑂𝑇) −  𝑓(𝑁𝑂௫)
቏ 

    Where 

𝑓(𝑃𝑀𝐴𝑋) =  ൝

𝑃𝑀𝐴𝑋

220
− 1, 𝑖𝑓 𝑃𝑀𝐴𝑋 > 220

0, 𝑖𝑓 𝑃𝑀𝐴𝑋 ≤ 220
ൡ 

 

𝑓(𝑀𝑃𝑅𝑅) =  ൝

𝑀𝑃𝑅𝑅
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− 1, 𝑖𝑓 𝑀𝑃𝑅𝑅 > 15
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ൡ 

𝑓(𝑆𝑂𝑂𝑇) =  ൝

𝑆𝑂𝑂𝑇

0.0268
− 1, 𝑖𝑓 𝑆𝑂𝑂𝑇 > 0.0268

0, 𝑖𝑓 𝑆𝑂𝑂𝑇 ≤ 0.0268
ൡ 

𝑓(𝑁𝑂௫) =  ൝

𝑁𝑂௫

1.34
− 1, 𝑖𝑓 𝑁𝑂௫ > 1.34

0, 𝑖𝑓 𝑁𝑂௫ ≤ 1.34
ൡ 

- (1) 

Numerical Model Setup 

A 3-D CFD code, CONVERGE (version 2.3) [29], was used to 
perform numerical simulations for the closed part of the cycle, from 
IVC to EVO. Assuming axisymmetry, the simulation domain was 
modeled using a sector mesh representing a single cylinder and 
accounting for only one spray plume, in order to reduce computational 
cost. Periodic boundary conditions were imposed in the azimuthal 
direction. Uniform mixture and temperature distributions were 
specified at IVC. A base mesh size of 1.4 mm was employed. One level 
of fixed embedding was prescribed near the cylinder head and piston, 
while two levels of fixed embedding were employed to resolve the 
flow near the fuel injector. In addition, two levels of adaptive mesh 
refinement (AMR) were employed based on velocity and temperature 
gradients of 1 m/s and 2.5 K, respectively. This resulted in the 
minimum grid size of 0.35 mm and peak cell count per simulation of 
~ 500,000. The simulation time step was automatically adjusted based 
on the maximum convective, diffusive and mach Courant-Friedrichs-
Lewy (CFL) numbers of 1, 2 and 50, respectively. 

In-cylinder turbulence was modeled using the Reynolds-Averaged 
Navier Stokes (RANS) based re-normalized group (RNG) k-ε model 
[30] with wall functions. The liquid spray was treated in a Lagrangian 
fashion and the “blob” injection model developed by Reitz and 

Diwakar [31] was used, which initializes the diameter of a liquid 
droplet to the effective nozzle diameter. The Kelvin Helmholtz (KH) 
– Rayleigh Taylor (RT) breakup model [32] and “no-time counter” 
collision model of Schmidt and Rutland [33] were employed to 
describe the subsequent spray atomization and collision processes, 
respectively. Droplet evaporation was modeled using the Frossling 
correlation [34], and models for dynamic drop drag and droplet 
turbulent dispersion [35] were also included. A RON70 primary 
reference fuel (PRF) blend comprising of 70% iso-octane and 30% n-
heptane (by mass) was employed as the surrogate for gasoline-like fuel 
[36]. A reduced kinetic mechanism for primary reference fuel (PRF) 
consisting of 48 species and 152 reactions based on Liu et al. [37] was 
used to account for fuel chemistry. In addition, the NOx formation was 
modeled using a reduced mechanism comprising 4 species and 13 
reactions [38]. The empirical Hiroyasu soot model [39], coupled with 
the Nagle and Strickland-constable model [40], was used to determine 
the soot formation and oxidation rates with acetylene (C2H2) as the 
precursor for soot formation. For combustion modeling, the SAGE 
detailed chemistry solver [41] was employed along with a multi-zone 
(MZ) approach, with bins of 5 K in temperature and 0.05 in 
equivalence ratio. The CFD model predictions were validated against 
experimental data in previous studies [27, 28, 42] and hence are not 
shown here for the sake of brevity. In addition, an exhaustive global 
sensitivity analysis (GSA) was also performed by the authors for the 
same baseline engine operating condition, with respect to the input 
parameters (and their corresponding ranges) listed in Table 1 and 
targets considered in the present work. These details can be found in 
Ref. [42].     

A separate GA optimization (herein referred to as CFD-GA) using 
CFD simulation as the objective function was performed. The CFD-
GA also used the same merit function described in Eq. (1). More 
details about the CFD-GA approach are given in the following section. 

CFD-GA Approach 

The Converge CONGO utility [29] was employed to perform the CFD-
GA optimization based on an elitist micro-GA approach [43]. The 
micro-GA has a small population of 9 individuals and is run for a large 
number of generations. Each individual is a CFD simulation case with 
a distinct set of input parameters. The initial population of 9 
individuals is generated randomly. The merit values for the individuals 
are evaluated after each generation is completed and the population is 
monitored for similarity between the individuals using a statistical 
calculation based on the input parameters. Micro-convergence is 
achieved when the population reaches a sufficient convergence level 
(convergence criterion of 0.97). At that point, the population is 
declared to have converged and is replaced with randomly generated 
individuals (except for the elite individual with the best merit value, 
which is always kept in the population). This provides randomness to 
avoid local optima being erroneously identified as the global optimum. 
However, until a micro-convergence event is encountered, the 
individuals of the new population are generated from parents which 
are selected based on a tournament. A uniform crossover of the DNA 
(i.e., the input parameters) is used to create children from the parents. 
The micro-GA used in this work does not allow mutations. The 
tournament size is set as the size of the population and as parents are 
selected, the tournament size decreases without re-shuffling. The 
population is re-shuffled only after depleting the selection pool. The 
GA is considered to have reached a global optimum when at least five 
micro-convergence events occur, without any improvement in the 
maximum merit value. 

In this work, the CFD-GA was run for 98 generations (784 CFD 
simulations) until it converged. The runtime of each CFD simulation 
was approximately 12 hours on 128 processors. So, the full GA took 
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around 50 days to run. The GA reached a maximum merit value of 
104.0 at 57th generation. Afterwards, 5 micro-convergence events were 
encountered without any further improvement in the merit value. At 
that point, it was assumed that the GA had finally found the global 
optimum. The evolution of maximum merit value during the progress 
of the CFD-GA optimization is shown in Figure 1. 

 

Figure 1: Merit evolution using the micro-GA approach (CFD-GA). 

The input parameters and the corresponding outputs for both the 
baseline and best (optimum) cases are listed in Table 3. Evidently, the 
best case found by CFD-GA yielded an ISFC benefit of 1.7% over the 
baseline design. Moreover, none of the emissions and cylinder 
pressure constraints were exceeded by the GA optimum. 

The temporal evolution of in-cylinder pressure for both the baseline 
and best cases are shown in Figure 2. Clearly, the total work done in 
the best case is much higher, thereby resulting in lower ISFC, 
considering that the total fuel mass injected was kept constant. It must 
be noted that pressure at IVC for the best case is higher than the 
baseline. In addition, Figure 3 shows the comparison of in-cylinder 
temperature and equivalence ratio distributions at 12 0CA ATDC on a 
vertical cut plane, between the two cases. It is evident that the islands 
of fuel-rich mixture are much smaller in the best case, owing to a better 
fuel-air mixing caused by earlier SOI timing, higher swirl and higher 
number of nozzle holes. Moreover, in-cylinder temperatures are also 
higher relative to the baseline configuration. All these factors 
contribute to higher peak cylinder pressure, lower ISFC, lower soot 
emissions and slightly higher NOx emissions, in case of the GA 
optimum. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 3. Input parameters and outputs for the baseline and CFD-GA best cases. 

 

Parameter Baseline Best case 

Inputs 

nNoz 9 10 

TNA 1.0 1.0 

Pinj 1600 bar 1490 bar 

 SOI -90 CA  
ATDC 

-10.30 CA 
ATDC 

Nang 1520 1580 

SR -1 -1.66 

EGR 0.41 0.44 

Tivc 323 K 323.5 K 

Pivc 2.15 bar 2.3 bar 

Outputs 

ISFC 156.53 g/kWh 153.85 g/kWh 

PMAX 152.31 bar 162.03 bar 

MPRR 11.22 bar/0CA 11.31 bar/0CA 

 SOOT 0.0235 g/kWh 0.0220 g/kWh 

NOx 1.07 g/kWh 1.28 g/kWh 

Merit 102.2 104.0 

 

 

Figure 2: Temporal evolution of in-cylinder pressure for baseline and CFD-
GA best cases. 

 

 

Figure 3: In-cylinder equivalence ratio and temperature distributions along a 
vertical cut plane at 12 0CA ATDC for the baseline and CFD-GA best case. 

ML-GA Approach  
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In this approach, an ML model was employed as a surrogate for a CFD 
simulation and was used to compute merit values of the individuals 
within a GA optimization routine. The details of the data generation 
for ML model training are presented next. A description of the ML 
model and GA technique is provided subsequently. 

Data Generation for ML Model Training 

The nine input variables were perturbed simultaneously within their 
respective ranges of variation using Monte Carlo (MC) method to 
generate 2048 sample (parameter) sets. The input files for the 2048 
simulation cases were generated using the Converge CONGO utility 
[29]. The CFD simulations were run in six batches of 256 cases. Each 
batch was run on half of a rack of Mira [25], an IBM BG/Q 
supercomputer at the Argonne Leadership Computing Facility (ALCF) 
and Office of Science User Facility at Argonne, with each case running 
on 32 processors. The total runtime for all the simulations was around 
two weeks including queue time. It must be noted that the 2048 
simulations can potentially be simulated all at once if resources allow, 
which can bring down the simulation time to as low as one day. The 
minimum and maximum values of the five outputs extracted from the 
simulation data are given in Table 4. 

Table 4: Range of outputs generated from 2048 MC runs. 

Output min max units 

ISFC 153.3 180.6 g/kWh 

SOOT 0 0.2 g/kWh 

NOX 0.06 5.25 g/kWh 

MPRR 7.9 20.4 bar/deg 

PMAX 121 170.3 bar 

 

The surface of the merit function versus two inputs is shown in Figure 
4, which sheds light on the highly non-convex nature of the problem. 
The goal of the ML model is to capture the input-output interactions 
and reproduce this non-linear surface, while the GA is expected to find 
the optimum merit based on this surface.  

 

Figure 4: The response surface of merit function w.r.t. SOI and Tivc based on 
CFD simulations of the uniform MC generated 2048 samples. 

ML-GA Model  

The ML-GA consists of an ML model acting as a surrogate for CFD 
model and as an objective function with a GA optimization algorithm. 
In the following section, the ML model is described first followed by 
the GA algorithm. 

Machine Learning Model 

The ML approach of super learner [44] was employed in the present 
work and was implemented in the R package [45]. The super learning 
technique falls under the broader approach of stacked generalization 
of multiple models. Super learning is a loss-based learning method 
[46] which calculates the optimal combination of a pool of prediction 
algorithms. The optimal combination minimizes the cross-validated 
risk (error) during the training phase of the multiple models. Figure 5 
shows a simple representation of the stacked generalization approach 
followed by the super learner algorithm. 

 

Figure 5: A schematic of the super learner model. 

Following Figure 5, in the beginning of the model fitting procedure, 
the data was split into training and test sets.  An 80%/20% split was 
used during the model accuracy characterization process (accuracy 
characterization is discussed in a subsequent section). A k-fold cross 
validation was then performed to assess the prediction of the individual 
base learners or sub-models. Cross-validation is a technique to 
evaluate model performance by splitting the original dataset into a 
training set to train the model, and a cross-validation set to evaluate it. 
Random splitting of the original (80% training) dataset into 10 (k=10) 
equal sized subsample folds was performed. Out of the 10 subsample 
folds, a single subsample fold (called the 10th fold) was retained as the 
cross-validation dataset and the remaining nine sub-samples were used 
as training data. In this way, the 80% original training data was split 
into further training and cross-validation datasets for performing cross-
validation. This cross-validation process was then repeated 10 (k=10) 
times over all the 10 sub-sample folds. In this way, each of the 10 
subsamples was used exactly once as the cross-validation dataset. 
Thus, all observations were used for both training and cross-validation, 
and each observation was used for cross-validation exactly once. The 
results from individual folds were then averaged to produce a single 
estimation. The predictions of the 10th fold for each of the algorithms 
were saved. Following this, weighted combinations were prescribed as 
coefficients to these predictions of individual base learner algorithms. 
A non-negative least squares (NNLS) method was employed to 
compute these coefficients. This was done to minimize the cross-
validation error (i.e., to minimize the error in the 10th fold of 
predictions). The weightage given to each of the base learners would 
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thus change as the test data is varied and it is possible that some of the 
base learners get a zero weightage in the linear equation of NNLS, if 
they have high error. The NNLS model here is called the meta-learner. 
In practice, any general ML model can be used as a meta-learner [47]. 
The meta-learner which operates on the predictions (not the raw data) 
is the final step in the super learning process and is ultimately used to 
predict new outcomes.  

Architecture of the Super Learner 

Six different ML algorithms were considered for the individual base 
learner system. Baseline values of parameters of each of the algorithms 
were used during their implementation in the super learner model and 
expensive grid search techniques over the model parameter space to 
optimize the performance of each model was avoided. A brief 
description of these base learners is provided below. For more details 
on the theory and mathematical formulation of these models, the reader 
is directed to the cited literature in the relevant model descriptions 
below. 

Linear model:  A linear model is the simplest form of regression 
model. The model is obtained by minimizing the sum of squares of the 
differences between the actual observed values and those predicted by 
a linear equation with a set of explanatory variables as coefficients.  

Ridge regression [13]: Ridge regression is an ordinary least square 
linear regression problem with built-in regularization term (lambda) to 
avoid over-fitting or high variance during predictions. 

k-nearest neighbor (kNN) [14]: kNN is a non-parametric method in 
which the input consists of clusters of training examples 
containing “k” samples each, in the feature space. In kNN regression, 
the prediction is the average of these cluster values which have 
“k” points each (which are called nearest neighbors). 

Random Forest [15]: Random forest is an ensemble of user-specified 
decision trees, in which each tree uses a random number of samples 
from the given dataset. The individual decision tree is trained on 
various parts of the same training set. Random forest models 
circumvent the over-fitting problem by averaging results from separate 
decision trees. 

Extreme gradient boosting (XGboost) [12]: XGboost is an advanced 
implementation of decision tree algorithms (similar to random forest), 
but is developed keeping in mind speed and performance. The general 
concept of gradient boosted trees is that initially the model predictions 
are made with simple tree structures and later on new tree structures 
are created that predict the errors of prior models. These are 
subsequently added together to make the final predictions. The term 
gradient boosting comes from the fact that the loss minimization 
during addition/ensembling of the new models is achieved using a 
gradient descent algorithm.  

Support vector machines (SVM) [16]: The idea behind an SVM is to 
find a separation line that splits the data, for example between two 
different clusters in a training dataset. This line separates the clusters 
of data in such a way that the individual clusters are farthest away from 
the line. A new test data point is predicted depending on where it will 
be placed on either side of the line. The determination of this line is 
done through quadratic programming and resembles an optimization 
problem. 

Neural Net [11]: Neural net (also called artificial neural network) is a 
network of simple units called neurons which are subjected to raw 
inputs. Based on the inputs, the neurons then vary their internal state 

and produce an output. A network, in the form of a directed weighted 
graph, is formed by connecting the outputs to the inputs. The internal 
aspects of the learning process of neural nets are usually optimized 
through a process called learning where researchers have applied 
methods such as fuzzy logic, Bayesian method, and genetic algorithms. 

The ML algorithms used and their model parameters are presented in 
Table 5. 

Table 5: Sub-model parameters used in the super learner. 

 

The GA used with the ML model was not an elitist micro-GA unlike 
in the CFD-GA approach. Instead, a GA technique available from the 
R package was chosen which was compatible with the ML model. A 
previous comparative study [48] was taken as an index to first down-
select a few good GA model candidates exhibiting good run-
time/accuracy trade-offs. An in-house testing exercise was 
subsequently carried out with this subset of better performing GA 
models from the study [48] to finalize the GA to be used for the present 
work. Details of this GA model are presented next. 

Genetic Algorithm Model  

The genetic algorithm used here is called malschains [49], which 
stands for memetic algorithms with local search chains. The 
implementation in R (Rmalschains) was used in this work [50]. 
Malschains uses a combination of local and global optimization 
techniques. The idea behind the algorithm is to apply a local search 
method on the most promising regions which are found to have highest 
fitness value using a (global) genetic algorithm. Malschains uses a 
steady state genetic algorithm as an evolution algorithm which 
executes the global optimization. The GA in malschains is different 
from a standard genetic algorithm, where the individuals of the 
population are subjected to genetic operations simultaneously. In the 
present GA method (a steady-state GA), only single individuals are 
used at a time to generate offspring, which replace other single 
individuals of the population.  
The malschains algorithm randomly generates an initial population of 
individuals. The genetic algorithm then evaluates the merit values 
(fitness) of these individuals and builds a set of individuals which can 
be further refined by the local search method. For local optimization, 
solis-wet algorithm is used. The local search method is iteratively 
applied on these best-fit cluster of individuals obtained from the GA 
and a best individual is picked and recorded. This solution replaces the 
worst solution in the next application of the GA and local search loop. 
This final solution is also used for the initialization of a subsequent 
local search application which creates a chain of local search solution. 
This allows for improvement of the same solution several times. 
 
The GA model acts as a wrapper around the ML model to constitute 
the ML-GA. A complete overview of the ML-GA pipeline is explained 
in the flow chart shown in Figure 6.  
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Figure 6: A schematic of the ML-GA technique. 

To apply the ML method, CFD or experimental data is needed. After 
running 2048 CFD simulations, the input-output data was extracted 
from the simulation results and split into training and test datasets. In 
this study, 80% of the data was randomly sampled to generate a 
training set and the remaining 20% of the data was used as the test set. 
A super learner model was then trained on each of the outputs/targets 
(ISFC, PMAX, MPRR, soot, NOx), i.e., one super learner model for 
predicting each output parameter. After the models were trained, they 
were tested on both the training (in-sample) and test (out-of-sample) 
datasets to generate learning curves for individual output predictions. 
For a learning curve, training data size was increased from a minimum 
sample size to maximum of 80% of the total CFD samples. The model 
was trained each time and a training root mean squared error (RMSE) 
was calculated. For each of these training stages, 20% of test data was 
evaluated and the test RMSEs were noted. Learning curves were then 
obtained by plotting train and test RMSEs versus training sample size. 
A bias-variance trade-off analysis was carried out using the learning 
curves to understand the model behavior. If both the test and train 
RMSEs were within 10% of the mean value of the CFD outputs (for 
reduced bias) and their test RMSEs were within 5% of the train RMSEs 
(for reduced variance), then the model was considered to have a good 
bias-variance trade-off. A high bias would cause under-fitting, leading 
to its inability to capture the trends in the data points effectively. To 
remedy under-fitting, it is desirable to make the model complex so that 
it captures all the important interactions in the input-output space. In 
this work, adding more models to the super learner (to increase 
complexity) was an option. The strength of the super learner approach 
is to replace the costly model parameter tuning exercise and work with 
the baseline model setting, combine the predictions and provide high 
error compensation. However, if the model is too “coarse” and predicts 
with high error, then slight tuning will be necessary. If a model predicts 
with high error, then it will not be selected for predictions by the meta-
learner in the first place and so tuning will allow the individual model 
to be picked up by the meta-learner, increasing the model complexity 
and thus avoid under-fitting. Tuning of model parameters of the 
individual algorithms was however, not performed here.  On the other 
hand, a high variance leads to over-fitting, which is a result of the 
model not generalizing the data very well and exhibiting large changes 
in outputs as the inputs change. To remedy over-fitting, it is desirable 
to add more data during model training. Thus, if the bias-variance 
trade-off is not acceptable, the model parameters can be tuned or more 
data can be sought and the process is repeated until a good trade-off is 
obtained. The steps until now characterize the model behaviors (further 
discussed in the next section). After the model characterization was 
done, all the data (in our case 2048 simulations) was considered for 
training so that the ML model was trained on as much data as possible 
to cover majority of input combinations which the GA would 

(randomly) generate. This trained ML model was then employed as a 
surrogate for the CFD model to compute and optimize the objective 
merit function in the GA optimization. 

ML Prediction Accuracy Characterization 

To assess the behavior of the ML model, learning curves were 
generated to characterize bias-variance trade-offs. A brief description 
of learning curves and the importance of bias-variance trade-off was 
given in the previous section. Specifically, a high bias would cause 
under-fitting, rendering the ML model incapable of capturing the 
trends in the data effectively. On the other hand, a high variance would 
lead to over-fitting, which is a result of the model not generalizing to 
data very well and exhibiting large changes in output predictions as the 
inputs change. The learning curves for different outputs are plotted in 
Figure 7. Since there are multiple models within the super learner 
which are involved in making a prediction, the learning curves are not 
smooth. The authors have found that using a single ML model for 
predictions usually gives smoother learning curves.  
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Figure 7: Learning curves of the individual outputs of ISFC, SOOT, NOx, 
MPRR and PMAX. Single arrows on the right Y-axis signify the training set 
and test set RMSEs as percentages of the mean of the corresponding output (to 
account for bias). Double arrow shows the difference between the test set and 
training set RMSE percentages (to account for variance). 

Learning curves play an important role in model characterization. As 
can be seen in Figure 7, the learning curves for the five outputs exhibit 
good bias-variance trade-off as per the targets set. On the Y-axis of 
each of the sub-plots in Figure 7, single arrows denote the training set 
and test set RMSEs as percentages of the mean of the corresponding 
target, used as quantitative metrics to assess bias in the model. Double 
arrow, on the other hand, shows the difference between test and train 
RMSE percentages, thereby representing the model variance. It can be 
observed that both test and train RMSEs are within 10% of the mean 
value and test RMSEs are within 5% of the train RMSEs (shown on 
secondary Y-axis). The R-squared values of the predictions shown in 
Figure 7, over all the sample sizes and 5 output parameters, were above 
98%. An R-squared value is not a good measure of goodness of the fit 
though, be it variance or bias; a learning curve sheds more light on 
those aspects. Additionally, it can be observed that all the five outputs 
reach a quasi-steady RMSE state after ~300 samples; this indicates that 
~300 samples might be good enough for the ML model to capture 
various input-output non-linearities in the dataset satisfactorily, for this 
particular engine simulation case. A later section introduces a test done 
by reducing sample sizes to explore this possibility. 

RESULTS AND DISCUSSSION 

Based on the process specified in Figure 6, since the learning curves 
exhibited good behavior, all the data was considered for training of the 
ML model. After training the models on each of the five outputs, the 5 
models were employed in the GA solver to compute the merit values 
of the individual CFD input sets. The goal of the optimization was to 
maximize the merit value.  

Before discussing the results of the GA optimization, it is worthwhile 
to check the performance of the individual models within the super 
learner and their contributions to the model predictions as a whole. 
This will emphasize the need for using a super learner type approach. 
Figure 8 shows a plot of model importance. Model importance is 
gauged as the value of the coefficient in the linear non-negative least 
squares (NNLS) equation which optimizes the selection of the 
individual sub-models. 

 

Figure 8: Weights of each ML sub-model comprising the super learner model 
for each output. 

It is evident that out of the 6 different ML models employed within the 
super learner, only neural network, SVM and xgboost (in that order) 
contribute to the overall prediction. The rest of the models have no 
contribution and so have zero weightage. The selection of the models 
based on their individual contributions, i.e., the decision of how 
important these models are in the super learner model, was made by 
considering the cross-validation error. Weights were decided 
according to the mathematical optimization technique of NNLS which 
was based on the Lawson-Hanson algorithm. NNLS is a constrained 
version of the least squares problem, in which the coefficients are not 
allowed to become negative. The cross validated errors are mean 
square error values and are shown as an error risk estimate in Figure 9. 
The error bars in the figure signify the variation in each validation loop 
of the k-folds. The risk is meant to be a measure of model accuracy. 
By minimizing this risk, the model makes fewer erroneous predictions. 
It can be clearly seen that the model with the lowest CV errors are the 
ones chosen by the NNLS meta-learner model to maximize the 
prediction accuracy. In short, the super learner uses 10-fold cross-
validation to estimate the risk (or error) on future data. The super 
learner then employs a meta-learner and reduces the error of the 
stacked models by assigning proper weights to the best performing 
models. Figure 9 also shows that the error using super learner is less 
than or equal to the errors from the best performing models viz., neural 
net, SVM and xgboost, considered individually and so indicates its 
benefits over using individual ML models. 

This super learner model was then applied along with the GA 
(malschains). Although, ~3500 evaluations would have been sufficient 
to get to true convergence, a much higher number of 35000 evaluations 
was chosen, as repeated runs of the GA would converge at slightly 
different number of evaluations. Note that the ML-GA optimization is 
not a time-consuming process: the runtime of the ML-GA was between 
1 and 10 minutes. The major portion of time for this approach was 
spent generating the initial CFD data for training. The training of the 
ML model took between 30 seconds and 2 minutes. 
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Figure 9: Mean square error representing a risk estimate in cross-validation 
procedure of individual sub-models and the super learner model. The arrow 
points towards a reduced error using super learner model. 

The resulting optimized values of the inputs are presented in Figure 10 
in the form of a normalized plot, i.e., the values are scaled between 
corresponding minimum and maximum values with centering done at 
the minimum value. Ten repeats of the GA model (with different 
random initializations) were performed to make sure that the GA did 
not output different values for each run, in which case, the GA might 
be getting stuck at various local optima. The standard deviations of the 
repeats are also depicted in Figure 10, but are not so obvious due to 
their low values. In addition, the optimized values from the CFD-GA 
approach are also shown, which can be considered as a form of 
validation of ML-GA. It can be seen from Figure 10 that the optimum 
values predicted by the ML-GA approach are very close to the 
corresponding CFD-GA values.  

 

Figure 10: Comparison of the normalized values of the optimized input 
variables between CFD-GA and ML-GA. 

Corresponding to Figure 10, in Table 6, absolute values of the 
optimized input variables are shown along with the corresponding 
values of the outputs from both ML-GA and CFD-GA. For reference, 
the highest merit obtained in the 2048 simulation dataset for the ML 
training was 103.2. ML-GA optimized inputs and corresponding 
predicted outputs are shown in column labeled “a”. The CFD predicted 
outputs for the ML-GA optimized inputs are compared and shown in 
the column labeled “b”. The CFD-GA optimized set of inputs and 
outputs are shown in the column labeled “c”. The percentage 
differences among these columns are shown in the next three columns. 
The comparison between the ML-GA predicted outputs of the “a” 
column and CFD predicted outputs for the ML-GA optimized inputs 
from the “b” column gives an idea of the level of confidence one might 
have in using ML-GA as a surrogate for CFD-GA. 

Table 6: Comparison of the inputs and outputs from the ML-GA optimum, CFD 
prediction of ML-GA optimized inputs and CFD-GA optimum. Their 
percentage differences are also shown. 

 a b c    
Parameter ML-GA 

optimum 
CFDMLGA CFD-GA 

optimum 
% (a-b) 

diff 
% (a-c) 

diff 
% (b-c) 

diff 

Inputs 

nNoz (-) 10 10 10 - 0 0.00 

TNA (-) 1.05 1.05 1.0 - 4.58 4.58 

Pinj (bar) 1492.5 1492.5 1490 - 0.17 0.17 

SOI (deg.) -10.65 -10.65 -10.3 - 2.99 3.00 

Nang(deg.) 159.26 159.26 158.0 - 0.73 0.73 

SR (-) -1.81 -1.81 -1.66 - 9.03 9.04 

EGR (-) 0.45 0.45 0.44 - 2.27 2.27 

Tivc (K) 323 323 323.5 - -0.15 -0.15 

Pivc (bar) 2.3 2.3 2.3 - 0.44 0.44 
Outputs 

ISFC 
(g/kWh) 

153.375 153.97 153.85 -0.38 -0.31 0.08 

Pmax (bar) 166.73 165.23 162.03 0.9 2.90 1.97 

MPRR 
(bar/deg.) 

13.28 12.22 11.31 8.67 17.42 8.04 

Soot 
(g/kWh) 

0.011 0.020 0.022 -50.62 -50.00 -9.09 

NOx 
(g/kWh) 

1.32 1.23 1.28 8.24 3.125 -3.91 

Merit 104.32 103.91 104.0 0.39 0.32 -0.08 

                 

Comparing columns “a” and “b”, the differences in most of the outputs 
are within 10%, but soot has a high error of 50%. It must be noted that 
inaccurate predictions of outputs might deviate the GA in a wrong 
direction. However, if the ML predictions are below the set constraints 
for the outputs, the corresponding terms in the merit function would 
not be penalized, thereby not affecting the overall GA process. In the 
present case, for the high error in soot predictions, the overall effect on 
the merit value due to this under-prediction of soot would be negligible 
as long as the ML soot under-prediction lies below the threshold soot 
constraint of 0.0268 g/kW-hr. On the other hand, the current GA has a 
strong influence from ISFC since it is not constrained in the merit 
function. Thus, a good ISFC prediction is very important to ensure that 
the merit calculation is done properly and the GA trajectory represents 
reality, as is evident from the ISFC and Merit rows of Table 6. 
Considering the comparison of ML-GA inputs and outputs of column 
”a” versus CFD-GA inputs and outputs of column “c” from Table 6, it 
can be seen that most of the predicted values of the inputs are within 
10% of the CFD-GA predicted values. Regarding the outputs, soot 
predictions show the maximum error of 50%. It is however important 
to note that the CFD run of ML-GA optimized point from column “b” 
falls very close to the CFD-GA optimized input-output set from 
column “c” and soot predictions are actually within 10% error based 
on the CFD run. The high error in predictions of soot form the ML 
model could be due to an inherent non-linearity of a higher degree in 
the soot output with respect to the 9 inputs that the ML model could 
not capture. In order to reduce the error in soot prediction, the values 
of the inputs were converted to logarithmic scale, after which the ML 
code normalized them for training. But this approach also did not yield 
a noticeable impact on the predicted outcomes of the optimized inputs 
and outputs from ML-GA. The improvement in soot predictions will 
be investigated and addressed in future studies.   

0

0.2

0.4

0.6

0.8

1

nNoz NozArea NozAng EGR Pivc Tivc Swirl Pinj SOI

N
or

m
al

ize
d 

pa
re

m
et

er
s

Design optimization (inputs)
CFD-GA

MLGA



Page 10 of 13 

Since optimization using ML-GA showed promising results with merit 
values and the optimized inputs being consistent with CFD-GA, a 
parametric study was carried to find out the minimum number of 
samples needed to obtain a merit value close to what the CFD-GA 
approach predicted. To further investigate the ML-GA approach for its 
performance and accuracy, only the worst merit data points were 
chosen when reducing the data samples. In other words,  the training 
data was sorted in decreasing order of merit values and only the 
samples less than a particular value were considered to train the ML 
model and GA was performed using that ML model. For example, if 
samples with merit value less than -80 are chosen, the original 2048 
sample dataset reduces to 345 samples. The ML model is trained on 
these 345 samples and the GA approach uses this trained ML model to 
optimize the inputs. Considering an output space constrained in a low 
merit region and trying to optimize the inputs to a higher merit region 
is a good test of the ML-GA technique. In a conventional ML-GA 
optimization approach, one would randomly generate these 345 
samples and so the output space will be well distributed among high 
and low merit values resulting in better ML model training and a better 
optimization result. From the learning curves of Figure 7, a quasi-
steady state was observed after 300 samples. So, around 300 was the 
lowest number of samples which was expected to perform well with 
the ML-GA optimization approach for this problem. Sample size 
reduction was however performed until 66 samples to confirm if there 
indeed was a knee-point prior to 300 samples beyond which ML-GA 
became inefficient in performing optimization.  

For sample sizes above 275, which correspond to samples above a 
maximum merit value of -100, except for the nNoz (number of 
nozzles) parameter, some variation in the optimized input space was 
observed as the sample size was reduced. In other words, the sample 
size variation study above 275 did not result in the same optimized 
inputs as CFD-GA except for number of nozzle holes which was 
consistently same as the CFD-GA value (nNoz=10). Since there was a 
wide variation of inputs observed in the optimization process as the 
sample size was reduced, it was checked if some or all of these 
optimized inputs would result in a merit closer to that predicted by the 
CFD-GA approach. The merit predictions for mean values of the 
optimized input solutions (upon 10 repeated applications of the GA) 
for various sample sizes is plotted in Figure 11. The percentage error 
between ML-GA merit predictions and CFD-GA merit predictions is 
shown as black dashed line. It can be observed that the ML-GA merit 
predictions are within ~0.5% of CFD-GA merit predictions for sample 
sizes above 275. For less than 275 samples, ML-GA does not optimize 
the merit to the level of CFD-GA (black solid line) and hence the error 
increases sharply. This may be due to a bad prediction of number of 
nozzle holes among other parameter mis-predictions. To confirm that 
ML-GA optimized merit values were indeed true, CFD simulations 
were performed for the optimized input sets and the calculated merit 
values from CFD were compared to the ML-GA merits. The CFD 
merit predictions of the ML-GA optimized inputs are shown in Figure 
11 as red circles. The ML-GA merits (black cross marks) and their 
corresponding CFD validations (red circles) show similar values above 
275 samples with errors (red dashed line) being within 0.5%. For 
sample sizes smaller than 275, these errors increase sharply. 
Additionally, for sample sizes under 275 samples, since the number of 
nozzles are also predicted incorrectly, it creates a big uncertainty for 
injector optimization. The error seen as a red dashed line is the merit 
prediction error related to the ML technique not performing well with 
less number of samples and thus showing bad validations on 
comparing with CFD simulations. The error between the merits of ML-
GA optimum and CFD-GA optimum is higher than the error seen 
between ML-GA optimum and its corresponding CFD prediction, 
since merit mis-prediction error (of that between ML-GA and CFD 
predictions) propagates through the GA causing a higher error in 
optimizing the merit value. However, according to this study, as low 
as 275 (worst) samples would still be enough to optimize the feature 

set using the ML-GA technique for this CFD engine case. With random 
sampling of input data, the merits would be fairly well distributed in 
the output space, which will result in even better learning of the ML 
model, and this may result in the lowest acceptable sample size limit 
(here 275) getting even lower. 

 

Figure 11: Merit value and its prediction errors between CFD-GA, ML-GA and 
CFD run of ML-GA optimized points. On X-axis, data is represented in x.y 
format where x is the ML sample training size and y is the merit value below 
which samples were considered for training. 

Although the optimized inputs are different as sample sizes change, the 
fact that the optimized merit is still as high as the CFD-GA technique, 
is the essential outcome supporting the validity of ML-GA 
optimization technique. An ML-GA optimization with lower sample 
size may not provide a global optimum but would point to a very close 
local optima. It can be said that the ML-GA technique works best with 
higher number of samples, which in this case is 2048. The sample size 
variation study adds value to the ML-GA technique by showing that a 
high value of merit is attainable even when the sample sizes are 
lowered. A mean value of the optimized input solutions (upon repeated 
application of the GA) was observed to give a merit value with a 
maximum error of ~0.5% compared to the CFD-GA optimized merit 
value as shown in Figure 11.  

From Figure 1 concerning CFD-GA, a steady state convergence was 
defined when the GA encountered 5 micro-convergence events 
without any improvement in the maximum merit value. It can be seen 
that a minimum of 98 generations, corresponding to 784 CFD 
simulations run sequentially in batches of 8, were needed for CFD-GA 
to converge. In this study, 2048 runs were used to perform 
optimization using ML-GA. The training of the ML model and GA 
optimization was performed on a single core of Intel Core i7-5600U 
CPU (2.6 GHz). The runtime for ML model training was between 30 
seconds and 2 minutes depending on the size of the data, and the 
runtime of a single run of the GA routine was between 1 minute and 
10 minutes. Since the ML training and GA run times were very low 
and could in fact, be reduced further if run in a parallel fashion 
(especially the ML model), they were not included in the runtime 
calculation of ML-GA and only the time taken for CFD simulations 
was considered. ML-GA provides the flexibility to run all the 
simulations at once, if resources allow. For example, simulations can 
be run all at once (within a day) on a supercomputer. On the other hand, 
in case of a CFD-GA, the simulations need to be run in batches 
sequentially over many days. A simulation run on a supercomputer 
usually needs more cores since memory per core of a supercomputer 
is less than that of a typical computing cluster. The “time to 
completion” of job is also higher for a supercomputer compared to a 
cluster. Nevertheless, the core hours of a supercomputer are cheaper 
(in terms of dollar value) than the core hours of a typical cluster. So, a 
direct comparison of core hours used by a job on a supercomputer 
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versus a cluster is not complete without the economic considerations 
(which is not done here). A comparison of CFD-GA and ML-GA 
runtimes considering the supercomputing and cluster resources are 
presented in Table 8. Shown in the table are the number of simulations 
required for the CFD-GA (784), the minimum number of simulations 
needed for training the ML model (~300) to satisfactorily carry out the 
GA, as well as the full dataset of simulations used for training the ML 
model in this study (2048).  The clusters used in this study can be 
classified as small clusters, since 128 cores were used at any point of 
time during the computations unlike bigger clusters which allow for 
cores in the order of 1000 to be used at once. Comparisons on 
considering the resources on big and small clusters are also presented 
in Table 8 along with considering super computing resources.  

Table 7: Runtimes for different scenarios of performing CFD simulations. 

 

Considering a smaller cluster and keeping the resources the same 
between CFD-GA and ML-GA, it can be observed that ML-GA can 
reduce runtimes by about 75% without much sacrifice in the 
optimization accuracy. It also allows to efficiently increase the 
optimization accuracy if bigger clusters and supercomputers are used, 
since it gives the freedom to choose the number of CFD simulations 
that can be run at once without effecting the quality of the optimization 
process.  

It must be noted that for a CFD-GA, higher number of individuals can 
be chosen to reduce the generations and hence complete the 
optimization faster. A micro-GA was used in the CFD-GA approach 
of the present work and is traditionally employed for engine 
optimization problems. Micro-GAs are designed to work with a very 
small number of individuals in the initial population (hence the word 
“micro”). For the micro-GA of the present work, it has been observed 
that as the number of individuals in the initial population increases, the 
generations needed to achieve the optimum decrease in a linear trend 
(keeping the number of CFD simulations constant). This trend was 
seen to be valid in the range of 5-13 individuals in the population [51]. 
For populations above 13 individuals, the micro-GA does not perform 
well, since the algorithm relies on the population converging to highly 
similar individuals and larger populations take prohibitively longer to 
converge. So, the micro-GA in the present form does not provide much 
leverage in decreasing the number of generations to expedite the 
optimization time. Nevertheless, there is scope to develop the micro-
GA technique to use larger populations in order to reduce the number 
of generations. An ML-GA approach provides a time-saving equally 
efficient alternative with added benefits of post-processing (for 
sensitivity analysis, uncertainty quantification, reliability analysis of 
the optimized points, etc.), since now one has a faster running 
mathematical model at hand (although black-box). In addition to that, 
multiple optima can be readily found by the ML-GA model. This 
allows for testing on a wider optima pool so that a design can be chosen 
which is easy to implement and operate in real-world situations.  

 

SUMMARY AND CONCLUSIONS 

Machine learning (ML) and genetic algorithm (GA) were used in 
conjunction to formulate an ML-GA technique. ML-GA was shown to 
significantly decrease the runtimes of a GCI engine design 
optimization process by at least 75%, keeping computational resources 
the same between ML-GA and a traditional CFD-GA. A super learner 
ML model was employed which pooled the predictions of various 
individual ML models and thus provided for high error compensation. 
This super learner was shown to have a better accuracy than traditional 
ML models when used separately. An exhaustive and necessary 
accuracy characterization of the ML models using learning curves was 
also carried out. The ML-GA technique was validated using standalone 
CFD simulations along with a separate run of a traditional and costlier 
CFD-GA optimization. The results showed that the accuracy of merit 
optimization using ML-GA was on par with CFD-GA. The CFD-GA 
approach requires the CFD simulations to be run in sequential batches 
to perform the optimization. In contrast, ML-GA allows the CFD 
simulations to be run in a parallel fashion to train the ML model, 
provides a surrogate ML model to replace the CFD simulations in the 
GA and perform optimization using the ML model instead. A 
parametric study with different sample sizes of ML training data was 
performed to show that the ML-GA optimum plateaued to a high merit 
value above a certain (low) number of training samples but the ML-
GA merit prediction accuracy decreased below that threshold sample 
size. Thus, ML-GA allowed for a lower number of CFD simulations 
while still achieving merit optimization accuracy close to the CFD-GA 
approach. This has the potential to reduce design optimization times 
significantly. In addition, ML-GA allows for the optimization process 
to be scalable to higher computational platforms such as 
supercomputers, with the potential to complete the optimization in a 
day, since (a large number of) CFD simulations for training the ML 
model can be run all at once. The benefit of having a faster running 
mathematical model at hand also provides the flexibility to carry out 
other post-processing studies like sensitivity analysis, uncertainty 
quantification and reliability analysis of the optimized points. ML-GA 
was also shown to yield different optimized input sets having similar 
high merit values (when training the ML model with different sample 
sizes). This can be highly beneficial to an experimentalist, in terms of 
readily assessing multiple design configurations and choosing the one 
which is practically most feasible. 
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