A Machine Learning—Genetic Algorithm (ML-GA) Approach for Rapid
Optimization Using High-Performance Computing

Author, co-author (Do NOT enter this information. It will be pulled from participant tab in

MyTechZone)

Affiliation (Do NOT enter this information. It will be pulled from participant tab in MyTechZone)

Abstract

A Machine Learning—Genetic Algorithm (ML-GA) approach was
developed to virtually discover optimum designs using training data
generated from multi-dimensional simulations. Machine learning
(ML) presents a pathway to transform complex physical processes that
occur in a combustion engine into compact informational processes. In
the present work, a total of over 2000 sector-mesh computational fluid
dynamics (CFD) simulations of a heavy-duty engine were performed.
These were run concurrently on a supercomputer to reduce overall
turnaround time. The engine being optimized was run on a low-octane
(RON70) gasoline fuel under partially-premixed compression ignition
mode. A total of nine input parameters were varied, and the CFD
simulation cases were generated by randomly sampling points from
this nine-dimensional input space. These input parameters included
fuel injection strategy, injector design and various in-cylinder flow and
thermodynamic conditions at intake valve closure (IVC). The outputs
(targets) of interest from these simulations included five metrics
related to engine performance and emissions. Over 2000 samples
generated from CFD were then used to train an ML model that could
predict these five targets based on the nine input features. A robust
super learner approach was employed to build the ML model, where
results from a collection of different ML algorithms were pooled
together. Thereafter, a stochastic global optimization genetic algorithm
(GA) was used, with the ML model as the objective function, to
optimize the input parameters based on a merit function so as to
minimize fuel consumption while satisfying CO and NOx emissions
constraints. The optimized configuration from ML-GA was found to
be very close to that obtained from a sequentially performed CFD-GA
approach, where a CFD simulation served as the objective function. In
addition, the overall turnaround time was (at least) 75% lower with the
ML-GA approach, as the training data was generated from concurrent
CFD simulations and employing the ML model as the objective
function significantly accelerated the GA optimization. This study
demonstrates the potential of ML-GA and high-performance
computing (HPC) to reduce the number of CFD simulations to be
performed for optimization problems without loss in accuracy, thereby
providing significant cost savings compared to traditional approaches.

Introduction

Consumer demand and government regulations are driving automakers
to explore new engine designs that simultaneously reduce fuel
consumption as well as emissions. To develop these new designs,
automakers use a combination of experimental prototyping and
numerical modeling. Of late, numerical simulation has assumed a
much greater significance in engine design optimization, particularly
with the impetus towards advanced and novel combustion concepts
coupled with new fuels, where engineers cannot rely solely on past

Page 1 of 13

expertise to narrow down the design space for experimental
prototyping.

A commonly used approach to engineering design optimization is to
employ the design of experiments (DOE) technique [1]. In a
simulation-based DOE, the entire design space can be explored by
running a large number of simulations to fill the DOE hyper-volume
using suitable space-filling techniques. A response surface is then
fitted to the simulation data and used for design optimization. This
response surface connects the inputs to the outputs and is usually built
based on linear regression. However, these linear regression based
response surface methods (RSMs) are not well suited to characterize
any non-linearities and interactions between various inputs without a
tuning effort by the designer, such as adding cross-terms and higher
order terms. This can often lead to large errors when dealing with
inputs that non-linearly interact, as can often be the case in engine
combustion. Another robust approach for design optimization is based
on genetic algorithms (GAs) [2-7]. In a GA-based optimization, a CFD
simulation is used as an objective function and the merit of this
objective function is evaluated on completion of the CFD run. The
CFD runs are performed sequentially in waves of several generations,
where each generation has some prescribed number of
individuals/samples to evaluate (i.e., CFD runs to perform). The more
the number of samples in each generation, the fewer the number of
generations needed to find the optimum. Using a stochastic approach
where the population is varied using a set of genetic operations often
leads to much better optimum solutions than DOE-based approaches.
However, a GA may take a considerable amount of time (over two or
three months) even with a reasonably sophisticated cluster (100-1000
processors) for a problem with a moderate number of input or design
features (5-10) to optimize for. This is attributed to the fact that
physics-based CFD simulations tend to be very expensive.

In this context, data-driven machine learning (ML) models can play an
important role. An ML model can be thought of as a function that, after
being trained, can learn from various patterns and structures in the data
and capture input-output relationships. Depending on the complexity
of the chosen ML model, it is possible to capture non-linear
relationships including any interaction effects between the inputs. This
results in a very reasonable fit of the input-output data space and
provides an accurate and faster running surrogate model for CFD. Over
the past few decades, there have been significant developments in
using artificial neural networks (ANNSs), a type of ML approach, in
understanding and solving combustion problems [8-12]. Here ANNs
are used for predicting various combustion related outputs after being
trained on sample data. New applications for ML have been receiving
substantial interest and as a result many new promising models have
been developed [13-17]. ML models can be considered as fast-running
surrogate models for the more time-consuming methods used in
generating their training data viz., experiments or CFD models. In the
past, ML models have been used in real-time control of engines [9, 10,

18-21]. Vaughan et al. [19, 20] used a form of support vector machine
(SVM) to understand the bifurcation behavior of the combustion
stability limit in a homogenous charge compression ignition (HCCI)
engine and used it for prediction of cycle-to-cycle variations of
combustion phasing and for misfire detection. Validi et al. [21] used
an ANN approach to detect and optimize the start of combustion in
HCCI engines. He et al. [10] created engine cylinder models by
capturing various in-cylinder physical processes using ANNs, which
were used in the prediction of engine performance and emissions over
a transient federal test procedure (FTP) cycle.

Recent efforts have coupled optimization techniques with ML models
to optimize the system outputs within the target design space [1, 22-
24]. In these studies, the ML model served as the objective function
for GA optimization, as opposed to a CFD model. Brahma et al. [23]
used a set of ANNs together with a hybrid GA/hill-climbing type
algorithm to optimize operating parameters over the entire speed-
torque map of a diesel engine. Alonso et al. [22] followed a similar
approach while using experimental datasets for a high-dimensional
diesel engine GA optimization problem. Costa et al. [24] looked into
the diesel optimization problem from the point of view of soot-NOx
trade-off and used an optimization code to obtain pareto fronts of soot-
NOx predictions by an ANN for various piston bowls. However, one
of the common features of these studies was that only one type of ML
approach was employed. Moreover, the optimization accuracy of these
models was not validated.

In the present work, a novel ML-GA model was employed to perform
numerical optimization of a gasoline compression ignition (GCI)
engine operating with a low-octane gasoline-like fuel. PPCI is an
advanced combustion mode which has the potential to achieve diesel-
like fuel efficiency with ultra-low nitrogen oxides (NOx) and
particulate matter (PM) emissions. However, the primary challenges
for practical implementation of PPCI include achieving robust control
of ignition timing, preventing excessive pressure rise rates, and
mitigating hydrocarbon (HC) and carbon monoxide (CO) emissions.
In this study, a total of 2048 samples were randomly generated using
Monte-Carlo sampling and 3D CFD simulations for these samples
were performed concurrently on Argonne’s Mira [25] supercomputer.
The samples were distributed over nine input parameters related to the
fuel injector design, injection strategy, initial in-cylinder chamber
pressure and temperature, and swirl flow. A merit function was
formulated consisting of 5 targets related to engine performance and
emissions. A stacked generalization approach called “Super Learning”
was employed to develop the ML model based on CFD simulations.
Employing a stacked generalization approach instead of a stand-alone
ML model (as in the above cited works) results in higher error
compensation of the ML algorithm for robust performance. The
stacked ML model was trained and tested on the input-output CFD
data. The overall output of the ML model was the merit value after
considering the individual outputs which constituted the merit
function. The ML model was characterized by gauging the bias-
variance trade-off using learning curves. Subsequently, a stochastic
global optimization GA was used with the ML model as an objective
function to perform optimization of the merit value. The ML-GA
approach was implemented using R programming language [26];
custom scripts were written to combine the approaches efficiently and
to validate the concept. The ML-GA optimum was compared to that
from a conventional CFD-GA run using CFD as the objective function.
In addition, CFD simulation for the ML-GA-predicted optimum point
was also performed to further validate the optimization. A parametric
study with varying sample sizes for ML model training was also
carried out to find out the minimum number of simulations needed to
efficiently and accurately carry out the ML-GA optimization. Finally,
the runtimes of the conventional CFD-GA and ML-GA approaches
were compared keeping various computational resources in mind.

Page 2 of 13

Methodology

Engine Design Space & Optimization Strategy

The present numerical study aims to optimize a heavy-duty engine
operating at medium load conditions with a low-octane gasoline-like
fuel. The engine considered is a four-stroke, six-cylinder Cummins
ISX15 engine with a variable-geometry turbocharger, high-pressure
cooled exhaust gas recirculation (EGR) loop and charge air cooler [27,
28]. The details of the engine configuration and baseline operating
conditions are listed in Table 1.

Table 1: Engine configuration and baseline operating conditions.

Engine model Cummins ISX15

Cylinders 6
Displacement 149L
Bore 137 mm
Stroke 169 mm
Connecting rod 262 mm
Compression ratio 17.3:1
Engine speed 1375 rpm
Intake valve closing (IVC) -137 °CA after top-dead center
(ATDC)
Exhaust valve opening (EVO) 148 °CA ATDC
Start of injection (SOI) timing -9 °CA ATDC
Injection duration 15.58 °CA
Mass of fuel injected 0.498 g/cycle
Fuel injection temperature 360 K
Injection pressure 1600 bar
Nozzle inclusion angle 152°
IVC pressure 323K
IVC temperature 2.15 bar
Exhaust gas recirculation (EGR) 41%
Global equivalence ratio 0.57

The design parameters considered in the present work are listed in
Table 2, along with their respective ranges of variation.

Table 2: Input parameter ranges for the engine design space.

Parameter Description Min | max units
nNoz Number of nozzle holes 8 10 -
TNA Total nozzle area 1 1.3 -

Pinj Injection pressure 1400 | 1800 bar
SOI Start of injection timing -11 -7 |°CA ATDC|

Nang Nozzle inclusion angle 145 | 166 deg

EGR EGR fraction 035 1] 0.5 -
Tive IVC temperature 323 | 373 K
Pivc IVC pressure 20 | 23 bar
SR Swirl ratio 2.4 -1 -

In total, nine input variables were chosen pertaining to fuel injector
design (number of nozzle holes, total nozzle area, nozzle inclusion
angle), fuel injection strategy (injection pressure, start of injection
timing), and initial thermodynamic and flow conditions (intake valve
closing temperature and pressure, exhaust gas recirculation fraction,
and in-cylinder swirl). The ranges of variation included the baseline
conditions. Note that in Table 2, the total nozzle area is normalized
with respect to its baseline value, therefore the baseline value is 1.

Throughout the optimization study, the total mass of fuel injected, i.e.,
the engine load, was kept constant.

For optimization, an objective merit function, as shown in Eq. (1), was
defined using indicated specific fuel consumption (ISFC, g/kW-hr) as
the performance variable (to be minimized), and constraint variables
based on emissions (soot, NOx) and engine mechanical limits (peak
cylinder pressure (PMAX), maximum pressure rise rate (MPRR)).
The merit function incurs a penalty only if soot, NOx, PMAX and
MPRR exceed their constraints of 0.0268 g/kW-hr, 1.34 g/kW-hr, 220
bar, and 15 bar/°CA, respectively. No penalty is incurred if these are
within their prescribed limits, in which case the merit function varies
only with ISFC. In addition, the constraint variables are assigned
different weights to reflect their relative importance in the optimization
process. A similar merit function formulation was also employed in a
previous engine design optimization study [1].

160

Merit = 100 + |ISFC 100 * f(PMAX) — 10 * f(MPRR)

— f(500T) — f(NO,)

Where
— —1,if PMAX > 220
F(PMAX) = { 220 L

PMAX }
0,if PMAX < 220

MPRR 1,if MPRR > 15
f(MPRR) = { s Y }
0,if MPRR < 15

SOOT _ | if 500T > 0.0268
F(S00T) = {0.0268 if : }
0,if SOOT < 0.0268

NOx 1,if NO, > 1.34
fNO,) = {1.34 /if NOx > 1. }
0,if NO, < 1.34

Numerical Model Setup

A 3-D CFD code, CONVERGE (version 2.3) [29], was used to
perform numerical simulations for the closed part of the cycle, from
IVC to EVO. Assuming axisymmetry, the simulation domain was
modeled using a sector mesh representing a single cylinder and
accounting for only one spray plume, in order to reduce computational
cost. Periodic boundary conditions were imposed in the azimuthal
direction. Uniform mixture and temperature distributions were
specified at IVC. A base mesh size of 1.4 mm was employed. One level
of fixed embedding was prescribed near the cylinder head and piston,
while two levels of fixed embedding were employed to resolve the
flow near the fuel injector. In addition, two levels of adaptive mesh
refinement (AMR) were employed based on velocity and temperature
gradients of 1 m/s and 2.5 K, respectively. This resulted in the
minimum grid size of 0.35 mm and peak cell count per simulation of
~500,000. The simulation time step was automatically adjusted based
on the maximum convective, diffusive and mach Courant-Friedrichs-
Lewy (CFL) numbers of 1, 2 and 50, respectively.

In-cylinder turbulence was modeled using the Reynolds-Averaged
Navier Stokes (RANS) based re-normalized group (RNG) k-¢ model
[30] with wall functions. The liquid spray was treated in a Lagrangian
fashion and the “blob” injection model developed by Reitz and
Page 3 of 13

Diwakar [31] was used, which initializes the diameter of a liquid
droplet to the effective nozzle diameter. The Kelvin Helmholtz (KH)
— Rayleigh Taylor (RT) breakup model [32] and “no-time counter”
collision model of Schmidt and Rutland [33] were employed to
describe the subsequent spray atomization and collision processes,
respectively. Droplet evaporation was modeled using the Frossling
correlation [34], and models for dynamic drop drag and droplet
turbulent dispersion [35] were also included. A RON70 primary
reference fuel (PRF) blend comprising of 70% iso-octane and 30% n-
heptane (by mass) was employed as the surrogate for gasoline-like fuel
[36]. A reduced kinetic mechanism for primary reference fuel (PRF)
consisting of 48 species and 152 reactions based on Liu et al. [37] was
used to account for fuel chemistry. In addition, the NOx formation was
modeled using a reduced mechanism comprising 4 species and 13
reactions [38]. The empirical Hiroyasu soot model [39], coupled with
the Nagle and Strickland-constable model [40], was used to determine
the soot formation and oxidation rates with acetylene (C2Ha) as the
precursor for soot formation. For combustion modeling, the SAGE
detailed chemistry solver [41] was employed along with a multi-zone
(MZ) approach, with bins of 5 K in temperature and 0.05 in
equivalence ratio. The CFD model predictions were validated against
experimental data in previous studies [27, 28, 42] and hence are not
shown here for the sake of brevity. In addition, an exhaustive global
sensitivity analysis (GSA) was also performed by the authors for the
same baseline engine operating condition, with respect to the input
parameters (and their corresponding ranges) listed in Table 1 and
targets considered in the present work. These details can be found in
Ref. [42].

A separate GA optimization (herein referred to as CFD-GA) using
CFD simulation as the objective function was performed. The CFD-
GA also used the same merit function described in Eq. (1). More
details about the CFD-GA approach are given in the following section.

CFD-GA Approach

The Converge CONGO utility [29] was employed to perform the CFD-
GA optimization based on an elitist micro-GA approach [43]. The
micro-GA has a small population of 9 individuals and is run for a large
number of generations. Each individual is a CFD simulation case with
a distinct set of input parameters. The initial population of 9
individuals is generated randomly. The merit values for the individuals
are evaluated after each generation is completed and the population is
monitored for similarity between the individuals using a statistical
calculation based on the input parameters. Micro-convergence is
achieved when the population reaches a sufficient convergence level
(convergence criterion of 0.97). At that point, the population is
declared to have converged and is replaced with randomly generated
individuals (except for the elite individual with the best merit value,
which is always kept in the population). This provides randomness to
avoid local optima being erroneously identified as the global optimum.
However, until a micro-convergence event is encountered, the
individuals of the new population are generated from parents which
are selected based on a tournament. A uniform crossover of the DNA
(i.e., the input parameters) is used to create children from the parents.
The micro-GA used in this work does not allow mutations. The
tournament size is set as the size of the population and as parents are
selected, the tournament size decreases without re-shuffling. The
population is re-shuffled only after depleting the selection pool. The
GA is considered to have reached a global optimum when at least five
micro-convergence events occur, without any improvement in the
maximum merit value.

In this work, the CFD-GA was run for 98 generations (784 CFD
simulations) until it converged. The runtime of each CFD simulation
was approximately 12 hours on 128 processors. So, the full GA took

around 50 days to run. The GA reached a maximum merit value of
104.0 at 57™ generation. Afterwards, 5 micro-convergence events were
encountered without any further improvement in the merit value. At
that point, it was assumed that the GA had finally found the global
optimum. The evolution of maximum merit value during the progress
of the CFD-GA optimization is shown in Figure 1.

| Baseline merit = 102.2
104 |- Bl ==l =B
H Rt
-
102 - e
e |)
= | 1
= -
© q00H
>0
- .
= N
g i
= 885
L :
i R Max Merit Value
! Mi Cc E t:
o6 I (] icro Convergence Events
i
U
L 1 1 1
St 20 40 60 80 100

Generation #
Figure 1: Merit evolution using the micro-GA approach (CFD-GA).

The input parameters and the corresponding outputs for both the
baseline and best (optimum) cases are listed in Table 3. Evidently, the
best case found by CFD-GA yielded an ISFC benefit of 1.7% over the
baseline design. Moreover, none of the emissions and cylinder
pressure constraints were exceeded by the GA optimum.

The temporal evolution of in-cylinder pressure for both the baseline
and best cases are shown in Figure 2. Clearly, the total work done in
the best case is much higher, thereby resulting in lower ISFC,
considering that the total fuel mass injected was kept constant. It must
be noted that pressure at IVC for the best case is higher than the
baseline. In addition, Figure 3 shows the comparison of in-cylinder
temperature and equivalence ratio distributions at 12 °CA ATDC on a
vertical cut plane, between the two cases. It is evident that the islands
of fuel-rich mixture are much smaller in the best case, owing to a better
fuel-air mixing caused by earlier SOI timing, higher swirl and higher
number of nozzle holes. Moreover, in-cylinder temperatures are also
higher relative to the baseline configuration. All these factors
contribute to higher peak cylinder pressure, lower ISFC, lower soot
emissions and slightly higher NOx emissions, in case of the GA
optimum.

Table 3. Input parameters and outputs for the baseline and CFD-GA best cases.

Parameter Baseline Best case

Page 4 of 13

Inputs
nNoz 9 10
TNA 1.0 1.0
Pinj 1600 bar 1490 bar
SOI 90 CA -10.3°CA
ATDC ATDC
Nang 1520 158°
SR -1 -1.66
EGR 0.41 0.44
Tivc 323K 3235K
Pivc 2.15 bar 2.3 bar
Outputs
ISFC 156.53 g/kWh 153.85 g/kWh
PMAX 152.31 bar 162.03 bar
MPRR 11.22 bar/°CA 11.31 bar/°’CA
SOOT 0.0235 g/kWh 0.0220 g/kWh
NOx 1.07 g/kWh 1.28 g/kWh
Merit 102.2 104.0
teor Baseline ."\‘\
------ Bestcase |
= 140
© r
& -
E [
2 1oF
0
o 5
s BDi
E 60 ;-
£ .
= 40F
o F
20
;—/]
oo I TR | i I B | Pl

40 20 0 20
CAD ATDC

Baseline

L]

1.55
1.49
1.42 |
1.36

1.30

Best case

40 60 80

Figure 2: Temporal evolution of in-cylinder pressure for baseline and CFD-
GA best cases.

ML-GA Approach

Figure 3: In-cylinder equivalence ratio and temperature distributions along a
vertical cut plane at 12 “CA ATDC for the baseline and CFD-GA best case.

In this approach, an ML model was employed as a surrogate for a CFD
simulation and was used to compute merit values of the individuals
within a GA optimization routine. The details of the data generation
for ML model training are presented next. A description of the ML
model and GA technique is provided subsequently.

Data Generation for ML Model Training

The nine input variables were perturbed simultaneously within their
respective ranges of variation using Monte Carlo (MC) method to
generate 2048 sample (parameter) sets. The input files for the 2048
simulation cases were generated using the Converge CONGO utility
[29]. The CFD simulations were run in six batches of 256 cases. Each
batch was run on half of a rack of Mira [25], an IBM BG/Q
supercomputer at the Argonne Leadership Computing Facility (ALCF)
and Office of Science User Facility at Argonne, with each case running
on 32 processors. The total runtime for all the simulations was around
two weeks including queue time. It must be noted that the 2048
simulations can potentially be simulated all at once if resources allow,
which can bring down the simulation time to as low as one day. The
minimum and maximum values of the five outputs extracted from the
simulation data are given in Table 4.

Table 4: Range of outputs generated from 2048 MC runs.

Output | min | max units

ISFC [153.3] 180.6 | g/kWh

SOOT 0 0.2 g/kWh

NOx 0.06 | 5.25 g/kWh

MPRR | 79 | 204 | bar/deg

PMAX | 121 | 1703 bar

The surface of the merit function versus two inputs is shown in Figure
4, which sheds light on the highly non-convex nature of the problem.
The goal of the ML model is to capture the input-output interactions
and reproduce this non-linear surface, while the GA is expected to find
the optimum merit based on this surface.

-50
-100
merit 150

Figure 4: The response surface of merit function w.r.t. SOI and Tivc based on
CFD simulations of the uniform MC generated 2048 samples.

ML-GA Model
Page 5 of 13

The ML-GA consists of an ML model acting as a surrogate for CFD
model and as an objective function with a GA optimization algorithm.
In the following section, the ML model is described first followed by
the GA algorithm.

Machine Learning Model

The ML approach of super learner [44] was employed in the present
work and was implemented in the R package [45]. The super learning
technique falls under the broader approach of stacked generalization
of multiple models. Super learning is a loss-based learning method
[46] which calculates the optimal combination of a pool of prediction
algorithms. The optimal combination minimizes the cross-validated
risk (error) during the training phase of the multiple models. Figure 5
shows a simple representation of the stacked generalization approach
followed by the super learner algorithm.

l"""""""'"""""")‘ """""""""]

Train "n" base learners

. th .
on k-1 folds Predict on k' fold Train metalearner

"
L}

"

L}

L]

L}

L]

L}

L]

L}

] Any general ML
' model

1

}

i

! |Metalearner
* ML model
L}

L]

L}

L}

L}

L}

"

L}

"

L}

"

L]

"

L]

"

L}

"

L]

"

L}

"

L}

L]

Data preparation

Regression Prediction1

Single trees Prediction2

Ensemble

teek Prediction3

Neural

networks Prediction4

Support
vector
machines

Predictions

INNN

1
]
)
]
1
'
1
1
1
1
1
1
)
1
:
)
: create k-folds
+ of data
!
!
!
!
!
!
!
)
)
]
)
]
)
]
)
]
)
'
)
]
)
]
1

Repeat process k times and average kif fold
(k-fold cross validation)
<

Figure 5: A schematic of the super learner model.

Following Figure 5, in the beginning of the model fitting procedure,
the data was split into training and test sets. An 80%/20% split was
used during the model accuracy characterization process (accuracy
characterization is discussed in a subsequent section). A k-fold cross
validation was then performed to assess the prediction of the individual
base learners or sub-models. Cross-validation is a technique to
evaluate model performance by splitting the original dataset into a
training set to train the model, and a cross-validation set to evaluate it.
Random splitting of the original (80% training) dataset into 10 (k=10)
equal sized subsample folds was performed. Out of the 10 subsample
folds, a single subsample fold (called the 10 fold) was retained as the
cross-validation dataset and the remaining nine sub-samples were used
as training data. In this way, the 80% original training data was split
into further training and cross-validation datasets for performing cross-
validation. This cross-validation process was then repeated 10 (k=10)
times over all the 10 sub-sample folds. In this way, each of the 10
subsamples was used exactly once as the cross-validation dataset.
Thus, all observations were used for both training and cross-validation,
and each observation was used for cross-validation exactly once. The
results from individual folds were then averaged to produce a single
estimation. The predictions of the 10" fold for each of the algorithms
were saved. Following this, weighted combinations were prescribed as
coefficients to these predictions of individual base learner algorithms.
A non-negative least squares (NNLS) method was employed to
compute these coefficients. This was done to minimize the cross-
validation error (i.e., to minimize the error in the 10% fold of
predictions). The weightage given to each of the base learners would

thus change as the test data is varied and it is possible that some of the
base learners get a zero weightage in the linear equation of NNLS, if
they have high error. The NNLS model here is called the meta-learner.
In practice, any general ML model can be used as a meta-learner [47].
The meta-learner which operates on the predictions (not the raw data)
is the final step in the super learning process and is ultimately used to
predict new outcomes.

Architecture of the Super Learner

Six different ML algorithms were considered for the individual base
learner system. Baseline values of parameters of each of the algorithms
were used during their implementation in the super learner model and
expensive grid search techniques over the model parameter space to
optimize the performance of each model was avoided. A brief
description of these base learners is provided below. For more details
on the theory and mathematical formulation of these models, the reader
is directed to the cited literature in the relevant model descriptions
below.

Linear model: A linear model is the simplest form of regression
model. The model is obtained by minimizing the sum of squares of the
differences between the actual observed values and those predicted by
a linear equation with a set of explanatory variables as coefficients.

Ridge regression [13]: Ridge regression is an ordinary least square
linear regression problem with built-in regularization term (lambda) to
avoid over-fitting or high variance during predictions.

k-nearest neighbor (kKNN) [14]: kNN is a non-parametric method in
which the input consists of clusters of training examples
containing “k” samples each, in the feature space. In kNN regression,
the prediction is the average of these cluster values which have
“k” points each (which are called nearest neighbors).

Random Forest [15]: Random forest is an ensemble of user-specified
decision trees, in which each tree uses a random number of samples
from the given dataset. The individual decision tree is trained on
various parts of the same training set. Random forest models
circumvent the over-fitting problem by averaging results from separate
decision trees.

Extreme gradient boosting (XGboost) [12]: XGboost is an advanced
implementation of decision tree algorithms (similar to random forest),
but is developed keeping in mind speed and performance. The general
concept of gradient boosted trees is that initially the model predictions
are made with simple tree structures and later on new tree structures
are created that predict the errors of prior models. These are
subsequently added together to make the final predictions. The term
gradient boosting comes from the fact that the loss minimization
during addition/ensembling of the new models is achieved using a
gradient descent algorithm.

Support vector machines (SVM) [16]: The idea behind an SVM is to
find a separation line that splits the data, for example between two
different clusters in a training dataset. This line separates the clusters
of data in such a way that the individual clusters are farthest away from
the line. A new test data point is predicted depending on where it will
be placed on either side of the line. The determination of this line is
done through quadratic programming and resembles an optimization
problem.

Neural Net [11]: Neural net (also called artificial neural network) is a
network of simple units called neurons which are subjected to raw
inputs. Based on the inputs, the neurons then vary their internal state

Page 6 of 13

and produce an output. A network, in the form of a directed weighted
graph, is formed by connecting the outputs to the inputs. The internal
aspects of the learning process of neural nets are usually optimized
through a process called learning where researchers have applied
methods such as fuzzy logic, Bayesian method, and genetic algorithms.

The ML algorithms used and their model parameters are presented in
Table 5.

Table 5: Sub-model parameters used in the super learner.

Model Details
ntree=1000, mtry=3

Random Forest

Suport vector machines
(nu-regression)

Ridge regression

nu=0.5, degree=3,cost=16, coef0=0, kernel=radial
lambda=1 to 20 (steps of 0.1)

ntrees=1000,max_depth=4,shrinkage=0.1,
xgboost minobspernode=10

Neural net size=9,hiddenlayers=1

Linear model ordinary least square

K-nearest neighbor k=10

The GA used with the ML model was not an elitist micro-GA unlike
in the CFD-GA approach. Instead, a GA technique available from the
R package was chosen which was compatible with the ML model. A
previous comparative study [48] was taken as an index to first down-
select a few good GA model candidates exhibiting good run-
time/accuracy trade-offs. An in-house testing exercise was
subsequently carried out with this subset of better performing GA
models from the study [48] to finalize the GA to be used for the present
work. Details of this GA model are presented next.

Genetic Algorithm Model

The genetic algorithm used here is called malschains [49], which
stands for memetic algorithms with local search chains. The
implementation in R (Rmalschains) was used in this work [50].
Malschains uses a combination of local and global optimization
techniques. The idea behind the algorithm is to apply a local search
method on the most promising regions which are found to have highest
fitness value using a (global) genetic algorithm. Malschains uses a
steady state genetic algorithm as an evolution algorithm which
executes the global optimization. The GA in malschains is different
from a standard genetic algorithm, where the individuals of the
population are subjected to genetic operations simultaneously. In the
present GA method (a steady-state GA), only single individuals are
used at a time to generate offspring, which replace other single
individuals of the population.

The malschains algorithm randomly generates an initial population of
individuals. The genetic algorithm then evaluates the merit values
(fitness) of these individuals and builds a set of individuals which can
be further refined by the local search method. For local optimization,
solis-wet algorithm is used. The local search method is iteratively
applied on these best-fit cluster of individuals obtained from the GA
and a best individual is picked and recorded. This solution replaces the
worst solution in the next application of the GA and local search loop.
This final solution is also used for the initialization of a subsequent
local search application which creates a chain of local search solution.
This allows for improvement of the same solution several times.

The GA model acts as a wrapper around the ML model to constitute
the ML-GA. A complete overview of the ML-GA pipeline is explained
in the flow chart shown in Figure 6.

Obtaining Model Model oy PR
training data builiding characterization Model fitting GA optimization
CFD simulation to Training/test
generate data data split

Train ML
model on
training data

|

Fit ML model Learning

on train data| — | curves for
and test data individual

output
predictions
Modify ML

model
parameters

—

Bias-variance

Bag trage-of- Pt

Good trade-ofl

Fit model on
all data for
indlvidual

outputs

Run model
through GA

Figure 6: A schematic of the ML-GA technique.

To apply the ML method, CFD or experimental data is needed. After
running 2048 CFD simulations, the input-output data was extracted
from the simulation results and split into training and test datasets. In
this study, 80% of the data was randomly sampled to generate a
training set and the remaining 20% of the data was used as the test set.
A super learner model was then trained on each of the outputs/targets
(ISFC, PMAX, MPRR, soot, NOy), i.e., one super learner model for
predicting each output parameter. After the models were trained, they
were tested on both the training (in-sample) and test (out-of-sample)
datasets to generate learning curves for individual output predictions.
For a learning curve, training data size was increased from a minimum
sample size to maximum of 80% of the total CFD samples. The model
was trained each time and a training root mean squared error (RMSE)
was calculated. For each of these training stages, 20% of test data was
evaluated and the test RMSEs were noted. Learning curves were then
obtained by plotting train and test RMSEs versus training sample size.
A bias-variance trade-off analysis was carried out using the learning
curves to understand the model behavior. If both the test and train
RMSEs were within 10% of the mean value of the CFD outputs (for
reduced bias) and their test RMSEs were within 5% of the train RMSEs
(for reduced variance), then the model was considered to have a good
bias-variance trade-off. A high bias would cause under-fitting, leading
to its inability to capture the trends in the data points effectively. To
remedy under-fitting, it is desirable to make the model complex so that
it captures all the important interactions in the input-output space. In
this work, adding more models to the super learner (to increase
complexity) was an option. The strength of the super learner approach
is to replace the costly model parameter tuning exercise and work with
the baseline model setting, combine the predictions and provide high
error compensation. However, if the model is too “coarse” and predicts
with high error, then slight tuning will be necessary. If a model predicts
with high error, then it will not be selected for predictions by the meta-
learner in the first place and so tuning will allow the individual model
to be picked up by the meta-learner, increasing the model complexity
and thus avoid under-fitting. Tuning of model parameters of the
individual algorithms was however, not performed here. On the other
hand, a high variance leads to over-fitting, which is a result of the
model not generalizing the data very well and exhibiting large changes
in outputs as the inputs change. To remedy over-fitting, it is desirable
to add more data during model training. Thus, if the bias-variance
trade-off is not acceptable, the model parameters can be tuned or more
data can be sought and the process is repeated until a good trade-off is
obtained. The steps until now characterize the model behaviors (further
discussed in the next section). After the model characterization was
done, all the data (in our case 2048 simulations) was considered for
training so that the ML model was trained on as much data as possible
to cover majority of input combinations which the GA would
Page 7 of 13

(randomly) generate. This trained ML model was then employed as a
surrogate for the CFD model to compute and optimize the objective
merit function in the GA optimization.

ML Prediction Accuracy Characterization

To assess the behavior of the ML model, learning curves were
generated to characterize bias-variance trade-offs. A brief description
of learning curves and the importance of bias-variance trade-off was
given in the previous section. Specifically, a high bias would cause
under-fitting, rendering the ML model incapable of capturing the
trends in the data effectively. On the other hand, a high variance would
lead to over-fitting, which is a result of the model not generalizing to
data very well and exhibiting large changes in output predictions as the
inputs change. The learning curves for different outputs are plotted in
Figure 7. Since there are multiple models within the super learner
which are involved in making a prediction, the learning curves are not
smooth. The authors have found that using a single ML model for
predictions usually gives smoother learning curves.

ISFC learning curve

Ly
o

——Training set
i —~-Test set

e
S

Lod
N

RMSE of ISFC (g/kW-hr)
o
oo

\ A7 [}
06 SR WS % of p
_______ i e N
=
0.4 n
o~
9 o
b W & 0
o
0
0 200 400 600 800 1000 1200 1400 1600
Sample size
SOOT learning curve
0.01
0.009 . ——Training set
-~--Test set
0.008
=
g 0.007
3, 0.006
‘g 0005
\ s
@ 0.004 e Eieol 28 . 5 'y o,
s O N T % of g
e o o
& 0.003 a2 P
] *
0.002 g ~
0.001 o Tg
L
0
0 200 400 600 800 1000 1200 1400 1600
Sample size
NOX learning curve
0.16
——Training set
0.14
-o--Test set
=012
a
2w
D a,
g 0.08 domcaziacd i
|
% 006 = " % of p
b e e °
4 o
3 0o ©
|°- -
002 + A
o

o

0 200 400 600 800 1000 1200 1400 1600
Sample size

MPRR learning curve

0.7
A ——Training set
- 08 —-Test set
g
T os
E \.
& 04 B
o % of y
2 03
5 0
w
2 02 g
& ~
=
0.1 o (g
-
0
0 200 400 600 800 1000 1200 1400 1600
Sample size
PMAX learning curve
16
——Training set
14
2 —--Test set
12
£
8,
g 0.8 \
[o
B o6 B e % of p
8 04 - g
N
02 ° |8
=
0
0 200 400 600 800 1000 1200 1400 1600

Sample size

Figure 7: Learning curves of the individual outputs of ISFC, SOOT, NOx,
MPRR and PMAX. Single arrows on the right Y-axis signify the training set
and test set RMSEs as percentages of the mean of the corresponding output (to
account for bias). Double arrow shows the difference between the test set and
training set RMSE percentages (to account for variance).

Learning curves play an important role in model characterization. As
can be seen in Figure 7, the learning curves for the five outputs exhibit
good bias-variance trade-off as per the targets set. On the Y-axis of
each of the sub-plots in Figure 7, single arrows denote the training set
and test set RMSEs as percentages of the mean of the corresponding
target, used as quantitative metrics to assess bias in the model. Double
arrow, on the other hand, shows the difference between test and train
RMSE percentages, thereby representing the model variance. It can be
observed that both test and train RMSEs are within 10% of the mean
value and test RMSEs are within 5% of the train RMSEs (shown on
secondary Y-axis). The R-squared values of the predictions shown in
Figure 7, over all the sample sizes and 5 output parameters, were above
98%. An R-squared value is not a good measure of goodness of the fit
though, be it variance or bias; a learning curve sheds more light on
those aspects. Additionally, it can be observed that all the five outputs
reach a quasi-steady RMSE state after ~300 samples; this indicates that
~300 samples might be good enough for the ML model to capture
various input-output non-linearities in the dataset satisfactorily, for this
particular engine simulation case. A later section introduces a test done
by reducing sample sizes to explore this possibility.

RESULTS AND DISCUSSSION

Based on the process specified in Figure 6, since the learning curves
exhibited good behavior, all the data was considered for training of the
ML model. After training the models on each of the five outputs, the 5
models were employed in the GA solver to compute the merit values
of the individual CFD input sets. The goal of the optimization was to
maximize the merit value.

Page 8 of 13

Before discussing the results of the GA optimization, it is worthwhile
to check the performance of the individual models within the super
learner and their contributions to the model predictions as a whole.
This will emphasize the need for using a super learner type approach.
Figure 8 shows a plot of model importance. Model importance is
gauged as the value of the coefficient in the linear non-negative least
squares (NNLS) equation which optimizes the selection of the
individual sub-models.

Model importance

kNN
o]
o
E Im
o
g
S
i) nnet
%
£
=
2 xgboost
@
[
o
o
€ ridge
3 M Coeff_ISFC
3 M Coeff_PMAX
3 svm
< Ceff_NOX
> Coeff_SOOT
randomForest M Coeff MPRR
0 0.2 0.4 0.6 0.8

Metalearner coefficients

Figure 8: Weights of each ML sub-model comprising the super learner model
for each output.

It is evident that out of the 6 different ML models employed within the
super learner, only neural network, SVM and xgboost (in that order)
contribute to the overall prediction. The rest of the models have no
contribution and so have zero weightage. The selection of the models
based on their individual contributions, i.e., the decision of how
important these models are in the super learner model, was made by
considering the cross-validation error. Weights were decided
according to the mathematical optimization technique of NNLS which
was based on the Lawson-Hanson algorithm. NNLS is a constrained
version of the least squares problem, in which the coefficients are not
allowed to become negative. The cross validated errors are mean
square error values and are shown as an error risk estimate in Figure 9.
The error bars in the figure signify the variation in each validation loop
of the k-folds. The risk is meant to be a measure of model accuracy.
By minimizing this risk, the model makes fewer erroneous predictions.
It can be clearly seen that the model with the lowest CV errors are the
ones chosen by the NNLS meta-learner model to maximize the
prediction accuracy. In short, the super learner uses 10-fold cross-
validation to estimate the risk (or error) on future data. The super
learner then employs a meta-learner and reduces the error of the
stacked models by assigning proper weights to the best performing
models. Figure 9 also shows that the error using super learner is less
than or equal to the errors from the best performing models viz., neural
net, SVM and xgboost, considered individually and so indicates its
benefits over using individual ML models.

This super learner model was then applied along with the GA
(malschains). Although, ~3500 evaluations would have been sufficient
to get to true convergence, a much higher number of 35000 evaluations
was chosen, as repeated runs of the GA would converge at slightly
different number of evaluations. Note that the ML-GA optimization is
not a time-consuming process: the runtime of the ML-GA was between
1 and 10 minutes. The major portion of time for this approach was
spent generating the initial CFD data for training. The training of the
ML model took between 30 seconds and 2 minutes.

@

o

=3

£

°

] nnet

B

173

'é xgboost

3

» .

e ridge —

=]

5]

g svm W CVrisk_ISFC

v B CVrisk_PMAX

-2 randomForest CVrisk_NOX

< o

= L CVrisk_SOOT
superlearner [I' B CVrisk_MPRR

0 0.001 0.002 0.003 0.004 0.005 0.006

Cross-validation error risk estimate

Figure 9: Mean square error representing a risk estimate in cross-validation
procedure of individual sub-models and the super learner model. The arrow
points towards a reduced error using super learner model.

The resulting optimized values of the inputs are presented in Figure 10
in the form of a normalized plot, i.e., the values are scaled between
corresponding minimum and maximum values with centering done at
the minimum value. Ten repeats of the GA model (with different
random initializations) were performed to make sure that the GA did
not output different values for each run, in which case, the GA might
be getting stuck at various local optima. The standard deviations of the
repeats are also depicted in Figure 10, but are not so obvious due to
their low values. In addition, the optimized values from the CFD-GA
approach are also shown, which can be considered as a form of
validation of ML-GA. It can be seen from Figure 10 that the optimum
values predicted by the ML-GA approach are very close to the
corresponding CFD-GA values.

Design optimization (inputs)

w 1% * + CFD-GA

[

g 0s | X MLGA

o X x

S 06 1 == *

- +

&oat X

£

5 02+ * +

b4 X X
0 + —- : : + e

nNoz NozAreaNozAng EGR Pivc Tive Swirl Pini Nell

Figure 10: Comparison of the normalized values of the optimized input
variables between CFD-GA and ML-GA.

Corresponding to Figure 10, in Table 6, absolute values of the
optimized input variables are shown along with the corresponding
values of the outputs from both ML-GA and CFD-GA. For reference,
the highest merit obtained in the 2048 simulation dataset for the ML
training was 103.2. ML-GA optimized inputs and corresponding
predicted outputs are shown in column labeled “a”. The CFD predicted
outputs for the ML-GA optimized inputs are compared and shown in
the column labeled “b”. The CFD-GA optimized set of inputs and
outputs are shown in the column labeled “c”. The percentage
differences among these columns are shown in the next three columns.
The comparison between the ML-GA predicted outputs of the “a”
column and CFD predicted outputs for the ML-GA optimized inputs
from the “b” column gives an idea of the level of confidence one might
have in using ML-GA as a surrogate for CFD-GA.

Page 9 of 13

Table 6: Comparison of the inputs and outputs from the ML-GA optimum, CFD
prediction of ML-GA optimized inputs and CFD-GA optimum. Their
percentage differences are also shown.

a b ¢
Parameter| ML-GA |CFDmLca|CFD-GA|% (a-b)|% (a-c)| % (b-c)

optimum optimum| diff diff diff

Inputs
nNoz (-) 10 10 10 - 0 0.00
TNA (-) 1.05 1.05 1.0 - 4.58 4.58
Pinj (bar) | 1492.5 | 1492.5 1490 - 0.17 0.17
SOI (deg.)| -10.65 | -10.65 -10.3 - 2.99 3.00
INang(deg.)| 159.26 | 159.26 | 158.0 - 0.73 0.73
SR (-) -1.81 -1.81 -1.66 - 9.03 9.04
EGR (-) 0.45 0.45 0.44 - 2.27 2.27
Tive (K) 323 323 3235 - -0.15 | -0.15
Pive (bar) | 2.3 23 2.3 - 0.44 0.44

Outputs
(;/ifﬁ?h) 153.375| 153.97 | 153.85 | -0.38 | -0.31 0.08

Pmax (bar)| 166.73 | 165.23 | 162.03 0.9 2.90 1.97
MPRR

13.28 12.22 11.31 8.67 | 17.42 | 8.04

(bar/deg.)
Soot 0.011 | 0.020 | 0.022 |-50.62|-50.00 [-9.09
(g/kWh)) : : . . .
NOx
(g/kWh) 1.32 1.23 1.28 824 | 3.125 | -391

Merit 104.32 | 103.91 104.0 | 039 | 0.32 -0.08

[T9% 1}

Comparing columns “a” and “b”, the differences in most of the outputs
are within 10%, but soot has a high error of 50%. It must be noted that
inaccurate predictions of outputs might deviate the GA in a wrong
direction. However, if the ML predictions are below the set constraints
for the outputs, the corresponding terms in the merit function would
not be penalized, thereby not affecting the overall GA process. In the
present case, for the high error in soot predictions, the overall effect on
the merit value due to this under-prediction of soot would be negligible
as long as the ML soot under-prediction lies below the threshold soot
constraint of 0.0268 g/kW-hr. On the other hand, the current GA has a
strong influence from ISFC since it is not constrained in the merit
function. Thus, a good ISFC prediction is very important to ensure that
the merit calculation is done properly and the GA trajectory represents
reality, as is evident from the ISFC and Merit rows of Table 6.
Considering the comparison of ML-GA inputs and outputs of column
”a” versus CFD-GA inputs and outputs of column “c” from Table 6, it
can be seen that most of the predicted values of the inputs are within
10% of the CFD-GA predicted values. Regarding the outputs, soot
predictions show the maximum error of 50%. It is however important
to note that the CFD run of ML-GA optimized point from column “b”
falls very close to the CFD-GA optimized input-output set from
column “c” and soot predictions are actually within 10% error based
on the CFD run. The high error in predictions of soot form the ML
model could be due to an inherent non-linearity of a higher degree in
the soot output with respect to the 9 inputs that the ML model could
not capture. In order to reduce the error in soot prediction, the values
of the inputs were converted to logarithmic scale, after which the ML
code normalized them for training. But this approach also did not yield
a noticeable impact on the predicted outcomes of the optimized inputs
and outputs from ML-GA. The improvement in soot predictions will
be investigated and addressed in future studies.

Since optimization using ML-GA showed promising results with merit
values and the optimized inputs being consistent with CFD-GA, a
parametric study was carried to find out the minimum number of
samples needed to obtain a merit value close to what the CFD-GA
approach predicted. To further investigate the ML-GA approach for its
performance and accuracy, only the worst merit data points were
chosen when reducing the data samples. In other words, the training
data was sorted in decreasing order of merit values and only the
samples less than a particular value were considered to train the ML
model and GA was performed using that ML model. For example, if
samples with merit value less than -80 are chosen, the original 2048
sample dataset reduces to 345 samples. The ML model is trained on
these 345 samples and the GA approach uses this trained ML model to
optimize the inputs. Considering an output space constrained in a low
merit region and trying to optimize the inputs to a higher merit region
is a good test of the ML-GA technique. In a conventional ML-GA
optimization approach, one would randomly generate these 345
samples and so the output space will be well distributed among high
and low merit values resulting in better ML model training and a better
optimization result. From the learning curves of Figure 7, a quasi-
steady state was observed after 300 samples. So, around 300 was the
lowest number of samples which was expected to perform well with
the ML-GA optimization approach for this problem. Sample size
reduction was however performed until 66 samples to confirm if there
indeed was a knee-point prior to 300 samples beyond which ML-GA
became inefficient in performing optimization.

For sample sizes above 275, which correspond to samples above a
maximum merit value of -100, except for the nNoz (number of
nozzles) parameter, some variation in the optimized input space was
observed as the sample size was reduced. In other words, the sample
size variation study above 275 did not result in the same optimized
inputs as CFD-GA except for number of nozzle holes which was
consistently same as the CFD-GA value (nNoz=10). Since there was a
wide variation of inputs observed in the optimization process as the
sample size was reduced, it was checked if some or all of these
optimized inputs would result in a merit closer to that predicted by the
CFD-GA approach. The merit predictions for mean values of the
optimized input solutions (upon 10 repeated applications of the GA)
for various sample sizes is plotted in Figure 11. The percentage error
between ML-GA merit predictions and CFD-GA merit predictions is
shown as black dashed line. It can be observed that the ML-GA merit
predictions are within ~0.5% of CFD-GA merit predictions for sample
sizes above 275. For less than 275 samples, ML-GA does not optimize
the merit to the level of CFD-GA (black solid line) and hence the error
increases sharply. This may be due to a bad prediction of number of
nozzle holes among other parameter mis-predictions. To confirm that
ML-GA optimized merit values were indeed true, CFD simulations
were performed for the optimized input sets and the calculated merit
values from CFD were compared to the ML-GA merits. The CFD
merit predictions of the ML-GA optimized inputs are shown in Figure
11 as red circles. The ML-GA merits (black cross marks) and their
corresponding CFD validations (red circles) show similar values above
275 samples with errors (red dashed line) being within 0.5%. For
sample sizes smaller than 275, these errors increase sharply.
Additionally, for sample sizes under 275 samples, since the number of
nozzles are also predicted incorrectly, it creates a big uncertainty for
injector optimization. The error seen as a red dashed line is the merit
prediction error related to the ML technique not performing well with
less number of samples and thus showing bad validations on
comparing with CFD simulations. The error between the merits of ML-
GA optimum and CFD-GA optimum is higher than the error seen
between ML-GA optimum and its corresponding CFD prediction,
since merit mis-prediction error (of that between ML-GA and CFD
predictions) propagates through the GA causing a higher error in
optimizing the merit value. However, according to this study, as low
as 275 (worst) samples would still be enough to optimize the feature

Page 10 of 13

set using the ML-GA technique for this CFD engine case. With random
sampling of input data, the merits would be fairly well distributed in
the output space, which will result in even better learning of the ML
model, and this may result in the lowest acceptable sample size limit
(here 275) getting even lower.

—CFDGA ® CFDofMLGA
X MLGA - - %Error (MLGA-CFDOfMLGA)
-~ % Error (MLGA-CFDGA)
105 3
X —
o4 L N X w % X X 1258
< P:S L g ® L X L g ® -
— N Y L] T+ -2 ©
<103 + @ \® X 5
3 WX e + 152
E R S
%102 | < < t1 8
= \\ \\ -3
8101 | X AN AN LT N 05 0
s < N S 5
. L’ 0 =
1 Noo - 5
100 S lii. - 1+ 05 2
99 1
S O S O & © S N &
of 3 of > \57 ; > 0 o &’ v“? ‘bb‘/‘\ »‘\’Q Q;’Q
IR N T A SR SN

Sample size variation

Figure 11: Merit value and its prediction errors between CFD-GA, ML-GA and
CFD run of ML-GA optimized points. On X-axis, data is represented in x.y
format where x is the ML sample training size and y is the merit value below
which samples were considered for training.

Although the optimized inputs are different as sample sizes change, the
fact that the optimized merit is still as high as the CFD-GA technique,
is the essential outcome supporting the validity of ML-GA
optimization technique. An ML-GA optimization with lower sample
size may not provide a global optimum but would point to a very close
local optima. It can be said that the ML-GA technique works best with
higher number of samples, which in this case is 2048. The sample size
variation study adds value to the ML-GA technique by showing that a
high value of merit is attainable even when the sample sizes are
lowered. A mean value of the optimized input solutions (upon repeated
application of the GA) was observed to give a merit value with a
maximum error of ~0.5% compared to the CFD-GA optimized merit
value as shown in Figure 11.

From Figure 1 concerning CFD-GA, a steady state convergence was
defined when the GA encountered 5 micro-convergence events
without any improvement in the maximum merit value. It can be seen
that a minimum of 98 generations, corresponding to 784 CFD
simulations run sequentially in batches of 8, were needed for CFD-GA
to converge. In this study, 2048 runs were used to perform
optimization using ML-GA. The training of the ML model and GA
optimization was performed on a single core of Intel Core i7-5600U
CPU (2.6 GHz). The runtime for ML model training was between 30
seconds and 2 minutes depending on the size of the data, and the
runtime of a single run of the GA routine was between 1 minute and
10 minutes. Since the ML training and GA run times were very low
and could in fact, be reduced further if run in a parallel fashion
(especially the ML model), they were not included in the runtime
calculation of ML-GA and only the time taken for CFD simulations
was considered. ML-GA provides the flexibility to run all the
simulations at once, if resources allow. For example, simulations can
be run all at once (within a day) on a supercomputer. On the other hand,
in case of a CFD-GA, the simulations need to be run in batches
sequentially over many days. A simulation run on a supercomputer
usually needs more cores since memory per core of a supercomputer
is less than that of a typical computing cluster. The “time to
completion” of job is also higher for a supercomputer compared to a
cluster. Nevertheless, the core hours of a supercomputer are cheaper
(in terms of dollar value) than the core hours of a typical cluster. So, a
direct comparison of core hours used by a job on a supercomputer

versus a cluster is not complete without the economic considerations
(which is not done here). A comparison of CFD-GA and ML-GA
runtimes considering the supercomputing and cluster resources are
presented in Table 8. Shown in the table are the number of simulations
required for the CFD-GA (784), the minimum number of simulations
needed for training the ML model (~300) to satisfactorily carry out the
GA, as well as the full dataset of simulations used for training the ML
model in this study (2048). The clusters used in this study can be
classified as small clusters, since 128 cores were used at any point of
time during the computations unlike bigger clusters which allow for
cores in the order of 1000 to be used at once. Comparisons on
considering the resources on big and small clusters are also presented
in Table 8 along with considering super computing resources.

T'able 7: Runtimes for different scenarios of performing CFD simulations.
#procs #cores
per |hrs per| No. of |sim. per|active at|RunTime| Core
Setting sim. | sim. sim. batch | atime |inDay(s)| hours
CFD-GA |Small Cluster| 16 12 784 8 128 49 150528
ML-GA |Small Cluster| 16 12 300 8 128 19 57600
ML-GA | BigCluster 16 12 300 64 1024 2 57600
Super
ML-GA Computer 32 24 2048 [2048 65536 1 1572864

Considering a smaller cluster and keeping the resources the same
between CFD-GA and ML-GA, it can be observed that ML-GA can
reduce runtimes by about 75% without much sacrifice in the
optimization accuracy. It also allows to efficiently increase the
optimization accuracy if bigger clusters and supercomputers are used,
since it gives the freedom to choose the number of CFD simulations
that can be run at once without effecting the quality of the optimization
process.

It must be noted that for a CFD-GA, higher number of individuals can
be chosen to reduce the generations and hence complete the
optimization faster. A micro-GA was used in the CFD-GA approach
of the present work and is traditionally employed for engine
optimization problems. Micro-GAs are designed to work with a very
small number of individuals in the initial population (hence the word
“micro”). For the micro-GA of the present work, it has been observed
that as the number of individuals in the initial population increases, the
generations needed to achieve the optimum decrease in a linear trend
(keeping the number of CFD simulations constant). This trend was
seen to be valid in the range of 5-13 individuals in the population [51].
For populations above 13 individuals, the micro-GA does not perform
well, since the algorithm relies on the population converging to highly
similar individuals and larger populations take prohibitively longer to
converge. So, the micro-GA in the present form does not provide much
leverage in decreasing the number of generations to expedite the
optimization time. Nevertheless, there is scope to develop the micro-
GA technique to use larger populations in order to reduce the number
of generations. An ML-GA approach provides a time-saving equally
efficient alternative with added benefits of post-processing (for
sensitivity analysis, uncertainty quantification, reliability analysis of
the optimized points, etc.), since now one has a faster running
mathematical model at hand (although black-box). In addition to that,
multiple optima can be readily found by the ML-GA model. This
allows for testing on a wider optima pool so that a design can be chosen
which is easy to implement and operate in real-world situations.

Page 11 of 13

SUMMARY AND CONCLUSIONS

Machine learning (ML) and genetic algorithm (GA) were used in
conjunction to formulate an ML-GA technique. ML-GA was shown to
significantly decrease the runtimes of a GCI engine design
optimization process by at least 75%, keeping computational resources
the same between ML-GA and a traditional CFD-GA. A super learner
ML model was employed which pooled the predictions of various
individual ML models and thus provided for high error compensation.
This super learner was shown to have a better accuracy than traditional
ML models when used separately. An exhaustive and necessary
accuracy characterization of the ML models using learning curves was
also carried out. The ML-GA technique was validated using standalone
CFD simulations along with a separate run of a traditional and costlier
CFD-GA optimization. The results showed that the accuracy of merit
optimization using ML-GA was on par with CFD-GA. The CFD-GA
approach requires the CFD simulations to be run in sequential batches
to perform the optimization. In contrast, ML-GA allows the CFD
simulations to be run in a parallel fashion to train the ML model,
provides a surrogate ML model to replace the CFD simulations in the
GA and perform optimization using the ML model instead. A
parametric study with different sample sizes of ML training data was
performed to show that the ML-GA optimum plateaued to a high merit
value above a certain (low) number of training samples but the ML-
GA merit prediction accuracy decreased below that threshold sample
size. Thus, ML-GA allowed for a lower number of CFD simulations
while still achieving merit optimization accuracy close to the CFD-GA
approach. This has the potential to reduce design optimization times
significantly. In addition, ML-GA allows for the optimization process
to be scalable to higher computational platforms such as
supercomputers, with the potential to complete the optimization in a
day, since (a large number of) CFD simulations for training the ML
model can be run all at once. The benefit of having a faster running
mathematical model at hand also provides the flexibility to carry out
other post-processing studies like sensitivity analysis, uncertainty
quantification and reliability analysis of the optimized points. ML-GA
was also shown to yield different optimized input sets having similar
high merit values (when training the ML model with different sample
sizes). This can be highly beneficial to an experimentalist, in terms of
readily assessing multiple design configurations and choosing the one
which is practically most feasible.

References

[1] D. M. Probst, P. K. Senecal, P. Z. Qian, M. X. Xu, and B. P.
Leyde, "Optimization and Uncertainty Analysis of a Diesel
Engine Operating Point Using CFD," in ASME 2016 Internal
Combustion Engine Division Fall Technical Conference,
2016, pp. VOO1TO6A009-VO01TO6A009: American Society
of Mechanical Engineers, doi: 10.1115/ICEF2016-9345

[2] Q. Zhang, R. M. Ogren, and S.-C. Kong, "A comparative
study of biodiesel engine performance optimization using
enhanced hybrid PSO-GA and basic GA," Applied Energy,

vol. 165, pp- 676-684, 2016, doi:
10.1016/j.apenergy.2015.12.044
[3] D. D. Wickman, P. K. Senecal, and R. D. Reitz, "Diesel

engine combustion chamber geometry optimization using
genetic algorithms and multi-dimensional spray and
combustion modeling," SAE Technical Paper 2001-01-
0547,2001, doi: 10.4271/2001-01-0547

[4] R. Hanson, S. Curran, R. Wagner, S. Kokjohn, D. Splitter,
and R. D. Reitz, "Piston bowl optimization for RCCI
combustion in a light-duty multi-cylinder engine," SAE
International Journal of Engines, vol. 5, no. 2012-01-0380,
pp. 286-299, 2012, doi: 10.4271/2012-01-0380

[10]

[11]

[12]

[13]

[16]

[17]

[18]

[19]

[21]

A. M. Bertram, Q. Zhang, and S.-C. Kong, "A novel particle
swarm and genetic algorithm hybrid method for diesel
engine performance optimization," International Journal of
Engine Research, vol. 17, no. 7, pp. 732-747, 2016, doi:
10.1177/1468087415611031

Y. Shi and R. D. Reitz, "Optimization of a heavy-duty
compression—ignition engine fueled with diesel and
gasoline-like fuels," Fuel, vol. 89, no. 11, pp. 3416-3430,
2010, doi: 10.1016/j.fuel.2010.02.023

Z. Wu, C. J. Rutland, and Z. Han, "Numerical optimization
of natural gas and diesel dual-fuel combustion for a heavy-
duty engine operated at a medium load," International
Journal of Engine Research, p. 1468087417729255, 2017,
doi: 10.1177/1468087417729255

I. Brahma, C. J. Rutland, D. E. Foster, and Y. He, "A new
approach to system level soot modeling," SAE Technical
Paper 2005-01-1122, 2005, doi: 10.4271/2005-01-1122

Y. He and C. J. Rutland, "Modeling of a turbocharged DI
diesel engine using artificial neural networks," SAE
Technical Paper 2002-01-2772, 2002, doi: 10.4271/2002-01-
2772

Y. He and C. J. Rutland, "Neural cylinder model and its
transient results," SAE Technical Paper 2003-01-3232,
2003, doi: 10.4271/2003-01-3232

J. Rezaei, M. Shahbakhti, B. Bahri, and A. A. Aziz,
"Performance prediction of HCCI engines with oxygenated
fuels using artificial neural networks," Applied Energy, vol.
138, pp. 460-473, 2015, doi: 10.1016/j.apenergy.2014.10.088
S. Haykin, Neural networks: a comprehensive foundation.
Prentice Hall PTR, 1994.

T. Chen and C. Guestrin, "Xgboost: A scalable tree boosting
system," in Proceedings of the 22nd acm sigkdd
international conference on knowledge discovery and data
mining, 2016, pp- 785-794: ACM, doi:
10.1145/2939672.2939785

A. N. Tikhonov, V. I. A. k. Arsenin, and F. John, Solutions
of ill-posed problems. Winston Washington, DC, 1977.

N. S. Altman, "An introduction to kernel and nearest-
neighbor nonparametric regression," The American
Statistician, vol. 46, no. 3, pp. 175-185, 1992, doi:
10.1080/00031305.1992.10475879

A. Liaw and M. Wiener, "Classification and regression by
randomForest," R news, vol. 2, no. 3, pp. 18-22, 2002.

M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B.
Scholkopf, "Support vector machines," [EEE Intelligent
Systems and their applications, vol. 13, no. 4, pp. 18-28,
1998, doi: 10.1109/5254.708428

E. Samadani, A. H. Shamekhi, M. H. Behroozi, and R. Chini,
"A method for pre-calibration of DI diesel engine emissions
and performance using neural network and multi-objective
genetic algorithm," [ranian Journal of Chemistry and
Chemical Engineering (IJCCE), vol. 28, no. 4, pp. 61-70,
2009.

A. Vaughan and S. V. Bohac, "A cycle-to-cycle method to
predict HCCI combustion phasing," in Proceedings of the
ASME Internal Combustion Engine Division 2013 Fall
Technical Conference, ICEF2013-19203, 2013, doi:
10.1115/ICEF2013-19203

A. Vaughan and S. V. Bohac, "An extreme learning machine
approach to predicting near chaotic HCCI combustion
phasing in real-time," arXiv preprint arXiv:1310.3567,
2013.

A. Validi, J.-Y. Chen, and A. Ghafourian, "HCCI Intelligent
Rapid Modeling by Artificial Neural Network and Genetic
Algorithm," Journal of Combustion, vol. 2012, pp. 1-11,
2012, doi: 10.1155/2012/854393

Page 12 of 13

[22]

[24]

[25]

[26]

[27]

[28]

[34]

[33]

[36]

[37]

[38]

J. M. Alonso, F. Alvarruiz, J. M. Desantes, L. Hernndez, V.
Hernndez, and G. Molt, "Combining Neural Networks and
Genetic Algorithms to Predict and Reduce Diesel Engine
Emissions," [EEE Transactions on Evolutionary
Computation, vol. 11, no. 1, pp. 46-55, 2007, doi:
10.1109/TEVC.2006.876364

I. Brahma and C. J. Rutland, "Optimization of diesel engine
operating parameters using neural networks," SAE
Technical Paper 2003-01-3228, 2003, doi: 10.4271/2003-01-
3228

M. Costa, G. M. Bianchi, C. Forte, and G. Cazzoli, "A
Numerical ~Methodology for the Multi-objective
Optimization of the DI Diesel Engine Combustion," Energy
Procedia, vol. 45, pp. 711-720, 2014, doi:
10.1016/j.egypro.2014.01.076

S. Coghlan et al., "Argonne applications for the IBM Blue
Gene/Q, Mira," IBM Journal of Research and Development,
vol. 57, no. 1/2, pp. 12: 1-12: 11, 2013, doi:
10.1147/JRD.2013.2238371

R. Thaka and R. Gentleman, "R: a language for data analysis
and graphics," Journal of computational and graphical
statistics, vol. 5, mno. 3, pp. 299-314, 1996, doi:
10.2307/1390807

Y. Zhang, P. Kumar, M. Traver, and D. Cleary,
"Conventional and Low Temperature Combustion Using
Naphtha Fuels in a Multi-Cylinder Heavy-Duty Diesel
Engine," SAE International Journal of Engines, vol. 9, no.
2016-01-0764, pp. 1021-1035, 2016, doi: 10.4271/2016-01-
0764

Y. Pei et al., "CFD-Guided Heavy Duty Mixing-Controlled
Combustion System Optimization with a Gasoline-Like
Fuel," SAE International Journal of Commercial Vehicles,
vol. 10, no. 2017-01-0550, 2017, doi: 10.4271/2017-01-0550
K. Richards, P. Senecal, and E. Pomraning, "Converge
theory manual," Convergent Sciences Inc., Madison, WI,
http://'www. convergecfd. com, 2014.

Z. Han and R. D. Reitz, "Turbulence modeling of internal
combustion engines using RNG «-¢ models," Combustion
science and technology, vol. 106, no. 4-6, pp. 267-295, 1995.
R. D. Reitz and R. Diwakar, "Structure of high-pressure fuel
sprays," SAE Technical Paper 870598, 1987, doi:
10.4271/870598

R. Reitz, "Modeling atomization processes in high-pressure
vaporizing sprays," Atomisation and Spray Technology, vol.
3, no. 4, pp. 309-337, 1987.

D. P. Schmidt and C. Rutland, "A new droplet collision
algorithm," Journal of Computational Physics, vol. 164, no.
1, pp. 62-80, 2000, doi: 10.1006/jcph.2000.6568

N. Frossling, "Evaporation, heat transfer, and velocity
distribution in two-dimensional and rotationally
symmetrical laminar boundary-layer flow," National
Aeronautics And Space Admin Langley Research Center
Hampton VA, 1956.

A. A. Amsden, P. O'rourke, and T. Butler, "KIVA-II: A
computer program for chemically reactive flows with
sprays," Los Alamos National Lab., NM (USA)1989.

C. Bae and J. Kim, "Alternative fuels for internal
combustion engines," Proceedings of the Combustion
Institute, vol. 36, no. 3, pp. 3389-3413, 2017, doi:
10.1016/j.proci.2016.09.009.

Y.-D. Liu, M. Jia, M.-Z. Xie, and B. Pang, "Enhancement on
a skeletal kinetic model for primary reference fuel oxidation
by using a semidecoupling methodology," Energy & Fuels,
vol. 26, mno. 12, pp. 7069-7083, 2012, doi:
10.1021/e£301242b.

J. B. Heywood, Internal combustion engine fundamentals.
Mcgraw-hill New York, 1988.

[39] H. Hiroyasu and T. Kadota, "Models for combustion and
formation of nitric oxide and soot in direct injection diesel
engines," SAE Technical Paper 760129, 1976, doi:
10.4271/760129

[40] J. Nagle, "Oxidation of carbon between 1000-2000°C," in
Proceeding of the 5th Conference on Carbon, 1982, 1982:
Pergamon Press.

[41] A. Babajimopoulos, D. Assanis, D. Flowers, S. Aceves, and
R. Hessel, "A fully coupled computational fluid dynamics
and multi-zone model with detailed chemical kinetics for the
simulation of premixed charge compression ignition
engines," International Journal of Engine Research, vol. 6,
no. 5, pp. 497-512, 2005, doi: 10.1243/146808705X30503

[42] P. Pal, Probst, P., Pei, P., Zhang, P. er al, "Numerical
Investigation of a Gasoline-Like Fuel in a Heavy-Duty
Compression Ignition Engine Using Global Sensitivity
Analysis," SAE International Journal of Fuels and
Lubricants, vol. 10, no. 2017-01-0578, pp. 56-68, 2017, doi:
10.4271/2017-01-0578

[43] P. K. Senecal and R. D. Reitz, "Simultaneous reduction of
engine emissions and fuel consumption using genetic
algorithms and multi-dimensional spray and combustion
modeling," SAE Technical Paper 2000-01-1890, 2000, doi:
10.4271/2000-01-1890

[44] E. C. Polley and M. J. Van der Laan, "Super learner in
prediction," U.C. Berkeley Division of Biostatistics Working
Paper Series. Working Paper 266, 2010.

[45] E. Polley, E. LeDell, C. Kennedy, S. Lendle, and M. van der
Laan, "Package ‘SuperLearner’," ed: CRAN, 2017.

[46] M. J. Van der Laan, E. C. Polley, and A. E. Hubbard, "Super
learner," Statistical applications in genetics and molecular
biology, vol. 6, no. 1, 2007, doi: 10.2202/1544-6115.1309

[47] S. Sapp, M. J. van der Laan, and J. Canny, "Subsemble: an
ensemble method for combining subset-specific algorithm
fits," Journal of applied statistics, vol. 41, no. 6, pp. 1247-
1259, 2014 ,doi: 10.1080/02664763.2013.864263

[48] K. M. Mullen, "Continuous global optimization in R,"
Journal of Statistical Software, vol. 60, no. 6, pp. 1-45,2014.

[49] C. N. Bergmeir, D. Molina Cabrera, and J. M. Benitez
Sanchez, "Memetic Algorithms with Local Search Chains in
R: The Rmalschains Package," American Statistical
Association, vol.75, no. 4, 2016, doi: 10.18637/jss.v075.i104

[50] C. Bergmeir, D. Molina, and J. Benitez, "Rmalschains:
Continuous Optimization using Memetic Algorithms with
Local Search Chains (MA-LS-Chains) in R," Journal of
statistical sofiware, 2012.

[51] D. M. Probst, "Optimization and Model Interrogation,"
Convergent Science Advanced Training Slides, 2017.

Acknowledgments

The submitted manuscript has been created by UChicago Argonne,
LLC, Operator of Argonne National Laboratory (Argonne). The U.S.
Government retains for itself, and others acting on its behalf, a paid-
up nonexclusive, irrevocable worldwide license in said article to
reproduce, prepare derivative works, distribute copies to the public,
and perform publicly and display publicly, by or on behalf of the
Government.

This work was supported by the U.S. Department of Energy, Office of
Science under contract DE-AC02-06CH11357. The research used
resources of the Argonne Leadership Computing Facility (ALCF),
which is a DOE Office of Science User Facility supported under
contract DE-AC02-06CH11357. Fusion and Blues High Performance

Page 13 of 13

LCRC cluster facilities at Argonne National Laboratory were also used
for some of the simulations.

