

FINAL SCIENTIFIC/TECHNICAL REPORT

LGFCs SOFC Prototype System Testing

Revision 0, January 31, 2019

WORK PERFORMED UNDER AGREEMENT

DE-FE0031180


(Period of performance October 1, 2017 through January 31, 2019)

SUBMITTED BY

LG Fuel Cell Systems Inc.
6065 Strip Ave. NW
North Canton, OH 44720
Under the Direction of Dr. Daehwa Jeong,
Chief Technology Officer

PRINCIPAL INVESTIGATOR

Crispin DeBellis
330-491-4818 (phone)
330-491-4808 (fax)
Cris.DeBellis@lgfcs.com

SUBMITTED TO

U. S. Department of Energy
National Energy Technology Laboratory

Patcharin Burke
Patcharin.Burke@netl.doe.gov

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither LG Fuel Cell Systems Inc. nor the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

ABSTRACT

In the project, LGFCS assembled and tested its modular SOFC Power System that incorporates all critical technology improvements identified for its “product-like” demonstration. This product demonstrator is expected to meet customer and LGFCS performance expectations for operation, availability, durability and serviceability. The principal technology improvements are aimed at increasing the fuel cell power output and reducing the stack degradation rate. Improvements were also made for added system robustness and increased reliability.

The objective of this program is to test a 250kWe thermally self-sustaining modular solid oxide fuel cell (SOFC) Power System for a minimum of 5,000 hours while advancing this commercial prototype product demonstrator to a Technical Readiness Level (TRL) 7. The SOFC system was tested on a site provided by Stark State College in North Canton, Ohio. System performance and degradation as well as cost estimates were compared to established SOFC Program performance metrics to assess progress.

The major achievements were to assemble, and QA qualify 70 fuel cell strips for 12 integrated blocks into a fuel cell vessel and install it into a generator module with the fuel and power electronics modules on the test site. Performance to date included over 1800 hours on load at 250 KW-AC to the grid with a DC efficiency of 61% and AC efficiency of 55%. Power degradation was less than 0.4% per 1000 hours and NOx emissions met standards. The LGFCS SOFC Prototype System (GEN0) was demonstrated in an operational environment and therefore achieving Technical Readiness Level 7.

The work presented here represents the efforts of all the employees of LG Fuel Cell Systems. Their dedication and hard work made GEN0 possible and successful.

Table of Contents

ABSTRACT.....	2
EXECUTIVE SUMMARY.....	7
1.0 REPORT DETAILS	8
<i>Introduction</i>	8
<i>Task 1.0 - Project Management</i>	8
<i>Task 2.0 – Cost Modeling</i>	9
<i>Task 3.0 – Assemble Fuel Cell Vessel</i>	13
<i>Task 4.0 – System Assembly</i>	34
<i>Task 5.0 – SOFC Prototype System Testing</i>	43
2.0 SUMMARY.....	62
3.0 ABBREVIATIONS.....	64

Table of Tables

Table 1 Milestone Log.....	9
Table 2 Gen0 key parts incoming inspection results	16
Table 3 Gate Review for all the IB LQC process	18
Table 4 Strip out-going inspection table.....	19
Table 5 Integrated Block Part Allocation	28
Table 6 Strip Allocation.....	29
Table 7 Full Anode Loop Leakage.....	30
Table 8 Cathode Loop Leakage	30
Table 9 IV Vacuum Leak Checks.....	33
Table 10 Whole IV Vacuum Check	33
Table 11 Whole Vessel Pressure Check	34
Table 12 Operations Log	53
Table 13 Utilization	53

Table 14 Key Performance Indicators	62
---	----

Table of Figures

Figure 1 LGFSC Solid Oxide Fuel Cell (SOFC) Power Plant.....	8
Figure 2 Example of GEN0 Bill of Materials Data.....	10
Figure 3 Comparison of Gen0 first-of-a-kind cost and should cost	12
Figure 4 Cost Effective Design Changes for Integrated Block Frame	12
Figure 5 Anode ejector nozzle mis-align and diameters.....	14
Figure 6 Surface crack of the cathode ejectors	14
Figure 7 Jig for inspection of the anode ejector nozzle mis-align.....	15
Figure 8 Flow test procedure for anode ejector	15
Figure 9 Gen0 tube rejections by stage	16
Figure 10 Yield for detailed process's	17
Figure 11 Accident Report of the Strip damaged by mis-installing in the furnace.....	17
Figure 12 IB inspection sheets from vender	18
Figure 13 Strip Leakage and ASR comparison.....	19
Figure 14 IB Flow check concepts	20
Figure 15 IB Leakage comparison and capability.....	20
Figure 16 SIC Trace Automated Machine.....	21
Figure 17 Wet Ink Trace in Ink Trace Automated Machine	22
Figure 18 Subassembly Machine with Dense Parts	23
Figure 19 Completed Subassemblies with Associated Types	23
Figure 20 Finished Bundle with Weight	24
Figure 21 Fuel Cell Strips Ready for Installation	25
Figure 22 Integrated Blocks in Inner Vessel Segments	26

Figure 23 Inner Vessel Segments Installed in Fuel Cell Vessel.....	27
Figure 24 Fuel Cell Vessel Installed on Generator Module Frame.....	27
Figure 25 Generator Module Package	35
Figure 26 Generator Module Package Details	35
Figure 27 GM, FM and PE Modules Assembled on Test Site	36
Figure 28 Electrical Configuration.....	37
Figure 29 PCS package including transformer	38
Figure 30 PCS Test Result.....	38
Figure 31 Electrical cabinets in GM package	39
Figure 32 BPC test result.....	39
Figure 33 BPC and BPM cabinets in GM package	40
Figure 34 GM PDU and DC Power cabinets in GM package	41
Figure 35 TG PE and TGA cabinets in GM package	41
Figure 36 Fuel Package Desulfurizer	42
Figure 37 LGFCS GEN0 250 KWac Product Demonstrator	45
Figure 38 Health Monitoring System Overview.....	46
Figure 39 HMS Components, Characterization (gray), data flow (orange), Operations (green)	47
Figure 40 Component selection and positioning for the fuel cell strips.....	48
Figure 41 Component Automated Verification System.....	49
Figure 42 Real-time physics model fault detection overview	50
Figure 43 Real time dashboard	50
Figure 44 GEN0 Site Rendering.....	51
Figure 45 Process Flow Diagram	52
Figure 46 Expected vs. Actual ASR	54
Figure 47 Early Test Condition and ASR.....	55

Figure 48 Early Power and DC Efficiency	56
Figure 49 Early Strip ASR vs. Temperature	56
Figure 50 Comparison of Gen-0 with Previous System Tests	57
Figure 51 Longer Term Power and DC Efficiency.....	58
Figure 52 Longer Term Test Condition and ASR	58
Figure 53 Longer Term Strip ASR vs. Temperature.....	59

EXECUTIVE SUMMARY

The objective of this program is to test a 250kWe thermally self-sustaining modular solid oxide fuel cell (SOFC) Power System for a minimum of 5,000 hours while advancing this commercial prototype product demonstrator to a Technical Readiness Level (TRL) 7.

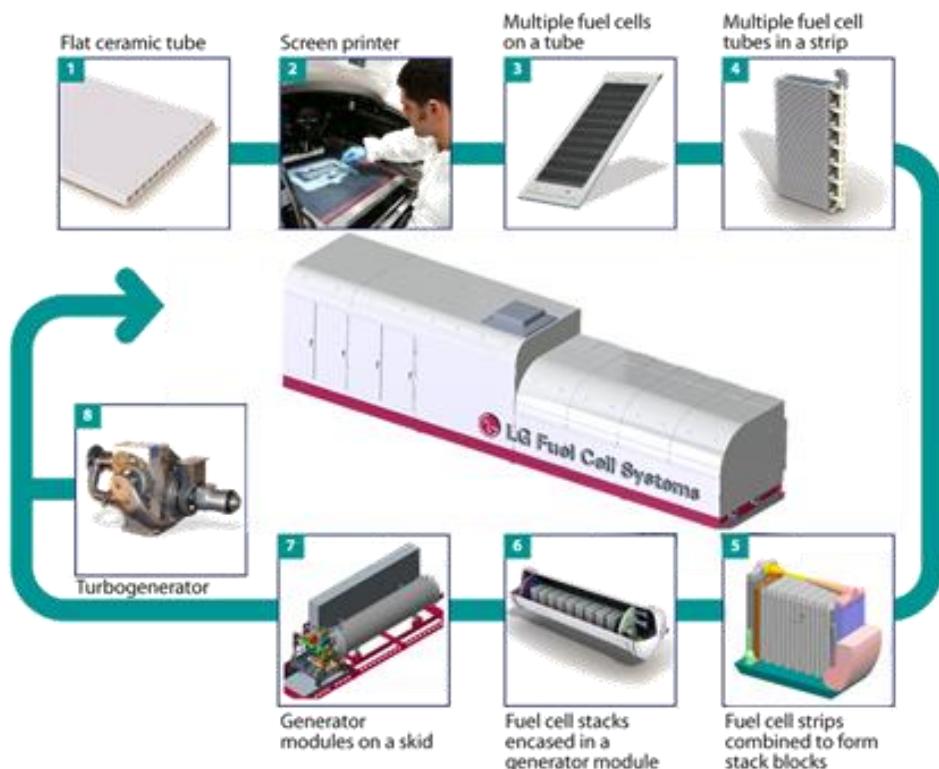
The scope of work includes:

- The assembly of the Fuel Cell Vessel (FCV)
- Assembly and packaging of the Generator Module and Balance of Plant (BOP)
- Installation and interconnection of the power system packages and connection to the fuel supply and power grid
- Commissioning and shakedown testing to validate assembly and safe operation
- 5,000 hours operation at a base load power rating to the grid

The SOFC system was tested on a site provided by Stark State College in North Canton, Ohio. System performance and degradation as well as cost estimates were compared to established SOFC Program performance metrics to assess progress.

The major achievements were:

- Assemble and QA qualified 70 fuel cell strips for 12 integrated blocks and 2 spare integrated blocks
- Assemble and QA qualified 12 integrated blocks and 2 spare integrated blocks and installed in fuel cell vessel
- Delivered fuel cell vessel to test site and installed in generator module
- Installed fuel and power electronics modules on test site
- Interconnected generator, fuel and power electronics modules on test site
- Commissioned and started the LGFCS SOFC Prototype System
- Performance to date:
 - Over 1800 Hours on Load
 - Power to Grid = 250 KW-AC
 - Efficiency = 61% DC / 55% AC
 - Power Degradation = 0.4% per 1000 hours
 - Emissions meet NOx standards
- The LGFCS SOFC Prototype System (GEN0) was demonstrated in an operational environment and therefore achieving Technical Readiness Level 7


LG Fuel Cell Systems Inc. (LGFCS) provided written notice of termination of this Cooperative Agreement No. DE-FE0031180 effective January 31, 2019 prior to completing the 5000 hours of testing. LGFCS terminated the Cooperative Agreement due to the need of its member companies to re-focus resources and capital to meet new global energy market challenges in the near term.

1.0 REPORT DETAILS

Introduction

The components of the LGFSC Solid Oxide Fuel Cell (SOFC) power plant are shown in

Figure 1. Flat porous ceramic tubes (1) are the substrate for fuel cells printed with industrial screen-printing equipment (2). The fuel cell tubes (3) are assembled into strips (4) with manifolds to direct the flow of fuel inside the tubes. The strips are incorporated into Integrated Block (IB) (5), which direct the flow of air and fuel, control the thermal environment and extract electrical power. The IB's are combined into a fuel cell vessel (6) with a turbo generator (8) to supply air and pressure to form the Generator Module (GM) (7). The GM is packaged with Balance of Plant (BOP) equipment to form the system.

Figure 1 LGFSC Solid Oxide Fuel Cell (SOFC) Power Plant

Task 1.0 - Project Management

LG Fuel Cell Systems Inc. (LGFCs) will manage and direct the project in accordance with a Project Management Plan to meet all technical, schedule and budget objectives and requirements. LGFCs will coordinate activities to accomplish the work. LGFCs will ensure that

project plans, results, and decisions are appropriately documented, and project reporting and briefing requirements are satisfied.

Results and Discussion

LG Fuel Cell Systems Inc. (LGFC) provided written notice of termination of this Cooperative Agreement No. DE-FE0031180 effective January 31, 2019. LGFC terminated the Cooperative Agreement due to the need of its member companies to re-focus resources and capital to meet new global energy market challenges in the near term. Recent activity in the fuel cell market has confirmed profitability challenges for the technology, despite a competitive cost structure and product specifications. Continuation of LGFC's research under the Cooperative Agreement is not consistent with member company needs to address these challenges.

The milestone log is shown in Table 1.

Table 1 Milestone Log

Budget Period	Milestone No.	Task No.	Milestone: Title/Description	Planned Completion Date	Actual Completion Date
1	1	1	Submit Revised PMP/TMP	15-Nov-17	20-Dec-17
1	2	3	Receipt of Fuel Cell Tubes	15-Feb-18	16-Feb-18
1	3	4	Complete GM and BOP Packages	15-May-18	30-Jul-18
1	4	3	Complete FCV Assembly	15-Aug-18	12-Jul-18
2	5	4	Complete Installation of GM and BOP Packages	15-Oct-18	22-Aug-18
2	6	5	Submit Test Plan (45 days prior to start of test)	15-Nov-18	25-Sep-18
2	7	5	Complete 1,000 hour of test	15-Feb-19	29-Oct-18
2	8	2	Cost Report Submitted	15-Apr-19	
2	9	5	Complete 5,000 hour test	15-Aug-19	

Task 2.0 – Cost Modeling

LGFC will utilize the Factory Cost Model to estimate the cost of the SOFC stack. Cost estimates will be compared to the established SOFC program cost metric. LGFC will prepare a Factory Cost Report estimating the costs for the SOFC stack design and materials of the system test, but at future high-volume production rates. Cost estimates will utilize DOE recommendations for materials where available.

Results and Discussion

A detailed Bill of Materials (BOM) was developed for the GEN0 system with internal funds. The BOM included the one-off, first-of-a-kind cost of every component in the system. An example of this data is shown in Figure 2.

The system can be separated into 3 main subsystems: Cell and Stack (C&S), Fuel Cell Vessel (FCV) and Integrated Blocks (IB), and Balance of Plant (BOP) consisting of turbo generator, power electronics, fuel processor and packaging. For GEN0 the highest cost is the C&S which accounts for 50%, next is the FCV and IB which is 30% and lastly the BOP which accounts for 20%.

Level	Parts Number	Picture	Parts Name				
		1	2	3	4	5	6
0			FUEL CELL SYSTEM				
1	FCP000987652		GENERATOR MODULE				
2	FCP000881682		FCV & TGA ASSEMBLY				
3	FCP000920510		FUEL CELL VESSEL ASSEMBLY				
3	TGA2_Package_Assy		TGA PACKAGE				
4	TGA2_Module_Assy		TGA Module Unit				
3	FCP000858133		AIR FILTER FOR TGA				
3	FCP000881685		FCV BASE				
3	FCP000881730		FCV ENCLOSURE				
4	FCP000881732		ENCLOSURE STRUCTURE				
3	FCP000922510		TGA FCV IO ENCLOSURE				
2	FCP000881683		GM BOP ASSEMBLY				
3	FCP000881687		BOP BASE				
3	FCP000881688		APG & AUX FUEL				
3	FCP000919292		FUEL CONTROL & ISOLATION				
3	FCP000922520		GMPDUO ENCLOSURE				
3	FCP000922620		DC POWER ENCLOSURE				
3	FCP000919980		AIR CONDITIONER				
3	FREEDOM_BULL428		TG LOAD BANK				
3	AC LOUVER		AC LOUVER				
3	EATON_93PM_UPS_50KW		TG UPS				
1	FCP000895918		Fuel Module Assembly				
2	DES Module		SulfurTrap R2G, R8C (70Gal, 2X)				
2	2100PGM0001		DES Plant Supply Pressure Gauge				
2	2100PRM0001		DES Plant Supply Pressure Transduce				
2			Junction Box				
2			Enclosure				
3			Interconnection between Modules				
1	FCP000872811		PCS Module Assembly				
1			Pipes				

Figure 2 Example of GEN0 Bill of Materials Data

A should cost model was developed for the product using internal funds, this contract and DE-FE 0031638, Techno-Economic Analysis of an LGFCS MWe-Class SOFC System. The model is based on the material cost plus the manufacturing cost as follows.

1) Material cost = Raw material cost + Manufacturing cost (Machining cost + Profit)

The raw materials cost can be estimated as:

2) Raw material cost = (Volume X Density) x α x Unit Price [\$/kg]

Where α is machining allowance factor:

$$\alpha = \frac{\text{Required Mass}}{\text{Final Mass}}$$

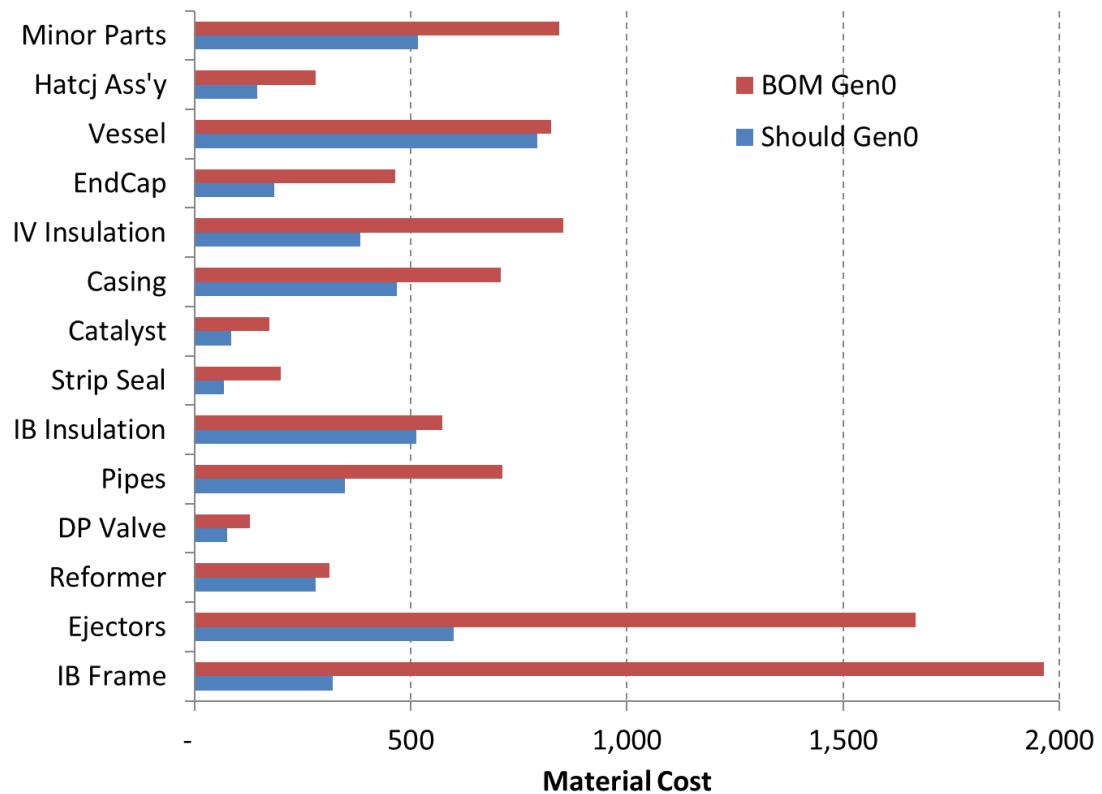
Since there is scrap from parts during machining, the required mass of the raw material is always greater than the final machined mass. If the machining allowance factor is 1, the required mass for machining is the same as the final mass after machining.

The raw manufacturing cost can be estimated as:

$$3) \text{ Manufacturing Cost} = \beta \times \text{Raw material cost}$$

The manufacturing cost ratio, β , is a function of the manufacturing method, manufacturing difficulty, machine depreciation, manufacturing volume, labor wage, and so on.

$$\beta = \frac{\text{Manufacturing Cost}}{\text{Raw material Cost}}$$


Plugging 2 and 3 into 1 gives the material cost as:

$$4) \text{ Material Cost} = (\beta + 1) \times \text{Raw material cost}$$

$$= (\beta + 1) \times (\text{Volume} \times \text{Density}) \times \alpha \times \text{Unit Price} [\$/kg]$$

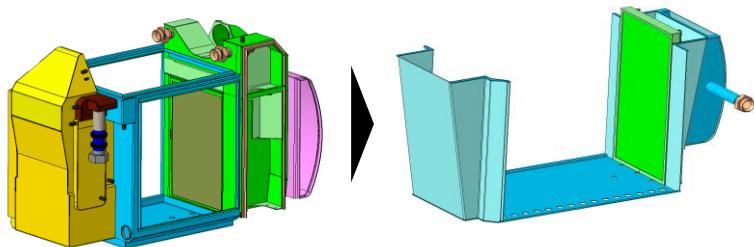

Once the volume and material type (cost) of each component is calculated from the BOM, the material cost can be estimated.

Figure 3 shows a comparison between Gen0 first-of-a-kind cost and should cost for the FCV and IB components.

Figure 3 Comparison of Gen0 first-of-a-kind cost and should cost

Even though we may reduce the material cost through appropriate cost analysis, more cost reduction is required. For reducing the raw material cost, design and material changes are needed. Manufacturing cost reduction can be achieved through low cost design, low-cost manufacturing and development of competitive supply chain. Figure 4 shows the cost reduction for the integrated block frame.

Figure 4 Cost Effective Design Changes for Integrated Block Frame

Appling these methods to the system and assuming a production rate of 8MW/year, the cost target of \$5,000/kW can be achieved. The Cell & Stack accounts for 40% of the cost with

reduction in tube manufacturing and improving cell processing methods. The FCV and IB accounts for 30% of the cost with reduction through doubling the power density and design simplification. Lastly the BOP accounts for 30% of the cost with reductions through supply chain development.

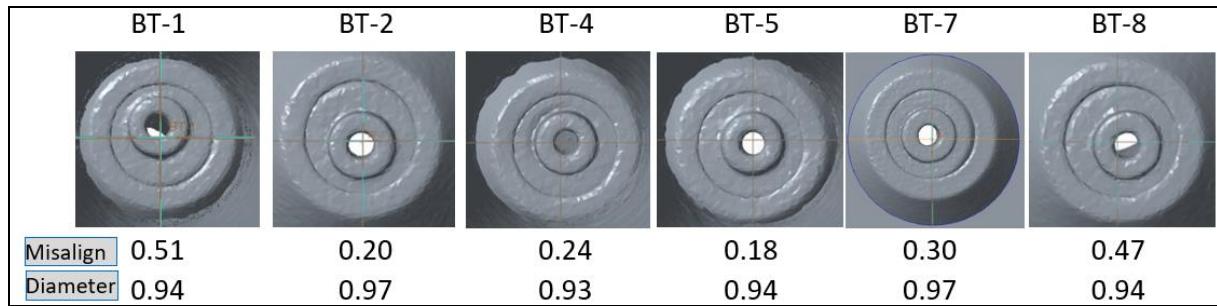
Task 3.0 – Assemble Fuel Cell Vessel

The purpose of this task is to assemble the FCV, a major component of the 250kW SOFC Power System. The principle components that make up an FCV are fuel cell tubes, fuel cell strips, integrated blocks (IBs), an inner vessel assembly, and the outer pressure vessel. The costs associated with materials used in fabricating the cells and stacks will be provided by the Recipient along with all purchased components used in the 250kW system will be incurred by the Recipient outside the DOE project costs. The engineering and design package for the 250kW SOFC prototype system is being carried out independently by the Recipient. This will include utilizing the Hazard and Operability Analysis (HAZOP) method to ensure that the 250kW system includes all required safety features. The detailed design will also address site preparations and installation requirements for the demonstration site. The fuel cells will be installed in an advanced cycle integrated block, which significantly reduces chrome-baring materials and includes a chrome getter. It also incorporates in-block-reforming to increase power density and reduce temperature. The fuel cell strip will be of the “Integrated System Testing” (IST) design and include a new ceramic-to-metal clamp joint and secondary interconnect. In addition, the fuel cells may incorporate new material sets for reducing degradation.

Results and Discussion

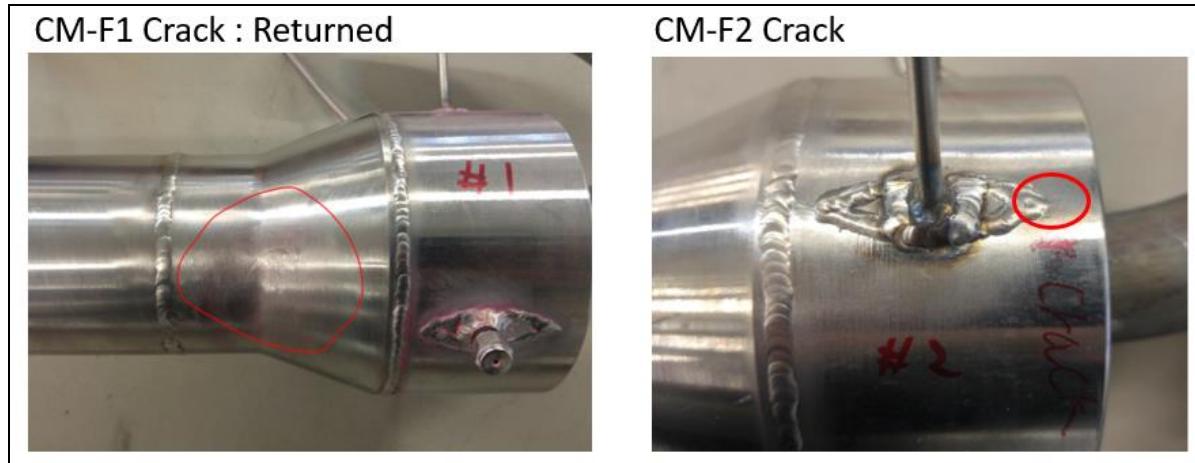
This section describes several activities aimed at improving the quality of the stack and IB by critical parts quality control. 3 Steps quality control applied for improving the quality.

- IQC (Incoming Quality Control): Incoming Inspection for all critical parts, printed tubes, dense parts, assembly glasses, ejectors, reformers, IB frame, etc.
- LQC (Line Quality Control): Quality inspection during assembly, visual check, leakage test for sub-assembly, bundles, strips and IBs.
- OQC (Outgoing Quality Control): Before out-going, inspect all OQC items, visual and leakage also performance check for the strips.

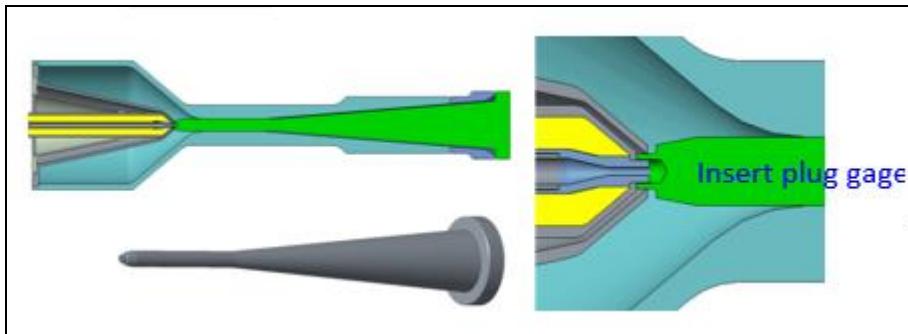

Incoming Quality Control: The QA team decided critical parts and set-up the specifications for improving the strip/IB quality. Some parts specifications are not clear, so we need several tasks for confirming the specification.

Printed tubes were received from the supplier. Before printing the tubes, the supplier agreed to specifications and all critical items including.

- Inspection all the bare tubes: Crack, dimension, properties
- Meet the ink deposition specifications
- Meet the dimension specifications


- 100% out going inspection: Visual, Leakage, Short circuit
- Performance test by sampling procedure: ASR target is 0.289 ohm-cm² with a USL of 0.314 ohm-cm²

Modification of the ejector design and inspection technique was necessary to improve ejector performance. For the anode ejector, nozzle distortion issues lowered performance. Nozzle diameter CT scan inspection is shown in Figure 5.


Figure 5 Anode ejector nozzle mis-align and diameters

Cracks were found on the cathode ejectors as shown in Figure 6.

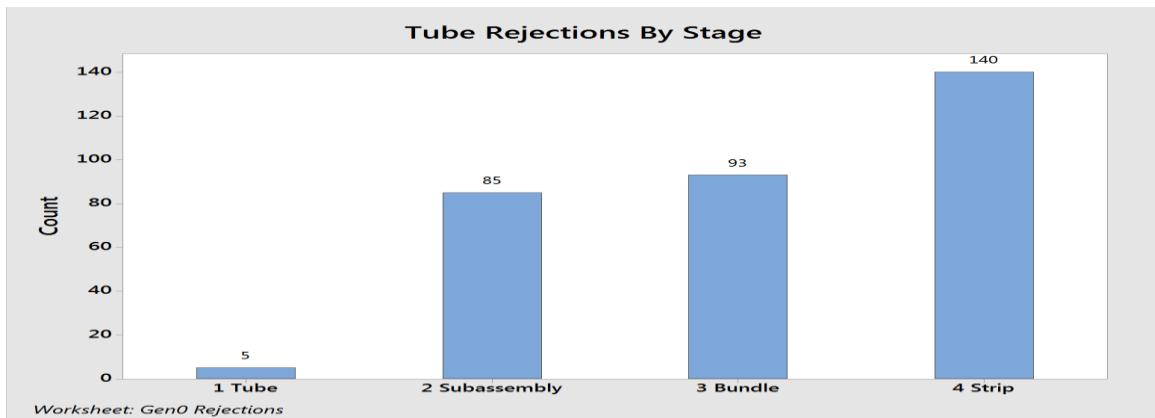
Figure 6 Surface crack of the cathode ejectors

Venders were informed of these quality issues and procedures were implemented to prevent them. The venders improved their quality inspection system and develop new inspection methods. A nozzle align inspection tool is shown in Figure 7.

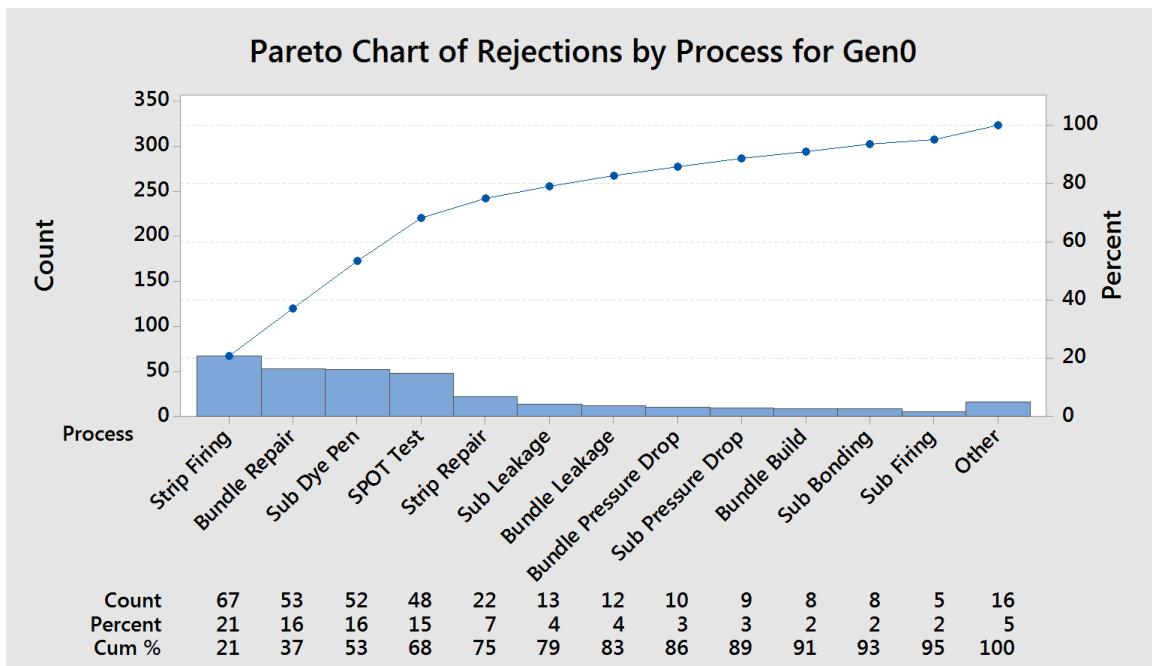
Figure 7 Jig for inspection of the anode ejector nozzle mis-align

After completing the ejector inspection activity, the anode/cathode/auxiliary ejectors performance inspection procedure was developed as shown in Figure 8.

Test specification:	Test steps:
<ul style="list-style-type: none"> Rationale <ul style="list-style-type: none"> Measure dP across anode ejector primary, diffuser and ejector Fittings/Fixtures <ul style="list-style-type: none"> Primary fuel pipe fitting and test lead Secondary connection and test lead Diffuser outlet connection and test lead Test conditions <ul style="list-style-type: none"> Primary flow set to 16 nl/min Measure dP by varying secondary flow from 0 to 160 nl/min in 32 nl/min steps Measurement <ul style="list-style-type: none"> Primary dP = Pressure Tap 1 – 3 Diffuser rise = Pressure Tap 3 – 2 Ejector rise = Pressure Tap 3 – 4 <ul style="list-style-type: none"> Compare ejector rise when secondary flow is @ 96 nl/min 	<ol style="list-style-type: none"> Setup flow check trolley <ul style="list-style-type: none"> Ensure pressure release valve is closed Plug in mains adapter and connect air supply Ensure MFC set point is zero. Connect test pipework to trolley <ul style="list-style-type: none"> Connect test supply pipework to trolley and attach pressure transducers to test leads. Connect test pipework to anode ejector <ul style="list-style-type: none"> Attach the primary, secondary and diffuser pipework Increase flow rate set point <ul style="list-style-type: none"> Zero the transducer & wait for flow rate to stabilise before taking measurements Record results in template


Figure 8 Flow test procedure for anode ejector

After quality improvement activities and active cooperation from the vendors, a high-level incoming inspection yield was achieved as shown in Table 2.


Table 2 Gen0 key parts incoming inspection results

Assy	Key parts		Quantity				Inspection			Remark
			Need	Order	Received	Rate	Passed	Reject	Yield	
ISR	Reformer	LG617	14	14	14	100%	14	0	100.0%	
Ejector	Cathode ejector	F design	14	14	15	107%	14	1	92.9%	1: nozzle out of spec
	Anode ejector	0.9 nozzle	14	14	15	107%	14	1	92.9%	1: Low ARR
	Auxiliary ejector	2.5 nozzle	14	14	14	100%	14	0	100.0%	
IB	IB Frame	Ameco	8	8	8	100%	8	0	100.0%	
		Qual-Fab	6	6	6	100%	6	0	100.0%	
	CMJ Clamp	Flange/ Support	140	180	180	129%	174	6	96.6%	6:Surface defect
		Band	140	180	180	129%	144	0	100.0%	
Strip	Printed Tube	LG CEM	5,040	5,500	5,681	113%	5,677	4	99.9%	4: Visual defects
	Glass(g)	LG CEM	18,000	19,800	19,830	110%	19,830	0	100.0%	
	Strip total		70	70	70	100%	70	0	100.0%	

Line Quality Control: Each step of the assembly process was inspected, and data collected on quality. The results were analyzed statistically with Six Sigma tools. These results were used for understanding the status and corrective actions. The overall yield of the strip assembly was 94.3 %. as shown in Figure 9 and Figure 10.

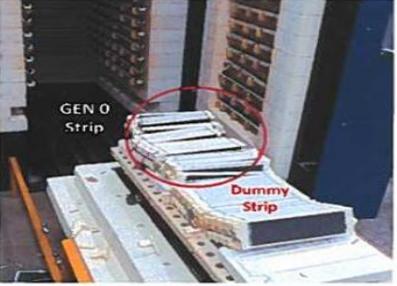


Figure 9 Gen0 tube rejections by stage

Figure 10 Yield for detailed process's

Figure 10 shows that the highest rejection stage was strips firing. This was caused by operator errors during strip installing in the furnace. A root cause analysis was performed, and corrective actions taken to improve the process as shown in Figure 11.

Description	What's damaged
<p>While loading a strip into the Drayton furnace, the furnace door was not opened far enough to ensure proper clearance for the loading carriage. As a result, the carriage caught on the door and 1 GEN 0 strip and 2 dummy strips fell forward.</p>	<ul style="list-style-type: none"> 6 out of 12 bundles look good seemingly but need them inspected (Visual, Dye pen. and leak test to see if they can be reused. The rest of 6 bundles had a couple of tube broken per each bundle. 11 out of 36 tubes were broken Broken tubes should be cut off and hopefully the rest of tubes should be reused after inspection. <p># of broken tubes → 1 2 3 4 5 6</p>
Prevention & Next Plan	
<ul style="list-style-type: none"> 2 workers to load/ unload strips. Work Standard Observation before & during loading/ unloading. If needed, get the work standard amended. Trial furnace run to check if there is any operational issue with the furnace. 	<ul style="list-style-type: none"> This will cause approximately damage of \$20,000 worth expense and 1 week delay of production schedule but it's not a critical path for GEN 0 strips delivery because the strip production status is currently on schedule. <p style="text-align: right;">Date : 4-25-18</p>

Figure 11 Accident Report of the Strip damaged by mis-installing in the furnace

For IB assembly, critical assembly process steps were defined, and checklist prepared for each step and applied go/no-go decisions as shown in Table 3.

Table 3 Gate Review for all the IB LQC process

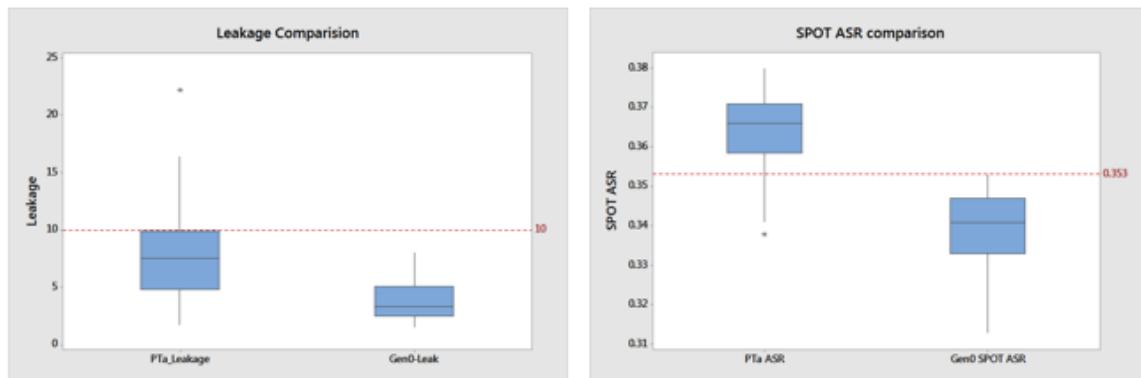
IB frame	Borescope	Strip leak (LQC-2)	Full anode loop leak (Spec < 300)	Build check list
AMIB-G0-001	O	O	35.20	2-Jun
AMIB-G0-002	O	O	66.03	11-May
AMIB-G0-003	O	O	27.65	5-Jun
AMIB-G0-004	O	O	30.23	4-Jun
AMIB-G0-005	O	O	46.64	24-Jun
AMIB-G0-006	O	O	33.19	16-Jun
AMIB-G0-007	O	O	46.04	21-Jun
AMIB-G0-008	O	O	50.37	3-Jul
QFIB-G0-001	O	O	59.40	11-Jun
QFIB-G0-002	O	O	30.00	9-Jun
QFIB-G0-003	O	O	45.31	31-Aug
QFIB-G0-004	O	O	47.40	3-Jul
QFIB-G0-005	O	O	33.40	5-Jul
QFIB-G0-006	O	O	38.65	31-Aug

In case of the IB frame, vendor inspection checklists were set up and reviewed upon receipt of frames, see

Figure 12. Other critical part vendors followed similar processes.

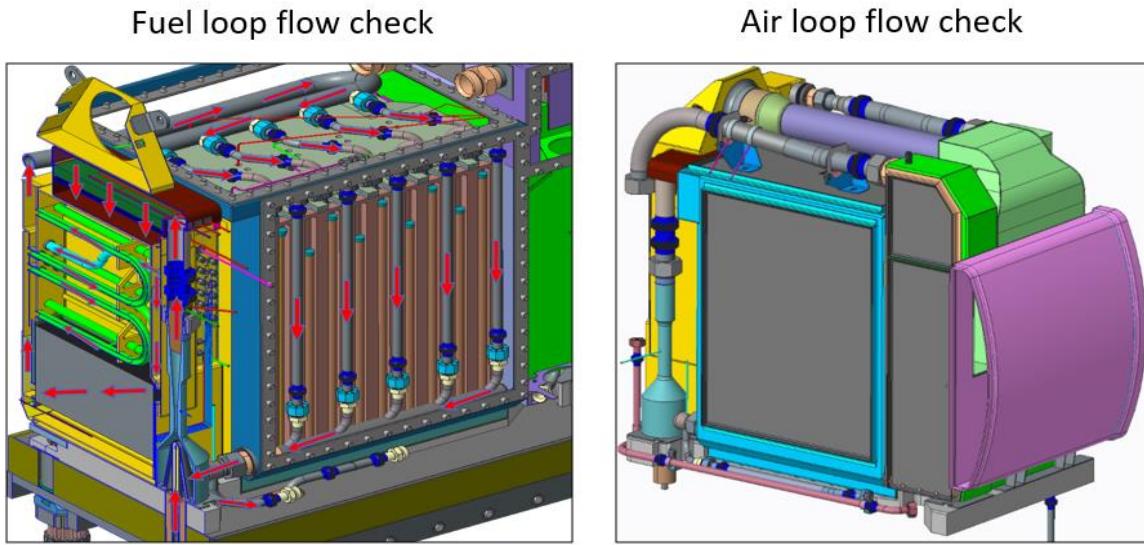
Part	Serial Number	Date	Inspector	Leakage (cc/min)	Spec (cc/min)	Pressure (bar)	Notes
Anode Assembly (Final)	20191015	4/27/18	BMM	< 571	< 300	200 ± 20	
Cathode Preheater (Final)							

Part	Serial Number	Date	Inspector	Leakage (cc/min)	Spec (cc/min)	Pressure (bar)	Notes
Anode Assembly (Final)	20191015	4/27/18	BMM	< 572	< 300	200 ± 20	
Cathode Preheater (Final)							

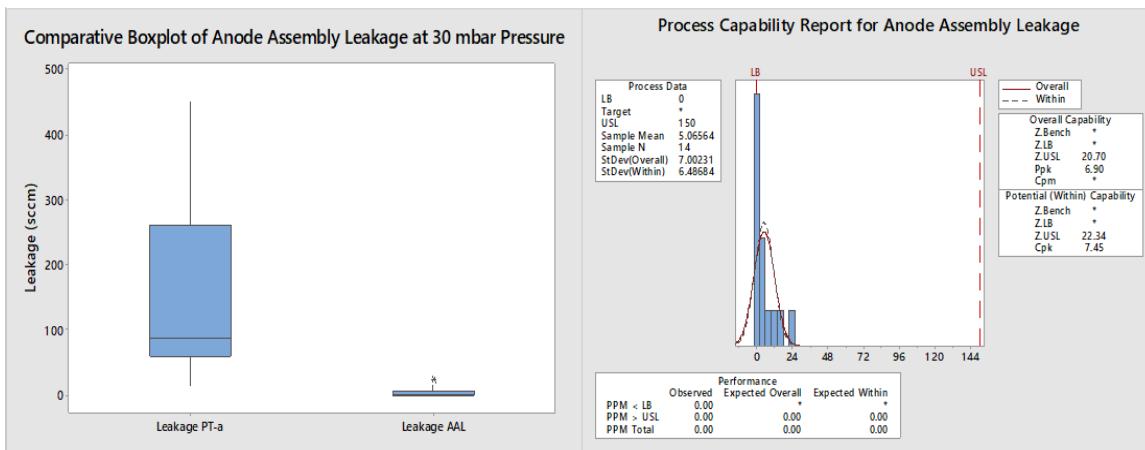

Figure 12 IB inspection sheets from vendor

Out-going Quality Control: After completing the strips and IBs, out-going inspection was performed. When the strips and IBs passed the inspection, they moved to the next stage. For the strips, 14 steps of out-going inspections were performed as shown in Table 4.

Table 4 Strip out-going inspection table


NO	Items	Total	Completion	Completion
		Counts	% of 60 Strips	% of 70 Strips
1	Pre-Leak	70	116.7%	100.0%
2	Pre-pressure drop	70	116.7%	100.0%
3	SPOT	70	116.7%	100.0%
4	Post Leak	70	116.7%	100.0%
5	Post-pressure drop	70	116.7%	100.0%
6	Dimensions	70	116.7%	100.0%
7	Dye Pen	70	116.7%	100.0%
8	Cracks Measured	63	105.0%	90.0%
9	Video mapping	70	116.7%	100.0%
10	Inspection Sheet	70	116.7%	100.0%
11	Visual	70	116.7%	100.0%
12	Manager	70	116.7%	100.0%
13	Packed	70	116.7%	100.0%
14	Shipped	70	116.7%	100.0%

All the data was managed by statistical quality control process. Strip leakage and ASR were significantly improved compare to the Prototype A technology demonstrator (PT-A) strips as shown in Figure 13. PT-A was a technology demonstrator what had the same configuration as GEN0.


Figure 13 Strip Leakage and ASR comparison

For the IB's, fuel loop and air loop leakage and flow were checked. Figure 14 showed the flow test concepts.

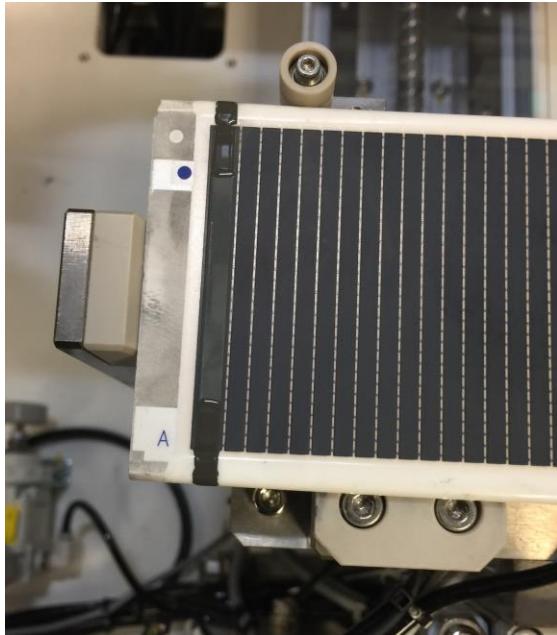
Figure 14 IB Flow check concepts

In terms of the IB fuel loop leakage, the results were significantly improved compared to the PT-A IBs as shown in Figure 15.

Figure 15 IB Leakage comparison and capability

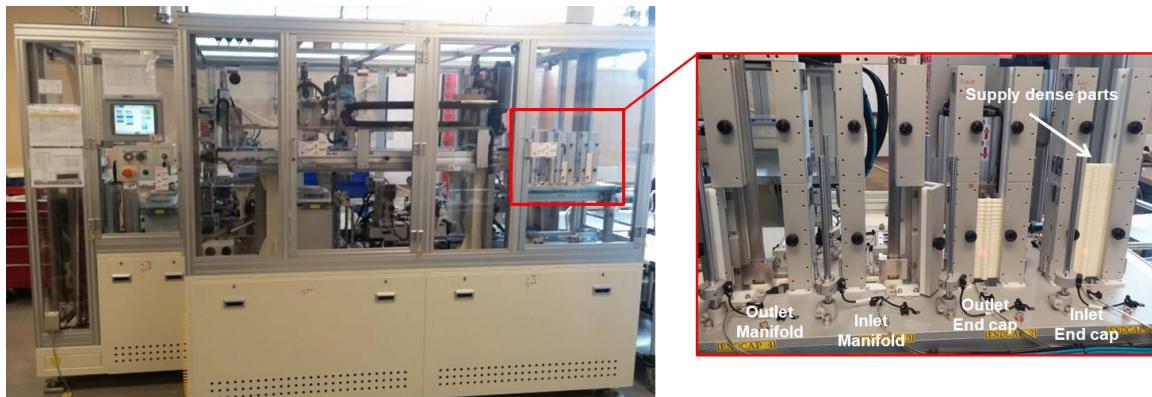
3.1 Assemble Fuel Cell Strips

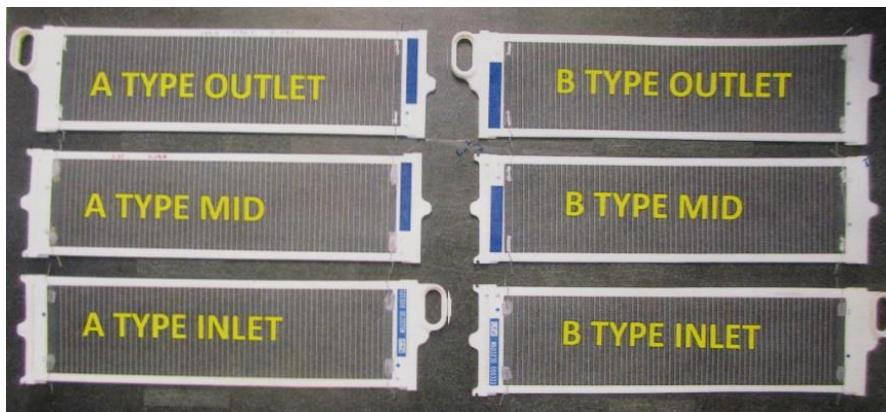
The fuel cell tubes will be inspected using existing procedures to assure specifications have been met. Fuel cell strips will then be constructed using established manufacturing Work Instructions. The strips will be thoroughly inspected and tested before being released for FCV


Assembly. Inspections include leakage, pressure drop to confirm flow characteristics, and dimensional checks against manufactured specifications. Testing includes continuity checks to insure no short circuits between tubes and a performance test. Following the performance testing, redundant leakage and short-circuit testing is again performed before the strips are released for FCV Assembly.

Results and Discussion

After receiving printed tubes from the supplier, incoming inspection is performed on the individual tubes to ensure no cells have short circuits and the tubes have a leakage less than 6 sccm. Once the single tube passes incoming inspection, the tube is then ready for the SIC trace. The SIC trace connects one side of the tube to the other using a Palladium and Glass paste (see Figure 16). This process is done automatically using an automated machine (see Figure 17). These traces are dried for 60 minutes at 120 degrees C and then fired for 120 minutes at 1060 degrees C. After firing, each ink trace is inspected to ensure no cracking is present. If cracking is present, a repair is needed by manually painting more of the Pd glass paste over the crack and refiring at 1060 degrees C. This ensures a uniform resistance and therefore current flow over the ink trace.


Figure 16 SIC Trace Automated Machine


Figure 17 Wet Ink Trace in Ink Trace Automated Machine

When all ink traces on one tube passes inspection, SIC wire attachment is the next step in the process. Palladium wire at 0.4mm diameter is cut to 16mm long. Then, additional Pd glass paste is applied manually to each trace. The 16mm long wire is placed on to the paste, then the paste is brushed out to completely cover the wire. This process is repeated 7 times, so that 8 SIC wires are on each tube. These SIC wires are dried for 60 minutes at 120 degrees C and then fired for 120 minutes at 1060 degrees C. After firing, each SIC is inspected to ensure proper adhesion. If adhesion is not adequate, a repair is needed by manually painting more of the Pd glass paste over the SIC wire and refiring at 1060 degrees C.

The completed tubes are then ready for the subassembly process where end caps are bonded to the tubes using a glass paste. This process is done automatically using an automated machine (see Figure 18). Once the end caps are bonded to the tubes, an operator manually smooths out the excess glass using a brush and then dries the subassembly at 120 degrees C for 30 minutes. Once the subassembly is dry, it is fired for 2 hours at 1060 degrees C. The subassembly is then leak checked to ensure the leakage is less than 1 sccm. If the leakage is higher than 1 sccm then it is repaired with additional glass paste and refired at 1060 degrees C. This process is repeated until the subassembly passes leakage (see Figure 19).

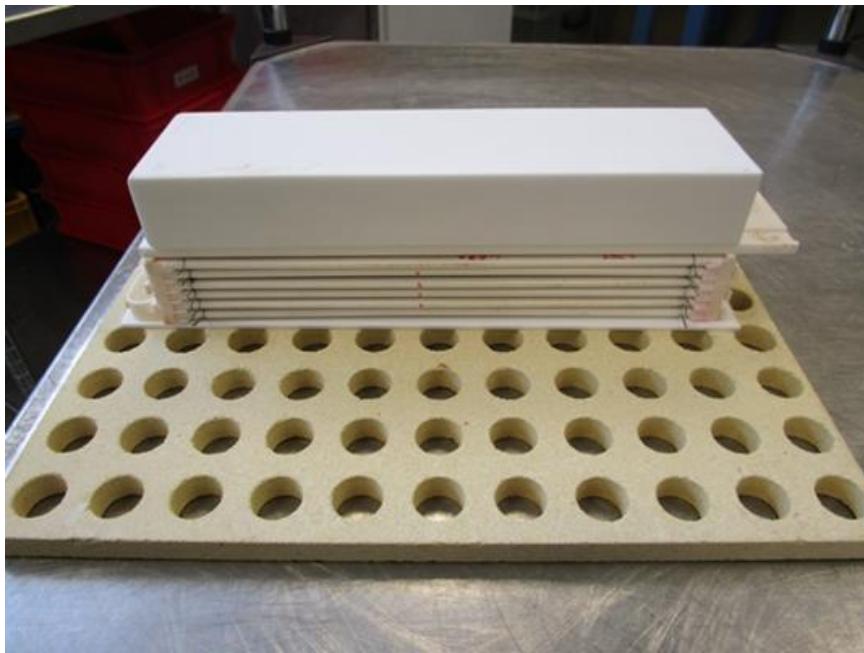
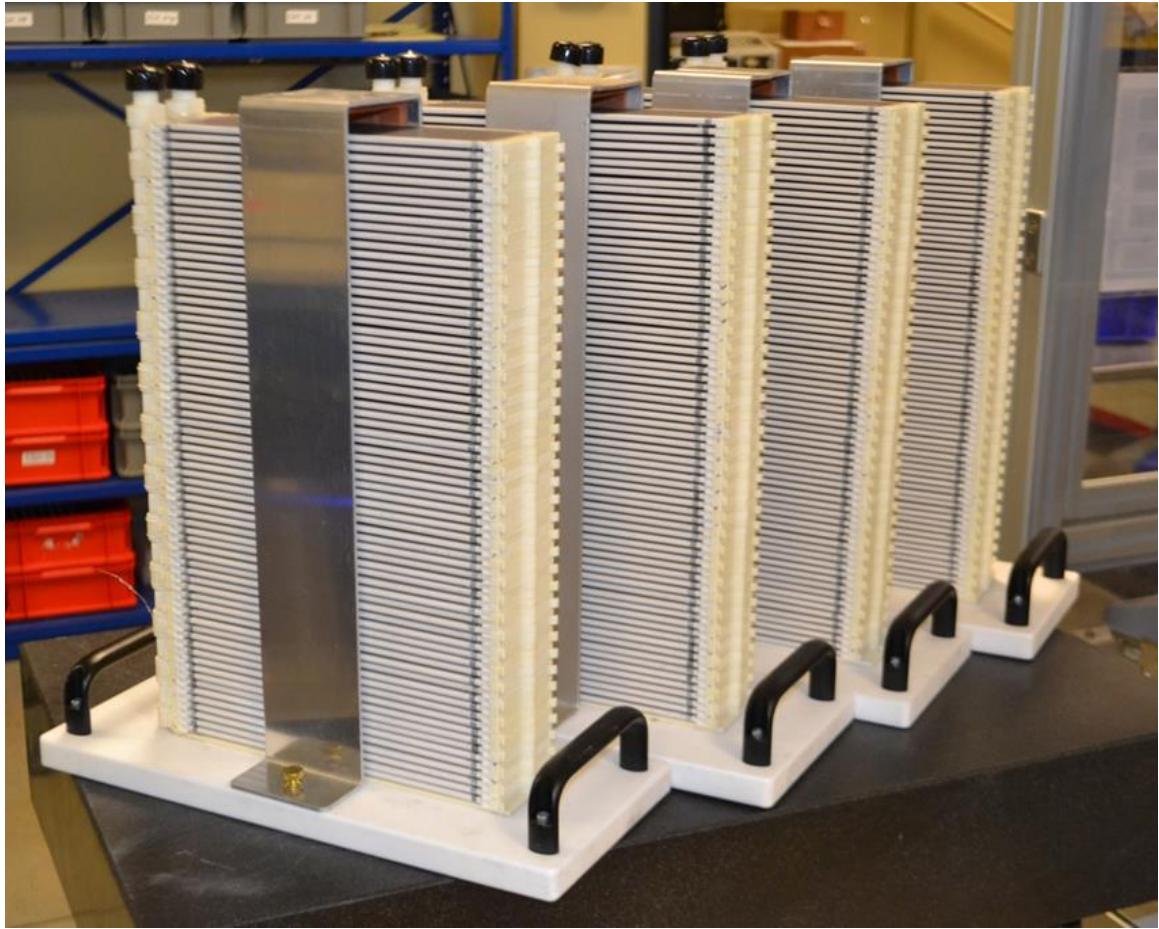


Figure 18 Subassembly Machine with Dense Parts


Figure 19 Completed Subassemblies with Associated Types

After the subassembly passes leakage it can be built into a bundle. Bundles are 6 subassemblies bundled together using glass tape including an inlet, outlet, and 4 middle subassemblies. Bundles are built manually taking care that the bundle is square before firing. A weight is placed on top of the bundle before firing to ensure the glass tape bonds each subassembly adequately and then it is fired at 1060 degrees C for 2 hours. After firing, the bundle is leak tested. Any bundle with a leakage over 1 sccm is repaired using additional glass paste and refired at 1060 degrees C. This process is repeated until the bundle passes leakage testing (see Figure 20).

Figure 20 Finished Bundle with Weight

Once the bundle passes leakage testing it is inspected dimensionally against strict bundle specifications. If the bundle passes all inspections, the next step in the process is first stage bundle build. A strip consists of 12 bundles connected with fuel pipe connectors and sealed with glass paste and glass tape. A first stage build connects the tops of the 22 fuel pipes with the bottoms of subassembly manifolds. This upside-down method utilizes gravity to let the glass tape seal flow downwards and helps increase strip leakage yield. The first stage strip build is placed into a strip firing furnace and is fired for 2 hours at 1060 degrees C. The strip is then taken apart into individual bundles and is built using the same method but in reverse order. This second stage build seals the bottoms of the fuel pipes with the tops of the subassembly manifolds and thus creating the solid strip. The second stage strip is placed into the strip firing furnace and is fired for 2 hours at 1060 degrees C. The strip is leak tested with a USL of 20 sccm. If the leakage is higher than 20 sccm, it is repaired and re-fired at 1060 C until it passes leakage testing. Tertiary interconnects are welded into each bundle pair so that each bundle pair is in parallel and the SIC wires are welded so that they are in series. The strip is inspected for continuity, dimensions, and corner cracks using a dye penetrant. After the strip passes all QC inspections, it is reduced to verify the performance meets specification. Once the strip passes all inspections, it is ready for FCV assembly. The finished strips are shown in Figure 21.

Figure 21 Fuel Cell Strips Ready for Installation

3.2 Assemble Fuel Cell Vessel

The fuel cell strips will be assembled into IBs, the IBs are then lowered onto a shelf, mated to an adjoining IB, service lines connected, then routed to bulkhead fittings that penetrate the pressure vessel. Quality checks are made to insure electrical and flow continuity, acceptable leak tightness, and functionality of the instrumentation. A pressure vessel shell is then glided over the inner vessel assembly and flanges secured. At this stage, the FCV is complete. Quality checks are again performed to insure leak tightness, electrical continuity and functionality of the instrumentation.

Results and Discussion

The assembly of twelve (12) integrated blocks and inner vessel segments for GEN0 are complete as shown in Figure 22.

Figure 22 Integrated Blocks in Inner Vessel Segments

The assembly of two spare integrated blocks and inner vessel segments for GEN0 were completed. Qualification testing procedures including flow characterization and leakage were also performed. Installation of the inner vessel segments in the Fuel Cell Vessel (FCV) was completed as shown in Figure 23. Qualification testing procedures including instrumentation checks and leakage were performed on the FCV. The FCV was delivered to the test site and installed into the generator module as shown in Figure 24.

Figure 23 Inner Vessel Segments Installed in Fuel Cell Vessel

Figure 24 Fuel Cell Vessel Installed on Generator Module Frame

Table 5 shows the integrated block part allocation for critical components. Table 6 shows the strip part allocation.

Table 5 Integrated Block Part Allocation

IB #	IB frame	Reformer	Anode	Cathode	Auxiliary
IB-1	AMIB-G0-006	In617-24	AEJ-G0-003	CEJ-G0-008	XEB-G0-008
IB-2	AMIB-G0-002	In617-6	AEJ-G0-002	CEJ-G0-001 (Weld in Whipple)	XEB-G0-002 (Weld in Whipple)
IB-3	AMIB-G0-001	In617-4	AEJ-G0-001	CEJ-G0-003	XEB-G0-006
IB-4	AMIB-G0-007	In617-22	AEJ-G0-008	CEJ-G0-002	XEB-G0-009
IB-5	AMIB-G0-005	In617-8	AEJ-G0-008	CEJ-G0-005	XEB-G0-010
IB-6	AMIB-G0-004	In617-20	AEJ-G0-005	CEJ-G0-010	XEB-G0-005
IB-7	QFIB-G0-001	In617-19	AEJ-G0-006	CEJ-G0-011	XEB-G0-003
IB-8	QFIB-G0-002	In617-9	AEJ-G0-004	CEJ-G0-009	XEB-G0-007
IB-9	QFIB-G0-004	In617-7	AEJ-G0-011	CEJ-G0-012	XEB-G0-011
IB-10	QFIB-G0-005	In617-21	AEJ-G0-012	CEJ-G0-013	XEB-G0-001
IB-11	AMIB-G0-003	In617-18	AEJ-G0-007	CEJ-G0-004	XEB-G0-004
IB-12	AMIB-G0-008	In617-25	AEJ-G0-010	CEJ-G0-007	XEB-G0-012

Table 6 Strip Allocation

IB #	IB frame	Strip ID	IB #	IB frame	Strip ID
IB-1	AMIB-G0-006	KC1707G0000309	IB-7	QFIB-G0-001	KC1706G0000570
		KC1707G0000665			KC1706G0001988
		KC1706G0001782			KC1707G0000334
		KC1707G0000870			KC1707G0000010
		KC1708G0000151			KC1612P1001312
IB-2	AMIB-G0-002	KC1706G0001646	IB-8	QFIB-G0-002	KC1707G0000856
		KC1706G0001144			KC1707G0000706
		KC1706G0000610			KC1706G0001679
		KC1708G0000057			KC1706G0000411
		KC1706G0000866			KC1706G0000174
IB-3	AMIB-G0-001	KC1708G0001505	IB-9	QFIB-G0-004	KC1711G0000185
		KC1706G0001978			KC1708G0000779
		KC1708G0001089			KC1706G0001163
		KC1706G0001371			KC1711G0000094
		KC1706G0000405			KC1708G0000589
IB-4	AMIB-G0-007	KC1708G0001333	IB-10	QFIB-G0-005	KC1711G0000187
		KC1706G0000340			KC1710G0000395
		KC1612P1000505			KC1612P1001281
		KC1706G0000070			KC1708G0000277
		KC1706G0000543			KC1707G0000838
IB-5	AMIB-G0-005	KC1707G0000358	IB-11	AMIB-G0-003	KC1710G0000416
		KC1706G0001493			KC1706G0001960
		KC1708G0000533			KC1706G0001764
		KC1706G0001762			KC1707G0000497
		KC1707G0000908			KC1706G0000242
IB-6	AMIB-G0-004	KC1704P1000123	IB-12	AMIB-G0-008	KC1710G0000098
		KC1707G0000909			KC1707G0000296
		KC1703P1000377			KC1711G0000147
		KC1707G0000190			KC1612P1000660
		KC1706G0000316			KC1708G0001480

Table 7 shows the full anode loop leakage. This leak test is performed at 30 mbar. The highest full anode loop leakage being ~66 sccm. This value is significantly better than previous IB assemblies. The IB frames from PT-A had an average leakage of ~250 sccm.

Table 7 Full Anode Loop Leakage

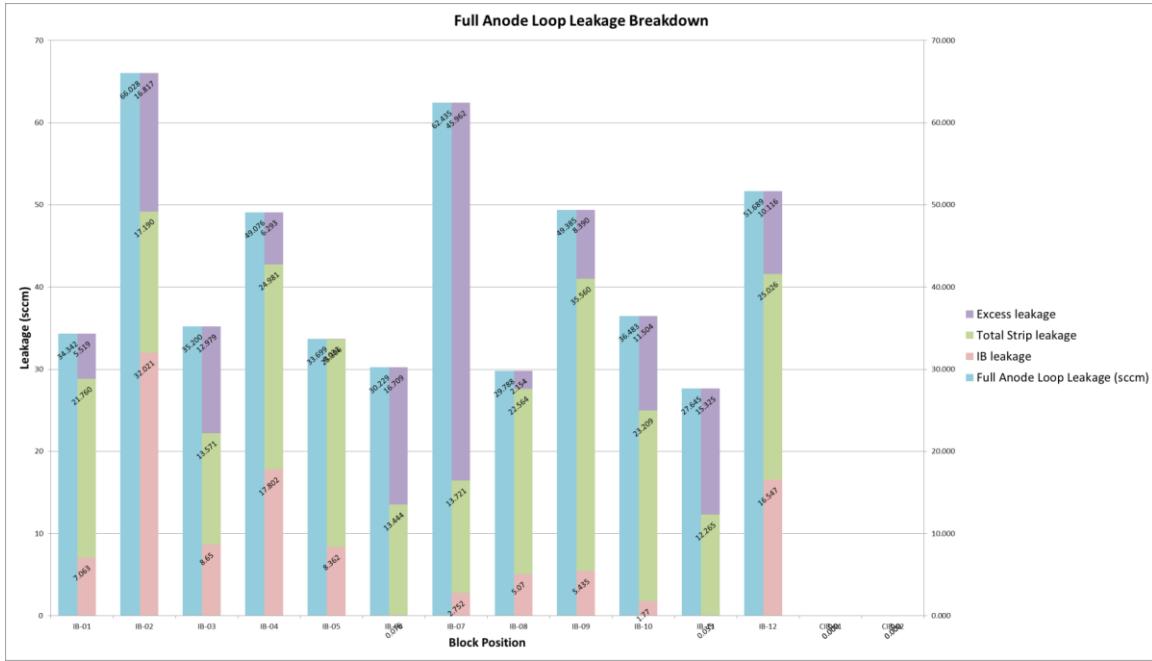


Table 8 shows the cathode loop leakage. The outlier in QFIB-G0-002, or IB-08, has a higher leakage due to a manufacturing error with the IB frame. When welding the cover plates to the frame, it became apparent that a leak had been formed in a location on the frame that was not accessible for repair in a timely manner. It was determined that this leakage would be allowed as tearing apart the entire IB would have been a setback worth several days of work. The leakage is still within spec (7 slpm @ 3 mbar), so the outlier should have no significant negative impact in the performance of Gen0. Even with this single outlier, these cathode loop results are still significantly better than the results from previous IB assemblies.

Table 8 Cathode Loop Leakage

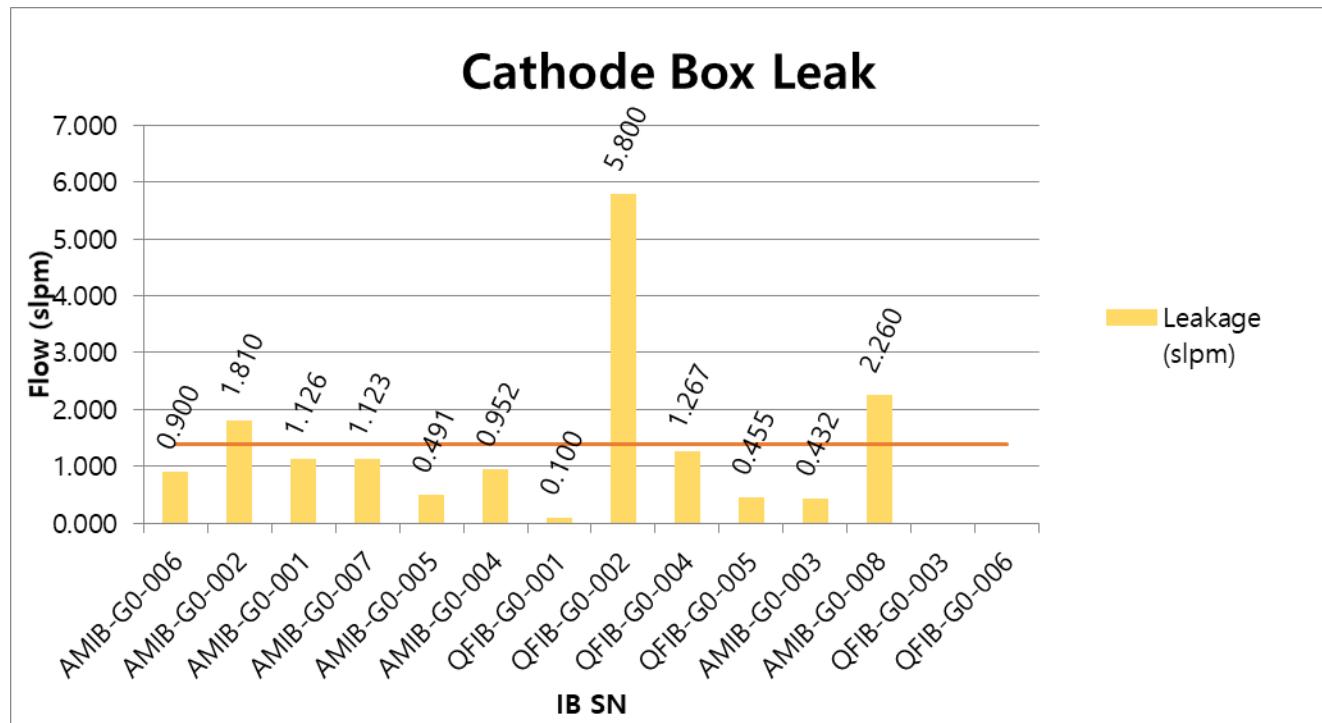


Table 9 shows the individual Inner Vessel segment vacuum leak checks. See Figure 22. The inner vessel is at a lower pressure than the outer vessel. So, this test is done with a 500-mbar vacuum. The results show the pressure increase over 10 minutes. The limit is 100 mbar. Again, these results are much better than PT-A which had a limit of 200 mbar over 10 minutes.

Table 9 IV Vacuum Leak Checks

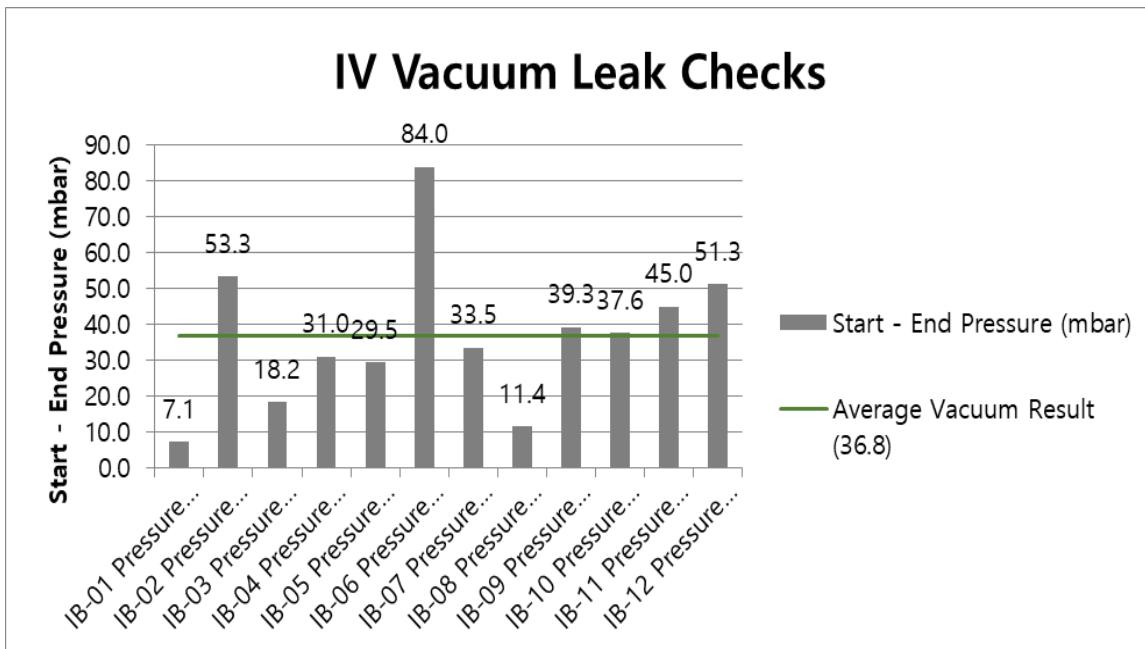


Table 10 shows the Inner Vessel Assembly vacuum leak check. See Figure 23. The inner vessel is at a lower pressure than the outer vessel. So, this test is done with a 500-mbar vacuum. The results show the pressure increase over 10 minutes. The limit is 100 mbar.

Table 10 Whole IV Vacuum Check

Gen0 Inner Vessel Vacuum Check			
Time (min)	Pressure (mbar)	Who	Date Completed
0	504	SPK/DS	7/7/2018 3:41 PM
2	502.6		
4	501.3		
6	500		
8	498.7		
10	497.3		

Start Pressure - End Pressure (mbar):	6.7	Start - End Pressure must be less than 100
---------------------------------------	-----	--

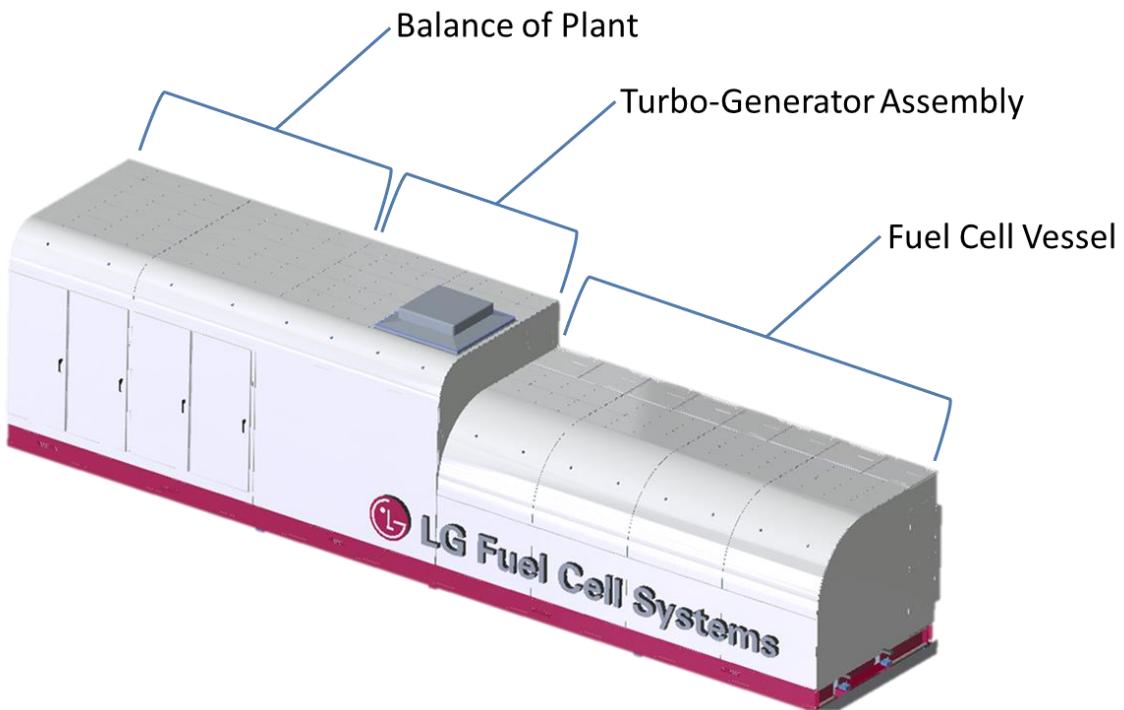
Table 11 shows the whole pressure vessel leak check. See Figure 24. The whole pressure vessel check is completed after the OPV shell has been fully installed over the IV and all flanges have been

installed and torqued as per their specification. It tests the pressure drop starting at 1000 mbar over 30 minutes with a limit of 10 mbar.

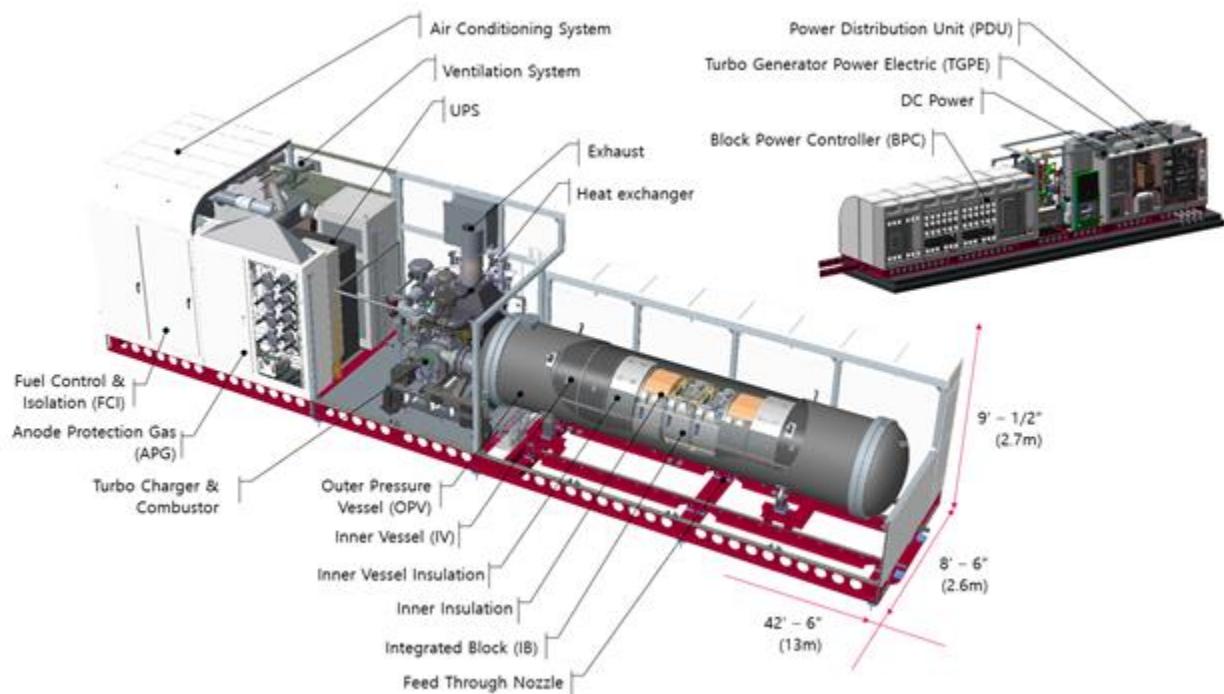
Table 11 Whole Vessel Pressure Check

Gen0 Whole Vessel Pressure Check			
Time (min)	Pressure (mbar)	Who	Date Completed
0	1002.5	SPK	7/11/2018 2:45 PM
30	1002.4		
Start Pressure - End Pressure (mbar):	0.1	Start - End Pressure must be less than 10	

Task 4.0 – System Assembly


The purpose of this task is to assemble the Generator Module and BOP Packages, and to install and interconnect the Packages at the test site. The proposed SOFC Power System for demonstrating commercial readiness will be comprised of stand-alone “Packages” for the Generator Module, Fuel Processing, and Power Electronics. The Packages will be interconnected at the test site to form an integrated SOFC Power System.

4.1 Assemble Generator Module Package


The Recipient will assemble the FCV and the Turbo-Generator Assembly (TGA) into an enclosure that will constitute a 250kW Generator Module (GM) Package. The enclosure will contain features and functionality to facilitate the installation and removal of the FCV and/or TGA subsystems, as well as their interconnection. The enclosure will include all the necessary equipment for electrical, instrumentation, and maintenance access to the FCV and TGA subsystems, as well as the required safety and control systems. Appropriate connectors will be provided to interface the GM Package with the BOP Packages. The enclosure for the GM will be assembled and tested at the vendor’s factory to insure the functionality of its supporting systems. Once the enclosure is verified, it will be shipped to the Recipient’s site where the FCV and TGA will be installed to create the GM Package.

Results and Discussion

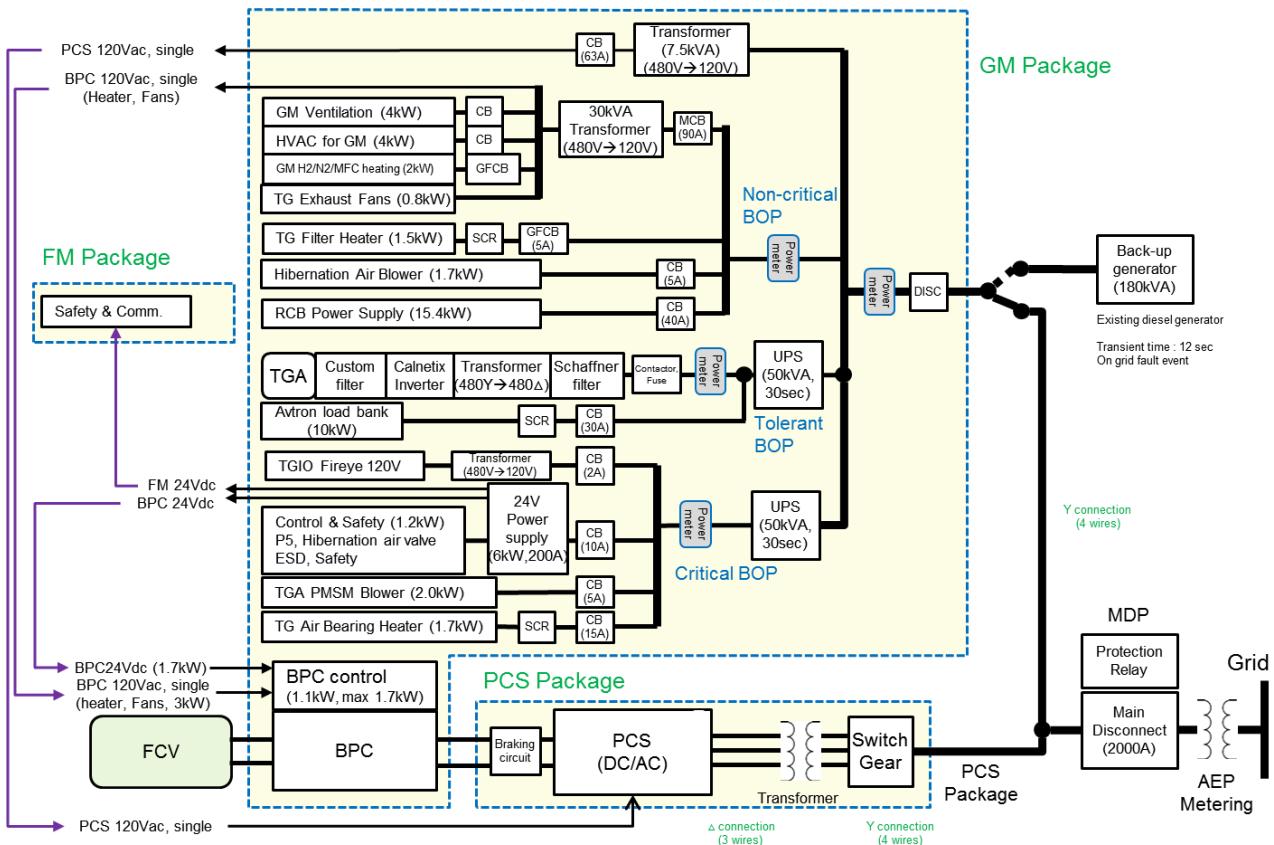
The package layout for the Generator Module is shown in Figure 25. The GM includes the Fuel Cell vessel with 12 integrated blocks incorporated in the inner vessel, the turbo-generator assembly, and the balance of plant equipment (BOP). The BOP includes the power distribution panel, controls and I/O, air conditioning, block power controllers, and fuel control and measurement as shown in Figure 26.

Figure 25 Generator Module Package

Figure 26 Generator Module Package Details

4.2 Installation and Interconnection of Power System Modules

The packaged modules of the SOFC Power System will be installed and secured at the test site mutually agreed upon by the Recipient and DOE, interconnected to the adjacent modules, and connected to the site interfaces for pipeline natural gas and the power grid, and data umbilical for controls.


Results and Discussion

The Generator Module (GM), Fuel Modules (FM) and Power Electronic Modules have been assembled on the test site as shown in Figure 27.

Figure 27 GM, FM and PE Modules Assembled on Test Site

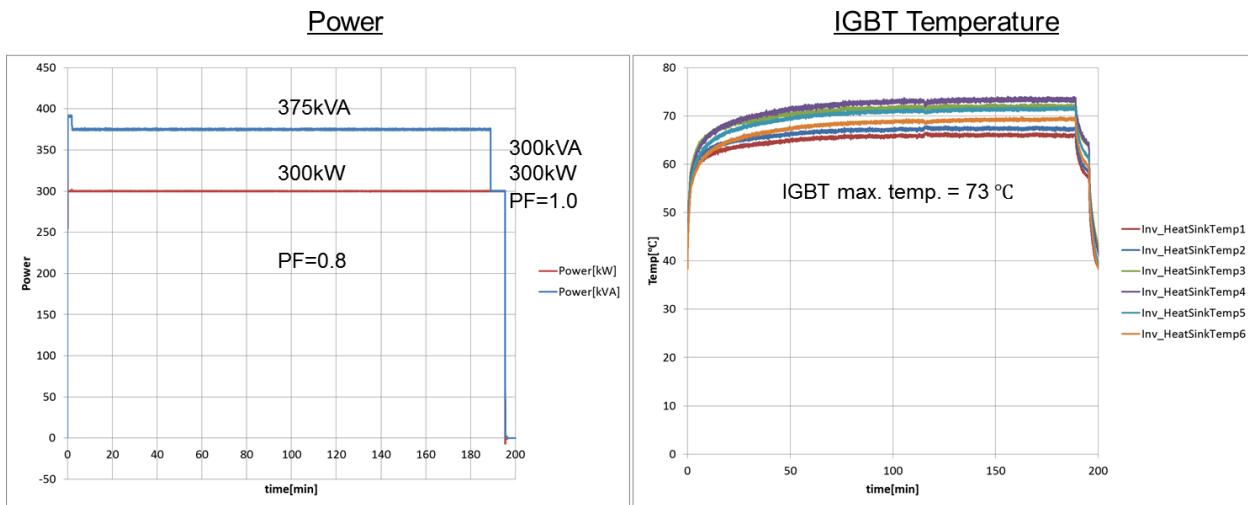
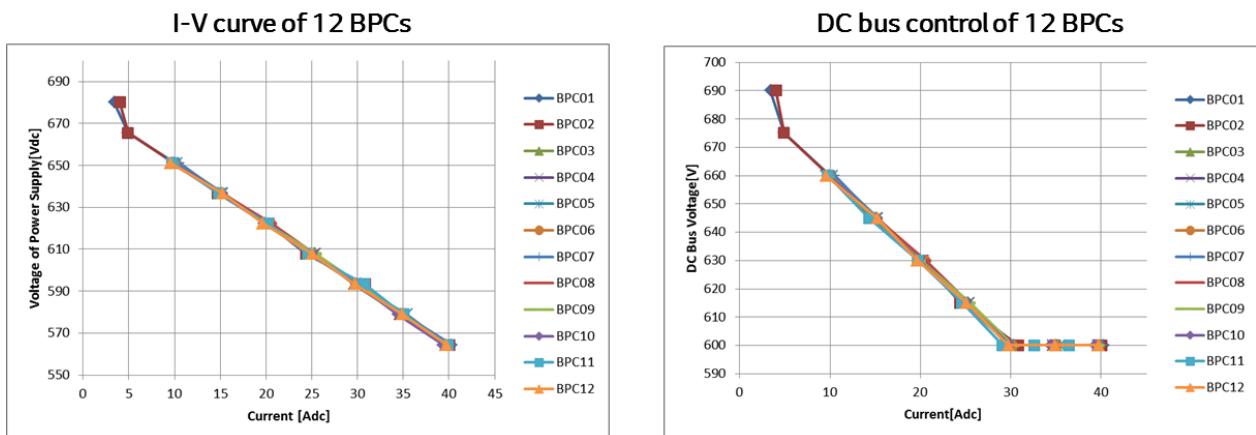

Power Electronics Package: The three packages, GM, FM, and PE (PCS) are shown in the electrical system configuration in Figure 28. The GM package electrical BOP is classified into critical BOP, tolerant BOP and non-product BOP depending on operation environments.

Figure 29 PCS package including transformer

The factory test result for the PCS is good as shown in Figure 30. The PCS was operated up to 375kVA at PF 0.8 and the operating temperature was at most 73°C (for reference, trip temperature is 120°C)

Figure 30 PCS Test Result

Other electrical cabinets on the system are shown in Figure 31 and include:


- Block Power Controller (BPC)

- Block Power Master (BPM)
- Turbo Generator Assembly (TGA)
- Turbo Generator Power Electronics (TG PE)
- Generator Module Power Distribution Unit (GM PDU)
- DC Power

Figure 31 Electrical cabinets in GM package

The BPC includes a DC/DC converter to control twelves block currents of fuel cell system and measurement parts for sensing temperature, pressure and communication part for communicating with main controller. The commissioning test result for the BPS' is shown in Figure 32. The BPC and BPM cabinets are as shown in Figure 33.

Figure 32 BPC test result

Figure 33 BPC and BPM cabinets in GM package

The GM PDU and DC Power cabinets are as shown in Figure 34. The TG PE and TGA cabinets are as shown in Figure 35.

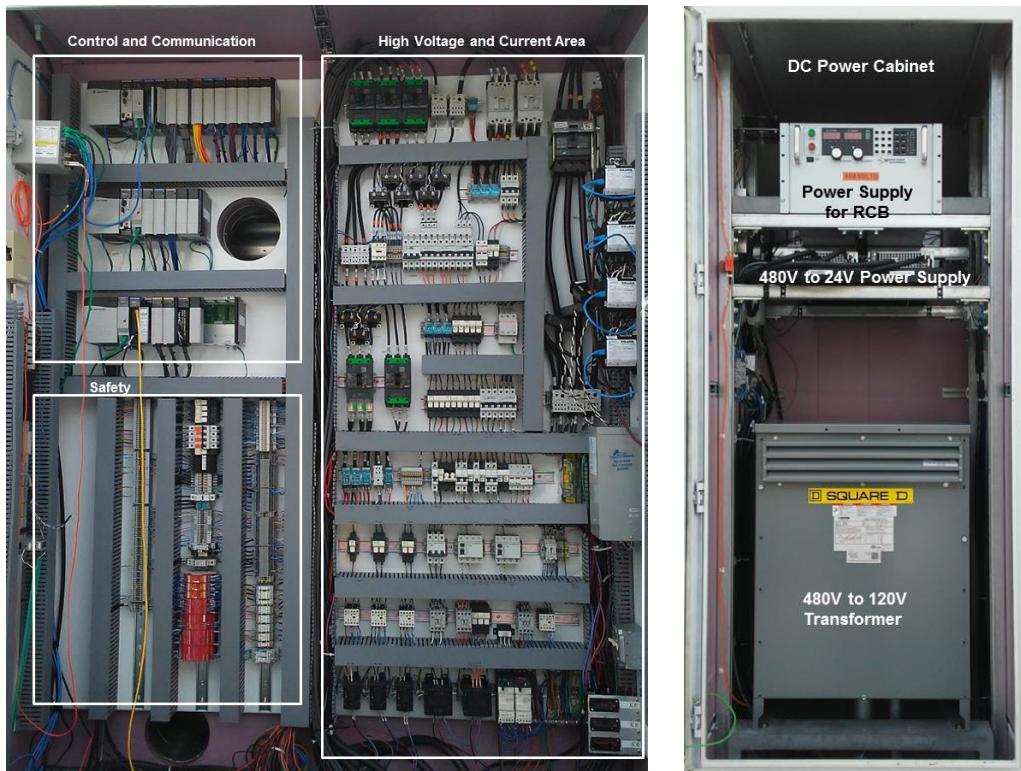


Figure 34 GM PDU and DC Power cabinets in GM package

Figure 35 TG PE and TGA cabinets in GM package

Fuel Module Package: The fuel module primary component is the desulfurizer. A commercial off the shelf unit was purchased for GEN0 as shown in Figure 36.

Figure 36 Fuel Package Desulfurizer

Task 5.0 – SOFC Prototype System Testing

This task supports the labor, fuel and consumable costs for a 5,000-hour test of a 250kW SOFC Prototype at the test. The testing will be preceded by a series of commissioning tests to validate assembly and safe operation of the power system. The SOFC prototype system testing is divided into two subtasks: Commissioning, and Extended System Testing.

5.1 Commissioning

Functional commissioning will confirm that the interfaces between the electrical, mechanical, and controls are appropriately connected. The Human Machine Interface (HMI) will be checked to ensure that feedback from the control system can be viewed and managed by operating personnel. Remote monitoring and operation will be verified. Operational commissioning will verify the control and safety systems for plant operations. An initial system test will be performed to validate the automated control and safety system and identify any infant mortality.

Results and Discussion

Gen0 Commissioning was separated into two main groups: Cold Commissioning and Hot Commissioning. Cold Commissioning was limited to sub-system checks without the use of flammable gases, high temperatures or high pressures. After Cold Commissioning was completed, the operation progressed to Hot Commissioning.

Cold Commissioning Activities Performed

- Confirm all hardware and labelling against the P&ID
- Point to Point checks within and between packages
- Megger checks within and between packages
- Confirm input / output signals and do range verifications for GM instrumentation, control modules, etc.
- Test the safety system and all its component software and hardware
- Start-up and confirm operation of package ancillary equipment
- Verify operation of equipment modules
- Verify constants in control software
- Pressurize all supply piping and tubing and perform leak tests
- Calibrate or confirm calibration of all instrumentation across expected operating range
- Perform bench testing of controls sequencer
- Tune acceptable PID Fuel loops via simulation through vents
- Execute pre-test checks lists

Hot Commissioning Activities Performed

Once Cold Commissioning was completed, activities proceeded to confirming operation in Hot Commissioning. Activities included:

- Confirm operation of TG and spin TG at low speed
- Perform leak check at low pressure to confirm piping and FCV integrity
- Execute a “GM Protect” and verify that system shuts down properly

- Confirm expected system response during a simulated grid failure
- Perform functional performance tests including cycling the system through all Gen0 Sequencer states

Functional performance of Gen0 was confirmed by cycling the system through the applicable operating states using the automatic control system. Initial operation was in a step-wise mode to verify each segment of the control software. Flow rates, temperatures, pressures, gas compositions, strip currents and strip voltages were measured and compared to system predicted values. System performance was also compared to model predictions and block testing operational data, where applicable.

5.2 Extended System Test

The extended system test will commence once commissioning is completed. Once the system achieves stable operation, the exhaust gas will be tested for emissions. Project testing will proceed through 5,000 hours operation at the base load condition. Once the 5,000-hour milestone is achieved, the exhaust emissions will again be tested. A Test Plan will be submitted for approval to the DOE Project Officer 45 days prior to the start of the Extended System Test and testing will be conducted in accordance with a DOE-approved Test Plan.

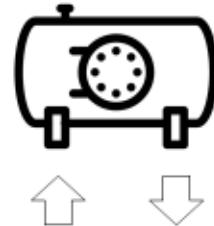
Results and Discussion

A detailed system test plan was developed and submitted to DOE in fulfilment of Milestone 6. The system obtained full load operation with pipeline natural gas and power to the grid on September 11th. The completed system is shown in Figure 37.

Figure 37 LGFCS GEN0 250 KWac Product Demonstrator

The performance of a fuel cell power system focuses on the power generated, the overall system efficiency and the project life or power degradation rate (increase in system's electrical resistance). The targets for these parameters were 250kWe AC, 60% DC efficiency and 3 milliohms-centimeter squared per thousand hours, respectively. Also, of interest are the systems gaseous emission. These items, among others, were measured during the Gen0 demonstration test of the LGFCS 250 kWe generator. The details for the system performance area discussed below.

Health Monitoring System: The purpose of the health monitoring system (HMS) is to:


- Manage performance variation and reduce risk of system failure
- Detect potential failure and automatically protect the system
- Provide real-time information for manufacturing, assembly and test operators

The health monitoring system overview is shown in Figure 38.

Health Monitoring System Overview

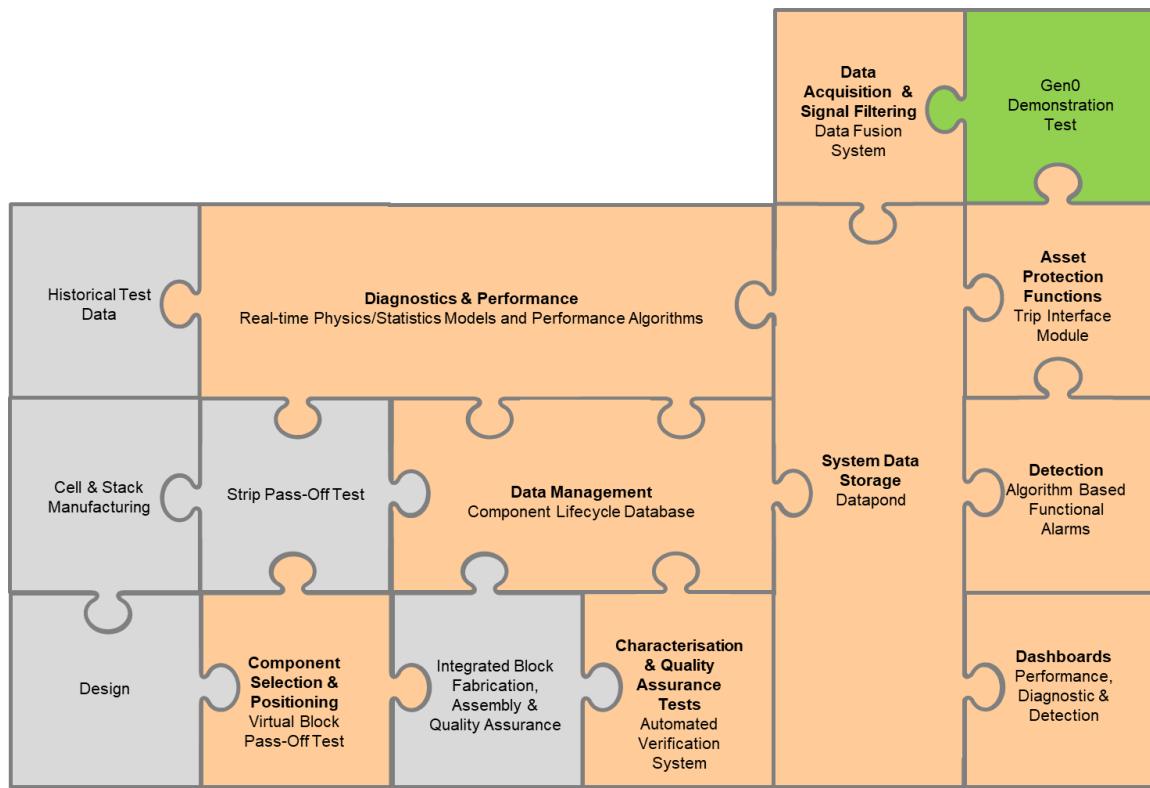
Fuel Cell System

- Fuel Cell Stack & Integrated Blocks
- Turbo Generator Assembly
- Fuel Processor
- Power Electronics
- Control and Safety System

Database & Data Processing

- Data Acquisition
- Signal Conditioning
- Real-time Performance Calculations
- Real-time Models
- Data Management

Visualisation & Reporting


- Performance Analysis Dashboard
- Detection & Diagnostics Dashboard
- Alarms
- Notification System

LG data – private; Confidential; Export Controlled

Figure 38 Health Monitoring System Overview

The health monitoring system includes many components as shown in Figure 39. Starting with characterization (gray), then data flow (orange) and finally the Gen0 operations (green).

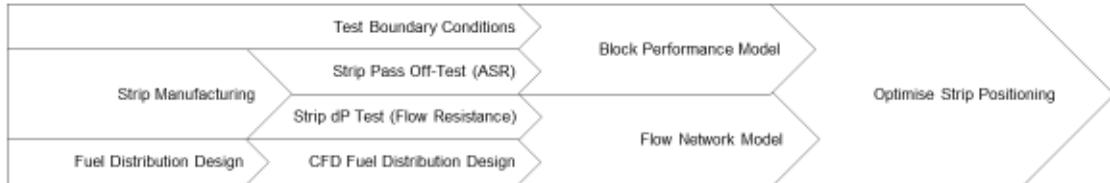
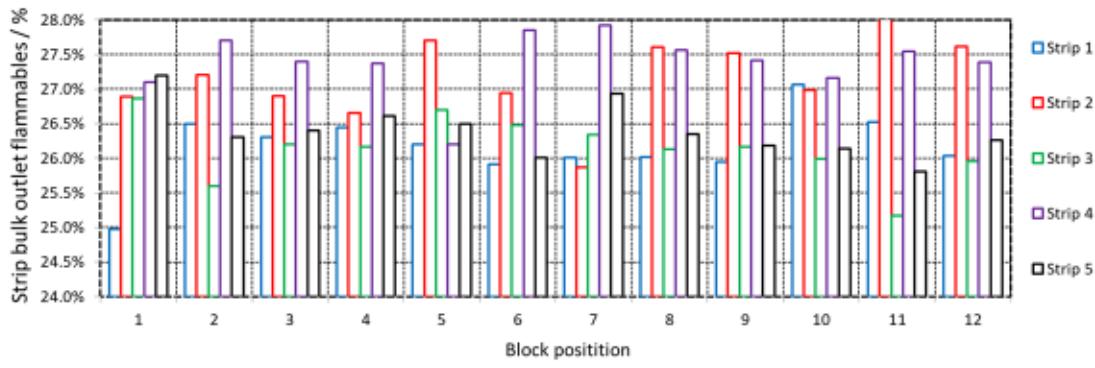


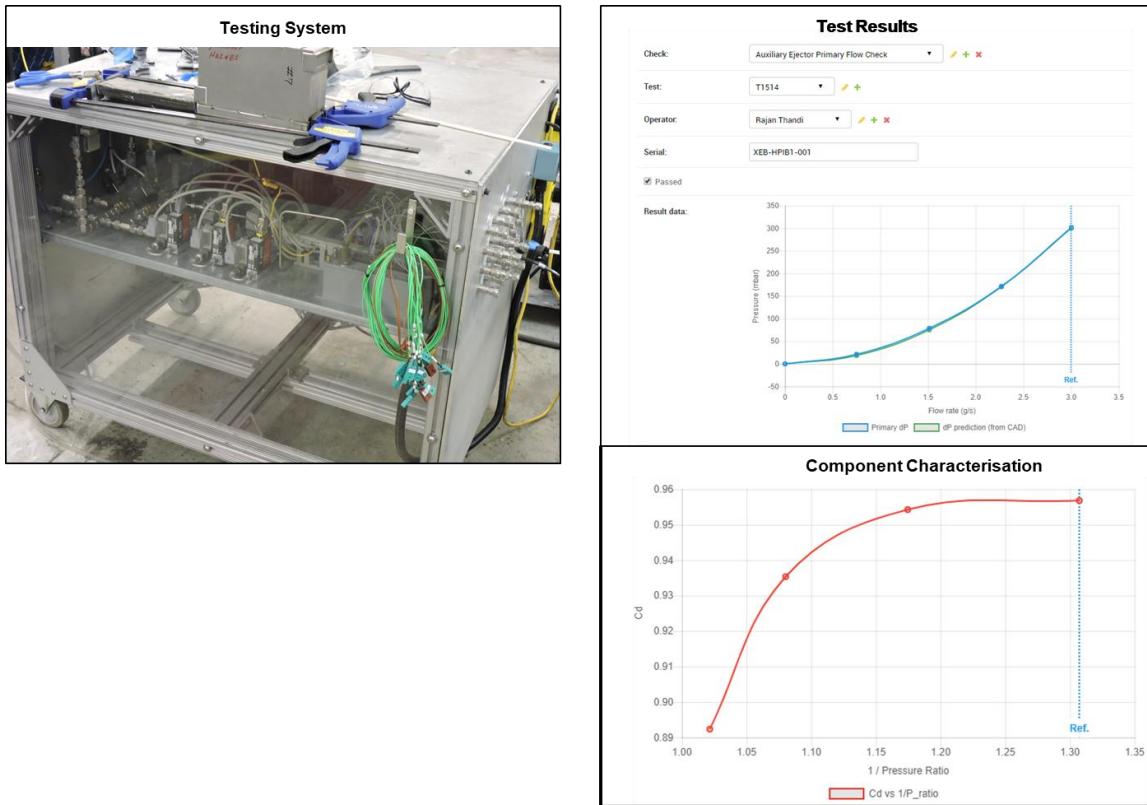
Figure 39 HMS Components, Characterization (gray), data flow (orange), Operations (green)


Component selection and positioning for the fuel cell strips is based on manufacturing variations with the objective of producing uniform performance as shown in Figure 40.

Strip positioned based on manufacturing variation

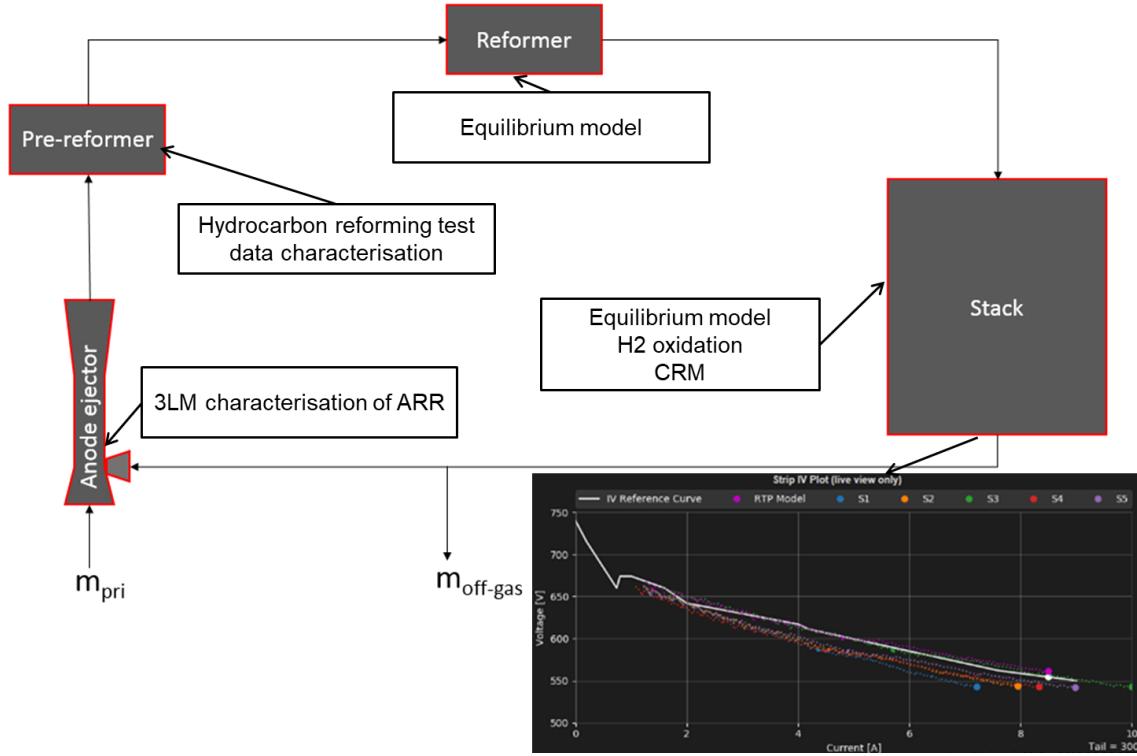
- Measured data and physics based model used to predict performance

- Balanced fuel and current distribution by optimising positioning to reduce risk of fuel starvation



LG data – private; Confidential; Export Controlled

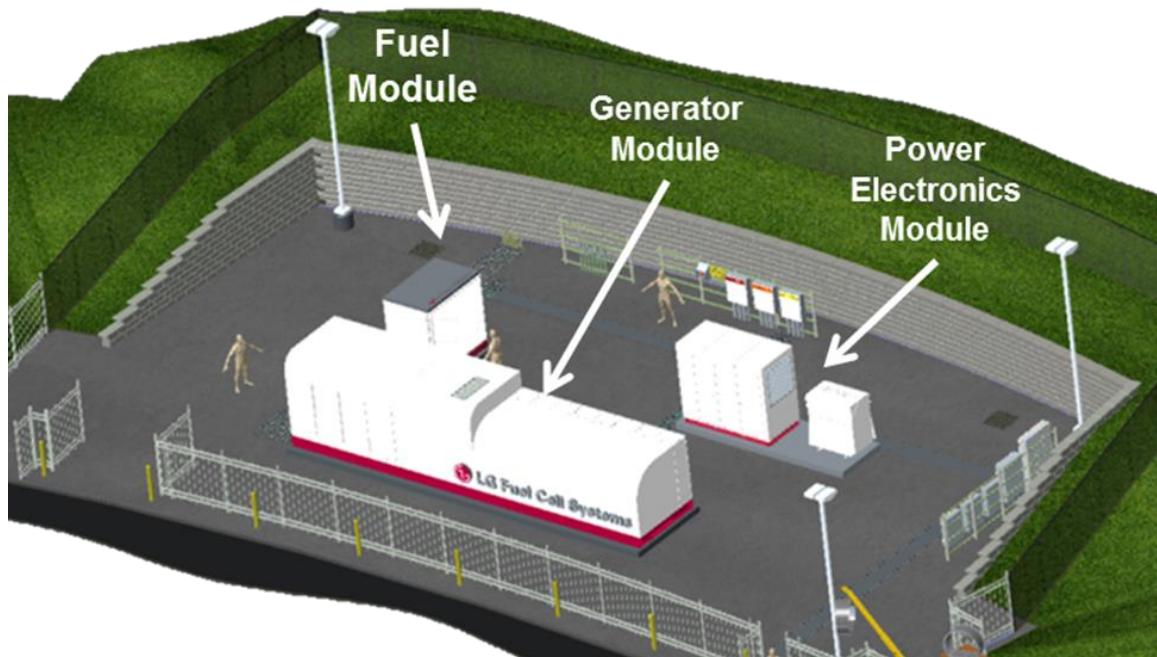
4


Figure 40 Component selection and positioning for the fuel cell strips

Characterization and quality assurance testing cover components, assembly and instrumentation within the Integrated Block. Recording of data and pass/fail criteria are built into test and automatically characterized flow resistances are used in real-time model prediction. See Figure 41.

Figure 41 Component Automated Verification System

Manufacturing and characterization data is used for **Diagnostics & Performance** as input to Real-time Physics/Statistics Models and Performance Algorithms as shown in Figure 42. These predictions are compared to operating data and used to alarm the system when it is out of range. Once confidence in this system is developed it can be used to adjust controls and turn off the system before damage can occur.


Figure 42 Real-time physics model fault detection overview

A web-based **dashboard** is used to display real time data and performance for the system as shown in Figure 43.

Figure 43 Real time dashboard

System Description: In 2017 LGFCS initiated work on Gen0, the 250 kW SOFC integrated power system, to demonstrate fuel-in to AC power-out. The system was installed at the LGFCS facility in North Canton, Ohio. The Gen0 system uses the controls architecture of a 1MW SOFC power system. The fuel cell system was designed to operate on pipeline natural gas with its output conditioned for connection to the local utility power grid. The integrated system consists of the Fuel Module (FM), the Generator Module (GM) with fuel cell vessel (FCV) and Compact Turbo Generator Assembly (CTGA), the Power Electronics Module (PE) with Block Power Controllers and Power Conditioning System (PCS) and the Balance-of Plant (BOP) with controls and safety system. The system demonstrated full system operation, from pipeline gas-in to AC power on the grid, as well as gathering data on overall system performance, reliability, and control robustness. The site rendering is shown in Figure 44.

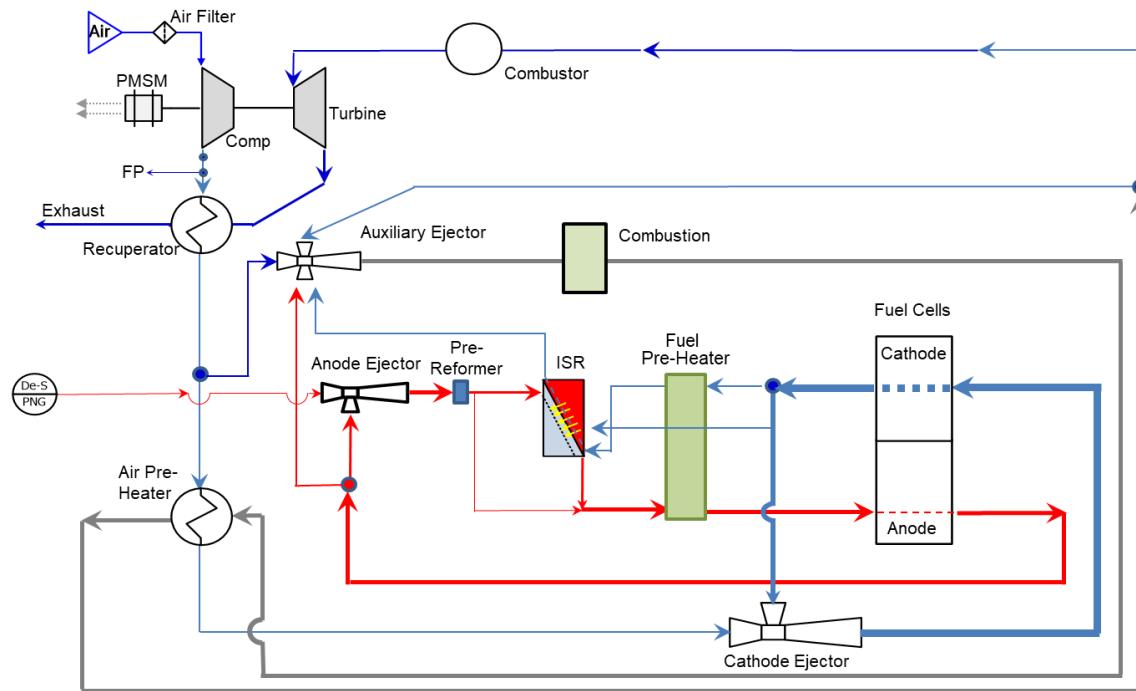

Figure 44 GEN0 Site Rendering

Figure 45 shows the process flow diagram. The GM uses air and fuel gas to generate power. The air is supplied from the CTGA while the main fuel gas is supplied from the FM that desulfurizes the pipeline natural gas. Auxiliary Fuel (AF), Anode Protection Gas (APG) and Main Fuel Gas flow from the BOP to the FCV. These gases are distributed to the 12 blocks. The gases are used for heat-up, anode protection, and power generation. The PEM converts the DC power generated by the fuel cells to AC power for export to the local utility grid. Additional details for each subsystem are given below:

- Fuel Module (FM)
 - Passive desulfurizer (DES) sub-system

- Generator Module (GM)
 - CTGA (TG with air bearings)
 - FCV with 12-off Active Integrated Blocks
- Power Electronics Module (PE)
 - Block Power Controllers
 - Inverter (DC to AC)
 - Transformer
- Balance of Plant (BOP)
 - Fuel control
 - Hibernation subsystem with reverse-current-bias
 - Control and Safety System

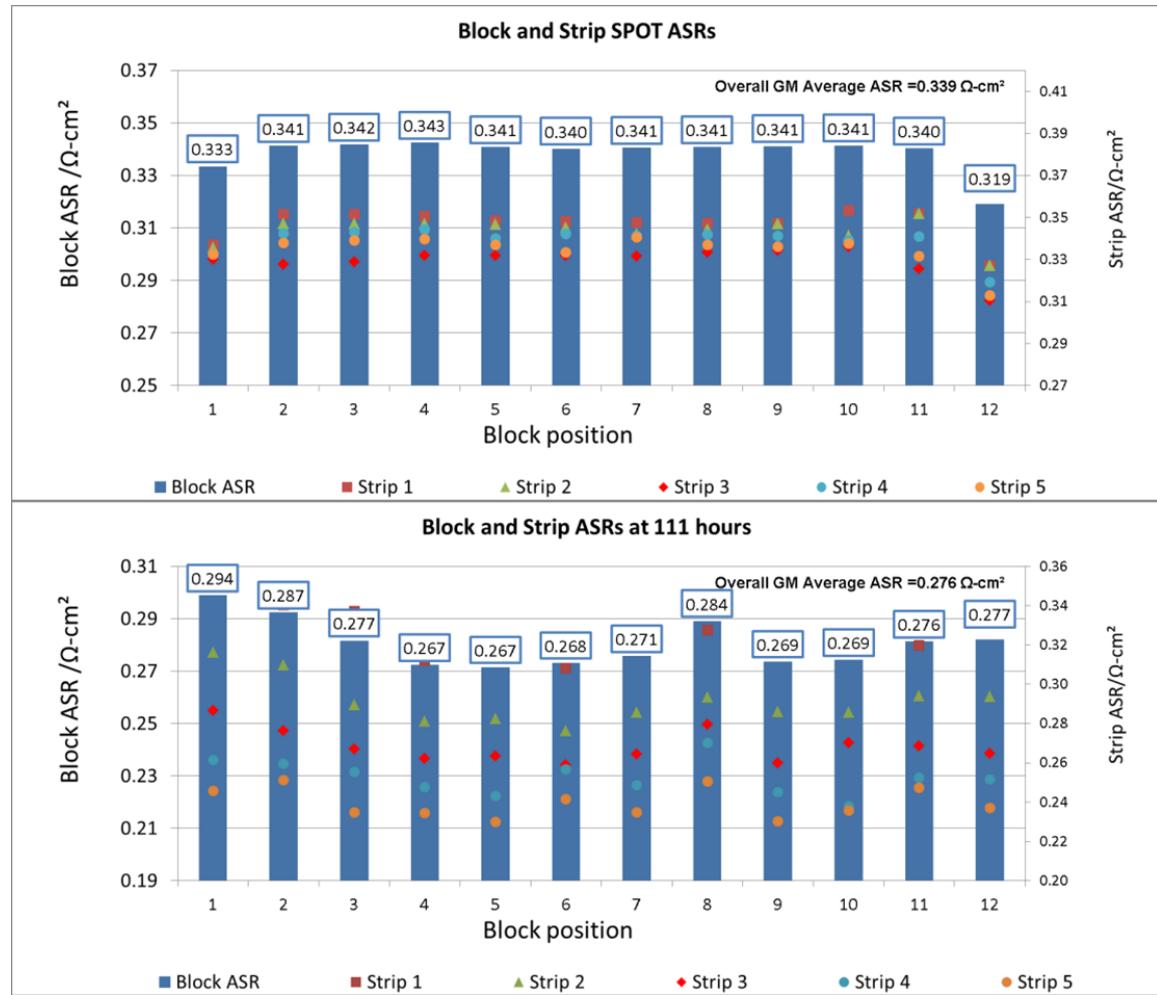
Each major subsystem (FM, GM, PM) has a software module for controls and safety. The GM Master Sequencer (A.K.A. the Sequencer) controls the interaction of the subsystems via their software modules.

Figure 45 Process Flow Diagram

Operations Log: The system started on September 11th, 2018. The operations log is shown in Table 12. The utilization is shown in Table 13 for the start of the test and after IB #2 replacement. The system was considered on line when it was delivering over 225 KWac to the grid.

Table 12 Operations Log

Event	Date and Time	Description	Time on Line, Hrs	Time Off Line, Hrs	Duration, Hrs
Official Start	11-Sep-18 17:00:00		57		57
Stop 1: PE trip	14-Sep-18 02:00:00	PE Trip due to PCS contactor control error. Adjust control settings and restart.		9	11
Restart	14-Sep-18 12:30:00		24		24
Stop 2: IB low voltage	15-Sep-18 12:30:00	IB #2 showed signs of fuel leakage. Replace IB #2.		104	104
Restart	19-Sep-18 21:00:00		55		55
Stop 3: TG trip	22-Sep-18 04:00:00	TG cooling air supply stoppage. Replace air supply.		29	30
Restart	23-Sep-18 10:00:00		901		901
Stop 4: Comms error	30-Oct-18 22:50:00	Communications overload, operator error. Reset comms		32	34
Restart	01-Nov-18 09:00:00		762		762
Stop 5: Instru Trip	03-Dec-18 10:58:00	System trip during instrument check.			


Table 13 Utilization

	Time on Line, Hrs	Time Off Line, Hrs	Duration, Hrs	Utilization
Total from Start	1800	897	1986	91%
Total from IB #2 Replacement	1718	784	1790	96%

Pre-Test Expectations: The expected initial stack performance was based upon pre-test SPOT data for every strip in Gen-0, and a block test of one of the 12 blocks before its installation into Gen-0. The pre-test SPOT data summary is shown in Figure 46 (top chart) which demonstrates an overall average ASR of $0.339 \Omega\text{-cm}^2$ at 860°C . Note that the ASR in the SPOT test is typically higher than in a block by about $0.05 - 0.06 \Omega\text{-cm}^2$ because it is run at atmospheric pressure and half load. Based on the SPOT data it is expected that the block ASR would be in the range of $0.28 - 0.29 \Omega\text{-cm}^2$.

This expected performance was confirmed in Block Test T1613 which placed Gen-0 block IB #2 into the SOFC80 Test Rig for a short duration pass-off test of about 150 hours. The strip ASRs at 860°C were 0.285 $\Omega\text{-cm}^2$ after 100 hours on load.

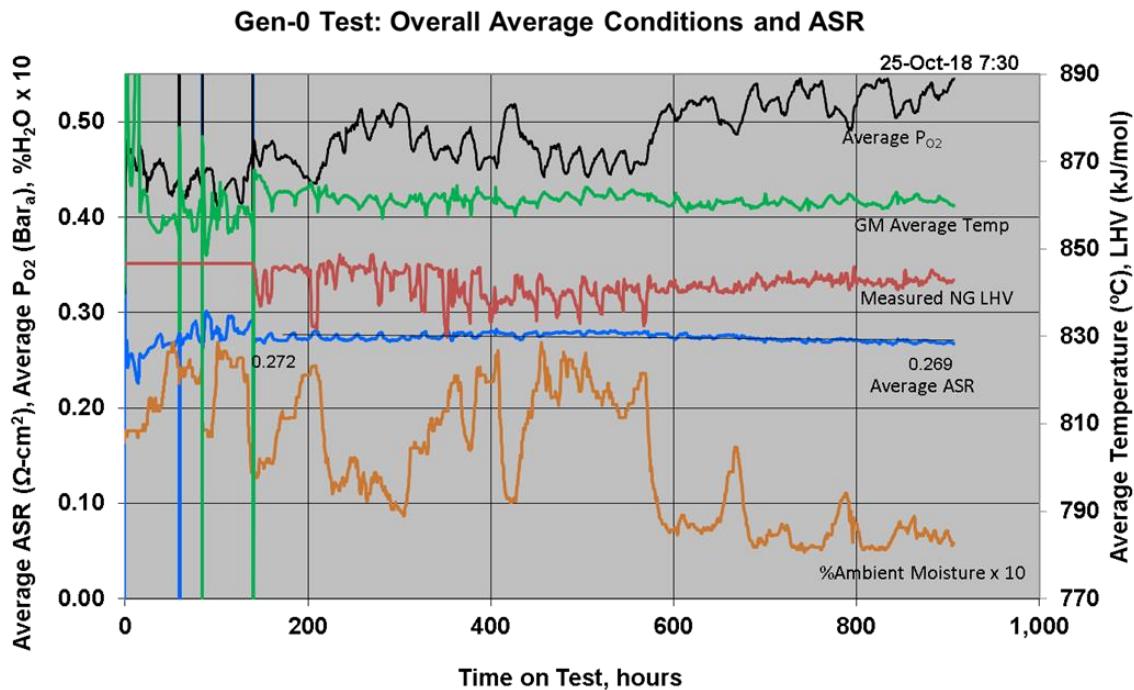
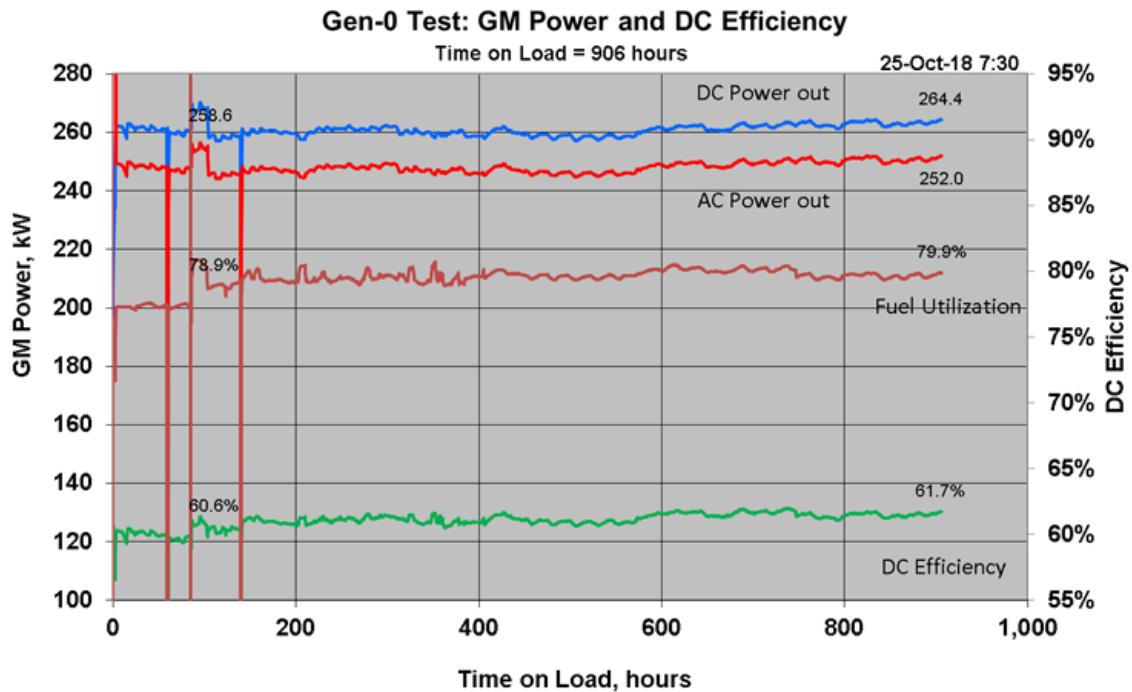
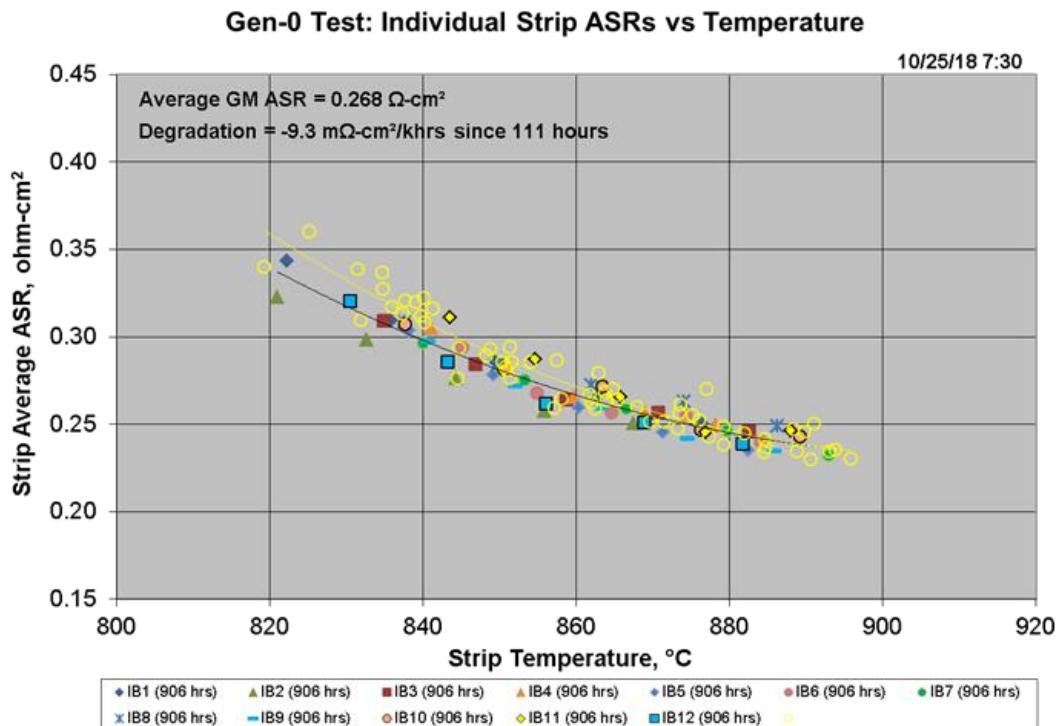

Actual GEN0 performance at 111 hours on load is shown in Figure 46 (bottom chart) with an average ASR of 0.276 $\Omega\text{-cm}^2$ at 861.2°C, or approximately 0.29 $\Omega\text{-cm}^2$ adjusted to 860°C.

Figure 46 Expected vs. Actual ASR

Early Performance and ASR: Variations in operating conditions and its effect on ASR are shown in Figure 47. Early operations were hampered by temperature variations as control system tuning was in progress. This was stabilized at an overall average of 860°C. The TG air mass flow varied with ambient conditions (air density) and changing operating pressure and partial oxygen (PO2) percentage. Early testing ran with warm humid air. This later changed to cool dry air. Stack performance improved as PO2 increased and with dryer air. In addition, the natural gas (NG) lower heating values (LHV) varied on the order of 2% daily. This


was stabilized by adding an LHV meter to the system and adjusting the fuel flow accordingly. These factors and their control led to an increasingly stable ASR which decrease over time.


Figure 47 Early Test Condition and ASR

Overall performance looked very good at 900 hours as shown in Figure 48 and Figure 49. The average ASR decreased to $0.268 \Omega\text{-cm}^2$ with excellent uniformity. The DC efficiency was 61.7 with a fuel utilization of 80%. The average AC power was 248 KWac and the AC efficiency was 55.3%. Apparent degradation < 0 due to changing conditions $\sim 0.014 \Omega\text{-cm}^2$ improvement due to PO₂ increase.

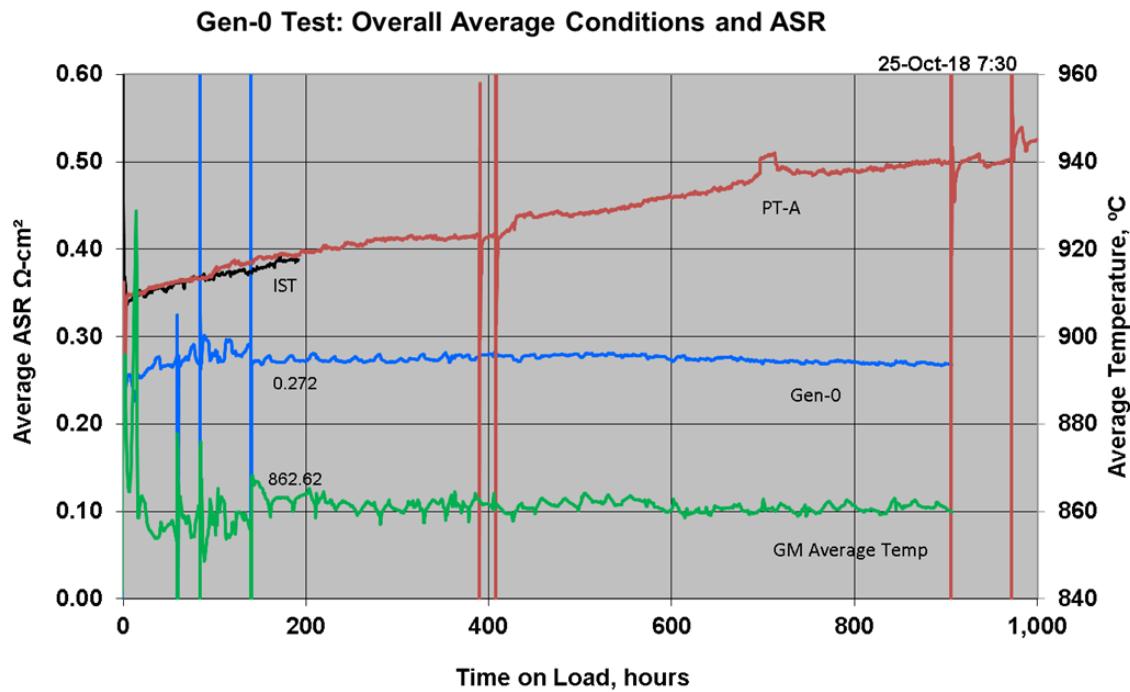

The ASR comparison with previous systems tests is shown in Figure 50. The IST and PT-A test were performed on a technology demonstration unit about the same size as GEN0. The initial ASR of GEN0 was lower primarily due to the effects of IBR and an improved cathode. The long-term stability of GEN0 was due to chrome mitigation, improved temperature and fuel distribution, and lower temperature difference.

Figure 48 Early Power and DC Efficiency

Figure 49 Early Strip ASR vs. Temperature

Figure 50 Comparison of Gen-0 with Previous System Tests

Longer Term Performance: Figure 51 shows the power generated by the Gen0 system over the 1800-hour demonstration period. The plot shows that the DC power generated was 262 kW-electrical while the AC power pushed out to the utility's electric grid was 251 kW-electrical. This surpassed the 250-kW target. Also shown is the DC efficiency. This is ratio of electrical energy generated by the fuels to the input from the Natural gas. The DC efficiency was 61% and surpassed the 60% target. Finally, the plot shows the fuel utilization. This is the percent of the fuel input that is converted into electricity (79%). The balance of fuel (21%) not converted into electrical energy is converted into thermal energy that is used to keep the system at the proper operating temperature. The overall ASR shown in Figure 52 is $0.279 \Omega\text{-cm}^2$ at a stack average temperature of 864°C with good uniformity and a tight distribution as shown in Figure 53.

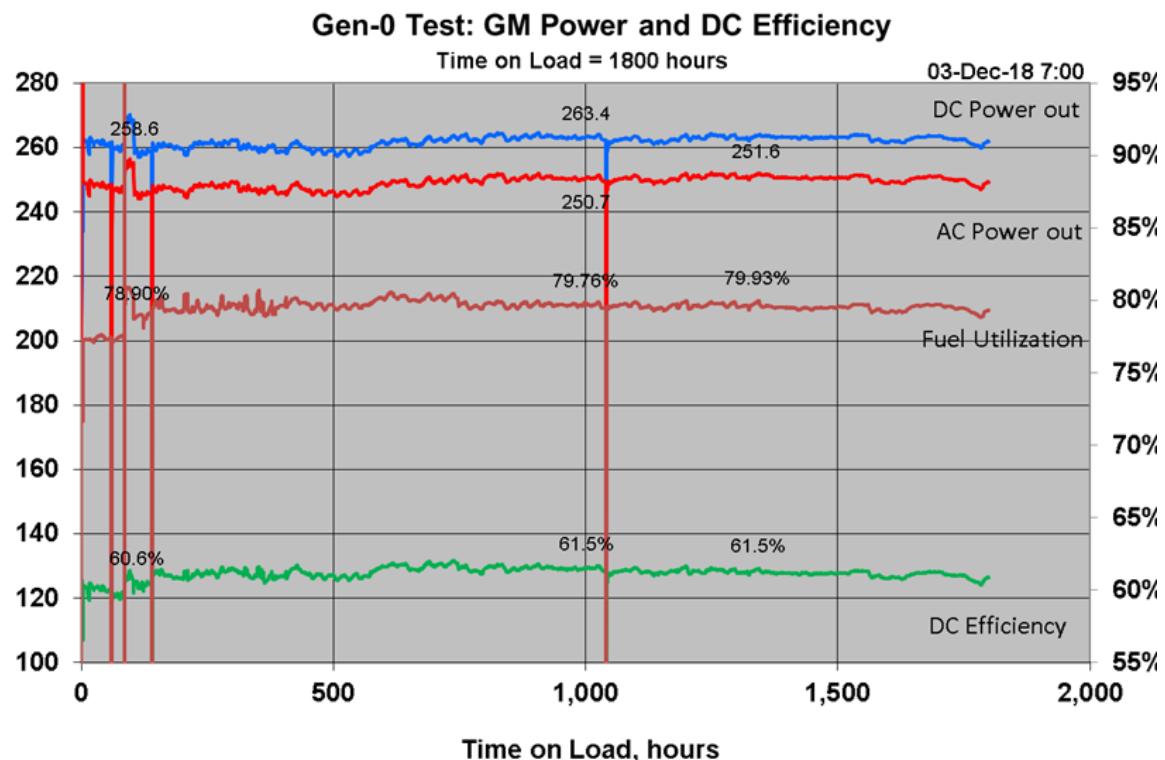


Figure 51 Longer Term Power and DC Efficiency

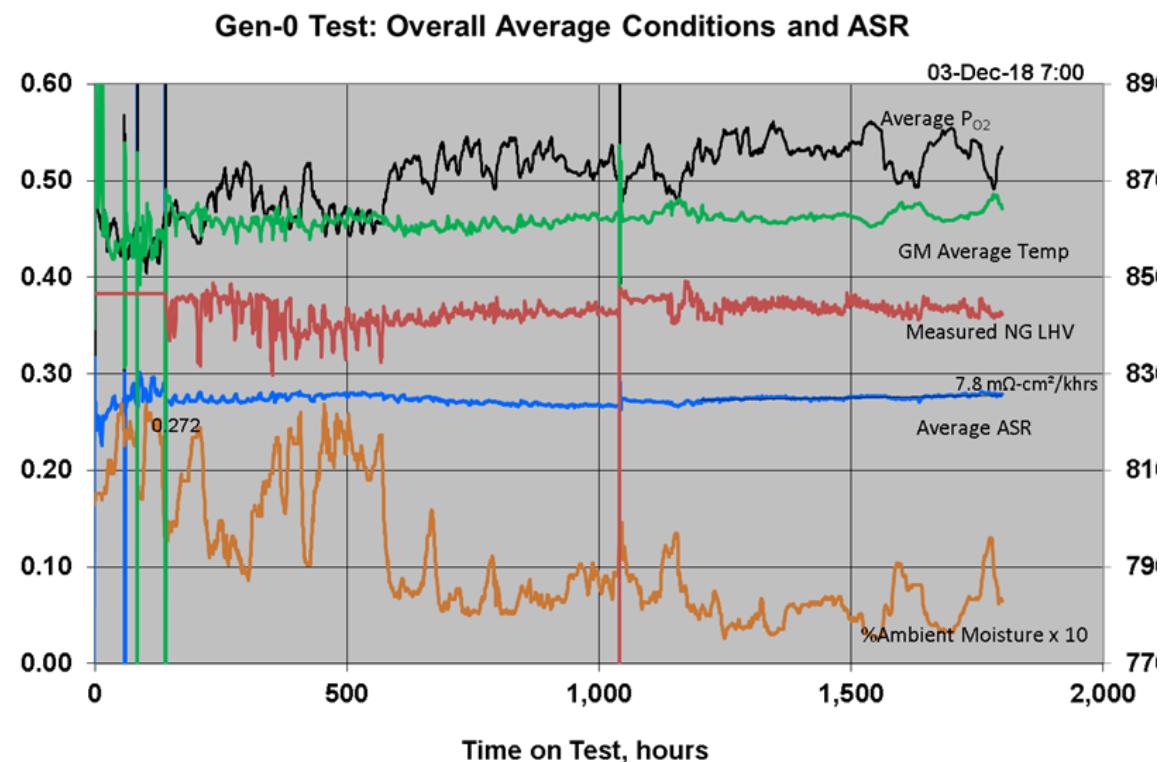
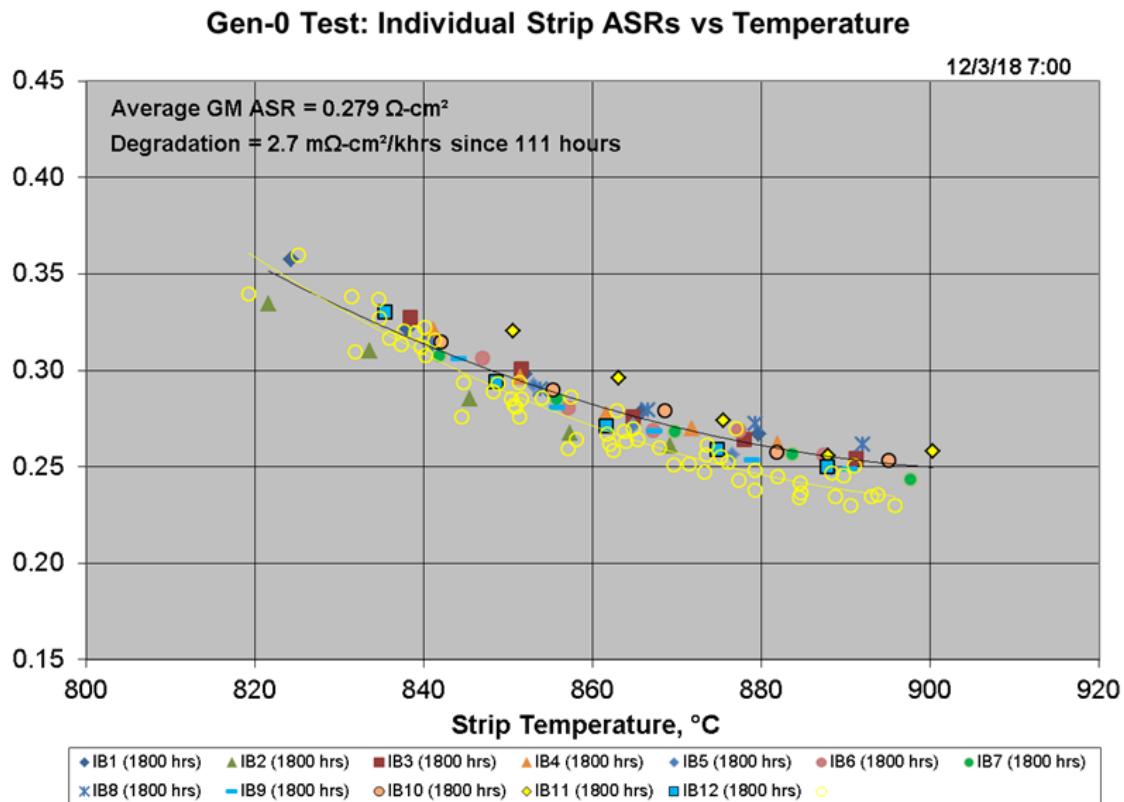



Figure 52 Longer Term Test Condition and ASR

Figure 53 Longer Term Strip ASR vs. Temperature

Degradation Rate: The power generated by Gen0 and the system efficiency for Gen0 were very steady throughout the demonstration period. This is an indication of a low degradation rate for the fuel cells. The calculated degradation rate for the test period between 111 hours and 1800 hours of operation was 2.7 milliohms-centimeter squared per thousand hours. This was a better result than the target value (3.0) which corresponds to a power degradation rate of 0.4 %/1000 hours of operation. The table shown in

Table **14** gives details for the 12 integrated blocks (IBs) located inside the Gen0 generator module. Operating temperature and power generated per block were very consistent between all the IBs.

Table 14 Gen0 Summary Performance at 1800 Hours

Temp, °C					Voltage	Current	Power	DC Eff	ASR	Util.	Deg Rate
Int. Block	Inlet	Outlet	Avg.	Delta	(V)	(Amps)	(kW)	(%)	ohm-cm ²	%	mΩ-cm ² /khrs
IB1	817	873	845	55	570	38.6	22.0	59.6%	0.308	78.4	4.1
IB2	816	875	845	60	573	38.6	22.1	60.9%	0.290	79.8	3.0
IB3	832	898	865	66	576	37.8	21.8	61.0%	0.285	79.5	4.2
IB4	836	900	868	64	576	37.8	21.8	60.2%	0.282	78.4	7.9
IB5	835	894	865	59	577	37.8	21.8	60.7%	0.278	78.9	3.8
IB6	842	905	874	63	576	37.9	21.8	60.9%	0.271	79.2	3.3
IB7	835	905	870	70	579	37.8	21.9	61.0%	0.265	79.1	-1.3
IB8	835	898	867	64	576	37.8	21.8	61.1%	0.279	79.5	-2.7
IB9	838	896	867	58	577	37.9	21.8	61.2%	0.268	79.6	1.4
IB10	835	902	869	66	574	37.8	21.7	61.3%	0.277	80.1	5.9
IB11	844	907	876	62	574	37.8	21.7	61.1%	0.274	79.8	0.2
IB12	829	894	862	66	578	37.8	21.9	61.5%	0.277	79.7	2.4
Average	833	896	864	64	576	37.9	21.8	60.9%	0.279	79.3	2.7

Gaseous Emissions: The gaseous emissions for NOx (nitrogen oxides) from the exhaust stack of Gen0 were very low. They were measured as 0.0003 lbs/MW-hr at the full load condition. This was much less than the target < 0.01 lbs/MW-hr. The gaseous emissions for carbon monoxide (CO) from the exhaust stack of Gen0 were higher than expected. They were measured as 1.13 lbs/MW-hr at the full load condition. This was much more than the target <0.13 lbs/MW-hr. To reduce the carbon monoxide emissions to an acceptable level, a catalytic oxidizer like those used on automobile exhausts could be added to minimize the CO emissions.

Key Performance Indicators: The key performance indicators are shown in Table 15. Overall the following was achieved:

- After early anomalies were resolved, GEN0 system operated very well
- Initial performance met pre-test expectations
- DC performance and efficiency were on target
- AC performance and efficiency were on target
- ASR performance and degradation consistent with expectations and a 3-year stack life
- Performance far exceeded previous system testing (IST/PT-A)
- The LGFCS SOFC Prototype System (GEN0) was demonstrated in an operational environment and therefore achieving Technical Readiness Level 7

Table 15 Key Performance Indicators

Specification	GEN-0 Target	Measure	Actual result
Baseload Power Output	$\geq 225 \text{ kWac}$	Average (during 1,000hours) net AC kW rating	250 kWac
Total System Efficiency, AC, DC	$\geq 53\% \text{ ac}$ $\geq 60\% \text{ dc}$	AC net (NG to Grid), DC net (NG to Fuel Cell DC)	55% ac 61% dc
Stack Life (Degradation Rate)	$\geq 3 \text{ years}$ (0.4 %/1k hours)	Degradation Rate (ASR difference over time)	3 (0.4%)
Duration	$\geq 5000 \text{ hours}$	Accumulated time of operation on load	1800 hours
Reliability	$\geq 85\%$	(1 - Unscheduled time offline/Duration) * 100% No loss of functionality at Emergency Shut Down	<90%
Emissions	$< 0.01 \text{ lbs/MWh}$	NOx lbs/MWh	0.0003
	$< 0.15 \text{ lbs/MWh}$	CO lbs/MWh	1.13
Noise	$\leq 76 \text{ dBA}$	dBA@7 meters	68
Footprint	$\leq 40 \text{ m}^2$	Total Area of System	46
Unmanned Operation	$\geq 30 \text{ days}$	Continuous days of operation	37
ANSI/CSA FC1.2014	Compliant	Stationary Fuel Cell Power Systems	Yes
IEEE 1754	Certified	Standard for Interconnecting Distributed Resources with Electric power Systems Grid Connection	AEP approved

2.0 SUMMARY

The objective of this program was to test a 250kWe thermally self-sustaining modular solid oxide fuel cell (SOFC) Power System (GEN0 Demonstrator) while advancing this commercial prototype product demonstrator to a Technical Readiness Level (TRL) 7.

The scope of work included:

- The assembly of the Fuel Cell Vessel (FCV)
- Assembly and packaging of the Generator Module and Balance of Plant (BOP)

- Installation and interconnection of the power system packages and connection to the fuel supply and power grid
- Commissioning and shakedown testing to validate assembly and safe operation
- Operation at a base load power rating to the grid

The GEN0 Demonstrator underwent testing on a site provided by Stark State College in North Canton, Ohio. System performance and degradation as well as cost estimates were compared to established SOFC Program performance metrics to assess progress.

The major achievements were:

- Assemble and QA qualified 70 fuel cell strips for 12 integrated blocks and 2 spare integrated blocks
- Assemble and QA qualified 12 integrated blocks and 2 spare integrated blocks and installed in fuel cell vessel
- Delivered fuel cell vessel to test site and installed in generator module
- Installed fuel and power electronics modules on test site
- Interconnected generator, fuel and power electronics modules on test site
- Commissioned and started the LGFCS SOFC Prototype System
- Performance to date:
 - Over 1800 Hours on Load
 - Power to Grid = 250 KW-AC
 - Efficiency = 61% DC / 55% AC
 - Power Degradation = 0.3% per 1000 hours
 - Emissions meet NOx standards
- The LGFCS SOFC Prototype System (GEN0) was demonstrated in an operational environment and therefore achieving Technical Readiness Level 7

3.0 ABBREVIATIONS

AF	Auxiliary Fuel
ASR	Area Specific Resistance
BOP	Balance of Plant
BPC	Block Power Controller
DC	Direct Current
DNG	Desulfurizer Natural Gas
EIS	Entry into Service
ESD	Emergency Shutdown
FCV	Fuel Cell vessel
FP	Fuel Processor
GM	Generator Module
HMS	Health Monitoring System
IB	Integrated Block
IBR	In Block Reforming
IGFC	Integrated Gasification Fuel Cell
IST	Integrated String Test
KPI	Key Performance Indicators
KW	Kilo Watt
LGFCs	LG Fuel Cell Systems
LHV	Lower Heating Value
MMA	Magnesia Magnesium Aluminate
MW	Mega Watt
NGFC	Natural Gas Fuel Cell
PCS	Power Control System
PE	Power Electronics
QA	Quality Assurance
sccm	Standard Cubic Centimeter per Minute
SIC	Secondary Interconnect
SOFC	Solid Oxide Fuel Cell
slpm	Standard Liter per Minute
TG	Turbogenerator
TGA	Turbogenerator Assembly
TRL	Technology Readiness Level