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Scalable FPGA Accelerator for Deep Convolutional

Neural Networks with Stochastic Streaming

Mohammed Alawad, Member, IEEE, and Mingjie Lin, Member, IEEE

Abstract—FPGA-based heterogeneous computing platform, due to its extreme logic reconfigurability, emerges to be a strong

contender as computing fabric in modern AI. As a result, various FPGA-based accelerators for deep CNN—the key driver of modern

AI—have been proposed due to their advantages of high performance, reconfigurability, and fast development round, etc. In general,

the consensus among researchers is that, although FPGA-based accelerator can achieve much higher energy efficiency, its raw

computing performance lags behind when compared with GPUs with similar logic density. In this paper, we develop an alternative

methodology to efficiently implement CNNs with FPGAs that outperform GPUs in terms of both power consumption and performance.

Our key idea is to design a scalable hardware architecture and circuit design for large-scale CNNs that leverages a stochastic-based

computing principle. Specifically, there are three major performance advantages. First, all key components of our deep learning CNN

are designed and implemented to compute stochastically, thus achieving excellent computing performance and energy efficiency.

Second, because our proposed CNN architecture enables a stream-mode computing, all of its stages can process even the partial

results from preceding stages, therefore not incurring unnecessary latency due to data dependency. Finally, our FPGA-based deep

CNN also provides a superior hardware scalability when compared with conventional FPGA implementations by reducing the

bandwidth requirement between layers.

The results show that our proposed CNN architecture significantly outperforms all previous FPGA-based deep CNN implementation

approaches. It achieves 1.58x more GOPS, 6.42x more GOPS/Slice and 10.92x more GOPS/W when compared with state-of-the-art

CNN architecture. The top-5 accuracy of stochastic VGG-16 CNN is 86.77% with 18.91 fps frame rate.

Index Terms—Convolutional Neural Network, FPGA, Stochastic Computing

✦

1 INTRODUCTION

LARGE-SCALE deep learning (DL) has recently attracted
tremendous amount of research interests largely due

to its unprecedented success in almost all computer vi-
sion tasks, such as image classification [1] and face recog-
nition [2], and natural language processing (NLP) tasks,
such as sentence classification [3] and semantic parsing [4].
Among many deep learning methodologies, convolutional
neural networks (CNNs), due to their significant improve-
ment in accuracy relative to other more traditional ma-
chine learning algorithms, have been extensively studied
by both the academic community [1], [5] and industry like
Google [6], Microsoft [7] and Facebook [8].

Conceptually, CNNs are hierarchically structured with
multiple feature extraction and classification stages. Fur-
thermore, each feature extraction consists of multiple con-
volution layers arranged in sequence that are interspersed
with non-linear activation and subsampling layers, while
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the classification stage consists of one or several fully con-
nected neural network layers at the end. Not surprisingly,
the impressive computing power of a state-of-the-art deep
network lies in its huge number of floating-point operations
performed, its enormous connectivity between convolution
layers, and its huge storage requirements. All these factors,
coupled with high energy efficiency needed, severely limit
large-scale CNN’s applicability in many real-time embed-
ded applications. For example, AlexNet [1], which is used
for ImageNet dataset, consists of almost 650,000 neurons
and 60 million synapses, and involved around 2-4 GOPS
per image classification. Consequently, hardware acceler-
ators using GPUs, FPGAs, ASICs, and other specialized
computing fabrics, become invaluable in many energy-
constrained and performance-centric applications. In fact,
many studies with these non-CPU methods have reported
order-of-magnitudes improvements in energy efficiency and
computing performance over conventional general-purpose
CPUs. In particular, GPUs are widely used because they are
very efficient in realizing floating-point matrix multiplica-
tion operations which are the core computing element of
deep CNNs; however, they are inefficient in terms of energy
consumption [9], especially for current networks, where ma-
trix multiplications for convolution process consume more
than 90% of the overall computation time [10]. Therefore,
discovering more energy-efficient hardware means to imple-
ment large-scale CNNs without compromising computing
performance remains a critically important research chal-
lenge.

Among various hardware implementation mediums,
Field Programmable Gate Array (FPGA) fabrics, which com-
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bine many benefits of both VLSI and general-purpose soft-
processor, have been identified as very attractive platforms
for accelerating CNNs computing. The main advantages of
using FPGA platforms can be summarized as follows: 1)
FPGAs provided superior energy efficiency than GPUs for
Deep CNNs [9]. 2) FPGA technologies are advanced signifi-
cantly by increasing the hardware processing units, on-chip
memories, and higher memory bandwidth which reduce
the performance gap between FPGA and GPU platforms.
3) FPGA architectures are flexible and can handle irregular
parallelism for emerging deep CNNs and custom-defined
data types that are difficult to be handled by GPUs [11]. 4)
Current FPGA design tools support high level programming
instead of RTL, which makes FPGAs accessible to develop-
ers [12].

Unfortunately, although the conventional FPGA-based
implementation of CNNs can achieve outstanding energy
efficiency, its computing performance is typically not as
good as GPU-based CNNs. In fact, there are two major
limitations of using FPGAs to realize CNNs conventionally.
First, FPGAs have limited availability of DSP slices that
can be used for multiply and accumulate purposes. In
fact, orders of magnitude of the available DSP slices are
required to realize efficient CNNs and achieve high level
of parallelism. For example, if the input and output feature
maps of a layer are P and Q respectively, then P × Q
convolvers are required to achieve the parallelism in CNNs,
which requires a tremendous hardware resources. There-
fore, they need to be shared among several neurons [13].
Unfortunately, this can significantly reduce the performance
of the circuit, where limited number of parallel neurons can
be realized on-chip, and loop tiling technique is adopted
to reuse the hardware resources for computation and store
all intermediate data off-chip in external memory chips.
Limited hardware resources can also lead to an inefficient
design since same feature maps and/or filter kernels need
to be read from off-chip memory so many times. Second,
since the intermediate results are used in the following
layer, a huge memory is required to save this data. This
also leads to a high memory communication rate which
requires more energy consumption, where off-chip memory
access consumes orders of magnitude more energy than on-
chip memory access [14], [15]. Even if there are enough
hardware resources to realize the whole computing units in
CNNs by connecting multi FPGAs, the connection between
them will be very complex and unrealizable which limits the
scalability of the design and does not ensure performance
improvement when increasing the available hardware re-
sources. Therefore, different studies have been presented
recently to overcome this issue.

Given all these performance challenges, a new hard-
ware implementation strategy is needed. Specifically, be-
cause the computing efficiency of matrix multiplications
on GPU platforms is almost unparalleled, an alternative
way for computing is required to implement CNNs with
FPGA platforms instead of employing FPGAs to imitate
the functionality of GPUs. The other reason why we need
to think differently is the bandwidth limitation of FPGAs
(about 10 to 20 GBPS [16]) compared to GPUs(up to 700
GBPS [17]). According to [18], using matrix multiplication
to do convolution results 25 times more data volume for the

input feature maps in the CONV layer, which reduces the
advantages of FPGA accelerators. In this paper, we exploit
the underlying performance benefits of stochastic-based
computing principles with FPGA fabric that transcend be-
yond deterministic CMOS-based computing [19] and pos-
sess many notable advantages. Specifically, stochastic-based
computing units typically use simple circuit units to con-
duct complex operations, which leads to area and energy-
efficient designs suitable for parallel processing. Moreover,
stochastic-based computing units are able to tolerate device
failures and construct robust circuits against large device
variations. Despite of many apparent benefits, stochastic-
based computation paradigms suffer from accuracy degra-
dation, where the results accuracy of stochastic-based com-
puting is proportional to the length of stochastic stream.
Fortunately, stochastic-based computing can be utilized in
applications that can tolerate a certain degree of error,
such as machine learning algorithms, signal processing and
control applications and we will show in Section 3 how it
can be used to realize CNNs.

Our motivation is to propose an alternative network
architecture and computing algorithm for realizing efficient
accelerator for deep CNNs to avoid the limitations of con-
ventional computing methods. In this paper, we propose
a synthesized stochastic-based design for deep CNNs, the
state-of-the-art machine learning algorithm, by applying
the stochastic-based computing principles on all computing
components. To do so, all the layers of a CNN need to be
converted to the stochastic domain. Thus, the complicated
structure of conventional CNNs is replaced with a channel
of simple stochastic processing units that process streams
of random samples [20]. Besides the advantages that can
be achieved by using stochastic-based computation, such
as high energy efficiency, low area cost, simplicity and
robustness, our proposed SCNN resolves the computation
and communication bounds in conventional deep CNN
hardware realizations. Specifically, avoiding the loop tiling
required to fit a small portion of data on-chip, eliminating
the need for storing the huge intermediate data results off-
chip, reducing the number of kernels that need to avail-
able on-chip, reducing the connections complexity between
layers, and significantly reduce the hardware resources re-
quired for each convolution circuit. The other advantage
of our proposed architecture, as compared to prior FPGA
acceleration studies on CNN, is that it accelerates the three
main layers of CNN models, convolution, activation and
pooling. This eliminates the diminish of overall energy-
efficiency and performance gains result from accelerating
the convolution layer only [18]

The rest of the paper is organized as follows. Section 2
presents the related works. In Section 3, the background
theory of CNN architectures and stochastic CNNs is pre-
sented. Section 4 describes our proposed stochastic-based
CNN architecture, and Section 5 presents the error analysis.
Results and analysis are discussed in Section 6. Then, we
conclude in Section 7.

2 RELATED WORKS

CNNs recently draws a lot of attention due to their great
success in object recognition, semantic segmentation, and
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obstacle detection especially because of the availability of
large training dataset and powerful computing platforms.
Therefore, several research works have been presented re-
cently to realize efficient CNNs on various platforms, in-
cluding GPU [21], FPGA [22], and ASIC [23]. Numerous
studies have found that one main restriction of a CNN’s
performance is its convolution step [24]. As such, a large
number of research works have been presented to improve
the hardware implementation of CNNs and reduce the com-
putational cost. Systolic structure has been used to realize
the convolution operation in CNNs [25], [26], however it
requires high memory bandwidth and does not support
the flexibility of CNNs’ settings [23], [27]. Interconnection
with memory has also been considered in [28] as another
limitation in realizing CNNs. They observed that it is the
key for realizing efficient hardware accelerators in terms
of performance and energy consumption. Single Instruction
Multiple Data (SIMD) architecture has been used to perform
the convolution operation to minimize the required memory
bandwidth. In [27], they propose a configurable accelerator
template for CNNS that can optimize the on-chip memory
size and data reuse. In [28], loop tiling has been used with
on-chip SRAM buffers to reduce off-chip memory commu-
nications. However, frequent memory access is required
because the feature maps are treated as 1D data. In [23],
researchers have eliminated all DRAM access for weight
by storing all the weights in on-chip memory. Their archi-
tecture was tested on simple task CNNs only. Therefore,
it fails when considering state-of-the-art CNNs for large
scale visual recognition, which has millions of weights.
Although Zhang et al. [22] have tried to improve both the
computation engine and communication issue, their CNN
implementation is based on deterministic computing by
using loop tiling and data reuse, therefore their performance
are severely limited by hardware budget and memory
bandwidth. In summary, most researches have focused on
improving the performance of either computing circuit or
the global communication with the off-chip memory issue.
Although a few of them have tried to improve both, such
as [22], these studies all follow the conventional way to
realize CNNs and suffer from the high computational com-
plexity, memory bandwidth, off-chip memory access, and
inter-layers connections complexity challenges.

The restrictions in conventional implementation of deep
CNNs using FPGAs lead to the need to develop the next
generation architectures for deep learning algorithms. Com-
pact data types have been proposed to represent data using
4-8 bits instead of using 32-bit single precision floating point
with a small reduction in accuracy [29], [30]. Lower number
of bits is used in ternary neural networks [31]. They use 2
bits to represent weights, however neuron values are repre-
sented by 32 bits. Researchers have also exploited network
sparsity to improve the efficiency. Data sparsity results from
the presence of zeros in neuron values and weights [32].
Mostly ReLU units produce zeros from negative neuron
values. This approach requires less operations due to the
use of sparse matrix multiplication instead of dense ones.
Another approach to exploit sparsity is to prune the network
weights that are considered not important by making them
zeros [33]. These schemes have irregular parallelism and
custom data type properties which make them difficult to

be implemented using GPUs, but suitable for FPGA real-
ization [9]. They all can be considered when designing our
proposed scheme to achieve more efficiency, however in this
paper, we focus on the conventional CNN architecture.

Very recently, stochastic-based computing has been pre-
sented to realize CNNs [34]. Their proposed structure
can significantly improve the performance and energy
consumption of simple task CNNs [35], [36]. However,
it follows the conventional structure of realizing CNNs
when considering state-of-the-art very deep CNNs, such as
AlexNet [1] and VGG modules [37]. Therefore, it could not
solve the scalability and interconnection problems. In this
paper, we take the advantage of stochastic-based computing
to reduce the hardware computing resources and connec-
tions complexity, and eliminate the intermediate data stor-
ing requirement and propose a scalable CNN architecture to
realize very deep CNNs.

3 BACKGROUND

3.1 Convolutional Neural Networks

A practical convolutional neural network typically consists
of several feature extraction layers, each of which normally
contains several convolution and nonlinear activation lay-
ers, and one optional pooling or sub-sampling layer. Fig. 1
illustrates the composition of one feature extraction stage.
Specifically, convolution layer extracts features from all
local regions of input image by convolving a 2-D filter kernel
over the input image. The filter kernels are obtained from
the training phase, which are assumed to be known in this
paper. We only focus on the feed-forward computation in a
CNN. More specifically, we construct each convolution layer
with parallel convolutional neurons, each of which can be
represented as 3D filtering with different kernel coefficients
on the input feature maps. Subsequently, this step produces
different feature maps for the next layer, the first dimension
is the number of input feature maps and the other two are
the height and width of the feature maps. Right next to a
convolution layer, a nonlinear activation layer transforms
a resulting feature map through a predefined nonlinear
function. This is to mirror the biological mechanism of
subduing and enhancing neural signals within a biological
brain. Finally, an optional pooling layer usually follows
in order to reduce the resolution of the convolved image.
The pooling layer takes small rectangular blocks from the
convolution layer and subsamples it to produce a single
output from that block.

Convolution Activation Pooling

Fig. 1: Architecture diagram of convolutional neural net-
work with three standard processing layers: convolution,
activation, and pooling.
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Fig. 2: Conventional structure of the first two layers of
ConvNet, where CONV is convolution circuit, AT is adder
tree, ReLU is rectified linear unit and MP is max pooling.

3.2 Complexity of CNNs

There are three types of parallelism in conventional
CNNs [24] need to be achieved to obtain efficient realization.
The parallelism in convolution operations, the parallelism
in combining many convolved input feature maps and
producing one output feature map, and the parallelism in
computing many outputs independently. To our knowledge,
there is no efficient hardware architecture that can achieve
all these levels of parallelism because of the limitations in
hardware resources and memory bandwidth if computing
in a deterministic domain. We will consider the structure
shown in Fig. 2 to demonstrate the limitations of achieving
the three parallelism types in conventional hardware-based
realization of CNNs. If a layer has P and Q input and
output feature maps respectively, then P×Q connections are
required to connect it with the previous layer, where P and
Q are big numbers. To process all the inputs simultaneously,
P convolvers are required, each one needs k2 multipliers
and k2 − 1 adders to achieve the parallelism in convolution
operation. The outputs of the convolvers are combined by
the adder tree circuit, which also requires P − 1 adders, to
produce one output feature map. Therefore, the hardware
complexity of each processing unit in conventional CNNs
is Pk2 multipliers and P (k2 − 1) + P − 1 adders. To
achieve the parallelism in computing many outputs inde-
pendently, Q processing units are required. On the other
hand, this layer requires (k2PQ) memory words to store
the kernel coefficients. We can see from that the hardware
resources requirement to achieve all the types of parallelism
is tremendous. Even if we have enough hardware resources
by connecting many FPGAs, the connections between layers
is another obstacle that limits the scalability. Current FPGA-
based CNNs architectures, such as [22], [30], realize some
processing units on-chip and reuse them for different tasks.
These architectures produce a huge intermediate results that
need to be stored off-chip which degrades the efficiency
of CNNs, and also they need to read the same feature
map so many times. Therefore, we propose an alternative
computing methodology to avoid the limitations of realizing
CNNs conventionally.

3.3 STOCHASTIC-BASED CNNs

In this section, we present the methodology to stochastically
compute all three layers of a feature extraction stage. In
the convolution layer, we exploit the well-known convolu-
tion theorem in random processes to significantly reduce
its computing complexity. Furthermore, in both nonlinear
activation layer and pooling layer, we again only perform
simple probabilistic operations to either pass or eliminate
random samples. Note that, in all these three layers, only
random samples are being processed. Therefore, the whole
computing procedure exhibits a streaming mode. In other
words, each layer doesn’t have to wait for the completion of
its preceding layer in order to proceed, therefore completely
being pipelined. This contrasts sharply with the determinis-
tic version of these layers.

Stochastic-based CNN methodology has several advan-
tages. First, because all information are encoded probabilis-
tically, many operations are further decoupled and its over-
all performance can be significantly improved. Secondly, the
decoupling due to stochastic processing can improve the
overall scalability of our CNN-based deep learning, which
potentially can greatly reduce its total memory footprint.
Finally, throughout our CNN-based deep learning system,
no complicated operations such as multiplication or divi-
sion are required. Instead, All operations are integer-based.
The real value of the input data is encoded by probability
values determined by the proportion of a particular random
samples.

3.3.1 Stochastic-Based Convolution Layer

Stochastic-based multi-dimensional convolution leverages
the probabilistic principle that the probability density func-
tion (PDF) of the sum of two or more independent random
variables is the convolution of their individual PDFs [38].
These PDFs may have the same size or each one has a differ-
ent size. Therefore, we can use this theorem to convolve ker-
nels with feature maps stochastically in CNNs. We define an
n-dimensional random variable by mapping the outcomes
of the space to an n-dimensional space, thus obtaining the n-
dimensional random variable X = [X1, X2, · · · , Xn], where
X1, X2, and Xn are 1-D random variables.

The above theorem proves that, through interpreting
input waveforms as probability density functions, a conven-
tional multi-dimensional convolution in spatial-temporal
domain can be readily translated into a number of indepen-
dent parallel additions in probabilistic domain. To further
discuss this method, suppose X and Y are two n-dimension
vectors treated as two n-dimensional probability density
functions mX and mY , respectively. For each of these, we
generate large ensembles of random samples accordingly,
TX1

, TX2
, · · · , TXn

and TY1
, TY2

, · · · , TYn
, we will discuss

this process in details in Section 4. Finally, corresponding to
each dimension 1, 2, · · · , n, we add random samples TXk

and TYk
to generate a new set of random samples TZk

,
where k = 1, 2, · · · , n. Subsequently, we extract the n-
dimensional PDF of TZ, mZ = X ∗ Y. In this paper, we
considered the stride size equals to one, which is the most
compute-intensive case. However, the proposed approach
can support larger strides too. The cost will be having
redundant computation. The required circuit to exclude
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redundant numbers is very simple and cheap in terms
of hardware resources and computation complexity. Also,
since the resultant random samples from one convolution
layer are passed to the next layer, indices range should be
changed by considering the stride size.

3.3.2 Stochastic-Based Nonlinear Activation Layer

The nonlinear activation layer within a CNN is designed to
mimic the biological mechanism of subduing and enhancing
neural signals within a brain. Since its introduction, vari-
ous activation transfer functions have been proposed and
investigated, although which function is the best remains
unsolved and most likely be application-specific. In this
paper, we refrain from discussing which transfer function
is the optimal choice because it is highly dependent on the
specific input data set and the particular CNN topology.
Instead, we present a detailed multi-phase pumping circuit
to implement a widely-adopted linear rectifier activation
function and demonstrate its effectiveness and hardware
efficiency.

AND
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OR

MUX

MEM-Counters

r, c, t

r, c, t r, c

t

+1−1

> 0

≥ 0

Switch
t̄

ADDR

DOUT

DIN

Fig. 3: Stochastic-based computing circuit for linear rectifica-
tion (ReLU), where r, c, t represent the random row-column
indexes and the corresponding sign bit, respectively.

Nair and Hinton [39] refer to neurons with linear rectifier
nonlinearity as Rectified Linear Units (ReLUs). Various re-
search studies have shown that, with ReLUs, a four-layer
convolutional neural network can significantly reduce its
overall training time, or the number of iterations required to
reach 25% training error on the CIFAR-10 dataset, by about 4
times when compared with its equivalent network that uses
tanh functions. In this study, the fact that all neural signals
are encoded probabilistically allows us to perform such
a linear rectification completely within the stochastic do-
main by directly manipulating the random samples passing
through the CNN. Specifically, we maintain an accumulative
counter CT[r][c] in each neuron i. For each incoming random
sample s(r, c, t), depending on its sign sign(s) = t, we
decide its passing or blocking accordingly by taking into
consideration the current state of CT[r][c]. Fig. 3 shows the
circuit diagram of stochastic-based ReLU. This algorithm
has been thoroughly verified with both simulation and
hardware implementation.

3.3.3 Stochastic-Based Pooling Layer

Pooling layers in CNNs are designed to summarize the
neuron outputs that belong to neighboring groups in the
same kernel map. More specifically, one can think that a
pooling layer consists of a grid of pooling units that are

spaced tx pixels apart. Therefore, each neuron result after
pooling summarizes a block of size k × k pixels centered
at the location of the pooling unit. There are several ways
to perform pooling methods, max and average are the most
frequently used pooling methods. In max pooling method,
its output is given by the maximum activation over non-
overlapping rectangular regions of size (Kx,Ky), while
in average pooling method, the output is computed by
averaging the values in the region of (Kx,Ky).
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MEM-Counters

r, c, t

r, c, t

r, c

t

+1−1

DOUT > ∆max

∆max

Switch

ADDR

DOUT

DIN

Fig. 4: Stochastic-based computing circuit for max pooling.

In this work, because all neural signals are encoded
as random sample streams, fortunately, various pooling
functions can be performed stochastically, i.e., manipulating
random sample in simple ways. For the average pooling, its
stochastic computing turns out to be quite straightforward.
All we need to do is to aggregate all streams of random
samples located within each pooling subzone. Note that
there is no change needed for all random samples and only
their indices need to be changed by modular operations. We
now provide a detailed description of our stochastic max-
pooling algorithm shown in Fig. 4. Specifically, at each loca-
tion (r, c), we maintain an accumulative counter CT[r][c].
For each subzone where we perform the max operation,
we have an aggregated counter ∆max, which records the
largest index value for all random samples seen so far in
this subzone. Finally, three assisting functions sign(s) = t,
idxx(s) = r, and idxy(s) = c reads out the sign, x-index,
and y-index of the random sample s(r, c, t), respectively.
The key idea of Fig. 4 is to output the correct number of
random samples corresponding to the location (r, c) with
the largest probability value.

4 STOCHASTIC-BASED CNN ARCHITECTURE

Our proposed architecture is based on the stochastic com-
puting principles, where all CNN layers are performed
stochastically as presented in Section 3. In the following,
we propose an efficient hardware structure to implement a
stochastic-based CNN.

Our stochastic-based CNN architecture attempts to
achieve both high scalability, therefore capable of handling
extremely big networks, and high efficiency in hardware
usage and off-chip memory communications while con-
suming low power. Therefore, this proposed architecture
can facilitate the hardware realization of CNNs with FPGA
devices while considering hardware resources and memory
bandwidth limitations.
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Fig. 5: Scalable stochastic CNN architecture, where PUs are stochastic processing units.

In the stochastic-based CNN implementation, shown
in Fig. 5, the input image data is read from the external
memory block by block, each is 2-D N × N vector, and
cached in on-chip buffers. In order to maintain the relatively
high speed of our proposed computation compared to the
data transfer time, we use double data buffers. While one
date buffer is operated upon, the other data buffer will
undergo the data loading process. Random number genera-
tors are used to transform the real values of a 2-D vector,
representing the input image or the convolution kernels,
into random samples, whose 2-variate probability density
function mirrors the 2-D vector values.

The proposed stochastic-based realization of CNN ac-
celerator is highly scalable. A massive number of random-
sample streams are implemented and organized in parallel
to improve the computation performance. These stochas-
tic processing unit lines are completely independent and
construct from stochastic processing units. The structure
of a stochastic processing unit is shown in Fig. 6. Each
PU receives random samples representing a feature map
and its corresponding parameters. Then, perform stochastic
convolution followed by stochastic activation and pooling,
if available for this layer. The resultant random samples are
pushed to the next layer. The outcomes are aggregated at the
end to accumulate random samples. Finally, the real CNN
outputs numbers are extracted from the resultant random
samples.

This scheme significantly reduces the hardware cost
compared to the conventional processing unit. It provides
a high scalable structure by streaming random samples
through a sequence of stochastic processing units. The num-
ber of parallel streams in processing is determined by the
hardware resources availability. We can realize each stream
on a single FPGA device since there is no intermediate
connection between them. At the end, all streams need to
be combined in order to get the final results. The stochastic-
based selecting circuit is used to determine the number of

random samples to be generated for each kernel based on
its coefficients, and to generate random samples rk, ck to be
convolved with the random samples ri, ci that are coming
from the previous layer. Kernel buffers are used to avoid the
delay in reading from off-chip memory. A synchronization
signal is used between layers to specify this random sample
stream corresponding to which feature map, because each
feature map needs to be convolved with specific kernels.
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Fig. 6: Structure diagram of the stochastic processing unit
for a convolution layer with activation and pooling.

In CNNs, fully connected layers can be converted to
convolution layers [40] leading to fully convolutional neural
networks. For example, ConvNet [37] has three fully con-
nected layers. The first one is converted to a 7×7, which is
the size of inputs to the fully connected layer, convolution
layer, while the last two are converted to 1×1 convolution
layer each. Therefore, the whole proposed circuit deals
with random samples only since all layers are performed
stochastically. At the output, channels of random sample
streams, one for each class, are used to determine the class
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score map. Thus, one counter is required for each channel
to extract the real value from its corresponding random
samples, i.e. 1000 for ConvNet [37]. Then, they are fed to a
1000-way soft-max classifier which produces a distribution
over 1000 class scores. In the following, we provide more
circuit design and implementation details. Specifically, we
present how to generate random samples that follow any
given distribution. Then discuss reducing the number of
connections between layers and achieve streaming realiza-
tion. Also, we show the ability of our proposed scheme in
reducing the on-chip parameters requirement.

4.1 Random Numbers Generation

Random number generators are used to generate random
samples follow the distribution of the 2-D input image or
kernel coefficients. Each random sample is a three-tuple, (r,
c, and t), where r and c denote the x- and y-index of the
matrix and t denotes the sign of the corresponding matrix
entry. The entry absolute value determines the probability
that the random sample (r, c) falls within a specific index
range (x, y), while the negative sign is used to determine the
impact of the sample on the ultimate output value and also
used for the stochastic ReLU and max pooling as presented
in Section 3.

Given a 2-D k × k vector, for example kernel coefficients
Wx,y, we would like to generate an ensemble of random
samples of the random variable r, c. These random samples
will be exclusively drawn from the set {0, 1, · · · , k− 1} and

satisfy P(r = x, c = y) = Wx,y
∑k−1

i=0

∑k−1

j=0
Wi,j

for any x, y ∈

{0, 1, · · · , k − 1}. Obviously, to achieve high efficiency, we

will avoid calculating all probability values
Wx,y

∑k−1

i=0

∑k−1

j=0
Wi,j

.

Additionally, we require that the total number of random
samples will be solely determined by the user. In other
words, at any point of random number generation, all sam-
ples that have been generated should faithfully follow the
given PDF, which is called the ergodic property in statistics.
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Fig. 7: Random number generator circuit when k = 3, where
URs generate a uniformly distributed random numbers.

The block diagram of the proposed random sample
generator is depicted in Fig. 7. For each row in the 2-D
vector, we generate the cumulative distribution function,
CDFcolx(y) =

∑y
i=0 Wx,i. Then, we uniformly draw a ran-

dom sample Scx for each CDFcolx from its corresponding
closed range [1, CDFcolx(k)]. Finally, we locate the particu-
lar segmented range [CDFcolx(i), CDFcolx(i+1)] that con-
tains Scx, i.e., CDFcolx(i) < Scx ≤ CDFcolx(i + 1), where

i ∈ {0, 1, · · · , k − 1}. Each one of the k parallel comparison
circuits generates a column random sample; therefore, in
parallel with this, we generate the cumulative distribution
function of the rows, CDFrow(x) =

∑x
i=0 CDFcoli(k). An-

other uniformly distributed random sample Sr is generated
and compared with the entries of CDFrow, as stated above.
Then, the output of this circuit will be used as the row
random sample and as the Mux control signal to determine
which cx will be used as the column random sample. Note
that, in the scheme depicted in Fig. 7, binary search tree
is used in order to find the correct range index; therefore,
we need to perform log k comparisons. Fortunately, all
comparisons are performed in a pipelined fashion, which
significantly improve the throughput.

4.2 Reducing the Connectivity Between Layers

Conventionally, the output feature map of a specific layer
equals the accumulation results of convolving P input fea-
ture maps with P different kernels. This step is functionally
equivalent to a 3-D convolution, where the height and width
are the kernel dimensions, k × k, and the depth is P as in
the following equation:

Qi = P1 ∗ k1 + P2 ∗ k2 · · ·+ · · ·+ Pp ∗ kp, (1)

where Pi and ki denote the i-th feature map and kernel,
respectively. Therefore, Equation 1 can be realized stochasti-
cally, as presented in Section 3, by randomly selecting each
input feature map, or its corresponding random samples
stream. The kernels’ coefficients are used to determine the
number of samples that need to be selected from a specific
feature map.

Fig. 2 shows the structure of the first convolution group
of ConvNet [37] for one channel. In our proposed archi-
tecture, all the operations are performed stochastically as
presented in Section 3. Therefore, a stream of k∗ row-column
(r-c) random samples, follows the distribution of the input
image, is generated by the random number generator circuit
shown in Fig. 7 and flows through the convolver circuits in
the first layer. Each convolver circuit receives a stream of
random samples follow the distribution of its corresponding
kernel, and uses a pair of adders to add the image’s r-
c random samples with the kernel’s r-c random samples
and produce the addition stream of random samples. After
applying the stochastic ReLU and stochastic pooling pre-
sented in Section 3, if available, a new stream of random
samples will flow to the next layer. In the second layer, P
streams of random samples, coming from the previous layer,
need to be treated with P separate kernels stochastically to
produce one output feature map. Therefore, Pk∗ random
samples need to be processed in the second layer for each
output feature map, while the required number of samples
to achieve no more than d error with 1−α confidence level,
as we will present in Section 5, is k∗ random samples for
each extracted feature map. This problem gets worse as we
go deeper in the network. Therefore, we propose a stochastic
selection scheme to randomly select k∗ samples out of Pk∗

samples.
Fig. 8(a) depicts the structure of naively selecting one

of the output random stream, where the selection circuit is
placed after the processing unit in the second layer. There
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Fig. 8: Stochastically selecting S random samples out of PS
random samples. (a) Scheme-1: naive selecting circuit (b)
Scheme-2: proposed selecting circuit

are two issues with this structure: First, the connections
between layers is as complicated as the one in the conven-
tional structure, which has PQ connections. Second, P − 1
pairs of adders will be redundant in each processing unit.
They perform stochastic addition, but the selection circuit
only selects one of them. Therefore, the structure shown in
Fig. 8(b) is used to solve these problems. In this structure,
the selection circuit is moved to the previous layer, where
only one stream will flow from one layer to another. The
advantages of using the second scheme is reducing the
connection complexity between layers, where only Q con-
nections are required. Therefore, if layeri is realized on one
FPGA device and layeri+1 on another FPGA device, then
only one connection channel is required to connect them.
The second advantage of using this structure is reducing the
hardware usage, where only one pair of adders is required
for each processing unit.

4.3 Random Selection Process

The accuracy of an output feature map or its corresponding
distribution is determined by two factors. First, the number
of random samples k∗ needed to approximate the PDF,
which will be discussed later in Section 5. Second, these
random samples need to be thoroughly mixed, since they
come from several input feature maps, to more accurately
emulate the process of each processing unit. In other words,
how to efficiently select k∗ random samples out of Pk∗

random samples coming from P input feature maps. Note
that the PDF of feature maps will not be extracted till the
end, as mentioned above, to keep the streaming of random

samples through the network and avoid the need for PDF
extraction units. However, we need to make sure that the
feature maps, resulting from stochastic-based computing
circuit after every layer, are corresponding to their equiv-
alent feature maps in the conventional CNNs. The above-
discussed scalable architecture demands us to perform such
stochastic mixing in segments. Such stochastic mixing con-
sists of two layers of mixing. Between input feature maps
and kernels, random samples are generated and then added
individually. In addition, all output feature maps of a layer
are also mixed through selecting one of them stochastically
using the selection circuit.

Fundamentally, there are two ways of approximating
a PDF through combining different streams of random
samples, where the stream results from convolving two
random variables stochastically by the addition process. In
the first method, because different streams may account for
different probability mass function values, in theory, the
probability of choosing different streams should be linearly
proportional to their probability masses in order to obtain
the overall accurate PDF. In contrast, the second method
chooses each stream with an equal probability according
to a uniform probability function. The different probabilis-
tic mass value of each stream will be compensated with
different number of random samples generated for each
stream. Specifically, given a k × k kernel coefficients Wp,

we define the kernel weight Bp as
∑k−1

i=0

∑k−1
j=0 W (i, j),

where p denotes the index value of p-th kernel that will
be convolved with the p-th stream of random samples cor-
responding to the p-th input feature map. Also, we choose
constant values Sl and Bl to be the reference number of suf-
ficient random samples and the reference probabilistic mass
function value, respectively, where l is the layer sequence.
Therefore, each time a stream Pp is uniformly chosen, its
necessary random samples will be determined by a simple

formula Sp =
(

Bp

Bl

)

Sl. In this paper, we select the second

method for our implemented hardware prototype although
it requires a multiplier because of its relative low hardware
complexity and its ease of circuit implementation. Finally,
the above stochastic mixing process can be modeled using
Stochastic Differential Equations (SDEs) and its algorithm
convergence, equivalent to the study of the stochastic sta-
bility of a Virtual Stochastic Dynamic System (VSDS), can
be established by leveraging the techniques of Lyapunov
stability as in [41].

4.4 On-chip Parameters Optimization

From the above discussion, we can see that not all the
kernels in a specific layer are needed to be available on-
chip simultaneously. For example, as presented in Fig. 9,
when W1 of the first layer is under processing, the other
kernels of the same layer,{W2 · · ·WP }, are on hold. Where
the stochastic selecting circuit of the first layer is used to
determine the number of samples need to be generated
from W1’s RNG circuit to be processed with the stream
coming from the input image. At the same time, the out-
put stream results from convolving the input image with
W1 represents P1 feature map of the second layer. This
feature map is convolved only with the first kernel of
each processing unit, {W11,W21, · · ·WQ1}. Therefore, only
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Fig. 9: Active processing units in CNN, and the required
on-chip parameters.

these kernels are required to be processed with P1’s stream.
Similarly, the stochastic selecting circuit of the second layer
determines the number of samples corresponding to each
kernel, {W11,W21, · · ·WQ1}, based on their coefficients to
be processed with P1’s stream. Thus, only one of them has
to be on-chip, as in the first layer. This same principle can be
applied to all other streams. Each channel of random stream
computing units can be used to process a separate image to
achieve high performance computation and compete GPU
realization. Since same weight parameters are used for each
image, the number of parameters needs to be available on-
chip is reduced.

5 ERROR ANALYSIS

The success of our stochastic-based CNN hinges on the fact
that we can accurately and efficiently generate an ensemble
of random samples that represent any given probability
value. One critical question to ask is how many random
samples are enough to achieve any required computing
efficiency. In this paper, the most important building block
of SCNN is adding two independent random variables and
extracting the probability density of its resulting sum. In the
following, we derive the probabilistic error bound in two
steps. First, we investigate the required number of random
samples in order to precisely extract the desired probability
density function. Second, we obtain the relationship be-
tween the total number of random samples and the overall
accuracy of our probabilistic convolution.

Formally, let X = {x1, x2, · · · , xN} denotes a given N -
sized input vector. To approximate pi =

xi∑
N
i=1 xi

, which has

probability at least 1−α of being no further than d from the
accurate value, the necessary random sample size requires
no more than

k∗ =
z2pi(1− pi)

d2
, (2)

Furthermore, the required random sample size to extract
a probability density function fX consists of a sequence of
pis, where i = 1, 2, · · · , N . This is an equivalent problem
of finding sample size for estimating several proportions
simultaneously. In terms of the required sample size, the
worst-case scenario occurs when the combination of N pro-
portions that give the maximum probability of a sample for

TABLE 1: Random sample size k∗ for approximating any
pi value within in distance d = 0.05 of the true value at
confidence level 1− α.

1− α d2k∗ k∗

0.50 0.44129 177

0.90 1.00635 403

0.95 1.27359 510

0.99 1.96986 788

which at least one of the sample proportions was unaccept-
ably far from the corresponding population proportion [42].
Considering Equation (2), because 0 ≤ pi ≤ 1, pi(1 − pi)
takes its maximum value 1/4 when pi = 1/2. Therefore, to
approximate fX with a probability at least 1 − α of being
no further than d from the accurate value for each pi, where
i = 1, 2, · · · , N , the necessary random sample size requires
no more than

k∗ =
z2

4d2
, (3)

where d is the absolute error and z is the upper α/2 point of
the normal distribution. Table 1 lists some numerical results
according to Equation 3.

6 RESULTS AND ANALYSIS

In this section, we present the experimental results of our
proposed stochastic-based CNN architecture and the com-
parisons with other FPGA-based CNNs. We used a Xilinx
Virtex-6 FPGA device to implement our proposed SCNN.
Since our proposed architecture is based on streaming ran-
dom samples through a sequence of stochastic processing
units (PUs), as presented in Section 4, we can implement
several channels of random stream processing layers for a
given amount of hardware resources. As such, all random
samples will be combined at the end to determine the score
map vector. For all the presented results in this section, we
only use one channel of random samples streaming and ev-
erything is implemented on a single Virtex-6 LX550T FPGA
chip. Also, we found that each PU needs D/2 kernel buffers
to avoid memory access delay, where D is the depth of a
CNN. To use the FPGA resources efficiently, our proposed
architecture uses BRAMs to buffer on-chip data and to store
the counters corresponding to the stochastic ReLU and max
pooling. It uses DSP slices for pre/post processing and also
in stochastic selecting circuit to determine the number of
random samples for each kernel coefficients. Logic slices are
used to realize all other components of the architecture.

To make our performance comparisons fair, we mea-
sure the total execution time for a given computing task
using stochastic-based architecture and compare it to the
equivalent conventional ones. Specifically, we calculate the
required stochastic computations to perform convolutional
network and find the total execution cycles for different
accuracy levels. Subsequently, we convert the results to
GOPS (Giga Operations Per Second), by dividing the CNN
size over the execution cycles and multiply the result by
the cycle period, and use it as the performance metric.
Because different FPGAs have been used to realize CNNs,
we use the performance density as another performance
metric [22], to understand and compare hardware-efficiency
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TABLE 2: Comparison with other large-scale Deep CNN implementations.

Conventional CNN Stochastic CNN

ISCA2010 [24] FPGA2015 [22] FPGA2016 [30] FPGA2017 [43] FPGA2018 [44] TMSCS2016 [34] Proposed

FPGA Virtex5 SX240T Virtex7 VX485T Zynq XC7Z045 Arria-10 GX 1150 Xilinx Virtex 690t Virtex6 LX550T Virtex6 LX550T

Frequency (MHz) 200 100 150 150 150 200 200

Power (W) 14 18.61 9.63 21.2 25 6.81 3.61

CNN size (GMAC) 0.26 1.33 30.76 30.95 30.95 30.76 30.76

1 − α 99% 99% 95%

Performance (GOPS) 16 61.62 136.97 645.25 570 72.76 581.93 899.13

Performance Density (GOPS/Slice) 4.3E-04 8.12E-04 26.1E-04 40.10E-04 32.57E-04 17.49E-04 135.4E-04 209.2E-04

Power Efficiency (GOPS/W) 1.14 3.31 14.22 30.44 22.8 10.68 161.19 249.06

of different CNN implementations. In this paper, we define
the hardware density as the average GOPS per logic slice
(GOPS/Slice). Note that the logic capability of each logic
slice across different FPGA devices mostly remains the
same, therefore this performance metric of hardware den-
sity conceptually indicates how computationally effective
a given unit of hardware is being used. Intuitively, this
computing density number is also closely related to the
energy efficiency for computing.

In our proposed architecture, all processing units deal
with stochastic samples, and there is no need to store
intermediate data resulting from loop tiling technique and
inter-layer connections, as in the conventional architectures.
We only need to read input images at the first layer and store
the output of the last layer. Most of the off-chip memory
access will be performed to read CNN’s weights, kernel
coefficients. This can significantly reduce the overall power
consumption of CNNs, which is typically dominated by
data transfer and memory access operations. In contrast,
for the conventional deterministic-based CNN architecture,
a large amount of intermediate data needs to be stored and
retrieved, which translates into huge numbers of read/write
operations from/to off-chip memory. This consumes a sig-
nificant amount of energy consumption even larger than
their associated algorithmic operations. For example, the
average number of intermediate data, in pixels, of a con-
ventional CNN architecture that needs to be read/written
from/to an off-chip memory when P = 256, Q = 256, and
N = 56 is 3.67M pixel.

To benchmark the performance of our proposed
stochastic-based CNN architecture in large scale, we choose
the deep learning CNN configuration that wins the first
place in image classification task of the 2015 ImageNet
Large-Scale Visual Recognition Challenge (ILSVRC). It con-
sists of five convolution layer groups and three fully con-
nected layers. There are different versions of this model,
e.g. VGG-11, VGG13, VGG-16, and VGG-19. The number
of convolution layers in each group varies in each version.
In this paper, we use VGG-16, pre-trained using MatCon-
vNet MATLAB toolbox1, as the standard model for all the
presented results. The model constructs from 13 convolution
layers followed by 3 fully connected layers. The size of all
the convolution kernels is 3 × 3. Each convolution layer is
followed by the rectification non-linearity, and each group
has one max pooling layer. In all the following results, we
adopted the Image-Net dataset to evaluate the performance
of our proposed stochastic CNN, which includes 1.3M im-

1. http://www.vlfeat.org/matconvnet/

ages for training dataset and 50K images for validation
dataset divided into 1000 classes. For the stochastic-based
CNN software implementation, we re-implemented all the
CNN processing units following the stochastic-based algo-
rithms presented in Section 3.3.

Table 2 compares our proposed Deep SCNN with ex-
isting FPGA-based architectures. It shows that ours outper-
forms other architectures in terms of performance, hardware
resources utilization and power efficiency. The performance
of SCNN mainly depends on the number of random sam-
ples S = k∗ × featuremaps, where k∗ is the number of
random samples required to achieve a specific computing
accuracy for each feature map, as presented in Section 5. The
results show that Deep SCNN achieves 1.58x more GOPS
compared to the state-of-the-art CNN architecture [44] to
achieve d = 0.01 with 95% confidence level. In terms of
area efficiency, our proposed method achieves 3.35x more
GOPS/Slice than the best architecture among the others.
Finally, the last row in Table 2 presents the power efficiency
of our implementation. It shows that SCNN achieves 10.92x
more GOPS/W compared with the CNN in [44].

TABLE 3: Comparison with the most recently published
conventional CNN architecture where ET is the execution
time.

ET Energy Energy Efficiency Top-5

ms J GOPS/J %

FPGA2016 [30] 224.6 2.16 63.41 86.66

FPGA2017 [43] 47.97 1.02 632.60 within 2% less than [30]

FPGA2018 [44] 89.4 2.24 254.46 –

Proposed 52.9 0.19 3062.78 86.77

We also compared our proposed architecture with con-
ventional FPGA-based CNN accelerators in terms of execu-
tion time, energy efficiency and accuracy loss. The results
presented in Table 3 show that state-of-the-art conventional
realization requires 1.70x more time and consume 11.79x
more energy than the SCNN to finish all the computation.
This makes the proposed method 12x more energy efficient
than the most recently published paper. In terms of perfor-
mance accuracy, the proposed method can achieve a frame
rate at 18.90 fps with the top-5 accuracy of 86.77%, while the
deterministic-based architecture can achieve a frame rate at
4.45 fps with the top-5 accuracy of 86.66% [30].

To validate the functionality of our proposed stochastic-
based CNN, we present in Fig. 10 a comparison between the
conventional deterministic-based CNN and the stochastic-
based CNN with different accuracy levels, by changing the
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Fig. 10: Stochastic-based VGG-16 ConvNet Illustration example. The first row represents the conventional CNN results, the
middle and last rows represent stochastic-based CNN results when d = 0.01 and d = 0.1, respectively.
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Fig. 11: Two ImageNet dataset test cases from VGG16 CNN.
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Fig. 12: The top 15 scores from the VGG-16 ConvNet score
map vector.

number of random samples, to show the impact of random
samples size towards the stochastic CNN computing accu-
racy. We have selected one output feature map from each
convolution group in VGG-16 model and draw it. The first
row shows the results when the conventional CNN is used,
while the second and third rows show the stochastic-based
CNN results when d = 0.01 and d = 0.1, respectively.
Then, all resulting ranking scores are measured, which

clearly show how the difference between scores increases
with less random samples, especially for the top-1 score.
We have also chosen two representative image recognition
cases from ILSVRC 50,000 validation dataset. As shown in
Fig. 11, in both cases our stochastic-based CNN can produce
the correct image recognition results with a little difference
in ranking scores. The main reason makes stochastic-based
computing works for this kind of applications is that there
is no golden output result needs to be achieved. As we see
in Fig. 12, the output is a vector of scores, we selected the
top 15 out of 1000, each corresponding to a specific class.
The recognition is correct as long as the score of its class
has the highest value among others. Top1 and Top5 are
used to determine the accuracy of our proposed stochastic
CNN. They represent the percentage of matching the input
image to the highest rank label or to the first 5 highest
rank labels within the predicted list for the whole validation
dataset, respectively. Top1 and Top5 for conventional CNN
are 65.99% and 86.87% respectively. The accuracy in SCNN
can be controlled by the number of random samples, where
our results have shown that SCNN can achieve 65.68% and
86.77% for Top1 and Top5 respectively.

7 CONCLUSIONS

In terms of computing performance and energy efficiency,
our stochastic-based CNN realization can achieve signifi-
cant improvements over the state-of-the-art deterministic
CNN accelerators. Maybe one of the most novel aspects
of our stochastic-based CNN is its capability to seam-
lessly improve computing accuracy incrementally by dy-
namically adjusting the number of random samples to be
processed without making any changes to the computing
hardware at run time. This feature can be quite essen-
tial in many mission-critical embedded applications. More-
over, we prove that stochastic-based computing can signif-
icantly improve the circuit scalability of a large-scale CNN,
which makes multi-FPGA CNN implementation much more
straightforward and scalable. Finally, the stochastic-based
computing principle in our CNN implementation strategy
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naturally lends itself to training CNNs with probabilistic
dropping that can effectively avoid harmful data overfitting,
thus opening up a new front and an elegant alternative com-
puting methodology to CNN implementation. Our future
work will focus on developing CNNs training technique
based on the stochastic computing principle.
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