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Abstract—A coherent change detection (CCD) image, com-
puted from a geometrically-matched, temporally separated pair
of complex-valued synthetic aperture radar (SAR) image sets,
conveys the pixel-level equivalence between the two observations.
Low coherence values in a CCD image are typically due to either
some physical change in the corresponding pixels, or a low signal-
to-noise observation. A CCD image does not directly convey the
nature of the change that occurred to cause low-coherence.

In this paper, we introduce a mathematical framework for
discriminating between different types of change within a CCD
image. We utilize the extra degrees-of-freedom and information
from polarimetric interferometric SAR (PolInSAR) data and
PolInSAR processing techniques to define a 29-dimensional fea-
ture vector that contains information capable of discriminating
between different types of change in a scene. We also propose
two change-type discrimination functions, that can be trained
with feature vector training data, and demonstrate change-type
discrimination on an example image set for three different types
of change. Furthermore, we also describe and characterize the
performance of the two proposed change-type discrimination
functions by way of receiver operating characteristic (ROC)
curves, confusion matrices, and pass matrices.

Keywords—Polarimetric Interferometric SAR (PolInSAR), Co-
herent Change Detection (CCD), Optimum Coherence, H/A/c
Decomposition, Feature Vector, H/A/o. Filter, Probabilistic Feature
Fusion (PFF) Model

I. INTRODUCTION

Complex-valued synthetic aperture radar (SAR) images,
when properly calibrated, represent measurements of the mag-
nitude and phase of scattering mechanisms within a scene,
as measured for a given nominal wavelength of the radio
frequencies of the electromagnetic (EM) spectrum. The magni-
tude map directly communicates the radar cross-section (RCS)
distribution across the imaged scene, and has a spatial structure
that generally correlates with underlying scattering intensities;
the corresponding phase of the complex-valued has the ap-
pearance of a uniform random field with no directly apparent
correlation with underlying scattering physics. However, the
utility of the phase of the measured data is manifested when in-
terfering two complex-valued images of a scene, collected with
nearly equivalent geometries. The magnitude of the interfered
image product can provide an indication of the changes that
have occurred in the scene between observation instances, and
is traditionally known as a coherent change detection (CCD)
image.

Traditional CCD images, computed from single-polarization
complex-valued SAR data, indicate regions of a scene where
a loss of coherence has occurred between observations. These
low-coherence regions are generally interpreted as “changes”

within the scene, and are typically the result of thermal noise,
natural temporal decorrelation, wind, or actual changes to
scattering surfaces caused by, for example, ground vehicles
traversing over non-indelible surfaces. Traditional CCD images
do not directly enable discrimination between the causes of
decreased coherence. A value in the continuous interval [01] is
assigned to each pixel in a CCD image to indicate the estimated
coherence magnitude, but there is nothing to indicate the nature
of, or underlying cause of, observed variations in coherence.

Several algorithms have been proposed for detecting
changes in polarimetric SAR (PolSAR) and polarimetric in-
terferometric SAR (PolInSAR) images sets. The methods
have ranged from hypothesis testing based-on equal-scattering
mechanisms and power-ratios [1], detecting and thresholding
partial target observations [2], generalized likelihood-ratio
test that can discriminate between actual changes and low-
coherence due to noise by accounting for low signal-to-noise
ratio, and change detection based on polarimetric contrast
minimization [3].

In additional related work, researchers have used PolSAR
and PolInSAR image sets to isolate specific types of change
such as detecting regions that have changed from bare land to
water and changes in land cover [4] and detecting buildings
in urban areas [5]. Furthermore, other research has been
conducted to use PolInSAR for improved unsupervised classi-
fication of image content [6], [7].

This paper introduces a framework and two methods for
identifying, and discriminating between, different regions of
low-coherence within a CCD image, such as identifying low-
coherence due to radar shadow or vegetation. The proposed
framework is built around the additional degrees of freedom
that PolInSAR provides and enables a scattering-physics based
discrimination between various regions of coherence loss.

II. BACKGROUND
A. Polarimetric SAR

For the sake of this paper, it is assumed that the data
are collected from a well-designed airborne fully-polarimetric
radar sensor, that an appropriate image formation algorithm has
been applied to the observations, and that fully-polarimetric
calibration of the raw scattering observations has been per-
formed.

A calibrated single-polarization SAR image conveys the
RCS of the scattering in a scene for a selected polariza-
tion state. Examples of polarization states include: transmit-
ting “vertically”-oriented EM fields and receiving vertically-
oriented EM fields (VV polarization) and transmitting and
receiving “horizontally”-oriented EM fields (HH polarization).
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The first observation is that of the “V”-pol co-polarization
response, while the latter is the orthogonal “H”-pol co-
polarization response. For each co-polarization observation,
there is also a corresponding orthogonal cross-polarization
response that can be observed. A calibrated fully-polarimetric
SAR image set conveys the RCS of the scattering in a scene
for a complete set of co- and cross-polarization bases. There
is a continuum of possible orientation basis sets that can be
selected from; the “standard” linear polarization bases will be
used in this paper: VV, HH, HV, and VH, where XY indicates
that a Y oriented EM field was transmitted and an X oriented
EM field was received. (Note that any other polarization basis
can be synthesized from any other fully-polarimetric basis.)
Measured PolSAR data can be expressed as a scattering matrix:
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where Sxy is a complex-valued measurement; there are of
course one of these observations at every pixel location within
the formed image products. For this paper, it is posited that
all observations were performed in a monostatic manner (i.e.
stationary and time invariant, with no displacement between
sensor position between illumination and reception), and hence
the law of reciprocity at the scattering boundaries states that
Suv ~ Svu; the approximation is asserted because in reality
all scattering observations are in fact a superposition of the
actual scattering signal and undesired independent additive
noise contributions. Under the assumption of cross-polarization
reciprocity, we define an alternate cross-polarization observa-
tion, Scx = (SHV + SVH)/2

The total power of scattering observations from all of the
polarization channels can also be combined into a span image,
with the span calculated as:

Span = |Suu|” + |Sav|® + |Sval® + [Svv . @)

B. Polarimetric SAR Decompositions

For clutter observations, the utility of a fully-polarimetric
image set comes from the decomposition of coherent combina-
tions of the polarization channels. Polarimetric decompositions
have been an active area of research for the past three decades
and a variety of decompositions exist in the literature such
as the Yamaguchi four-component scattering model [8], the
general four-component scattering power decomposition with
unitary transformation of coherency matrix (G4U) [9], and the
information theoretic H/A/a: decomposition [10]. The general
utility of a polarimetric decomposition is to map or distribute
the raw observations to some specified categories or “lexicon”
of specified scattering mechanisms. One of the simplest such
mappings is the Pauli feature vector, which is constructed by
projecting the 2 x 2 scattering matrix onto the Pauli-spin matrix
bases [10]. For monostatic observations, the 3 x 1 Pauli feature
vector has the following form:
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The general physical interpretation of the first entry of the
Pauli feature vector is that it represents odd-bounce scattering
mechanisms such as spheres and trihedral corner reflectors.
The physical interpretation of the second entry is that it repre-
sents even-bounce scattering mechanisms such as vertically or
horizontally rotated diplanes, while the third entry represents
even bounce from dihedrals rotated 45°; in this case, rotation
is with respect to angle around the observation line-of-sight
direction vector.

The polarimetric coherency matrix can be formed by com-
puting the spatial average of the outer-product of the Pauli
feature vectors:

T = (kk'"), “)

where (-) denotes a spatial ensemble average over a neigh-
borhood of N pixels, and the superscript  denotes conjugate
transpose. This polarimetric coherency matrix is the preferred
observation input form for most polarimetric decompositions.

The information-theoretic H/A/a polarimetric decomposi-
tion will be utilized in this paper [10]. The H/A/aw decom-
position utilizes the eigendecomposition of the polarimetric
coherency matrix,

T = UAU! ®)
3
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where U is the matrix of eigenvectors (note that U~! = U
for Hermitian symmetric matrices) and A is a diagonal matrix
of the corresponding eigenvalues; the eigenvectors u share the
same polarimetric bases as the input Pauli feature vectors. The
H/A/a decomposition computes the following quantities from
the set of eigenvectors and eigenvalues (the eigenvalues are
assumed ordered, A1 > Ay > A3 > 0):

A,
Zi:l)"i
3
H = fZPilogSPh 0< H<1, (®)
=1
Ag — Jig
A = 258 0<A<], 9
Az + As == ©)
3
a = > Pcos” (jw(1)]), 0°<a<90°% (10)
i=1

The « parameter indicates the average scattering mechanism;
H is the entropy parameter, indicating the dominance (or
purity) of the indicated average scattering mechanism; and A
is the anisotropy parameter, indicating the relative significance
of the second and third eigenstates.

C. Optimum Coherence

Two complex-valued SAR images, from sufficiently similar
observation geometries with highly overlapped spatial spectral
support, can be spectrally trimmed and spatially co-registered
at the sub-pixel level, and then “interfered” to produce a



corresponding complex-valued coherence image. For tempo-
rally separated observations, the magnitude of the resulting
coherence estimate conveys the degree to which scattering
observations in the scene have maintained coherence (i.e.
information equivalence).

Given two such co-registered complex-valued images, ¢; and
T2, the pixel-wise complex-valued sample coherence estimate
can be computed using a sample correlation function,
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where the superscript * denotes a complex-conjugation, and N
indicates the number of neighborhood image pixels included in
the ensemble average operation [11]. A CCD image is formed
from the magnitude of 7 and an interferogram is formed from
the angle of 7.

Similar to the single-polarization case, temporally separated
PolSAR observations can be co-registered and interfered. How-
ever, unlike the scalar case, PoOISAR data sets are encapsulated
in a complex-valued matrix or vector of observations. Within
the past couple of decades, researchers in the PolInSAR com-
munity have developed various methodologies for producing
coherence estimates from PolSAR image sets [12], [13], [14].
One class of such methods are based on a coherence optimizing
(CO) operation, whereby the resulting coherence estimation
is maximized by determination of appropriate complex-valued
unit-length weighting vectors informed by underlying scatter-
ing processes, and provide improved quality interferograms
over what can be produced with single-polarization observa-
tions [15], [16].

The fully-polarimetric coherence estimation can be com-
puted from the equation:

0<|3 <1, 1rn
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where ng = <k1k51>N’ Tll = .<k1k{I>N, T22 = <k2k§[>N’
and the w; vectors are the weighting vectors, to be determined,
that steer the OC process to the maximum indicated coherence
that the observations can support. These weighting vectors uti-
lize the same bases as the input Pauli feature vectors, and hence
correspond to equivalent scattering mechanism definitions.

All of the quantities in the right-hand side of equation (12)
can be computed from the data, except the w; vectors; to find
the weighting vectors, equation (12) is re-cast as maximizing
the following Lagrangian function:
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where the objective is to maximize the first term, subject to
the constraints given in the next two terms. This operation is
“unconstrained” in that equality of w; and ws is not required;
other maximization schemes enforce equality of the optimizing
eigenvectors. Enforcement of optimizing eigenvector equal-
ity assumes no change in underlying scattering mechanisms,
which is not in general an accurate assumption, especially
when there is temporal separation between observations; fur-
thermore, additional information may be contained in the

unconstrained w vectors that can help to discriminate between
different types of change.

Computing gradients, with respect to the weighting vectors,
gives the following coupled eigenvalue problem,

Vo= s (14)
T Q0T Q0w = vwy (15)
T QLTI Qws = vwa, (16)

where the vectors w; and wo are the eigenvectors of
T Q12T5, QL and Toy QL T!Q12, respectively. Since
the matrices have dimension 3 X 3, there are a total of
three ordered eigenvalues (0 < |vs| < |wo| < |1n] < 1),
and two corresponding sets of 3 x 1 eigenvector triplets
{w11wi2wi3} and {wy1 Wa2 Wo3}). It can be shown
that the optimum coherence estimates can be calculated via
[Fopt.il = /Ivil, with |Jope,1| (further denoted as |opel)
as the maximum supported observation coherence estimation
magnitude.

Typically, the weighting vectors are handled as utilitarian
within the scope of determining the optimal estimate of
complex interferometric coherence. At this point, the authors
propose that these weighting vectors are not just a means to an
end, but in fact contain information that enables categorization
of underlying mechanisms for observed variations in temporal
coherence.

III. CHANGE DISCRIMINATION FRAMEWORK

The change discrimination framework we propose utilizes
the H/A/a: decomposition parameters, as well as the optimum
coherence values and the steering vectors from the OC algo-
rithm.

Because the weighting vectors from the OC process have the
same basis as the Pauli feature vectors, they can be formed
into coherency matrices and processed through the H/A/«a
decomposition, along with the original Pauli feature vectors
formed from the S; and S, measured scattering matrices. By
doing so, H, A, « values can be produced for each of the six
OC weighting vectors and the two original image sets. The
H/A/a parameters can be stacked into a three-element vector
as follows,

d¥=[H A a], 17)

where X represents the data processed through the H/A/«a
decomposition (i.e. ki, wy, etc.). A 29-dimensional fea-
ture vector can be formed by vertically concatenating the
H/A/a vectors computed from the original image sets and
the weighting vectors from the OC algorithm, along with the
optimum coherence values and the two square-root span values
computed from the two image sets. To be explicit, the feature
vector has the form,

dT = [ da dgz dgl,l d£1,2 dgl,s d£2,1 d‘j’;Q,Q d‘j’;Q,f} e'j‘,:.,k ] ’
(18)

where
el =1 [Foptal [Foprz2l [Foprsl [[killz [[kell2 ]. (19)
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Fig. 1.

Figure 1 illustrates the processing steps to form the 29-
dimensional feature vectors.

The H/A/a decomposition parameters computed from the
two passes of the scene are natural features to use for discrim-
ination between change-types; however, they do not include
cross-coherent information in the parameters. The weighting
vectors produced by the OC process are computed from the
coherency matrices from both passes and from the cross-
coherency matrix. The interpretation of the weighting vectors
is that they extract the highest possible coherence from the
cross-coherency matrix by adjusting where the magnitude and
phase of their weights are placed. As an example, if a region
of ground doesn’t change between two passes, the steering
vectors would place most of the weight on the first element of
the Pauli feature vector. However, if the ground had changed
between the two passes, the OC process would re-adjust the
placement of the weights accordingly, in search of finding
the maximum coherence. The H/A/a decomposition of the
weighting vectors gives an indication of the average scattering
mechanisms where coherence was still found (&) and the
relative strength of the associated eigenvalues of the scattering
mechanisms (H and A). Depending on the nature of the change
in the scene, these could further discriminate change-types.

The inclusion of the set of OC coherence values, |Yopt,i
for i € {1, 2, 3}, is to separate feature vectors in an image
set that have reduced coherence from feature vectors that do
not contain change. Finally, the ||k;||2 terms, for i € {1, 2},
include features that convey the magnitude values of the scene,
which are otherwise normalized out in the computation of each
of the other entries of the feature vector.

’

Illustration of the processing steps required to form the 29-dimensional feature vectors used for change discrimination.

There are two main components to the change discrimina-
tion framework: 1) determining an exemplar feature vector for
a given type of change, and 2) a function that can discriminate
between feature vectors. The exemplar feature vectors can be
defined from a scattering- and scene-change physics model, or
alternatively can be determined from pertinent training data
derived from observations of change types of interest. The
behavior of the discriminating function can be mathematically
stated as:

’YChangeD-f(d,do)—{ |17| if || ol <e

otherwise, (20)

where || is a selected coherence map, such as a CCD or
OC image, and dg is a feature vector that defines a particular
type of change and || - || < € is some measure of “closeness”.
Functions with this behavior will isolate a particular type of
change by preserving the low-coherence values for changes
that are “close” to the change-type defined by the feature vector
and assigning a high-coherence value to changes that are not
“close” to the feature vector. The role of ||, which can be a
CCD or OC image, is to be the canvas to display the isolated
change-type. The selection of which coherence map to use will
depend on user preference and does not impact the change
discrimination algorithm.

IV. DATA
The PolInSAR image sets used in this paper were collected
in central New Mexico, USA, with the Sandia National Lab-
oratories developed FARAD PhoeniX radar system (9.6 GHz
center frequency), operated on a DHC-6 airplane. The data



acquisition geometry parameters for the image sets are given
in table II. As can be seen, the repeat geometries for the image
sets support interferometric processing. Furthermore, the short
temporal baseline between passes limits natural decorrelation
within the scene to the effects of wind and a slight amount of
spatially-induced volumetric decorrelation due to the baseline
between passes. Note, the noise figure oy for each image varies
across the scene, especially along the range direction; however,
because the worst-case noise figure oo max is low, no first-
order noticeable effects were observed for not compensating
for noise.

In this paper, a data driven approach was taken to estimate
the change-discrimination functions for three different types of
change by selecting training feature vectors, for each change
type, from homogeneous regions within a variety of image
sets.

Both training and test feature vectors were collected for
different change-types from fifteen coherent, fully-polarimetric
image sets. (Note, there are thirteen different scene centers in
the image sets; the two image sets that share the same scene
center are imaged at different aspect angles.) The training data
were collected from nine of the image sets and the test data
were collected from the remaining six image sets with separate
scene centers from the training image sets. Within each image
set, training and test feature vectors were collected for three
different change types: tree (TRE), low-return (LRT), and
ground (GRD). Table I summarizes the number of training and
test pixels selected for each change-type, where each selected
pixel corresponds to a 29-dimensional feature vector. Figure 2
illustrates example images where training data were selected.
The solid colored blue, green, and red regions within the image
denote selected pixels of LRT, TRE, and GRD change-types,
respectively. Note, the illustrated images are pseudo-colored
with the H/A/a and Span parameters in the following manner:
the hue channel (in HSV space) contains a function of the «
parameter, the saturation channel contains a function of the
mix of the entropy and anisotropy parameters, and the value
channel contains the Span image with a defined dynamic range.
The resulting HSV structure is then transformed to RGB. The
mapping of the a parameters was chosen to give a natural
appearance to the image (i.e. trees are green, etc.).

TABLE 1. SUMMARY OF THE NUMBER OF PIXELS SELECTED FOR
TRAINING AND TESTING FOR TREE (TRE), LOW-RETURN (LRT), AND
GROUND (GRD) CHANGE-TYPES. NOTE, EACH SELECTED PIXEL
CORRESPONDS TO A 29-DIMENSIONAL FEATURE VECTOR.

[ Change Type [| Training | Test |

TRE 97,862 | 73,098
LRT 106,169 | 75,874
GRD 5,816 5,763

V. DISCRIMINATION FUNCTIONS

A practical and robust approach to change discrimination
must be found that can take into account the nature of the
entries of the feature vector. In this paper, we explore two
discrimination functions and analyze their performance on
blind test data. The selection of which feature vector elements

to include in constructing the discrimination function can
significantly change the corresponding performance of the
discrimination function in isolating a change type of interest.
The first discrimination function presented utilizes all of the
elements of the feature vector and the second employs a simple
decision rule to determine whether or not to include feature
vector elements. The inclusion or exclusion of feature vector
elements in the discrimination functions can be tailored to
isolate a desired type of change.

A random selection of 5,000 feature vectors were drawn
from the training data for each class described in table I.
The training data for each class were further subdivided into
disjoint sets of 2,500 samples. One set was used to train model
parameters for each discrimination function approach and the
other was used for determining empiric metric thresholds for
performance evaluation.

A. H/A/« Filter Banks

The nature of the feature vector lends itself to designing
H/A/a filters for a given type of change. That is, a filter can
be designed for each dx sub-vector of the feature vector d,
along with an optimum coherence filter and a Span filter. The
filters can be implemented by way of a look-up table (LUT),
where, for example, an H/A/« triplet can be used as the entry
for a table and the corresponding filter value output.

There are several different ways to design a LUT filter. For
example, the steps for designing a data-driven filter are as
follows:

e Gather training feature vectors for a change-type of
interest

e Compute a 3-D histogram from the H/A/« and optimum
coherence sub-vectors and a 2-D histogram from the
Span values.

e Smooth the histogram an appropriate smoothing kernel
to fill in the pass-band region and create transition
regions to the stop-band

e Refine pass-band region by thresholding and saturating
and normalizing the pass-band output to one

e Apply a scaling to shape the transition region output

Once the LUT filters are designed, they can be applied to
data very efficiently. The input data need to be quantized to the
bin resolution of the filter and then scaled to integer values that
correspond to the indices of the LUT filter. The filter output
is assigned by passing the integer-valued indices into the LUT
filters. For the feature vector described in equation (18), this
process will generate ten scalar values for each feature vector
in the image; let F'x, denote the output of the LUT filter X;,
for example:

Fx, =LUTx, (dx,). 1)

There are many different ways to combine the output of
the filter banks into a change-type image. One such way to
produce a final output for a given change-type filter-bank
consisting of the ten LUT filters is given by the following



(a)

Fig. 2.
change-type pixels were selected, respectively.

change discrimination function:

1B 1/10
Ychanged = 1 — (1 — [7]) (H in> ) (22)
i=1

where |v| is the selected change map in equation (20). (For
computational reasons the discrimination function is actually
computed as

Yonangen = 1 = (1 = Jy]) et Tz os(Pxctn) - 23)

where p =1E-30 is a small number to prevent the possibility
of computing the natural logarithm of zero.)

Examples of the H/A/a LUT filters for GRD, TRE, and
LRT change-types, for the di, sub-vector, are illustrated in
figure 3. The passbands of the illustrated filters overlap. If
this were the only filter used for change-type discrimination,
then it is obvious that the performance would not be very
good. However, the combination of the filter banks for the other
elements of the feature vector work together to discriminate
between change-types.

B. Probabilistic Feature Fusion

For a given change-type feature vector, it can be assumed
that each component is distributed according to some proba-
bility distribution. Determining the true distribution for each
component could be an intractable problem; however, if train-
ing feature vectors are available for a given change-type, a
distribution can be fit to the histogram of the components of
the vector; for example, if all of the feature vector components
are scaled to the interval zero to one, a beta distribution may
fit to them. (Note, some transformation of the components of
the vector, such as the absolute distance of the training vector
component values from their mean, can also be computed.)

(b)

Illustration of example images used for selecting training data. The solid colored blue, green, and red regions denote the where LRT, TRE, and GRD

Fig. 3. Illustration of example ki H/A/a: LUT filters for ground (red), tree
(green), and low-return (blue).

If the empirical distributions fit the training data well, then
a statistical/probabilistic method can be taken for change-
type discrimination. One such technique, probabilistic feature
fusion (PFF), provides a straightforward approach to this prob-
lem [17], [18]. The PFF framework allows for the modeling of
features for in-class data and does not require any modeling of
out-of-class data. Furthermore, the output of PFF is a p-value,
which gives a measure of in-class model consistency. It is also



TABLE II.

SUMMARY OF THE GEOMETRY PARAMETERS AND IMAGE RESOLUTION FOR THE TRAINING AND TESTING IMAGE SETS. THE TOP ROW GIVES

THE PARAMETERS FOR THE FIRST PASS IN THE IMAGE SET AND THE BOTTOM ROW GIVES THE PARAMETERS FOR SECOND PASS. THE PARAMETERS ARE
DEFINED AS FOLLOWS: ¢ IS THE GRAZING ANGLE, 6 IS THE SQUINT ANGLE (490° DEFINES RIGHT-LOOKING BROADSIDE AND —90° DEFINES
LEFT-LOOKING BROADSIDE), ¢ IS THE HEADING ANGLE, p 4. IS THE AZUMITH RESOLUTION, PRg IS THE RANGE RESOLUTION, 00 ,max IS THE MAXIMUM
NOISE LEVEL ACROSS THE IMAGE, RANGE IS THE DISTANCE OF THE SENSOR TO THE SCENE CENTER AT MID-APERTURE, BASELINE IS THE MID-APERTURE
RANGE DIFFERENCE BETWEEN THE TWO PASSES, AND At IS THE TIME BETWEEN THE MID-APERTURE POINTS OF FIRST AND SECOND PASSES. NOTE THAT
THE FIRST PASS IN IMAGE SET IMAGE SET 13 WAS COLLECTED LEFT-LOOKING AND SECOND PASS WAS COLLECTED RIGHT-LOOKING.

‘ Image Collection [ ‘ ) ’ PA= | PRg ‘ 00, max Range | Baseline At
Set Date (degrees) (degrees) (degrees) (m) (m) (dBsm) (km) (m) (seconds)

34.97 -89.94 25.98 0.1117 | 0.1016 -35.48 4.082

1 07/17/2013 35.06 -89.72 25.74 0.1117 | 0.1016 -35.49 4.080 6.79 667
34.96 89.74 249.26 0.1117 | 0.1016 -32.32 4.133

2 07/19/2013 35.01 89.42 249.61 0.1117 | 0.1016 -32.35 4.126 8.58 663
35.10 -90.29 69.29 0.1117 | 0.1016 -35.37 4.121

3 07/19/2013 35.03 -89.19 68.19 0.1117 | 0.1016 -35.36 4.125 6.12 661
35.04 -90.97 15.99 0.1117 | 0.1016 -35.34 4.134

4 07/22/2013 34.92 -91.52 16.55 0.1117 | 0.1016 -35.35 4.128 10.05 632
34.99 -89.53 14.54 0.1117 | 0.1016 -35.33 4.135

5 07/22/2013 35.08 -88.69 13.71 0.1117 | 0.1016 -35.34 4.132 6.57 633
35.01 -90.08 15.10 0.1117 | 0.1016 -35.33 4.135

6 07/22/2013 35:12 -88.66 13.66 0.1117 | 0.1016 -35.36 4.129 10.08 714
35.03 90.30 194.72 0.1117 | 0.1016 -32.32 4.135

7 07/22/2013 35.08 90.64 194.38 0.1117 | 0.1016 -32.34 4.130 5.62 677
3491 -90.10 69.10 0.1117 | 0.1016 -35.35 4.125

8 07/24/2013 34.88 -93.11 72.11 0.1117 | 0.1016 -35.36 4.122 3.98 759
34.95 -90.48 69.48 0.1117 | 0.1016 -35.37 4.121

9 07/24/2013 3512 -91.03 70.05 0.1117 | 0.1016 -35.37 4.123 12.53 759
35.08 91.76 247.24 0.1117 | 0.1016 -32.36 4.123

10 07/24/2013 35.13 90.41 248.60 0.1117 | 0.1016 -32.33 4.134 11.96 753
34.94 -89.07 1.09 0.1117 | 0.1016 -35.33 4.135

11 07/26/2013 34.99 -90.78 2.81 0.1117 | 0.1016 -35.34 4.130 5.69 608
34.97 89.33 182.69 0.1117 | 0.1016 -32.32 4.135

12 07/26/2013 34.99 90.18 181.85 0.1117 | 0.1016 -32.33 4.133 2:33 619
33.14 -91.43 3.48 0.1015 | 0.1016 -32.79 3.976

13 04/01/2015 33.48 91.55 180.47 0.1015 | 0.1016 -31.51 3.991 2751 201
29.97 -89.62 135.63 0.1121 0.1016 -38.28 4431

14 06/26/2013 29.90 -91.10 137.09 0.1121 0.1016 -39.48 4.445 14.92 527
29.74 -87.78 43.81 0.1121 0.1016 -39.50 4.434

15 06/26/2013 29.88 -88.38 44.40 0.1121 0.1016 -39.51 4.436 10.40 528

important to note that training a PFF model only requires tens,
to hundreds of training data feature vectors, as opposed to other
techniques that may require much more training data.

The steps to constructing a PFF model for change-type
discrimination are straightforward; the high-level steps are as
follows:

e Gather training feature vectors for a change-type of

interest

e If necessary, transform the data in such a way that

enables a good fit for a probability distribution

e Fit a selected probability distribution by estimating the

distribution parameters from the data

e Compute p-values from the in-class data

e Compute p-values from the out-of-class training data

from the in-class model

e Select the feature vector components that discriminate

well between the in-class and out-of-class data

e Transform and fuse the p-values from the selected fea-

tures

e Compute the p-values from the theoretical gamma dis-

tribution of the selected transformed and fused feature
vector p-values

Once the PFF model is constructed, it is straightforward to
implement on data. For a given feature vector from an image
set, compute p-values from the selected components of the
feature vector, fuse them, and compute a fused p-value. If the

fused p-value is greater than a determined threshold then it is
considered in-class, otherwise it is considered out-of-class.

As an example, consider the PFF model constructed for
low-coherence regions due to trees. The training data for
low-coherence caused due to trees consists of 97,862 feature
vectors collected over several image sets, from which, 2,500
feature vectors were randomly selected to construct the PFF
model. The following transformation was applied to the feature
vector components of the training data:

di = |di — il , (24)
where d; is the i*” component of the feature vector and s
is the mean-value of the i*" component of the feature vector
training data.

The histograms of the d; values have a half-normal prob-
ability distribution shape; thus, the l}alf-normal distribution
parameter was estimated, for each d;, from the data. The
subplots in figure 4 (a) illustrate the PFF modeling for one
of the twenty-nine feature vector elements. As can be seen in
the upper-left subplot, the half-normal distribution (red curve)
is a good approximation to the histogram of the feature vector
components. The upper-right plot illustrates that the computed
in-class p-values are approximately uniformly distributed, as
they should be for a good probability distribution fit. The
lower-left plot in the figure on the left illustrates the separation



of the in-class (red curve) and out-of-class data. In addition,
the computed out-of-class p-values plotted in the lower-right
are very low.

In an effort to automate the selection of features, a twenty-
bin empirical cumulative density function was computed from
the histograms of the out-of-class p-value data; if the eleventh
bin contained at least 75% of the probability mass, then the
feature vector component was included in the model, otherwise
it was discarded. From this process, and ensuring the three
optimum coherence values are included, thirteen of the twenty-
nine features were selected to be included in the PFF model.
Figure 4 (b) summarizes the performance of the fused features.
The upper-left subplot illustrates that the histogram of the
fused data fits well to the theoretical distribution of the fused
features; the upper-right subplot confirms the fit by illus-
trating the in-class fused p-values are uniformly distributed.
The fusion of the selected features has excellent histogram
separation from the out-of-class data and the computed out-
of-class p-values are all very low.

Similar to the output of the H/A/« filter-banks, the output of
a PFF model can also produce a change discrimination image.
The change discrimination function for PFF is as follows:

"YChangeD = 1-— (]- - |7|) PFuseda (25)

where || is the selected change map in equation (20) and
Pruyseq 1s the fused p-value map of the image.

VI. RESULTS

In this section, we characterize the relative performance of
the change discrimination functions considered in this paper
by computing a variety of quantitative metrics as well as by
qualitatively analyzing images produced from the estimated
discrimination functions.

A. Quantitative Results

To evaluate the relative performance between the approaches
discussed, ROC curves were generated by drawing 2,500
feature vectors at random, for each class, from both the training
and test data. The random draw was repeated five times to
show the consistency of the models. The cyan and green plots
illustrated in figure 5 illustrate the ROC curves generated
for the training data for the PFF models and H/A/« filters,
respectively; the blue and red plots illustrate the same for the
test data for the PFF models and H/A/« filters, respectively.

For the TRE class, it is clear that the PFF model doesn’t
generalize very well from the training data to the test data.
The TRE class potentially has high intra-class variability.
Furthermore, the blind test data samples are not necessarily
draws from the same distribution as the training data; thus,
we attribute the lack of generalization to the blind test data
containing samples not seen in the training data. The H/A/«
model does generalize better from the training data to the test
data for the TRE class, which indicates that for the TRE class
it may be more robust to unseen samples in the blind test
data; however, for reasonable operating points, it lacks the
performance of the PFF model.
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Fig. 4. Illustration of (a) the PFF modeling of the twenty-seventh feature
vector element and (b) the fused selected features. The feature in (a) is an
excellent feature to fuse in the PFF model, because it discriminates very well
between in-class and out-of-class data. The theoretical distribution fits the data
from the fused selected features very well and has excellent discrimination
between in-class and out-of-class data.

The PFF model performs exceptionally well for the LRT
class on the training data and it generalizes well to the blind
test data. The H/A/« filters model lacks the performance of
the PFF model and doesn’t generalize nearly as well, either.

Finally, the PFF model generalizes well to the blind test
data for the GRD class and has good points of operation on
the ROC curve. The H/A/« filters, on the other hand, do not
generalize well to the test data and they lack good operating
points on the ROC curve. Overall, the PFF models seem to
generalize better from training to blind test data and tend
to have better percent detection (PD) and percent false-alarm
(PFA) performance over reasonable operating points on the
ROC curves.

Confusion matrices were computed from the full test set
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Fig. 5. TIlustration of the ROC curves for the (a) TRE, (b) LRT, and (c) GRD
change types. The cyan and blue curves illustrate the performance of the PFF
models on the training and test data, respectively; similarly, the green and red
curves illustrate the performance of the H/A/« filters for the training and test
data, respectively.

as an additional measure of performance. The PD = 90%
thresholds were determined empirically from the partitioned
training data as described above, for each class, and were then
applied to the test data. The confusion matrices for the test
data for each discrimination function are given in table IIIL.
The labels on the left in the tables are the true change-type
and the labels above the array are the declared change-types.
Also, it should be noted that the unknown (UNK) category in
the confusion matrix is populated with the maximum values
that were not above the corresponding class thresholds. The
computed percentages were rounded to the nearest hundredth
of a percent and a ‘-> was placed if a computed percentage
was less than 0.1%. In the confusion matrices, the TRE and
LRT data perform well for both approaches; however, the GRD
data were often mis-labeled as TRE, especially for the H/A/«
filters.

TABLE III. THESE TABLES SHOW THE CONFUSION MATRICES
GENERATED FROM THE TEST DATA FOR THE H/A/«a FILTERS AND PFF
CHANGE DISCRIMINATION FUNCTIONS. THE PD = 90% THRESHOLD FOR
THE UNKNOWN CATEGORY WAS DETERMINED EMPIRICALLY FROM THE
TRAINING DATA.

H/A/o | TRE | LRT | GRD | UNK
TRE 89.3 | 2.7 1.2 6.8
LRT 54 | 82.6 0.2 11.7
GRD | 39.1 | 0.1 33.1 27.8

PFF TRE | LRT | GRD | UNK
TRE 91.5 - 0.4 8.1
LRT 0.1 85.1 0.9 13.9
GRD | 21.0 - 70.2 8.8

So-called pass matrices were also computed from the full
test set. A pass matrix gives the percentage of both in-class and
out-of-class test data that pass a given PD threshold. Ideally,
only the PD threshold percentage will pass for in-class test
data and no out-of-class data will pass the threshold. The
percentage of out-of-class test data that pass the threshold
gives an indication of the class similarity of an out-of-class
category. (Note that there are no constraints that the rows or
columns of a pass matrix must sum to 100%.) Table IV gives
the pass matrices for the PFF and H/A/« filter models, where
the PD = 90% threshold was determined empirically from the
training data. In the H/A/« filter pass matrix, it can be seen
that 23.7% of the LRT and 40.1% of the GRD test data pass
the TRE threshold and that only 44.8% of the GRD test data
passed its own threshold. The TRE and LRT test data perform
very well for the PFF models; however, there is still a fair
amount of the GRD test data that passed the TRE threshold,
as well.

B. Qualitative Results

To visualize the ability to discriminate different types of
change, we applied the PFF models and H/A/« filters to one
of the training image sets. Figure 6(a) and (b) illustrate the
span images from the first and second passes of the scene,
respectively, and figures 6(c) and (d) illustrate the pseudo-
colored H/A/a: decomposition images for the first and second
passes, respectively. Notice in the second image there is a fair



TABLE IV. THESE TABLES SHOW THE PASS MATRICES GENERATED
FROM THE TEST DATA FOR THE H/A/a FILTERS AND PFF CHANGE
DISCRIMINATION FUNCTIONS. THE PD = 90% THRESHOLD WAS
DETERMINED EMPIRICALLY FROM THE TRAINING DATA.

H/A/oc | TRE | LRT | GRD
TRE | 92.0 | 154 | 109
LRT 23.7 | 85.8 0.2
GRD | 40.1 0.1 44.8

PFF TRE | LRT | GRD
TRE | 91.7 - 1.0
LRT - 85.5 -
GRD | 26.3 - 78.8

amount of vegetation that is not focused well, especially on the
right hand side of the image, which given the short temporal
baseline between images, is likely due to wind and volumetric
de-correlation. Figure 6(e) illustrates the optimum coherence
image computed between the complex-valued PolInSAR image
sets of the two passes. There are several regions where the
coherence is low due to radar shadow, regions of de-correlation
due to vegetation (trees and shorter vegetation), and de-
correlation on a dirt road where a vehicle seems to have driven.

The data from the training image set was processed through
both the PFF and H/A/« filter-bank models. Figure 7 illustrates
the change discrimination images formed by evaluating equa-
tions (23) and (25) for the three classes under consideration.
(Note, the H/A/« change discrimination images were formed
by converting the output of the filters to empiric quantile values
to increase the dynamic range.) Comparing the output of the
TRE class between the PFF and H/A/« filter models in figures
7 (a) and (b), it is clear that the PFF model still contains some
ground change, but overall does better at isolating the changes
due to trees than the H/A/« filter model, which agrees with
results in the pass matrices. Both methods perform well on the
LRT class, as can be seen in figures 7 (c) and (d); notice that in
the section of the river, both methods do well discriminating
the low-coherence due to the water from the low-coherence
due to the sand bars. Finally, figures 7 (e) and (f) illustrate the
results on the GRD class. There are not many ground changes
in the scene and in this case, the H/A/« approach produces a
cleaner change isolation map than the PFF model.

The output of the different H/A/« filters can be compared
across classes to make decisions about what type of change
is contained within a pixel. Furthermore, only the pixels that
have a low-coherence value need to be evaluated. (For the
sake of this paper, we are considering a low-coherence value
to be |:}/Opt| < 0.7.) For a given pixel with low-coherence, the
change type is declared by the largest output of the functions,
similarly for the PFF models. Figure 8 illustrates the confusion
images for (a) the H/A/« filters and (b) the PFF models. The
varying light gray to white regions in the figure are the original
coherence values for |f~yopt| > 0.7, the red, green, and blue
regions represent the GRD, TRE, and LRT classes respectively.
If the largest output value is below its corresponding metric
threshold, determined from the training data empirically from
the PD = 90% thresholds, then it is declared unknown (UNK)
and is colored cyan.

There are a few interesting regions to point out in the

confusion images:

e There are multiple contributors of low-coherence in
the river; there is low-coherence due to the river and
also due to the sand bars that are potentially wet and
densely packed, thus would have a low-radar return.
However, the optimum coherence image indicates the
river as a single low-coherence region. The H/A/« filter
model labels the sand bars as predominantly the TRE
class, whereas the PFF model declares them as mostly
unknown.

o There are transition regions between the trees and the
radar shadows they cast. Both the PFF and H/A/« filter
models declare much of these regions as unknown. The
overlap between the TRE and LRT filters illustrated in
figure 3 may be a clue as to why the H/A/« filter model
has less of these transition regions labeled as unknown
as the PFF model.

e Many of the trees are out of focus in figure 6 (b),
especially on the right hand side of the image. These
regions are labeled as unknown in the PFF model
confusion image, however, they seem to be primarily
labeled as TRE in the H/A/«a filter confusion image
(more than likely for the same reason as the tree and
radar shadow transition regions).

e The are regions of low-vegetation throughout the scene.
Depending on the density of the vegetation, there may be
a mixture of both vegetation and ground in the region.
The H/A/a method seems to be finding these regions
more consistent with the TRE class, which may indicate
that the model for the TRE class may not be as selective
(rejecting out-of-class) given that the TRE model was
trained on tree data similar to what is illustrated in
figures 2(a) and (b). The PFF model labels these regions
as a mixture of GRD, TRE, and UNK. The inclusion of
the UNK class in some of these regions may indicate that
the PFF model is giving these regions low scores, which
is likely due to lack of training data in such regions.

e Finally, observe that the PFF models label more of the
low-coherence on the dirt road as GRD change than the
H/A/a approach.

VII. CONCLUSION

In this paper we introduced and successfully demonstrated
the concept of change discrimination in coherence images. We
described and characterized two functions that can discriminate
between different types of change. We demonstrated the ability
to isolate three different types of changes contained in the low-
coherence regions of an example optimum coherence image.

We characterized the performance of these methods using
quantitative measures: ROC curves, confusion matrices, and
pass matrices. We also illustrated the results qualitatively by
applying the proposed discrimination functions to an image
set to produce change discrimination images. Furthermore, we
also created colorized confusion images where the color is
determined by the highest function scores across the classes
of the respective change-type discrimination functions.



© (d)
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Fig. 6. Illustration of image products from two passes of an example scene. Images (a) and (b) show the Span images of the scene for the first and second
passes, respectively. Images (c) and (d) show the H/A/« images of the scene for the first and second passes, respectively. Image (e) shows the optimum coherence
image formed from the two passes. (Note, the values in the optimum coherence image have been squared to improve the image contrast.)
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Fig. 7. Illustration of the change discrimination images of the three classes under consideration from the two discrimination functions. The H/A/« filter change
discrimination images are on the left and the PFF are on the right. Note that the values in the change discrimination images have been squared to improve the

dynamic range for display.



Fig. 8. Illustration of the confusion images formed from (a) the H/A/« filters and (b) the PFF models for the TRE (green), LRT (blue) and GRD (red) change
types. The cyan color indicates regions where the largest metric value was below the corresponding metric threshold and are labeled as unknown (UNK).



Our current research is to explore other change discrimi-
nation functions, such as machine learning methods, and to
determine which methods generalize well to unseen test data
and have good performance characteristics. Additionally, we
are trying to understand the scattering-physics, from first-
principles, to determine how to construct a feature vector for
different change-types.
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