
SANDIA REPORT
SAND2019-0674
Printed January 2019

Program Fuzzing on High
Performance Computing
Resources
Christian R. Cioce, Danny Loffredo, Nasser Salim

Sandia
National
Laboratories

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico
87185 and Livermore,
California 94550

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National
Technology & Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any
of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any
legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of
their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone:
Facsimile:
E-Mail:
Online ordering:

(865) 576-8401
(865) 576-5728
reports@osti.gov
http://www.osti.gov/scitech

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Rd
Alexandria, VA 22312

Telephone:
Facsimile:
E-Mail:
Online order:

(800) 553-6847
(703) 605-6900
orders@ntis.gov
https://classic.ntis.gov/help/order-methods/

2

ABSTRACT

American Fuzzy Lop (AFL) is an evolutionary fuzzer that is strategically
implemented as a tool for discovering bugs in software during vulnerability research.
This work seeks to understand how to best implement AFL on the High-Performance
Computing resources available on the unclassified network at Sandia National
Laboratories. We investigate various methods of executing AFL, requesting varying
numbers of tasks on single compute nodes with 36 physical cores and 72 total
threads. A Python script called BlueClaw is presented as an autornated testbed
generator tool to assist in the tedious process of creating and executing experiments
of any scale and duration.

3

This page left blank

4

CONTENTS

1. Introduction 9

2. Background 11
2.1. American Fuzzy Lop 11

3. Experiments and Methods 13
3.1. Sandia Restricted Network High Performance Computing Resources 13
3.2. AFL Types 13

3.2.1. AFL Affinity 14
3.2.2. Taskset Physical 14
3.2.3. Taskset Logical 14

4. Results 15
4.1. AFL Affinity 15
4.2. CPU Binding Technique 17
4.3. Effect of Node Saturation and Coordination 19

4.3.1. CROMU-9 19
4.3.2. NRFIN-78 20

4.4. Desktop Fuzzing 22

5. Automating the Workflow with BlueClaw 23
5.1. Operation 23
5.2. Implementation 24
5.3. Future Features 24

6. Conclusion 25

References 27

LIST OF FIGURES

Figure 4-1. Plots of the number of fuzzing instances (i.e. processes or tasks) bound to
available cores for CROMU-9 run with AFL Affinity. Using the default AFL settings
(Figure 4-1(a)&(c)) leads to processor contention. The inclusion of a time delay between
concurrent AFL execution calls fully resolves the issue, as can be seen in Figure
4-1(b)&(d) 15

Figure 4-2. Plots of the number of fuzzing instances (i.e. processes) bound to available cores
for NRFIN-78 run with AFL Affinity. Using the default AFL settings (Figure 4-2(a)&(c))
leads to processor contention. The inclusion of a time delay between concurrent AFL
execution calls fully resolves the issue, as can be seen in Figure 4-2(b)&(d). 16

Figure 4-3. Composite plot of the coverage as a function of AFL output time for AFL Affinity
(black), Taskset Physical (red), Taskset Logical (blue), and AFL Affinity with a time
delay (lime green) for the CROMU-9 and NRFIN-78 binaries 17

Figure 4-4. A stacked version of the data from Figure 4-3(a), for the CROMU-9 binary. For
each type, the mean final coverage from the seven trials is presented as a dark green
dashed horizontal line. Note that the final mean coverage is identical to the median value,
rounded to two decimal places. 18

Figure 4-5. A histogram of the final code coverage frequency for the set of seven trials for
each AFL type after fuzzing the CROMU-9 binary for 24 hours. The vertical dashed lines
represent the median value of the dataset. 18

5

Figure 4-6. Composite plot of the coverage as a function of AFL output time for Taskset
Physical. For the "Saturated Node, Uncoordinateof dataset (magenta) the median
performer for each trial, as measured by the final coverage from all 36 independent tasks,
was selected for plotting. 19

Figure 4-7. A histogram of the final coverage frequency for the trials of Taskset Physical
experiments from Figure 4-6 for both the CROMU-9 and NRFIN-78 binaries. The vertical
dashed line represents the median value of each dataset. 20

Figure 4-8. Coverage as a function of node load (number of AFL tasks) over time for the
NRFIN-78 binary with AFL Affinity plus a fifteen second time delay. Early in wall time,
the median of the boxes trends upward until it peaks at sixteen cores (tasks). While no
number of AFL tasks is statistically preferred at any time, the median point is highest at
sixteen tasks for the first six to eight hours of fuzzing. 21

Figure 4-9. A repeat of the data in Figure 4-6, with the results of desktop fuzzing included as
lime green dot-dash lines. Only two trials were used for the desktop fuzzing case. 22

6

ACRONYMS AND DEFINITIONS

Abbreviation Definition

AFL American Fuzzy Lop

CGC Cyber Grand Challenge

CPU Central processing unit

HPC High-performance computing

OS Operating system

PC Program counter

SRN Sandia restricted network

VR Vulnerability research

7

This page left blank

8

1. INTRODUCTION

Fuzzing is an important piece of the modern vulnerability research (VR) methodology.
According to an informal survey of vulnerability researchers, fuzzing is the most historically
successful technique for finding bugs. [1] Fuzzers are an active area of security research because
improvements can lead to the discovery of new vulnerabilities in software that matters. [2]

In this work, we make use of the American Fuzzy Lop (AFL) fuzzer to investigate two binaries
with known bugs. We seek to understand the best method of running AFL on a high-performance
computing system (restricted to single nodes) to achieve the most coverage after 24 hours of
fuzzing. We introduce three ways to execute AFL, which differ in the way that tasks are bound
to available cores. We show that performance can be boosted in the first six to eight hours if only
—50% of the physical cores on a given node are used.

9

This page left blank

10

2. BACKGROUND

2.1. American Fuzzy Lop

The most popular fuzzers today are based on an evolutionary code coverage metric. AFL is an
evolutionary fuzzer written and maintained by Michal Zalewski. [3] AFL is one of the most
popular fuzzers today and is credited with finding many previously undiscovered vulnerabilities.
[2] AFL's primary mechanism for genetic mutation is based on code coverage.

To use AFL, the target binary must be recompiled with additional instrumentation to track code
coverage. AFL will reserve an area of memory to store hit counts for each branch executed by
the program. A hash of the (source PC, destination PC) is used as an index into the area, and a
counter is incremented on every execution of each branch. Since a hash is utilized and collisions
may occur, the code coverage is lossy, but the hash calculation is faster than tracking every
branch precisely. This hit count hash table becomes the basis for the next phase of AFL,
analyzing the execution for interesting behavior.

NOTE: Above, PC is an acronym for program counter. It is a reference to the address of
the instruction pointer.

Once the instrumented program has executed with a given input, AFL needs to determine if the
code coverage map contains any new paths. If so, the input is saved in a queue for future
mutation. To make this determination, first, the hit counts are binned into a power-of-two bucket,
so that minor differences in hit counts will be ignored. Then, the hit counts are compared against
a cumulative code coverage map, checking for new paths or new hit counts. When the input file
causes a crash or a timeout, the input is triaged against existing findings and saved in a separate
directory.

AFL continues picking an input from the queue, mutating it, checking for new coverage, and
potentially adding to the queue, until the user ends the fuzz session. AFL contains other
heuristics; for example, new test cases are trimmed to the smallest size that maintains the same
code coverage before they are mutated. For more details on the implementation of AFL, see the
AFL README file. [4]

11

This page left blank

12

3. EXPERIMENTS AND METHODS

From the Cyber Grand Challenge [5] (CGC) suite, we selected the CROMU_00009 and
NRFIN 00078 (hereinafter "CROMU-9" and "NRFIN-78") binaries for analysis. These two

—
binaries were selected after we ran an initial test of all the CGC binaries for 24 hours. Both
binaries exhibited the most coverage as compared to the others in the full set. The benefit of
using the CGC binaries is that they were designed to represent real world bugs at varying
difficulty levels, yet we have ground truth for each of the vulnerabilities in the corpus.

Each experiment was conducted on its own reserved node on the Sandia Restricted Network
(SRN) High-Performance Computing (HPC) cluster Ghost, and was run for 24 hours. Further,
each test was conducted seven times (unless otherwise noted) to collect statistics and we refer to
each fuzz run as a "trial."

Both CROMU-9 and NRFIN-78 were subjected to the same fuzzing conditions: in both serial
and in parallel (also referred to as uncoordinated and coordinated, respectively), and with three
different "types," as detailed in the subsections below. The starting seeds used for both binaries
were those that were provided by the CGC suite as valid inputs.

Our main interest is the measurable metric of code coverage. We seek to understand which
method of running AFL will result in the most coverage in a given wall time, with repeatability.
Early in our investigations, we observed a race condition occurring when running AFL with
default settings. It was discovered that AFL's method of binding tasks to available cores was
competing with that of the Linux operating system and thus there were multiple processes bound
to a single core (see Figure 4-1 and Figure 4-2). For a set of seven trials, the race condition
occurred at varying frequencies for each binary, but was always a majority occurrence. This
sporadic nonuniform load balancing was unacceptable, so we manually set CPU affinities via the
Linux command-line tool "taskset." [6] We will discuss taskset and its usage in Section Taskset
Physical.

The remainder of the paper is organized as follows. First, we provide an overview of the
hardware and computing environment used for our experiments, then we provide a description of
our types of AFL configurations. The results for the various experiments are then presented and
discussed in detail in Results. We also investigate the effect of saturating a node with AFL
instances that run in both a coordinated and uncoordinated fashion. A brief comparison is made
for fuzzing on a desktop machine versus an HPC node. Lastly, we introduce a tool called
BlueClaw to automate the setup of these experiments so the reader can extend testing to any
number of binaries, on any number of cores, for any number of hours.

3.1. Sandia Restricted Network High Performance Computing Resources

The SRN HPC cluster Ghost consists of 26,640 compute cores, with each compute node having
dual sockets with eighteen cores each (2 x 2.1 GHz Intel Broadwell® E5-2695 v4) and 128 GB
of RAM. Note that the processors are hyperthreaded, each having eighteen cores and 36 threads
for a total of 36 cores and 72 threads per node. Full hardware specifications can be found at
Sandia's High Performance Computing website. [7]

13

3.2. AFL Types

For this study, we have used AFL version 2.52b [3] exclusively. We define three different
methods of executing AFL, referred to herein as "AFL Affinity," "Taskset Physical," and
"Taskset Logical." We outline each in the subsections that follow, and then we present data in
the Results section.

3.2.1. AFL Affinity

AFL Affinity refers to running AFL with default settings right out of the box. Specifically, we
allow AFL to bind itself to any available cores on the machine where it is running by the
prescribed method contained within the afl-fuzz.c source file that is distributed with AFL when
downloaded.

3.2.2. Taskset Physical

For Taskset Physical, we first comment out the function call to bind tojree cpuO in afl-fuzz.c
and then recompile. Additionally, execution of AFL is prepended by the taskset command. With
taskset, we can set the CPU affinity manually, allowing us to bind a specific AFL instance to a
particular core. The addition of the --cpu-list option to taskset allows us to specify the exact
physical core to which each AFL instance should be bound. The syntax for taskset is as follows:

taskset --cpu-list <PHYSICAL CORE_ NUMBER>
where the pHYSICAL CORE NUMBER is any single non-negative integer in the closed
interval [0,35]. Note that our hardware contains 36 cores, thus the closed interval ends at 35. In
general, the upper bound is MAX_CPU_COUNT - 1.

3.2.3. Taskset Logical

Like Taskset Physical, we first require that afl-fuzz.c be altered in the same manner as above and
subsequently recompiled. However, what differs in Taskset Logical is the inclusion of a
combined physical plus logical core to the !--cpu-list parameter option of taskset, given as a pair.
Recall from the hardware specifics above that the nodes we are utilizing consist of 36 physical
cores and 36 logical cores. For our hardware, cores #0-35 are physical and cores #36-71 are
logical. Thus, our taskset command line specification looks like:

--cpu-list <PHYSICAL CORE_NUMBER>,<LOGICAL CORE NUMBER> ...

where the PHYSICAL CORE NUMBER is the same as above, and the
LOGICAL CORE NUMBER is any single integer in the closed interval [36,71].

14

4. RESULTS

4.1. AFL Affinity

We fuzzed the CROMU-9 and NRFIN-78 binary using AFL via type AFL Affinity for 24 hours,
and investigated the occurrence of over-binding processes to cores. A plot detailing this race
condition for each trial is presented in Figure 4-1(a)&(c), and Figure 4-2(a)&(c).

For the CROMU-9 binary (Figure 4-1(a)), trials one, three, and four did not experience a race
condition: all 36 fuzzing instances were evenly distributed among available cores. However,
trials two, five, six, and seven had more than one process bound to available cores. Trial two
(blue bars) experienced the most extreme condition, with two cores having three processes bound
and six cores having two processes bound.

ao
CROMU-9: Delayed AFL Affinity (15 s)

35

30

025

4—
O 20

-? 15

z
10

5

20

18

16

14

O
U 12

8

6

4

2

CROMU-9: Basic AFL Affinity

2 3

Number of Processes

■Thal 1 N Trial 2 ■Trial3 ■Thal 4 ■Trial TrW 6 ■Thal 7

(a) Basic AFL Affinity

CROMU-9: Half-Saturated Node (18 Cores) AFL Affinity

•
2 3

Number of Processes

40

35

30

025

2 20
cu
I 15

z
10

20

18

16

E, 14
U 12

O 10

-?
2 6

4

iii 1
2

Number of Processes

3

NTrial2 N7rial4 NTrial5 N7rW6 NTria17

(b) Delay

CROMU-9: Half-Saturated Node + Delay AFL Affinity

2

Number of Processes

NTria13 N -Crial4 N -frial6 NTrial7 NTriaI3 Whial4 N-frial6

(c) Half-Saturated Node (d) Half-Saturated Node + Delay

Figure 4-1. Plots of the number of fuzzing instances (i.e. processes or tasks) bound to available
cores for CROMU-9 run with AFL Affinity. Using the default AFL settings (Figure 4-1(a)&(c)) leads
to processor contention. The inclusion of a time delay between concurrent AFL execution calls

fully resolves the issue, as can be seen in Figure 4-1(b)&(d).

15

For the NRFIN-78 binary (Figure 4-2(a)), only one trial (Trial 1) had all 36 processes distributed
to unique cores. That is, 85% of the set (six out of seven trials) experienced a race condition.
Trial six (dark green bars) experienced the most extreme case, with two cores having three
processes bound and six cores having two processes bound.

This processor contention issue can be resolved by a few different methods. One can insert a
time delay between concurrent AFL calls to allow the Linux OS enough time to respond to
AFL's assignment of tasks. We chose to wait fifteen seconds between execution calls, which
solved the problem and led to the correct assignment of a single task per physical core, as can be
seen in Figure 4-1(b)&(d), and Figure 4-2(b)&(d). An alternative solution is to manually assign
tasks to cores without using AFL's bind tojree cpu() routine through the use of the taskset
command. According to [8], it may also be possible to set an environment variable,
AFL NO AFFINITY = 1 to prevent a race condition from occurring, though we did not attempt
this.

40

30
0

025

2 20

-Cg 15

10

5

NRFIN-78: Basic AFL Affinity

18

16

14

si3 12

46 10

E 6J 4

2

2

Number of Processes

3

▪ MTria12 MTrial3 MTrial4 MTriaI5 MTriaI6 Wrria17

(a) Basic AFL Affinity

NRFIN-78: Half-Saturated Node (18 Cores) AFL Affinity

• • • • • •

3

Number of Processes

•Trial 1 NTrial 2 •Trial 3 ■Trial 4 NTrial 5 NTrial 6 • Trial 7

(c) Half-Saturated Node

40

35

30

Ul

0 25

3 20

:C13
E 15

10

5

NRFIN-78: Delayed AFL Affinity (15 s)

2

Number of Processes

3

▪ MTrial2 Wrrial3 MTria14 MTriaB MTriaI6 MTria17

20

18

O
U 12

2 10
cu

E
z

4

2

(b) Delay

NRFIN-78: Half-Saturated Node + Delay AFL Affinity

1 2 3

Number of Processes

• Trial 1 NTrial 2 •Trial 3 ■Trial 4 NTrial 5 NTrial 6 •Trial 7

(d) Half-Saturated Node + Delay

Figure 4-2. Plots of the number of fuzzing instances (i.e. processes) bound to available cores for
NRFIN-78 run with AFL Affinity. Using the default AFL settings (Figure 4-2(a)&(c)) leads to

processor contention. The inclusion of a time delay between concurrent AFL execution calls fully
resolves the issue, as can be seen in Figure 4-2(b)&(d).

16

4.2. CPU Binding Technique

Utilizing a full node with all processors fuzzing the target binary in a coordinated fashion, we
fuzzed the CROMU-9 and NRFIN-78 binaries using all three defined types of running AFL.
Figure 4-3 shows the composite coverage for all 21 experiments (three types * seven trials each)
as a function of wall time for each binary. Here, the data plotted is an aggregate of all 36 fuzzers.
When AFL is run in a coordinated fashion, there is one master and (in our case) 35 slave fuzzers.
Each fuzzer keeps a local log of its coverage progress, and every so often the master fuzzer syncs
its log with all slaves. As a result, if one simply ignores the intermediate progress of all slaves
and only plots coverage as a function of execution time for the master fuzzer, the resulting data
can be quite misleading. Instead, we combined the coverage logs for all fuzzers into a single file
and, when duplicate time values were encountered, we kept only the largest coverage value.

Utilizing a half node (eighteen physical cores) with all processors fuzzing the target binary in a
coordinated fashion, we ran AFL Affinity with a time delay of fifteen seconds between
concurrent calls on both the CROMU-9 and NRFIN-78 binaries. The results are depicted as solid
green lines in Figure 4-3. This combined choice of adding a time delay between concurrent AFL
calls (to resolve the processor contention effect) along with only utilizing half of the available
physical cores led to a notable boost in coverage exploration early in wall time. In the case of
CROMU-9, the final coverage after 24 hours was also higher (median value).

1.80 -

1.75 -!

1.70

1.65

1.60

1.55

1.45

1.40

1.35 —

1.30 —

1.25

1.20

1.15 —

1.10 —

1.05 —

1.00

100

)

— AFL Affinity - No Delay, Full Node

— Taskset Physical
— Taskset Logical

— AFL Affinity - 15s Delay, Half Node

1000 10000

AFL Output Time (s)

(a) CROM U-9

Co
ve
ra
ge
 (
B
i
t
m
a
p
 %
)

1.60

1.55

1.50

1.45

1 40

1.35

1.30

1.25

1.20 —

I. 15 —

1.10 —

1.05 —

1.00

— AFL Affunty - No Delay, Full Node
— Taskset Physical
— Taskset Logical
— AFL Affinity - 15s Delay, Half Node

100 1000 10000

AFL Output Time (s)

(b) NRFIN-78

Figure 4-3. Composite plot of the coverage as a function of AFL output time for AFL Affinity
(black), Taskset Physical (red), Taskset Logical (blue), and AFL Affinity with a time delay (lime

green) for the CROMU-9 and NRFIN-78 binaries.

Figure 4-4 presents a stacked version of the data in Figure 4-3(a) for CROMU-9, as much of the
coverage overlaps (especially towards the end of the 24-hour period) and is thus difficult to
decipher with precision. Close visual inspection indicates that whether only a single physical
core (Taskset Physical) or a combination of a physical plus logical core pair (Taskset Logical)
are used, the final coverage after 24 hours is nearly the same. This outcome is repeatable, as
indicated by the tighter range of final code covered as compared with AFL Affinity. Indeed, the

17

mean final coverage (green horizontal lines in Figure 4-4) is identical between Taskset Physical
and Taskset Logical for a set of seven trials. Interestingly, the mean coverage of the seven trials
of AFL Affinity is quite like the two Taskset types, despite the erratic behavior of over-assigning
processes to cores. Nonetheless, this outcome is not always guaranteed and may be dependent on
the binary that is fuzzed, the length of time the fuzzer is allowed to run, and other factors. We
therefore recommend running AFL Affinity with a time delay between concurrent calls to
resolve the uneven workload distribution problem. Alternatively, running AFL with either
Taskset Physical or Taskset Logical should equally resolve the processor contention issue albeit
with a bit of extra work.

Co
ve

ra
ge

 (
B
i
t
m
a
p
 %
)

1.8 _
1.7 -_,-
1.6 7

1.7

1.5
1.4

1.6- AFL Affinity
1.2
1.1

_
7

- - 1.67% Average

1.0 1.5

Bg1.8
1.7 -
1.6 7 - 1.7

1.5 7 "M"
1.4 7
1.3 - Taskset Physical - 1.6 gc.
1.2 7,--,2"
1.1 7

- - 1.65% Average

1.0 I I 1.5 o

1.8
1.7 -
1.6 - - 1.7
1.5 -
1.4 -

- Taskset Logical1.3 - - 1.6
1.2 - - 1.66% Average
1.1 -
1.0 1 1 i i i i i i I 1 1 1.5

100 1000 10000 10000

AFL Output Time (s) AFL Output Time (s)

(a) Data for the full run, up to 86,400 seconds. (b) The final decade.

Figure 4-4. A stacked version of the data from Figure 4-3(a), for the CROMU-9 binary. For each
type, the mean final coverage from the seven trials is presented as a dark green dashed horizontal
line. Note that the final mean coverage is identical to the median value, rounded to two decimal

places.

18

4.0 4.0 4.0
AFL Affinity Taskset Physical Taskset Logical

3.5- - 3.5 3.5

3.0- - 3.0 3.0

2.5- - 2.5 2.5

2.0- - 2.0 2.0

1.5- 1.5 1.5

1.0- - 1.0 1.0

0.5- - 0.5 0.5

0.0 0.0 0.0
651'

ti
hh ki/

N.• Y V 1
P hh 4:.0 10 (04)

N.' 1'
C)

VVV'y
470

Coverage (Bitmap %)

Figure 4-5. A histogram of the final code coverage frequency for the set of seven trials for each
AFL type after fuzzing the CROMU-9 binary for 24 hours. The vertical dashed lines represent the

median value of the dataset.

The distribution of final coverage achieved after 24 hours of fuzzing the CROMU-9 binary is
presented as a histogram in Figure 4-5. The vertical dashed lines in the graphic represents the
median value of each dataset.

4.3. Effect of Node Saturation and Coordination

4.3.1. CROMU-9

We investigated the effect of saturating a single node with AFL tasks that were both coordinated
and uncoordinated. Three experiments were performed: (i) a single AFL instance on one HPC
core (thus uncoordinated and unsaturated), (ii) 36 unique AFL instances running on 36 cores
(uncoordinated, saturated), and (iii) 36 combined AFL instances (one master/35 slaves) running
on 36 cores (coordinated, saturated). AFL type Taskset Physical was exclusively implemented
for this series. Seven trials for each experiment were performed. Figure 4-6(a) depicts the
coverage as a function of wall time for this series.

The outcome is largely as expected. The worst performance is observed when a node is fully
loaded with independent AFL tasks whose efforts are uncoordinated (pink dashed lines). While
this scenario is the ideal case from a job-packing efficiency perspective, it is unwise to load a
node to capacity with independent tasks if coverage within a short time period is essential. The
next best performer is the set of single core AFL tasks (black solid lines). Here we have one core
on the node (specifically core #0) working on a task, while the remaining 35 cores sit idle for the
duration of the experiment. Lastly, the best performance is observed when a fully packed node of
coordinated AFL tasks are run (orange dashed lines). Even for the worst performer of this set,
with a final coverage of 1.62%, 98.7% of the total coverage was achieved within the first 75
minutes of execution via this coordinated method.

Concerning the variability of the total coverage, similarly as above, we can depict the final
coverage for the set of trials as a histogram to visually inspect the distribution. This is presented
in Figure 4-7.

19

Co
ve

ra
ge

 (
Bi

tm
ap

 %
)

1.80 ,

1.75

1.70

1.65

1.60,

1.55

1.50,

1.45 _r.

1.40 , _=.J..-- ÷
I 9'

1.35 a .." -.-=•-r=

1.30, . / _,:.....i
44,Fare-

./z4:14-'- ,_,=,.:- 4_,=-... ----- --
1.25 r it ,,,LW7-

1.20 4 K , f ,p.

- Unsaturated Node (1 Core, Uncoordinated)

Saturated Node (36 Cores, Uncoordinated)
- - Saturated Node (36 Cores, Coordinated)

1.15

1.10

1.05

1.00 - 1

100 1000 10000

AFL Output Tune (s)

(a) CROMU-9

Co
ve

ra
ge

 (
Bi

tm
ap

 %
)

1.60 ,

1.50,

1.4o
1.30

1.20,

1.10,

1.004
0.904
0.80
0.70,

0.60

0.50

0.40=-7

0.30

0.20

0.10 -

- Unsaturated Node (1 Core, Uncoordinated)

Saturated Node (36 Cores, Uncoordinated)
- - Saturated Node (36 Cores, Coordinated)

100 1000 10000

AFL Output Time (s)

(b) NRFIN-78

Figure 4-6. Composite plot of the coverage as a function of AFL output time for Taskset Physical.
For the "Saturated Node, Uncoordinated" dataset (magenta) the median performer for each trial,
as measured by the final coverage from all 36 independent tasks, was selected for plotting.

4.0

3.5

3.0

2.5

i;c
t 2.0

17

Unsat, Uncoordinated
4.0

Sat, Uncoordinated
4.0

3.5-

3.0-

2.5-

2.0-

1.5

1.0

0.5

MI Sat., Coordinated

3.5-

3.0-

2.5-

2.0-

1.5-

1.0-

0.5- -

-

.
-

0.0-A-h- " •
4' IP Ot' ‘•P 4' bc) 4' 4) 4" ii) bt) 4) 4' t•C) 4' 4)

N• ",•• •N.• 'N.• •••••: N•• V "S.• "v V V N' V V V *l.
Coverage (Bitmap °A)

(a) CROMU-9

20

Unsat., Uncoordinated

6

5

6

5

Sat., Uncoordinated I

6

5

„›..., 4 4- 4
c
.1)

19-3 3- 3

1

22 2

1 1

110 •

P ̀P '',° '''''' o$3. et, 43
N 1' N• N• N• N• N•

0
4,4}3 153 4' 43 4' e.° tl, 4,04,
N• N 1 N• 'V N• N• V N• N•

Coverage (Bitmap %)

Sat., Coordinated I

0
43 P I" 4' 47 09 0 410 4" CP
N N V V N• '1' N• N, N• N

(b) NRF1N-78

Figure 4-7. A histogram of the final coverage frequency for the trials of Taskset Physical
experiments from Figure 4-6 for both the CROMU-9 and NRFIN-78 binaries. The vertical dashed

line represents the median value of each dataset.

4.3.2. NRFIN-78

For the NRFIN-78 binary, we investigated the effect of node load to discover if there is an
optimal number of cores to activate for fuzzing on a single node. Recall that our compute nodes
have dual sockets with 18 cores each, for a total of 36 cores per node and 72 threads in full.

We ran AFL with default settings (AFL Affinity), and added a fifteen second pause between
concurrent AFL calls to eliminate the effect of oversaturating cores with tasks. For this
experiment, we increased the number of trials from seven to 20, and fuzzed the NRFIN-78
binary in all cases for 24 hours. A box and whisker plot of the coverage as a function of the
number of AFL tasks (i.e., node load) was generated and is presented in Figure 4-8. Snapshots at
hourly intervals were created, and we showcase the results after two, six, twelve, and 24 hours of
coordinated fuzzing to illustrate the progression of coverage as a function of node load over time.

Notice that, early in time (after two hours (Figure 4-8(a)) and six hours (Figure 4-8(b))), the
median of the boxes, as indicated by the dotted black trend line drawn through each box's
median value, is greatest when sixteen tasks are used. For our hardware, recall that eighteen
cores correspond to one socket, though, in this test, we chose to request multiples of four cores
from four to 36. It is possible that, if the experiment were repeated with eighteen cores (tasks),
that median value would in fact be the greatest median point.

21

Co
ve
ra
ge
 (
B
i
t
m
a
p
 %
)

Co
ve
ra
ge
 (
B
i
U
n
a
p
 %
)

1.60

1.55 -

150 7
1.45 7

1.40 =

1.35 =

1.30

1.25 -

1.20 =

1.15 =

1.10 =

1.05

LOO

0.95 =

0.90 1

1.60 =

1.55 =

1.50 =

1.45 -

1.40 -

1.35 =

1.30 =

1.25 -

1.20

1.15 =

1.10 =

1.05 =

1.00 7

0.95 7

0.90

2

Number of AFL Tasks

(a) After 2 hours.

14 61
81

10
1

12
1

14
1 1

16 118 210 221 214

Number of AFL Tasks

(c) After 12 hours.

Co
ve
ra
ge
 (
t
h
u
m
p
 %
)

1.60

1.55 -

1.50 -

1.45 -

1.40 -

1.35 -

1.30 -

1.25 -

1.20 -

1.15 -

1.10 -

1.05 -

1.00 -

0.95 -

0.90

1.60

Number of AFL Tasks

(b) After 6 hours.

1.55 -

1.50 =

1.45 7

1.40 =

ae 1.35 =

1.30 =

1.25 :

t 1.20 7

8 1.0=

1.05 -

1.00 7

0.95 7

0.90 1

20 Trials Each l

2 14 6 10 12 14 16 118 20 221 24

Number of AFL Tasks

26 28

(d) After 24 hours.

30 32 34 36

Figure 4-8. Coverage as a function of node load (number of AFL tasks) over time for the NRFIN-78
binary with AFL Affinity plus a fifteen second time delay. Early in wall time, the median of the
boxes trends upward until it peaks at sixteen cores (tasks). While no number of AFL tasks is

statistically preferred at any time, the median point is highest at sixteen tasks for the first six to
eight hours of fuzzing.

As the fuzzing progresses, the trend line of median values begins to flatten, and after 24 hours
the boxes are all but collapsed for four AFL tasks (leftmost box in Figure 4-8(d)). Due to the
high variability across fuzz runs, we have not determined with statistical significance the optimal
number of cores to invoke. But we believe, absent any other information about the binary,
num_cores/2 should be chosen due to the peak we see in the median.

This observed effect may be due to the hardware configuration (dual sockets) and Intel's
management of memory between them. The fact that performance levels off after num_cores/2

causes us to hypothesize that this is a memory contention issue that we have seen before with
these Xeon HPC machines on other tasks. If this is a problem, a potential solution would be to
allocate AFL's memory to the same core that AFL is bound to. This requires further
investigation.

22

4.4. Desktop Fuzzing

In addition to fuzzing on the HPC cluster, we briefly explored fuzzing both binaries with AFL on
a desktop machine. A single-core virtual machine running Ubuntu Linux was used for this test.
All else equal, we performed only two trials for this investigation. After 24 hours, the final
coverage achieved for the CROMU-9 binary was 1.57% and 1.59%, and is shown in Figure
4-9(a). Compared to the black lines in Figure 4-6, these values fall at the high end of the HPC
analogs at the end of 24 hours. This result suggests that running an isolated (single-core) instance
of AFL is best suited for a dedicated standalone desktop machine rather than an HPC node (on
average). The added benefit of such a setup would not waste additional cores that could
potentially be utilized for other tasks.

The experiment was repeated using the NRFIN-78 binary on the same desktop rnachine, and the
final coverage results for both trials was 1.03% as illustrated in Figure 4-9(b).

Co
ve
ra
ge
 (
B
i
t
m
a
p
 %
)

1.80

1.75

1.70

1.65

1.60

1.55

1.50

1.45

1.35 -7/-.-1

1.30 -

1.25 41,;',-

1.20

1.15

1.10

1.05 -

1.00

100

- Unsaturated Node (1 Core, Uncoordinated)
- - Saturated Node (36 Cores, Uncoordinated)
- - Saturated Node (36 Cores, Coordinated)

- Desktop VM (1 Core, Uncoordinated)

I
1000 10000

AFL Output Time (s)

(a) CROMU-9

Co
ve
ra
ge
 (
B
i
t
m
a
p
 %
)

1.60

1.50 -

1.40 -

1.30 -

1.20 -

1.10 -

0.90 -

0.80 -

0.70 -

0.60 -

0.50 -

0.40 -

0.30

0.20 -

0.10

100

II
; (-1
- Unsaturatod Node (1 Core, Uncoordinated)

_
- - Saturated Node (36 Cores, Uncoordinated)
- - Saturated Node (36 Cores, Coordinated)

- Desktop VM (1 Core, Uncoordinated)

I
1000 10000

AFL Output Time (s)

(b) NRFIN-78

Figure 4-9. A repeat of the data in Figure 4-6, with the results of desktop fuzzing included as lime
green dot-dash lines. Only two trials were used for the desktop fuzzing case.

23

5. AUTOMATING THE WORKFLOW WITH BLUECLAW

Manually generating the testbed composed of three different AFL execution types, in both serial
and parallel, along with seven (or twenty!) different trials for each type, has proven to consist of
a healthy amount of work. However, the task is amenable to scripting and thus we created a tool
to accomplish this. We wrote a Python script called BlueClaw which enables both HPC gurus
and newbies alike to rapidly establish a testbed for fuzzing with AFL. The inclusion of command
line options make it very flexible and robust, tailoring the functionality to a user's wants and
requirements. The initial release is Version 1.0. Please contact Sandia National Laboratories for
access.

5.1. Operation

The standard method of running BlueClaw is:

blueclaw.py <OPTIONS nthr Mo
The full list of available options is detailed with the BinDir is the path to the
directory where the binary you wish to fuzz is located, and 'lode is the desired mode to run the
script in. There are currently three supported modes: SS (Serial execution against a Single
binary), PS (Parallel execution against a Single binary), and SM (Serial execution against
Multiple binaries).

The following command will programmatically create an environment for AFL Affinity to fuzz a
single binary for 24 hours in a coordinated fashion, assuming the AFL installation directory is in
one's path:

blueclaw.py -t 24 -i 36 ./bin/CROMU 00009/ PS
In this case, we do not specifically direct BlueClaw to an AFL installation directory. It is
assumed that AFL is installed and has been added to the user's path environment. The user
directed BlueClaw to the directory Lin/CROMU_00009/ as opposed to the actual binary
(.../file.exe). This is for convenience, but the user should be cautious and certain that only one
executable file resides in the provided directory.

The following command will create an environment like above, but for Taskset Physical:

lir .1.A -t 21W6 -a ../afl-2.52b-comment/aIT-fuzz Ibm/CROMU 00009/ PS

NOTE: The path to AFL, as specified by the ira option, may be either relative or absolute,
but the path to the directory where the target binary/binaries to fuzz are located
must be a relative path.

The following command will generate an environment for Taskset Logical, where a combination
of physical and logical cores will be activated for parallel (coordinated) fuzzing:

blueclaw.py -1 -t 24 -i 36 -a ../afl-2.52b-comment/afl-fuzz ./bin/CROMU_00009/ PS
Note the only difference between the above command and that which activates Taskset Physical
is the presence of the I option. As mentioned, activating logical cores is only valid for parallel
fuzzing. There are checks within the script to ensure that (i) the hardware is capable of this
request, and (ii) the user is indeed requesting a parallel job.

A helpful feature of BlueClaw is the ability to inherently scale across multiple nodes. On the
SRN cluster Ghost, there are 36 cores per node, but if we request 37+ fuzzing instances in mode

24

• (or alternatively wish to fuzz 37+ target binaries in mode .) , the resulting job submission
script will request two nodes where the first node is fully saturated with work (36 cores) and the
remaining tasks (here, one) are spilled over to the next node in the list of available reserves.

5.2. Implementation

BlueClaw seeks to be as generic and flexible to its environment as possible. It contains scanning
routines to find all binaries for fuzzing in a target directory, checks for hyperthreading, checks
for available number of cores and nodes, and will react accordingly to what it encounters. If
fuzzing is to be performed in a coordinated fashion, the script will generate the appropriate
syntax for master/slave mode. If fuzzing is to be performed in an uncoordinated fashion, a single
node will be populated with AFL tasks before spilling over to the next available node (if more
than one node was requested). Note that while efforts have been made to be generic and flexible,
BlueClaw has only been utilized on the SRN HPC resources as there are some hardcoded
environmental assumptions, such as the location of shared directories and installed packages.

The job scheduler in use on the SRN HPC resources is the Slurm Workload Manager. Users
submit jobs to the queue via the "sbatch" command. This functionality, along with the creation
of job submission scripts, is built into BlueClaw. Depending on the flags passed to BlueClaw, a
unique submission script is generated and the logic needed to correctly communicate with the
Slurrn scheduler is laced into the resulting "submit.sh" file.

5.3. Future Features

We plan to add support for a statistics option that will run N number of trials for a given
experimental configuration. Another planned feature is a "dependent jobs" option that will allow
a user to submit a request for longer than the maximum wall time allowed by the HPC scheduler.
In that case, one would specify the total wall time needed (for example, 720 hours) and the
submission script would be broken up into M scripts, each requesting the maximum allowed
number of hours until the total requested wall time is reached.

One additional planned feature is a fourth run mode: PM, or Parallel execution against Multiple
binaries.

25

6. CONCLUSION

We have defined and presented three different AFL execution types. AFL Affinity is standard
AFL, directly out of the box. Taskset Physical and Taskset Logical are slightly modified versions
of AFL which use the taskset Linux command line tool to manually bind AFL processes to cores,
rather than utilizing AFL's internal binding routine. While Taskset Physical uses only physical
cores, Taskset Logical extends this to include a pair of physical and logical cores (if
hyperthreading is available). We fuzzed the Cyber Grand Challenge binaries CROMU-00009
and NRFIN-00078 for 24 hours on the Sandia Restricted Network HPC cluster Ghost using the
three different types of execution.

We further investigated the effect of saturating a node (in our case, 36 physical cores per node)
with AFL instances running in both a coordinated and uncoordinated fashion. Results indicate
that the most productive (greatest coverage after 24 hours) method of running AFL is via AFL
Affinity with a time delay between coincident AFL calls and utilizing —50% of available
physical cores to fuzz a target binary in a coordinated fashion (lime green lines in Figure 4-3).
Not only did this method produce the most coverage in 24 hours, but much of the coverage
occurred within the first 75 minutes via this method. Whether this is an anomaly of Intel's
method of memory management between sockets is unknown. Further testing on differing
architectures would have to be performed to make a final determination.

Lastly, a Python script named BlueClaw was created to automate the tedious task of establishing
a testbed for experimental fuzzing on an HPC system. Through a small handful of flexible
command line options, a user can very quickly establish a suite of fuzzing experiments against
any number of binaries. What results from each execution is a job submission file that is ready to
be submitted to the Slurm job scheduler. BlueClaw is designed to be user friendly and fluidly
scales across any number of nodes.

26

This page left blank

27

REFERENCES

[1] M. Zalewski, "Understanding the process of finding serious vulnerabilities," 08 2018.
[Online]. Available: https://lcamtuf.blogspot.com/2015/08/understanding-process-of-
finding.html. [Accessed 02 05 2018].

[2] M. Zalewski, "American Fuzzy Lop (2.52b)," 2017. [Online] Available:
http://lcamtuf.coredump.cx/afl/#bugs. [Accessed 02 05 2018].

[3] M. Zalewski, "American Fuzzy Lop (2.52b)," 2017. [Online] Available:
http://lcamtuf.coredump.cx/aW. [Accessed 02 05 2018].

[4] M. Zalewski, "README," 2017. [Online]. Available:
http://lcamtuf.coredump.cx/afl/README.txt. [Accessed 02 05 2018].

[5] D. Fraze, "Cyber Grand Challenge (CGC)," DARPA, [Online]. Available:
https://www.darpa.mil/program/cyber-grand-challenge. [Accessed 02 05 2018].

[6] R. M. Love, "taskset(1) - Linux man page," die.net, [Online] Available:
https://linux.die.net/man/l/taskset. [Accessed 23 05 2018].

[7] Sandia National Laboratories, "Sandia National Labs High-Performance Computing," 2018.
[Online]. Available: http://hpc.sandia.gov/platforms/index.html. [Accessed 30 04 2018].

[8] Gamozo Labs, "Scaling AFL to a 256 thread machine," 16 09 2018. [Online]. Available:
https://gamozolabs.github.ioduzzing/2018/09/16/scaling_afl.html. [Accessed 04 08 2018].

28

DISTRIBUTION

Email—lnternal

Name Org. Sandia Email Address

Nasser Salim 5831 njsalim@sandia.gov

Christian R. Cioce 5836 crcioce@sandia.gov

Danny Loffredo 5838 dloffre@sandia.gov

Technical Library 9536 libref@sandia.gov

This page left blank

30

Sandia National Laboratories
is a multimission laboratory
managed and operated by
National Technology &
Engineering Solutions of
Sandia LLC, a wholly owned
subsidiary of Honeywell
International inc. for the U.S.
Department of Energy's
National Nuclear Security
Administration under contract
DE-NA0003525.

