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Finite element simulations of compression of a sample in diamond anvil cells
under extreme high pressures: Effects of geometry and material properties
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2Departments of Aerospace Engineering, Mechanical Engineering, and Material Science and
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Abstract In this paper, finite element simulations are conducted to investigate large

elastoplastic deformations of rhenium under multi-megabar pressures in diamond anvil cells
(DAC), with an emphasis on the effects of geometric and material properties. When a small flat
cullet surface is used at the center of a diamond, the known experimental pressure distribution and
double cupping phenomenon at a pressure of 300 GPa are reproduced. It is found that the material
plastic flow initially from the center to the periphery changes to the partial flow to the center, and
then changes to elastic deformation at the center under an increasing force. This is caused by
double cupping of the diamond under extreme pressures. The paradoxical result that material flow
to the sample center does not change the sign of the contact shear stress and pressure gradient is
explained by finding that, due to deformation of the diamond, relative contact sliding between the
diamond and sample does not change the sign or is absent. Under the same applied load, an
increase in the cullet radius reduces pressure and increases thickness of the sample under the cullet,
but does not affect them at the beveled surface until cupping appears. However, for the same

maximum pressure, an increase in the cullet radius increases pressure everywhere (except for the
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very center), total force, and bending of an anvil both at the center and periphery. An increase in
the bevel angle increases pressure gradient and pressure at the center and cupping at the center,
but reduces cupping at the periphery, at the same applied force. An increase in sample thickness
reduces pressure gradient and pressure at the initial compression stages. This effect reduces and
disappears at large compression. Small weaker sample within gasket slightly reduces pressure in
a sample but does not affect gasket. The obtained results help to understand the material
mechanical response under extreme pressures and large elastoplastic deformations and are
beneficial for the optimum design of DAC with the goal of reaching the high and record high

pressure single or multiple times.
Keywords: High pressure, Diamond anvil cells, Plasticity, Finite element method, Geometric

properties, Yield strength



l. INTRODUCTION

By compressing a sample between two diamond anvils in a diamond anvil cell (DAC),
static megabar pressures are generated in experiments [1-5]. In order to find new physical
phenomena and new materials, the pressure level need to be increased and meanwhile anvils
should not break during single or multiple experimental runs. As an important example, we refer
to the recent discussion in Science [6-8]: Metallic hydrogen was obtained in [6] under pressure of
495 GPa. It was stated in the critical comment [7] that they had 96% failed diamonds while
attempting to reach 350 GPa and criticized about, in particularly, the method of estimation of
pressure based on the applied force used in [6]. It was written in the response [8], achievable
pressure strongly depends on the geometry of an anvil, thickness of a gasket, and the degree of
cupping of the diamond (i.e., appearance of a cup-like concave shape of the contact diamond-
sample surface). Very detailed experimental study of the pressure distribution and deformation of

an anvil and sample in the megabar pressure range was presented in [3] and [9].

Numerical modeling of compression of a sample in DAC is related to significant theoretical
and computational problems due to multiple physical, geometric, and contact nonlinearities.
Geometric nonlinearity is related to large elastic and plastic deformations, material rotations, and
displacements. Physical nonlinearities are caused by nonlinear elasticity rules, plasticity of a
sample, and pressure-dependence of the yield strength. Contact nonlinearities are due to contact

relative sliding with unknown sliding and cohesion zones, and the deformed surfaces.

Finite element method (FEM) is widely used to study the stress-strain states of sample and
anvils in DAC [10-17]. Moss et al. found by FEM that the increase in the yield strength of a gasket

plays the key role in achieving extreme high pressure [10]. By using the “Supreme 63” tool metal



with the yield strength of 2.5 GPa as the gasket material they claimed to achieve the pressures of
460 GPa experimentally. Moss and Goettel performed finite element analyses of beveled diamond
anvils and discussed the design of a diamond anvil by changing culet geometries [11]. Merkel et
al. [13] extended previous FEM calculations [10, 11] to simulate the experiment on compression
of a rhenium sample up to 300 GPa [3], and to numerically study effects of geometric parameters
of the sample and anvil system [15]. Coupled plastic flows and strain-induced phase transforms in
the sample in DAC [18-20] and rotational DAC (RDAC) [21-23] were investigated, with
assumptions of the sample with small elastic and transformational strains and the diamond anvils

as rigid body.

Previous models [10-13, 15] were not based on a fully large-strain framework and therefore
are unable to reproduce some experimental phenomena (e.g., pressure distribution) under the
extreme condition of several megabar pressures. In most of these works, equations were not given
and results of simulations using some available FEM codes were presented. Recently, Feng et al.
[14, 24] formulated a thermodynamically consistent system of equations considering large elastic
and plastic deformation of a sample and large elastic deformation of the diamond anvil, and
successfully reproduced with FEM the experimental pressure distribution [3] at a pressure up to
300 GPa. They also revealed numerically a pressure self-focusing effect [16, 24], which allows
one to achieve extremely large pressure gradient and consequently high pressure at the center of a
sample. These studies were extended on a 3D problem on compression and torsion of a sample in

RDAC under extreme pressures [16, 24].

It is well known that the geometric and material properties are essential to determine the
material responses under the extreme high pressure. The use of beveled diamond anvils in DAC is

the key to generate static pressures above 1 Megabar [5, 25]. However, the choice of the bevel
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angle experimentally is expensive because of fracture of one or both anvils [11]. That is the reason
why the FEM simulations are important for optimization of the geometry. In addition, since the
introduction of gasket into a DAC is a milestone in the history of DAC [25], the study of the system
of gasket and sample under megabar pressures by using FEM is very important but was not done
in previous work.

In this paper, we study the effects of geometric and material properties in DAC, based on the
advanced large deformation framework developed in [14, 24]. A total system of equation is

presented in Section Il. Stresses and plastic flow for the culler radius R=5um, bevel angle
a =8.5° and initial sample thickness h, =20 um were studied in Section II1.B. In particular,

experimental pressure distribution [3], double cupping [26], and cupping-related pressure drop [3,
26] were reproduced numerically. Transition from plastic flow from the center, to partial flow to
the center, and then to elastic deformation, all under increased loading, is reproduced. Deformation
of the diamond anvil plays a crucial role in this phenomenon. It also explains why when velocity
changes the sign friction stress and pressure gradient does not: because relative sliding velocity
with respect to diamond is either zero or positive. Effect of the radius of the flat surface is studied
in Section 111.C. Results are quite different for the same applied load or the same maximum
pressure. Effect of the bevel angle is analyzed in Section Il1.D. Increase in the bevel angle
increases the pressure gradient and pressure at the center and cupping at the center, but reduces
cupping at the periphery. It is shown in Section I11.E that the increase in sample thickness reduces
the pressure gradient and pressure at the initial compression stage. This effect reduces and
disappears at large compression. In Section I1l.F we demonstrate that in a small sample that has
two time smaller yield strength at zero pressure than gasket, reduction in pressure is relatively
small and change in pressure distribution in gasket is negligible. Section IV contains concluding

remarks.

Specifically, we study the effect of a cullet radius (the flat part at the center of sample and
diamond contact surface), and reveal the material mechanical response with an increasing loading.

By using the third-order elastic constants from [27], the cupping at the pressure of 300 GPa in



experiments [3] was not reproduced in our previous simulations [14]. Thus, we adjusted the third-
order elastic constants in [14] to reproduce cupping. We find here that this is caused by the absence
of the flat part of the diamond in the previous simulations [14]. With the flat cullet, we reproduced
both pressure distribution and cupping using the third-order elastic constants from [27]. Also, we
obtained double cupping (i.e., concave parts at the center and periphery of an anvil), which was
observed in recent experiments [26]. Second, the effects of the radius of the flat cullet, the bevel
angle, and initial thickness of a sample is studied and discussed in detail. Third, the sample and
gasket system is treated for the first time for extreme pressures to study the effects of sample
strength. The obtained results help to understand the material mechanical responses under extreme
conditions of high pressures and plastic deformations, and are beneficial for the optimum designs

of a DAC system.

1. PROBLEM FORMULATION
I1.A. Geometry and boundary conditions

A schematic of a DAC is shown in the Fig. 1a, where a normal stress o, is applied on the
diamond surface and a sample is compressed by two diamond anvils. We ignore the anisotropy of
diamond anvil in the circumferential direction to use an axisymmetric formulation. Because of
axisymmetric loads and geometry of DAC and the symmetry with respect to the horizontal plane
1J in Fig. 1c, we consider a quarter of DAC as shown in Fig. 1b. The major geometric parameters
for an anvil and for contact surface between diamond and sample are given in Fig. 1b and 1c,

respectively. The geometry of the preindented sample is shown in Fig. 1c along with the zoomed
central part. A half of sample thickness at the r=0 in the initial undeformed configuration is h, /2

(line Cl in Fig. 1c). The undeformed shape of contact surface is as follow: from point C at the r=0



to point R, there is a small flat region with the radius r,; from point R to point G, the contact

surface is inclined with initial bevel angle « ; at the periphery line GE has a inclined angle 43.27°;

the radial distance between CG is 150 um ; the radial distance IJ at the symmetry plane is

772.5 um , which is long enough to exclude the boundary effect of the right end HJ; the thickness
of the boundary HJ is 125 um. We will discuss the effects of geometric parameters by varying h,,

r,,and «.
The boundary conditions for a quarter of DAC in Fig. 2b are listed as follows:

(1) The normal stress o, is applied at the top surface AB of the DAC (as also shown in Fig. 1a).

(2) At the z axis (the symmetry axis r =0) (line AC for the anvil in Fig. 1b and line CI for the
sample in Fig. 1c), shear stress z,, and the radial displacement u, are zero.

(3) At the contact surface (CRGE shown in Fig. 1c), the Coulomb friction model is applied. When
friction stress reaches o, slipping is allowed (o, is the normal contact stress at the contact
surface between the diamond and the sample, and . is the Coulomb friction coefficient).
Otherwise, the cohesion condition, i.e., continuity of displacements, is applied.

(4) Atthe symmetry plane z =0 (plane 1J in Fig. 1c), the radial shear stress z,, =0, and the axial

displacement u, =0.

(5) Other surfaces not mentioned above are stress-free.
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FIG. 1. Geometric parameters of diamond anvil cell and sample. (a) Diamond anvil cell scheme,
(b) a quarter of the sample and anvil in the initial undeformed state and the geometry of
anvil, and (c) the geometry of a sample and a zoomed-in center part of a sample, which is
placed in the ellipse.

11.B. A complete system of equations for large-strain elastoplasticity for a sample
In this paper, the complete system of equations for both sample and diamond anvil are

summarized from [14] and [16], and computational algorithms proposed in [14] are used for the

current models.

Contractions of the second-order tensors A={A;} and B={B; | over one and two indices

are designated as A-B={AB,} and A:B={AB;}, respectively. The subscripts s and a

designate symmetrization and anti-symmetrization, respectively, the subscripts e and p represent
elastic and plastic deformation gradient or strain, the superscripts -1 and t means the inverse and

transposition of a tensor, and | is the second-order unit tensor.

Kinematics. The motion of material with large elastic and plastic deformations is described

by a vector function r=r (ro,t), where I and r, are the position vectors of material points in the

actual configuration Q at time instant t and in the reference configuration €2, at the instant t,,

respectively. The deformation gradient

or )
F=—"=F F,=R-UR-U,=RU-U,=V,-RU, (Ry=1: V,=R,-U,-RT} (1)
0

is decomposed into elastic F, and plastic F_ contributions, where F is the deformation gradient

obtained after a complete release of stresses in the local vicinity of each material point, U S and



U, are the symmetric plastic and elastic right stretch tensors, R, and R are the proper

orthogonal elastic and plastic rotation tensors, and V, is the elastic left stretch tensor.

Lagrangian and Eulerian elastic strain tensors are

E,=05(U, -U,—1); B, =05(V,v, -1). )
Decomposition of the velocity gradient |=F-F™*=W+d into antisymmetric spin tensor
W = (I)a and symmetric deformation rate d = (I )S are accepted. In combination with Eqg. (1), we

obtain the following decomposition of the deformation rate d into elastic and plastic contributions:
\% . v .
d:Be—Z(d'Be)s+Ve DpVe, Dsze'(Up'Ugl)s'Ré; BezBe—Z(VV'Be)S, (3)

v
where Be. is the Jaumann objective time derivative and D, is the plastic deformation rate.

Elasticity rule. The following isotropic nonlinear elastic rule will be used

1 oY
o=——02B,+1)-—, 4

detF( -+ oB, @
where detF is the determinant of the tensor F, o is Cauchy stress, and the most popular elastic
potential ¥ for the extreme condition of high pressure is the third-order Murnaghan potential [28]:

A, +2G I+2m

¥(B,)= |12—2G|2+( If—2mI1I2+nI3j, (5)

where 4., G, |, m,and n are elastic material parametersand 1., 1,, and 1,, are the first, second
and third invariants of the strain tensor B, :

|, =B, +B,_+B,; I,=B,_B,_-B +B, B, -B; +B, B, —B; I,=detB,. (6)

Plasticity. The pressure-dependent J. flow theory is used with the yield surface
9p=~3/2s:s-0,(p,q)=0, (7)
where s is the deviatoric Cauchy stress, o, is the yield strength, which depends on the mean

pressure p and accumulated plastic g defined as

q:(zop:Dplsj'. ®)



The plastic flow rule is presented as

Dp:iy\/s:—s, (9)

where A (4> 0) is a scalar function determined from the consistency condition ¢ 0.
The traditional equilibrium equations in the current configuration are used

V-6=0. (10)
It was found in [29] for more than 60 materials belonging to different classes (e.g., metals, rocks,
alloys, oxides, compacted powders), above some level of plastic strain and for a deformation path
without sharp changes in directions (monotonous deformation), the initially-isotropic
polycrystalline materials are deformed as a perfectly plastic and isotropic material with a strain

history-independent limiting surface of the perfect plasticity. It excludes accumulated plastic strain
q from the relationship for the yield strength in Eq. (7), o, (p.q) =0, (p). The linear dependence
of yield strength on pressure p is accepted in this paper

Uy(p)zoyoerp, (11)
where o, is the yield strength at the pressure p=0 and b is a parameter.
Material parameters. Rhenium has been of particular interest because of its large bulk (K) and

shear (G) moduli and high strength [4, 30] and it is widely used as the sample and gasket material

in a DAC [1-4]. The following properties of rhenium are used in simulations: Elastic constants [4,

14, 30] G=200GPa , A, =247GPa , |=-291GPa, m=-662 GPa and n=0, and plastic

constants [4, 14] o, =8.00 GPa and b =0.04.

11.C. Nonlinear anisotropic elasticity for single-crystal diamond
The traditional elasticity rule has the form

10



6=F -T(E)-F'/detF; T =odetF =F-T(E)-F'; T=8%E, (12)

where T is the Kirchhoff stress, T is the second Piola-Kirchhoff stress, and since there is no
plastic deformation in a diamond, the subscript e is dropped. Under megabar pressures, it is

necessary to consider at least the third-order potential ¥ with the cubic symmetry:

Y =0.5¢, (7712 +n2 +7732)+ Cp, (771772 + 111, +772773) +0.5¢,, (775 +nl +7762)+Clll (7713 +15 + 7733)/6
+0.5,, [ 1 (m, +15 )+ 75 (0 + 15 )+ 702 (1 + 1) |+ oot o705 + 0.5 (o + 1,2 + ) (13)
+0.5Cus | (17, 775 )13 + (1 + 125 )72+ (my +70, )12 |+ Cangtatsms

where n, =E,,, n, =E,,, 17, = E,;, 17, =2E,;, 1. = 2E,,, and 7, = 2E,,.

In this paper, the second-order elastic constants are [31]: ¢, =1050GPa, c,, =127 GPa, and
C,, =550 GPa and the third-order elastic constants are [27]:c,,, =—-7603GPa, ¢, =-1909GPa,
C3 = —835GPa, ¢, =-3938GPa, c,, =1438GPa, and c,,, =—-2316GPa .

In simulations, the friction coefficient in the Coulomb friction rule is z=0.1.

1. RESULTS AND DISCUSSION IN THE SAMPLE UNDER EXTREME

PRESSURES

I11.A. Overview

Our results [14] reproduced the pressure distribution in experiments [3] up to 300 GPa. The
cupping was observed experimentally [3] under the pressure around 300 GPa but it does not appear
in our simulations [14] when we used the third order elastic constants from [27]. The reason will
be found out that a very short flat contact surface (the line CR in Fig. 1c) is used in experiments

but it was ignored in the previous FEM simulations [14]. At the beginning of this section, we will

use the flat part r, =5um and the beveled angle « =8.5°, which are taken from experiments [3].

The sample is assumed to be pre-indented into the initial thickness as h, =20 umat the center

11



(r=0), which is commonly used in experiments (see [1]). This set of geometric parameters

(r,=5um, a=8.5° and h, =20 um) are used for results in Figs. 2-4. To study the effects of the
radius of the flat part r, in Figs. 5 and 6, we vary r; from 0 to 5 and 10 um, with the fixed
a =85", and h, =20 um. The effects of beveled angle in Fig. 7 is studied by comparing the
results with & =7.5° and 9.5° for r, =10 um and h, =20 um. Fig. 8 shows the effects of initial
thickness of sample by comparing results for h, =20 and 40 um, with & =8.5° and r, =0 um.
The effect of the sample strength will be studied by comparing the results of o, =8.00 GPa and
o,, = 4.00 GPa, with the same gasket properties and the geometrical parameters: h, =10 um with

a =95 and r, =10 um.

I11.B. Stresses and plastic flow for r,=5um, o =8.5° and h, =20 um

Fig. 2 plots the distributions of pressure and shear stress under an increasing applied stress o, .

Our simulation results in curve 4 coincide with experimental data in [3]. The major difference
between the current and previous simulation results [15] is that the pressure gradient in this paper
is much larger at the center of sample but smaller at the periphery than that in [15].

Distribution of shear stresses (friction stress) z, in Fig. 2b coincides with the distribution of the
pressure-dependent yield strength in shear 7, (p) for most of contact region with a low load (see
curve 1 and 2). This means that plastic friction condition 7, =7 (p) is fulfilled in this region.

While it is not included explicitly in the contact sliding condition, it means that localized plastic
flow in a thin contact layer occurs, which is equivalent to the contact sliding. With an increase of

compressive loads from curve 3 to curve 5, the shear stress decreases at the center of sample, and

12



there is an increasing region where the friction stress z, is smaller than z (p) . This is caused by
changing the direction of material flow as shown in Fig. 3.

In [14], even without the flat part CR (r, = 0), the pressure distribution was also consistent
with experiments, but the cupping at the pressure around 300GPa was not reproduced. With a short
flat part, case 5 in Fig. 3 clearly showed that the cupping appears at o,=3.011 GPa, where the
maximum pressure is 300 GPa at the center in Fig. 2a. Here we should mention that cupping can
cause the sudden drop of pressure distribution at periphery as it is seen in curve 5 at r =140 um,

Similar pressure drop due to cupping can be found in this paper for all other cases with different
geometric parameters. What is more important that similar cupping-related pressure drop was

observed in experiments [26].

30 % e ceriments in Hemley et al. 1997
R simulations in Metkel et al. 1999 12 r
PRSI SR S N, .
240154 4—=— 5—o— curent results "'\ ; Z:jgg g:
— ] 10 ke, 3. g=2.24GPa
~—~ R —
Siso g o e
R 5 2 [sam
N ~ 8t S
2120 -
4 v 5
60- .o';.;.‘..... ., l\)“‘ 6 i
0 R — .
0 50 100 I (um) d 25 50 751 (Um)

(@) (b)

Fig. 2. Distributions of pressure p (a) and friction stress z, (solid lines) and yield strength in shear
7, (doted lines) (b) at the contact surface of a sample for r, =5um under an increasing

applied normal stress o,,: 1.68 GPa (1), 1.96 GPa (2), 2.24 GPa (3), 2.575 GPa (4), and

3.011 GPa (5). In (a) doted curves 1-5 are the current simulation results, two green dashed
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curves are the simulations results from Ref. 9, and the solid black curve is the experimental

results in Ref. 3.

Important information can be learned from Figs. 3 and 4, which present the velocity along
the radial direction v, and the rate of accumulated plastic strain (. Since for the current rate-
independent plasticity and static problem formulation time is not parameter, the magnitudes of
and v, can be made arbitrary by changing the rate of loading. This does not change stress and
strain distribution at each load, independent how fast it is achieved. Results in Figs. 3 and 4 are

presented for constant &, =0.7x107*GPa/s. Consequently, only relative values in distributions
of ¢ and v, for any state (or load o) are important. It is found from Fig. 3 that initially at
o, =1.68 GPathe whole sample flows “fast” from the center to the periphery. With an increase in
applied force o, starting from the center of sample, the radial velocity v, changes the direction

and materials “slowly” moves from the periphery to the center. For o, =3.011 GPa, material

motion towards the center is observed in the major region of a sample.

It looks very counterintuitive that material velocity changes sign within a sample but
contact shear stresses in Fig. 2b do not. The negative velocity v, and its gradient along the
thickness direction are very small (by one order of magnitude) in comparison with material flows
from the center to the periphery at the external part of a sample. Since plastic flow is
incompressible, deformation in this region is either elastic or with small plastic strains. This is in
agreement with small values of  in this region (Fig. 4). The key point is that due to deformation

of diamond, relative sliding velocity at the contact surface is either zero or positive, that is why

contact shear stress does not change sign.

14
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0.56
0.00
-0.0125
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-0.0375
-0.05
-0.0625
-0.075
-0.0875
-0.1

Fig. 3. Distribution of radial velocity v, in the sample (0 <r<160 um) with r; =5pm under an

increasing applied normal stress o,. The normal stress o, is 1.68 GPa (1), 1.96 GPa (2),

2.24 GPa (3), 2.575 GPa (4), and 3.011 GPa (5).

Fig. 4 shows the distribution of the rate of accumulated plastic strain ¢ . Initially at o, =1.68 GPa,

the entire region is under plastic straining. The accumulated plastic strain rate shows the shear
band near the contact surface, where shear stresses reached the yield strength in shear. Excluding

this region, qis not very heterogeneous along the radius. This is because the radial velocity
increases with r but the sample thickness increases as well. As the applied stress o, increases from

1.96 GPato 2.24 GPa, in the region with negative velocity Vv, in Fig. 3 ¢ is nonzero but quite small.

With the further increase of applied stresses, the rate of accumulated plastic strain significantly

reduces and the location with the maximum accumulated plastic rate moves towards the periphery.

At 0,=2.575 GPa,  becomes zero at the center of a sample, demonstrating unusual transition

from plastic to the elastic state under increased load. The region without plastic deformation grows

and (] decreases in the rest of the sample as the o, increases. One of the reason for this is that the

15



bending of anvil slows down thickness reduction rate. As a result, the pressure and pressure
gradient cannot continuously increase when cupping becomes significant (see also experiment in

Ref. 3), which can be explained by a simplified equilibrium equation (see, e.g. [16, 29, 32])

dp_ 27

dr h (14)

Indeed, the thickness h cannot further be reduced after some critical value.

Gx10°(/s)
3.0

2.42
1.84
1.26
0.68
0.1
0.0857
0.0714
0.0571
0.0429
0.0286
0.0143
0
0

Fig. 4. Distributions of the rate of accumulated plastic strain ¢ in the sample (Os r <160 pm)

with r, =5pm under an increasing applied normal stress o, . The normal stress o, is 1.68

GPa (1), 1.96 GPa (2), 2.24 GPa (3), 2.575 GPa (4), and 3.011 GPa (5). In the magenta
region plastic strain rate is exactly zero.

111.C. Effect of the radius of the flat cullet
Fig. 5 plots the distributions of pressure and the z coordinate of the contact surface for radii of the

flat cullet r, that varies from 0 to 5 to 10 um, when the maximum pressure reaches 293 GPa. A

16



shorter flat part CR means the a longer inclined part RG in Fig. 1c, since the radial distance CG is
fixed at 150 um . At a given applied stress o, but with different r,, the shorter the cullet radius
r, is, the faster the plastic flow along the radial direction and the thickness reduction are because

the inclined diamond surface with positive slope instead of the flat cullet favors the material flows
to the periphery. The faster thickness reduction causing a larger pressure and pressure gradient at

the center due to simplified equilibrium condition (14). It indicates that for the same maximum

pressure at the center, the applied normal stress o, is an increasing function of the radius of the
flat part r, (Fig. 5). Fig. 5b plots the z coordinate of the contact surface (equal to half a thickness

of sample h/2) for r, = 0, 5 and 10 um. The smaller r, and consequently o, leads to a faster

thickness reduction at the center, but smaller deformation of an anvil both at the center and at
periphery. Cupping near the sample center appears for any initially flat surface; it increases with

increasing r,. At the periphery, the cupping does not appear with r, =0; it just appears for r, =5,
and becomes very obvious for 10 um . Similar to Fig. 2a the cupping causes the pressure drop at
the periphery for r;=10 umin Fig. 5a, like in experiment [26]. Thus, for the same maximum

pressure, an increase in the cullet radius essentially increases pressure everywhere except for the

center, total force, bending of an anvil both at the center and periphery.
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Fig. 5. Distributions of the pressure p at the sample contact surface (a) and the z coordinate of

diamond/sample contact surface (b) when the maximum pressure is p= 293 GPa at r=0 at

the contact surface. The applied stress o, is 2.652 GPa (1), 2.849 GPa (2), 3.061 GPa (3).
PLEASE CHANGE INFIGdTOR

Very different conclusions can be made if one compares the effect of the cullet radius r, at 0 and
10 um on the distribution of pressure and the profile of contact surface at the same applied load

(Fig. 6). Under the same applied load, the pressure distribution and thickness of the sample are

the same everywhere except for the center of the sample. For r, =0, material flows much faster at
the center than for r,=10 pum in Fig. 6b, which causes a larger pressure gradient and pressure at
the center of sample. With the increasing applied load o, the difference on pressure at the center
for both cases becomes more obvious. At o,=1.681 GPa, the difference in pressure is only 6 GPa;

at 0,=3.061 GPa, the difference in pressure becomes 21 GPa. This is because as the thickness

reduces, the difference in 1/h increases and pressure gradient linearly depends on 1/h. For example,
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the ratios of 1/h at r=0 between r; =0 and 10 um is 1.8 with o,=1.681 GPa and 2.03 with o,

=3.013 GPa.
300] o [y
1% * r=10pm =
2407\ \ = 8]
% 1N A ™S ,
~— 1201 \’\"‘\q ."-,‘. w——t
o ] ; , ‘
601 e
0O 40 80 120r (um) 0O 40 80 120r (um)
(a) (b)

Fig. 6. Distributions of the pressure p at the contact surface of a sample and z coordinate of the

diamond/sample contact surface for r, =0 and10 um under the applied stress o, is 1.681

GPa (1), 2.241 GPa (2) and 3.013 GPa (3).

Comparing curves 2 and 3 in Fig. 6b, one concludes that for maximum pressure above 250

GPa, increase in force does not reduce thickness of a sample for the beveled surface for both

I, =0 and 10 um and results in a bending at the periphery of a sample. Cupping at the center does

not occur for 1, =0 and occurs at any force under study for r, =10 um.

111.D. Effect of the bevel angle
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Fig. 7. Distributions of the pressure p at the contact surface of sample (a) and z coordinate of

diamond/sample contact surface (b) for r, =10 um and two bevel angles, ¢ =7.5° or 9.5°,

under three applied normal stress o, : 1.868 GPa (1), 2.365 GPa (2), 3.045 GPa (3).

The effect of the bevel angle « is shown in Fig. 7. With a larger beveled angle o =9.5°, the
material flow from the center to the periphery is more intense, which causes much faster thickness

reduction at the center than for & =7.5°. Smaller thickness of a sample at the center for a =9.5°
causes a larger pressure gradient and pressure at the center than for & =7.5°. In addition, for an
larger bevel angle, the cupping at the periphery is postponed: at o,=3.045 GPa, the cupping is
obvious for a =7.5° and does not exist for & =9.5°. In addition, cupping at the center is slightly
larger for & =9.5°. We note that at the periphery the thickness is smaller for a =7.5°than for

a =9.5°, due to smaller initial thickness and larger diamond bending and cupping. At the
periphery, the thickness reduction rate is also faster with a larger bevel angle. For example, the
difference of the z coordinate at r =120 pm between cases with « =9.5° and 7.5° is 1.3 um, 1.0

um and 0.5 um, for the applied load o, of 1.4 GPa, 1.75 GPa and 2.652 GPa, respectively.

I11.E. Effect of initial sample thickness
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Fig. 8. Distributions of the pressure p at the contact surface of a sample (a) and z coordinate of the
diamond/sample contact surface (b) for r,=0pum and initial thicknesses of
h, =20 um or 40 um at the center of sample under the applied normal stress o,: 1.4 GPa

(1), 1.75 GPa (2), 2.652 GPa (3).

In Figs. 2-7 the sample is pre-indented to the initial thickness of 20 um at the center. In Fig. 8 we
compare results for h, =20 um with those for h, =40 um . Under a small applied normal stress o,
=1.4 GPa, Fig. 8b shows material flows to the periphery much faster with a larger initial thickness
h, =40 um, because initially the difference of z coordinate at the center is 10 um and it is just 1.2
um under o,=1.4 GPa. Due to a smaller thickness in the deformed configuration, the pressure at
the center with the initial thickness with h, =20 um is 17 GPa larger than the pressure with

h, =40 um . With the increase of r coordinate, the difference in pressure distribution decreases
while difference in h practically does not change. It is noted that the differences causing by initial

thickness significantly reduces with increase of applied normal stress. At o,=2.652 GPa, the

distributions of both pressure and the thickness of the sample are almost the same for

h, =20 um and 40 um.

I11.F. Sample-gasket system: effect of the sample strength
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Fig. 9. Distributions of the pressure p at the contact surface of a sample (a) and z coordinate of the

diamond/sample contact surface (b) for «=9.5°, r,=10pm , and the initial sample
thickness h, =10 um under the applied normal stress o, : 1.05 GPa (1), 1.4 GPa (2), 1.75
GPa (3). For the green solid line: cylindrical sample of the radius 10 um has the same

material properties as rhenium gasket (for r >10um ) except for o, = 4.0 GPa keeping
o,, =8.0 GPa for the gasket; for the blue symbol line, the entire region (gasket and sample)

is rhenium. Coulomb friction is used for all contact surfaces.

Let us consider a sample material in the cylinder of the radius 10 um (the same as radius of the flat
part, see the blue part of the zoomed area in Fig. 1c). It has the same properties as the rhenium

gasket but two times smaller o , =4.0 GPainstead of o , =8.0 GPa for the gasket. Results are

shown in Fig. 9. With a softer sample, the pressure gradient and consequently pressure are
expected to be smaller at the center of a sample, since friction stress z, <z, is smaller in the
equilibrium equation (14). The thickness of a softer sample is slightly smaller in Fig. 9b, which
slightly increases the pressure gradient. However, the effect of a weaker friction stress dominates,

which causes a lower pressure gradient and pressure in a weaker sample (Fig. 9a). However,
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reduction is relatively small for such a small sample, because close to the center for any o,

friction stress reduces down to zero at the symmetry axis. Change in pressure distribution in gasket
is negligible, because small changes in stresses over small sample area at fixed total force makes
negligible effect on the force over the large gasket area.

Note that in experiments micro-semi balls made of nanodiamond have been placed at the
center, which allowed to reach extreme pressures of 600 GPa [1] and 750 GPa [2]. This pressure
increase is easily rationalized by an decrease in the sample thickness in the simplified equilibrium

equation.

IV. CONCLUDING REMARKS

In this paper, FEM simulations are conducted to investigate large elastoplastic deformations of
rhenium and elastic deformation of diamond under pressures up to 300 GPa in DAC, with an
emphasis on the effects of geometric and material properties. Thermodynamically consistent
isotropic model for large elastic and plastic deformations of a compressed material with pressure-
dependent yield strength and nonlinear anisotropic model for diamond developed in [14, 24] were
used.

In [14], a flat cullet was not included assuming that it should not affect results essentially.
While experimental pressure distribution from [3] was reproduced without problem, the third-
order elastic constants from literature [31] were modified by 20% to obtain experimentally
observed cupping at the pressure of 300 GPa. Here, we found that the problem is the absence of
flat cullet in simulation. With the flat cullet, we reproduced both pressure distribution and cupping
in [3] using the third-order elastic constants from [27]. Also, we obtained the double cupping, both

at the center and periphery, which was found in experiments [26]. In addition, significant pressure
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drop in the region of cup at the periphery observed in experiments [3, 26] was reproduced as well.
Thus, our model is well verified up to 300 GPa.

Transition from the material plastic flow from the center to the periphery to partial flow to the
center followed by elastic deformation without or with small plasticity, all under an increasing
force, is reproduced and studied. It is caused by double cupping of the diamond under extreme
pressures. Paradoxical result is found that material flow to the sample center does not change the
sign of the contact shear stress and pressure gradient. It is explained by finding that, due to
deformation of the diamond, relative contact sliding does not change sing or is absent. Distribution
of the contact shear stresses coincides with the distribution of the pressure-dependent yield strength
in shear, excluding regions near the center of a sample and (for the lowest load) at the periphery.

This means that plastic friction is realized by localized plastic flow below the contact surface.

We would like to stress that comparison of the effect of different parameters on the DAC
mechanical behavior may strongly depend whether it is performed under the same applied load or
maximum pressure at the center. For example, under the same applied load, an increase in the
cullet radius reduces pressure and increases the sample thickness under the cullet, but does not
affect them at the beveled surface until cupping appears. However, at the same maximum pressure
at the center, the increase in the cullet radius increases pressure everywhere (except for the very
center), the total force, and bending of an anvil both at the center and periphery. As mentioned,
introducing cullet allows us to reproduce cupping at the periphery, which is absent at the same
maximum pressure without cullet.

At the same applied force, a small increase in the bevel angle increases the pressure
gradient and pressure at the center and cupping at the center, but reduces cupping at the periphery.

Increase in sample thickness reduces pressure gradient and pressure at the initial compression
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stages. This effect reduces with increasing compression and disappears at large compression. Small
weaker sample within gasket slightly reduces pressure in a sample and does not affect gasket.

The obtained results help to understand strongly nonlinear mechanical responses of the DAC under
extreme pressures and large elastoplastic deformations. In future, they may be utilized as a tool for
computational optimum design of DAC. There are two main goals: (a) reach record high pressure
once or multiple times and (b) reach the required high pressure in a largest possible sample once
or multiple times. As the next step, we will use some of the recent experimental results up to 400
GPa in [26] for tungsten to calibrate our model and then reproduce all the experimental results in
[26]. Also, phase transformations in a sample will be included, similar to how we did in [33] for

boron nitride where a lower pressure range was considered.
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