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Abstract In this paper, finite element simulations are conducted to investigate large 

elastoplastic deformations of rhenium under multi-megabar pressures in diamond anvil cells 

(DAC), with an emphasis on the effects of geometric and material properties. When a small flat 

cullet surface is used at the center of a diamond, the known experimental pressure distribution and 

double cupping phenomenon at a pressure of 300 GPa are reproduced. It is found that the material 

plastic flow initially from the center to the periphery changes to the partial flow to the center, and 

then changes to elastic deformation at the center under an increasing force. This is caused by 

double cupping of the diamond under extreme pressures. The paradoxical result that material flow 

to the sample center does not change the sign of the contact shear stress and pressure gradient is 

explained by finding that, due to deformation of the diamond, relative contact sliding between the 

diamond and sample does not change the sign or is absent. Under the same applied load, an 

increase in the cullet radius reduces pressure and increases thickness of the sample under the cullet, 

but does not affect them at the beveled surface until cupping appears. However, for the same 

maximum pressure, an increase in the cullet radius increases pressure everywhere (except for the 
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very center), total force, and bending of an anvil both at the center and periphery. An increase in 

the bevel angle increases pressure gradient and pressure at the center and cupping at the center, 

but reduces cupping at the periphery, at the same applied force. An increase in sample thickness 

reduces pressure gradient and pressure at the initial compression stages. This effect reduces and 

disappears at large compression. Small weaker sample within gasket slightly reduces pressure in 

a sample but does not affect gasket.   The obtained results help to understand the material 

mechanical response under extreme pressures and large elastoplastic deformations and are 

beneficial for the optimum design of DAC with the goal of reaching the high and record high 

pressure single or multiple times. 

Keywords: High pressure, Diamond anvil cells, Plasticity, Finite element method, Geometric 

properties, Yield strength  
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I． INTRODUCTION 

By compressing a sample between two diamond anvils in a diamond anvil cell (DAC), 

static megabar pressures are generated in experiments [1-5]. In order to find new physical 

phenomena and new materials, the pressure level need to be increased and meanwhile anvils 

should not break during single or multiple experimental runs. As an important example, we refer 

to the recent discussion in Science [6-8]: Metallic hydrogen was obtained in [6] under pressure of 

495 GPa. It was stated in the critical comment [7] that they had 96% failed diamonds while 

attempting to reach 350 GPa and criticized about, in particularly,  the method of estimation of 

pressure based on the applied force used in [6]. It was written in the response [8], achievable 

pressure strongly depends on the geometry of an anvil, thickness of a gasket, and the degree of 

cupping of the diamond (i.e., appearance of a cup-like concave shape of the contact diamond-

sample surface). Very detailed experimental study of the pressure distribution and deformation of 

an anvil and sample in the megabar pressure range was presented in [3] and [9].  

Numerical modeling of compression of a sample in DAC is related to significant theoretical 

and computational problems due to multiple physical, geometric, and contact nonlinearities. 

Geometric nonlinearity is related to large elastic and plastic deformations, material rotations, and 

displacements. Physical nonlinearities are caused by nonlinear elasticity rules, plasticity of a 

sample, and pressure-dependence of the yield strength. Contact nonlinearities are due to contact 

relative sliding with unknown sliding and cohesion zones, and the deformed surfaces.      

Finite element method (FEM) is widely used to study the stress-strain states of sample and 

anvils in DAC [10-17]. Moss et al. found by FEM that the increase in the yield strength of a gasket 

plays the key role in achieving extreme high pressure [10]. By using the “Supreme 63” tool metal 
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with the yield strength of 2.5 GPa as the gasket material they claimed to achieve the pressures of 

460 GPa experimentally. Moss and Goettel performed finite element analyses of beveled diamond 

anvils and discussed the design of a diamond anvil by changing culet geometries [11]. Merkel et 

al. [13] extended previous FEM calculations [10, 11] to simulate the experiment on compression 

of a rhenium sample up to 300 GPa [3], and to numerically study effects of geometric parameters 

of the sample and anvil system [15]. Coupled plastic flows and strain-induced phase transforms in 

the sample in DAC [18-20] and rotational DAC (RDAC) [21-23] were investigated, with 

assumptions of the sample with small elastic and transformational strains and the diamond anvils 

as rigid body.  

Previous models [10-13, 15] were not based on a fully large-strain framework and therefore 

are unable to reproduce some experimental phenomena (e.g., pressure distribution) under the 

extreme condition of several megabar pressures. In most of these works, equations were not given 

and results of simulations using some available FEM codes were presented. Recently, Feng et al. 

[14, 24] formulated a thermodynamically consistent system of equations considering large elastic 

and plastic deformation of a sample and large elastic deformation of the diamond anvil, and 

successfully reproduced with FEM the experimental pressure distribution [3] at a pressure up to 

300 GPa. They also revealed numerically a pressure self-focusing effect [16, 24], which allows 

one to achieve extremely large pressure gradient and consequently high pressure at the center of a 

sample. These studies were extended on a 3D problem on compression and torsion of a sample in 

RDAC under extreme pressures [16, 24].  

It is well known that the geometric and material properties are essential to determine the 

material responses under the extreme high pressure. The use of beveled diamond anvils in DAC is 

the key to generate static pressures above 1 Megabar [5, 25]. However, the choice of the bevel 
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angle experimentally is expensive because of fracture of one or both anvils [11]. That is the reason 

why the FEM simulations are important for optimization of the geometry. In addition, since the 

introduction of gasket into a DAC is a milestone in the history of DAC [25], the study of the system 

of gasket and sample under megabar pressures by using FEM is very important but was not done 

in previous work.  

In this paper, we study the effects of geometric and material properties in DAC, based on the 

advanced large deformation framework developed in [14, 24]. A total system of equation is 

presented in Section II. Stresses and plastic flow for the culler radius 5 mR = µ , bevel angle 

o8.5α =  and initial sample thickness 0 20 mh = µ were studied in Section III.B. In particular, 

experimental pressure distribution [3], double cupping [26], and cupping-related pressure drop [3, 

26] were reproduced numerically. Transition from plastic flow from the center, to partial flow to 

the center, and then to elastic deformation, all under increased loading, is reproduced. Deformation 

of the diamond anvil plays a crucial role in this phenomenon. It also explains why when velocity 

changes the sign friction stress and pressure gradient does not: because relative sliding velocity 

with respect to diamond is either zero or positive. Effect of the radius of the flat surface is studied 

in Section III.C. Results are quite different for the same applied load or the same maximum 

pressure.  Effect of the bevel angle is analyzed in Section III.D. Increase in the bevel angle 

increases the pressure gradient and pressure at the center and cupping at the center, but reduces 

cupping at the periphery. It is shown in Section III.E that the increase in sample thickness reduces 

the pressure gradient and pressure at the initial compression stage. This effect reduces and 

disappears at large compression. In Section III.F we demonstrate that in a small sample that has 

two time smaller yield strength at zero pressure than gasket, reduction in pressure is relatively 

small and change in pressure distribution in gasket is negligible. Section IV contains concluding 

remarks.    

 

Specifically, we study the effect of a cullet radius (the flat part at the center of sample and 

diamond contact surface), and reveal the material mechanical response with an increasing loading. 

By using the third-order elastic constants from [27], the cupping at the pressure of 300 GPa in 
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experiments [3] was not reproduced in our previous simulations [14]. Thus, we adjusted the third-

order elastic constants in [14] to reproduce cupping. We find here that this is caused by the absence 

of the flat part of the diamond in the previous simulations [14]. With the flat cullet, we reproduced 

both pressure distribution and cupping using the third-order elastic constants from [27]. Also, we 

obtained double cupping (i.e., concave parts at the center and periphery of an anvil), which was 

observed in recent experiments [26]. Second, the effects of the radius of the flat cullet, the bevel 

angle, and initial thickness of a sample is studied and discussed in detail. Third, the sample and 

gasket system is treated for the first time for extreme pressures to study the effects of sample 

strength. The obtained results help to understand the material mechanical responses under extreme 

conditions of high pressures and plastic deformations, and are beneficial for the optimum designs 

of a DAC system. 

  

II. PROBLEM FORMULATION 

II.A. Geometry and boundary conditions  

A schematic of a DAC is shown in the Fig. 1a, where a normal stress nσ  is applied on the 

diamond surface and a sample is compressed by two diamond anvils. We ignore the anisotropy of 

diamond anvil in the circumferential direction to use an axisymmetric formulation. Because of 

axisymmetric loads and geometry of DAC and the symmetry with respect to the horizontal plane 

IJ in Fig. 1c, we consider a quarter of DAC as shown in Fig. 1b. The major geometric parameters 

for an anvil and for contact surface between diamond and sample are given in Fig. 1b and 1c, 

respectively. The geometry of the preindented sample is shown in Fig. 1c along with the zoomed 

central part. A half of sample thickness at the r=0 in the initial undeformed configuration is 0 2h  

(line CI in Fig. 1c). The undeformed shape of contact surface is as follow: from point C at the r=0 



7 
 

to point R, there is a small flat region with the radius 0r ; from point R to point G, the contact 

surface is inclined with initial bevel angle α ; at the periphery line GE has a inclined angle 43.27o; 

the radial distance between CG is  150 mµ ; the radial distance IJ at the symmetry plane is 

772.5 mµ , which is long enough to exclude the boundary effect of the right end HJ; the thickness 

of the boundary HJ is 125 mµ . We will discuss the effects of geometric parameters by varying 0h ,  

0r , and α .  

The boundary conditions for a quarter of DAC in Fig. 2b are listed as follows: 

(1) The normal stress nσ  is applied at the top surface AB of the DAC (as also shown in Fig. 1a). 

(2) At the z axis (the symmetry axis 0r = ) (line AC for the anvil in Fig. 1b and line CI for the 

sample in Fig. 1c), shear stress rzτ  and the radial displacement  ru  are zero.  

(3) At the contact surface (CRGE shown in Fig. 1c), the Coulomb friction model is applied. When 

friction stress reaches cµσ , slipping is allowed ( cσ  is the normal contact stress at the contact 

surface between the diamond and the sample, and µ  is the Coulomb friction coefficient). 

Otherwise, the cohesion condition, i.e., continuity of displacements, is applied. 

(4) At the symmetry plane 0z =  (plane IJ in Fig. 1c), the radial shear stress 0rzτ = , and the axial 

displacement 0zu = .  

(5) Other surfaces not mentioned above are stress-free. 

 

         

(a)             (b)  
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(c) 

FIG. 1. Geometric parameters of diamond anvil cell and sample. (a) Diamond anvil cell scheme, 
(b) a quarter of the sample and anvil in the initial undeformed state and the geometry of 
anvil, and (c) the geometry of a sample and a zoomed-in center part of a sample, which is 
placed in the ellipse.  

II.B. A complete system of equations for large-strain elastoplasticity for a sample 

In this paper, the complete system of equations for both sample and diamond anvil are 

summarized from [14] and [16], and computational algorithms proposed in [14] are used for the 

current models. 

Contractions of the second-order tensors { }ij= AA  and { }ij= BB over one and two indices 

are designated as { }ij jk= A B⋅A B  and { }: ij ji= A BA B , respectively. The subscripts s and a 

designate symmetrization and anti-symmetrization, respectively, the subscripts e and p represent 

elastic and plastic deformation gradient or strain, the superscripts -1 and t means the inverse and 

transposition of a tensor, and I is the second-order unit tensor. 

Kinematics. The motion of material with large elastic and plastic deformations is described 

by a vector function ( )0 ,= tr r r , where r  and 0r  are the position vectors of material points in the 

actual configuration Ω  at time instant t  and in the reference configuration 0Ω  at the instant 0t , 

respectively. The deformation gradient  

( )
0

, ;∂
⋅ = ⋅ ⋅ ⋅ = ⋅ ⋅ = ⋅ ⋅ = = ⋅ ⋅

∂
T

e p e e p p e e p e e p p e e e e= =rF F F R U R U R U U V R U R I  V R U R
r

   (1) 

is decomposed into elastic eF  and plastic pF  contributions, where pF  is the deformation gradient 

obtained after a complete release of stresses in the local vicinity of each material point, pU  and 
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eU  are the symmetric plastic and elastic right stretch tensors, eR  and pR  are the proper 

orthogonal elastic and plastic rotation tensors, and eV  is the elastic left stretch tensor. 

Lagrangian and Eulerian elastic strain tensors are 

( )0.5= ⋅ −e e eE U U I ;       ( )0.5= ⋅ −e e eB V V I .                          (2) 

Decomposition of the velocity gradient 1= = +−⋅l F F W d  into antisymmetric spin tensor 

( )a
=W l  and symmetric deformation rate ( )s

=d l  are accepted. In combination with Eq. (1), we 

obtain the following decomposition of the deformation rate d  into elastic and plastic contributions: 

12 ( ) ; ( ) ; 2 ( )t
e e p p e es e e e p p s e e s

∇ ∇
−= − ⋅ + ⋅ ⋅ = ⋅ ⋅ ⋅ − ⋅ d B  d B V D V D R U U R B = B  W B ,       (3) 

where e
∇

B  is the Jaumann objective time derivative and pD  is the plastic deformation rate. 

Elasticity rule. The following isotropic nonlinear elastic rule will be used 

(2 ) ∂Ψ
= + ⋅

∂e
e

1
det

B I
F B

σ ,  (4) 

where detF is the determinant of the tensor F, σ  is Cauchy stress, and  the most popular elastic 

potential Ψ  for the extreme condition of high pressure is the third-order Murnaghan potential [28]:  

( ) 2 3
1 2 1 1 2 3

2 22 2
2 3

e
e

G l mI GI I mI I nIλ + + Ψ = − + − + 
 

B ,                            (5) 

where eλ , G , l , m , and n  are elastic material parameters and 1I , 2I , and 3I , are the first, second 

and third invariants of the strain tensor eB :    

11 22 33 22 33 23 11 33 13 22 11 12

2 2 2
1 2 3; ; .= + + = − + − + − =e e e e e e e e e e e e eI B B B I B B B B B B B B B I det B             (6) 

 

Plasticity. The pressure-dependent J2 flow theory is used with the yield surface 

    ( )3 / 2 : , 0= − =y p qϕ σs s ,           (7) 

where s is the deviatoric Cauchy stress, yσ  is the yield strength, which depends on the mean 

pressure p and accumulated plastic q defined as 

                                                                     
0.5

2 / 3 .p pq  = : 
 

 D D              (8) 
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The plastic flow rule is presented as 

p λ=
:

sD
s s

,                        (9) 

where ( )0λ λ >  is a scalar function determined from the consistency condition ϕ = 0 .  

The traditional equilibrium equations in the current configuration are used 

∇ ⋅ =σ 0 .                                                   (10) 

It was found in [29] for more than 60 materials belonging to different classes (e.g., metals, rocks, 

alloys, oxides, compacted powders), above some level of plastic strain and for a deformation path 

without sharp changes in directions (monotonous deformation), the initially-isotropic 

polycrystalline materials are deformed as a perfectly plastic and isotropic material with a strain 

history-independent limiting surface of the perfect plasticity. It excludes accumulated plastic strain 

q from the relationship for the yield strength in Eq. (7), ( ) ( ), =y yp q pσ σ . The linear dependence 

of yield strength on pressure p is accepted in this paper 

( ) 0= +y yp bpσ σ ,               (11)  

 where 0yσ  is the yield strength at the pressure p=0 and b is a parameter.  

Material parameters. Rhenium has been of particular interest because of its large bulk (K) and 

shear (G) moduli and high strength [4, 30] and it is widely used as the sample and gasket material 

in a DAC [1-4]. The following properties of rhenium are used in simulations: Elastic constants [4, 

14, 30] 200 GPa=G , 247 GPaeλ = , 291GPa= −l ,  662 GPa= −m and n=0, and plastic 

constants [4, 14] 0 8.00 GPayσ =  and 0.04b = . 

 

II.C. Nonlinear anisotropic elasticity for single-crystal diamond  

The traditional elasticity rule has the form 
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( )⋅ ⋅ ;

t detσ = F T E F F           ( ) ∂Ψ⋅ ⋅ ; = ∂
 

tdetT = σ F = F T E F T E          ,  (12) 

where T is the Kirchhoff stress, T  is the second Piola-Kirchhoff stress, and since there is no 

plastic deformation in a diamond, the subscript e is dropped. Under megabar pressures, it is 

necessary to consider at least the third-order potential Ψ  with the cubic symmetry: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2 2 2 2 3 3 3
11 1 2 3 12 1 2 1 3 2 3 44 4 5 6 111 1 2 3

2 2 2 2 2 2
112 1 2 3 2 1 3 3 1 2 123 1 2 3 144 1 4 2 5 3 6

2 2 2
166 2 3 4 1 3 5 1 2 6 456 4 5 6

0.5 0.5 / 6

0.5 0.5

0.5 ,

Ψ = + + + + + + + + + + +

 + + + + + + + + + + 
 + + + + + + + 

c c c c

c c c

c c

η η η η η η η η η η η η η η η

η η η η η η η η η η η η η η η η η η

η η η η η η η η η η η η

 (13) 

where 1 11= Eη , 2 22= Eη , 3 33= Eη , 4 232= Eη , 5 312= Eη , and 6 122= Eη .  

In this paper, the second-order elastic constants are [31]: 11 1050 GPa=c , 12 127 GPa=c , and 

44 550 GPa=c  and the third-order elastic constants are [27]: 111 7603GPa= −c , 112 1909GPa= −c , 

123 835GPa= −c , 166 3938GPa= −c , 144 1438GPa=c , and 456 2316GPa= −c . 

In simulations, the friction coefficient in the Coulomb friction rule is 0.1µ = . 

 

III. RESULTS AND DISCUSSION IN THE SAMPLE UNDER EXTREME 

PRESSURES 

III.A. Overview 

Our results [14] reproduced the pressure distribution in experiments [3] up to 300 GPa. The 

cupping was observed experimentally [3] under the pressure around 300 GPa but it does not appear 

in our simulations [14] when we used the third order elastic constants from [27]. The reason will 

be found out that a very short flat contact surface (the line CR in Fig. 1c) is used in experiments 

but it was ignored in the previous FEM simulations [14]. At the beginning of this section, we will 

use the flat part 0 5 mr = µ  and the beveled angle o8.5α = , which are taken from experiments [3]. 

The sample is assumed to be pre-indented into the initial thickness as 0 20 mh = µ at the center 
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(r=0), which is commonly used in experiments (see [1]). This set of geometric parameters 

( 0 5 mr = µ , o8.5α =  and 0 20 mh = µ ) are used for results in Figs. 2-4. To study the effects of the 

radius of the flat part 0r  in Figs. 5 and 6, we vary 0r  from 0 to 5 and 10 mµ , with the fixed 

o8.5α = , and 0 20 mh = µ . The effects of beveled angle in Fig. 7 is studied by comparing the 

results with o o7.5 and 9.5α =  for 0 10 mr = µ  and 0 20 mh = µ . Fig. 8 shows the effects of initial 

thickness of sample by comparing results for 0 20h =  and 40 mµ , with o8.5α =  and 0 0 mr = µ . 

The effect of the sample strength will be studied by comparing the results of 0 8.00 GPayσ =  and 

0 4.00 GPayσ = , with the same gasket properties and the geometrical parameters: 0 10 mh = µ  with 

o9.5α =  and 0 10 mr = µ . 

 

III.B. Stresses and plastic flow for 0 5 mr = µ , o8.5α =  and 0 20 mh = µ  

Fig. 2 plots the distributions of pressure and shear stress under an increasing applied stress nσ . 

Our simulation results in curve 4 coincide with experimental data in [3]. The major difference 

between the current and previous simulation results [15] is that the pressure gradient in this paper 

is much larger at the center of sample but smaller at the periphery than that in [15].   

Distribution of shear stresses (friction stress) fτ  in Fig. 2b coincides with the distribution of the 

pressure-dependent yield strength in shear ( )y pτ  for most of contact region with a low load (see 

curve 1 and 2). This means that plastic friction condition ( )f y pτ τ=  is fulfilled in this region. 

While it is not included explicitly in the contact sliding condition, it means that localized plastic 

flow in a thin contact layer occurs, which is equivalent to the contact sliding.  With an increase of 

compressive loads from curve 3 to curve 5, the shear stress decreases at the center of sample, and 



13 
 

there is an increasing region where the friction stress fτ  is smaller than ( )y pτ . This is caused by 

changing the direction of material flow as shown in Fig. 3.  

In [14], even without the flat part CR ( 0 0r = ), the pressure distribution was also consistent 

with experiments, but the cupping at the pressure around 300GPa was not reproduced. With a short 

flat part, case 5 in Fig. 3 clearly showed that the cupping appears at nσ =3.011 GPa, where the 

maximum pressure is 300 GPa at the center in Fig. 2a. Here we should mention that cupping can 

cause the sudden drop of pressure distribution at periphery as it is seen in curve 5 at 140 mr = µ . 

Similar pressure drop due to cupping can be found in this paper for all other cases with different 

geometric parameters. What is more important that similar cupping-related pressure drop was 

observed in experiments [26].  
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(a)                                                                        (b) 

Fig. 2. Distributions of pressure p (a) and friction stress fτ  (solid lines) and yield strength in shear

yτ  (doted lines) (b) at the contact surface of a sample for 0 5 mr = µ  under an increasing 

applied normal stress nσ : 1.68 GPa (1), 1.96 GPa (2), 2.24 GPa (3), 2.575 GPa (4), and 

3.011 GPa (5). In (a) doted curves 1-5 are the current simulation results, two green dashed 
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curves are the simulations results from Ref. 9, and the solid black curve is the experimental 

results in Ref. 3. 

 

Important information can be learned from Figs. 3 and 4, which present the velocity along 

the radial direction rv  and the rate of accumulated plastic strain q . Since for the current rate-

independent plasticity and static problem formulation time is not parameter, the magnitudes of q  

and rv  can be made arbitrary by changing the rate of loading. This does not change stress and 

strain distribution at each load, independent how fast it is achieved. Results in Figs. 3 and 4 are 

presented for constant 40.7 10 GPa / snσ −= × . Consequently, only relative values in distributions 

of q  and rv  for any state (or load nσ ) are important. It is found from Fig. 3 that initially at 

1.68 GPanσ = the whole sample flows “fast” from the center to the periphery. With an increase in 

applied force nσ , starting from the center of sample, the radial velocity rv  changes the direction 

and materials “slowly” moves from the periphery to the center. For 3.011 GPanσ = , material 

motion towards the center is observed in the major region of a sample. 

It looks very counterintuitive that material velocity changes sign within a sample but 

contact shear stresses in Fig. 2b do not. The negative velocity rv  and its gradient along the 

thickness direction are very small (by one order of magnitude) in comparison with material flows 

from the center to the periphery at the external part of a sample. Since plastic flow is 

incompressible, deformation in this region is either elastic or with small plastic strains. This is in 

agreement with small values of q in this region (Fig. 4). The key point is that due to deformation 

of diamond, relative sliding velocity at the contact surface is either zero or positive, that is why 

contact shear stress does not change sign. 
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Fig. 3. Distribution of radial velocity rv  in the sample ( )0 160 mr≤ ≤ µ  with 0 5 m= µr  under an 

increasing applied normal stress nσ . The normal stress nσ  is 1.68 GPa (1), 1.96 GPa (2), 

2.24 GPa (3), 2.575 GPa (4), and 3.011 GPa (5).  

 

Fig. 4 shows the distribution of the rate of accumulated plastic strain q . Initially at nσ  =1.68 GPa, 

the entire region is under plastic straining. The accumulated plastic strain rate shows the shear 

band near the contact surface, where shear stresses reached the yield strength in shear. Excluding 

this region, q is not very heterogeneous along the radius. This is because the radial velocity 

increases with r but the sample thickness increases as well. As the applied stress nσ  increases from 

1.96 GPa to 2.24 GPa, in the region with negative velocity rv  in Fig. 3 q is nonzero but quite small. 

With the further increase of applied stresses, the rate of accumulated plastic strain significantly 

reduces and the location with the maximum accumulated plastic rate moves towards the periphery. 

At nσ =2.575 GPa, q  becomes zero at the center of a sample, demonstrating unusual transition 

from plastic to the elastic state under increased load. The region without plastic deformation grows 

and q decreases in the rest of the sample as the nσ  increases. One of the reason for this is that the 
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bending of anvil slows down thickness reduction rate. As a result, the pressure and pressure 

gradient cannot continuously increase when cupping becomes significant (see also experiment in 

Ref. 3), which can be explained by a simplified equilibrium equation (see, e.g. [16, 29, 32]) 

2 fdp
dr h

τ
= − .                                          (14) 

Indeed, the thickness h  cannot further be reduced after some critical value. 

  

Fig. 4. Distributions of the rate of accumulated plastic strain q  in the sample ( )0 160 mr≤ ≤ µ  

with 0 5 mr = µ  under an increasing applied normal stress nσ . The normal stress nσ  is 1.68 

GPa (1), 1.96 GPa (2), 2.24 GPa (3), 2.575 GPa (4), and 3.011 GPa (5). In the magenta 

region plastic strain rate is exactly zero. 

 

 

III.C. Effect of the radius of the flat cullet 

Fig. 5 plots the distributions of pressure and the z coordinate of the contact surface for radii of the 

flat cullet 0r  that varies from 0 to 5 to 10 mµ , when the maximum pressure reaches 293 GPa. A 
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shorter flat part CR means the a longer inclined part RG in Fig. 1c, since the radial distance CG is 

fixed at 150 mµ . At a given applied stress nσ  but with different 0r , the shorter the cullet radius 

0r  is, the faster the plastic flow along the radial direction and the thickness reduction are because 

the inclined diamond surface with positive slope instead of the flat cullet favors the material flows 

to the periphery. The faster thickness reduction causing a larger pressure and pressure gradient at 

the center due to simplified equilibrium condition (14). It indicates that for the same maximum 

pressure at the center, the applied normal stress nσ  is an increasing function of the radius of the 

flat part 0r  (Fig. 5). Fig. 5b plots the z coordinate of the contact surface (equal to half a thickness 

of sample / 2h ) for 0r  = 0, 5 and 10 mµ . The smaller 0r  and consequently nσ  leads to a faster 

thickness reduction at the center, but smaller deformation of an anvil both at the center and at 

periphery. Cupping near the sample center appears for any initially flat surface; it increases with 

increasing 0r . At the periphery, the cupping does not appear with 0r =0; it just appears for 0r =5, 

and becomes very obvious for 10 mµ . Similar to Fig. 2a the cupping causes the pressure drop at 

the periphery for 0r =10 mµ in Fig. 5a, like in experiment [26]. Thus, for the same maximum 

pressure, an increase in the cullet radius essentially increases pressure everywhere except for the 

center, total force, bending of an anvil both at the center and periphery.  
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Fig. 5. Distributions of the pressure p at the sample contact surface (a) and the z coordinate of 

diamond/sample contact surface (b) when the maximum pressure is p= 293 GPa at r=0 at 

the contact surface. The applied stress nσ  is 2.652 GPa (1), 2.849 GPa (2), 3.061 GPa (3). 

PLEASE CHANGE IN FIG d TO R 

  

Very different conclusions can be made if one compares the effect of the cullet radius  0r  at 0 and 

10 mµ on the distribution of pressure and the profile of contact surface at the same applied load 

(Fig. 6). Under the same applied load, the pressure distribution and thickness of the sample are 

the same everywhere except for the center of the sample. For 0r =0, material flows much faster at 

the center than for 0r =10 mµ in Fig. 6b, which causes a larger pressure gradient and pressure at 

the center of sample. With the increasing applied load nσ , the difference on pressure at the center 

for both cases becomes more obvious. At nσ =1.681 GPa, the difference in pressure is only 6 GPa; 

at nσ =3.061 GPa, the difference in pressure becomes 21 GPa. This is because as the thickness 

reduces, the difference in 1/h increases and pressure gradient linearly depends on 1/h. For example, 
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the ratios of 1/h at r=0 between 0r =0 and 10 mµ  is 1.8 with nσ =1.681 GPa and 2.03 with nσ

=3.013 GPa. 
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(a)                                                                        (b)                                      

Fig. 6. Distributions of the pressure p at the contact surface of a sample and z coordinate of the 

diamond/sample contact surface for 0 0 and10 m= µr  under the  applied stress nσ  is 1.681 

GPa (1), 2.241 GPa (2) and 3.013 GPa (3). 

Comparing curves 2 and 3 in Fig. 6b, one concludes that for maximum pressure above 250 

GPa, increase in force does not reduce thickness of a sample for the beveled surface for both 

0 0 and10 mr = µ and results in a bending at the periphery of a sample. Cupping at the center does 

not occur for 0 0r = and occurs at any force under study for 0 10 mr = µ . 

 
III.D. Effect of the bevel angle 
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Fig. 7. Distributions of the pressure p at the contact surface of sample (a) and  z coordinate of 

diamond/sample contact surface (b) for 0 10 mr = µ  and two bevel angles, o o7.5 or 9.5α = , 

under three  applied normal stress nσ : 1.868 GPa (1), 2.365 GPa (2), 3.045 GPa (3). 

 

The effect of the bevel angle α  is shown in Fig. 7. With a larger beveled angle o9.5α = , the 

material flow from the center to the periphery is more intense, which causes much faster thickness 

reduction at the center than for o7.5α = . Smaller thickness of a sample at the center for o9.5α =  

causes a larger pressure gradient and pressure at the center than for o7.5α = . In addition, for an 

larger bevel angle, the cupping at the periphery is postponed: at nσ =3.045 GPa, the cupping is 

obvious for o7.5α =  and does not exist for o9.5α = . In addition, cupping at the center is slightly 

larger for o9.5α = . We note that at the periphery the thickness is smaller for o7.5α = than for 

o9.5α = , due to smaller initial thickness and larger diamond bending and cupping. At the 

periphery, the thickness reduction rate is also faster with a larger bevel angle. For example, the 

difference of the z coordinate at 120 mr = µ between cases with o9.5α =  and o7.5  is 1.3 mµ , 1.0 

mµ  and 0.5 mµ , for the applied load nσ  of 1.4 GPa, 1.75 GPa and 2.652 GPa, respectively. 

 

III.E. Effect of initial sample thickness 
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Fig. 8. Distributions of the pressure p at the contact surface of a sample (a) and z coordinate of the 

diamond/sample contact surface (b) for 0 0 m= µr  and initial thicknesses of 

0 20 m or 40 mh = µ µ  at the center of sample under the  applied normal stress nσ : 1.4 GPa 

(1), 1.75 GPa (2), 2.652 GPa (3). 

 

In Figs. 2-7 the sample is pre-indented to the initial thickness of 20 mµ at the center. In Fig. 8 we 

compare results for 0 20 mh = µ with those for 0 40 mh = µ . Under a small applied normal stress nσ

=1.4 GPa, Fig. 8b shows material flows to the periphery much faster with a larger initial thickness 

0 40 mh = µ , because initially the difference of z coordinate at the center is 10 mµ  and it is just 1.2 

mµ under nσ =1.4 GPa. Due to a smaller thickness in the deformed configuration, the pressure at 

the center with the initial thickness with 0 20 mh = µ  is 17 GPa larger than the pressure with 

0 40 mh = µ . With the increase of r coordinate, the difference in pressure distribution decreases 

while difference in h practically does not change. It is noted that the differences causing by initial 

thickness significantly reduces with increase of applied normal stress. At nσ =2.652 GPa, the 

distributions of both pressure and the thickness of the sample are almost the same for 

0 20 m and 40 mh = µ µ . 

 

III.F. Sample-gasket system: effect of the sample strength 
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Fig. 9. Distributions of the pressure p at the contact surface of a sample (a) and z coordinate of the 

diamond/sample contact surface (b) for o9.5α = , 0 10 mr = µ , and the initial sample 

thickness 0 10 mh = µ  under the applied normal stress nσ : 1.05 GPa (1), 1.4 GPa (2), 1.75 

GPa (3). For the green solid line: cylindrical sample of the radius 10 mµ has the same  

material properties as rhenium gasket (for 10 mr > µ ) except for 0 4.0 GPayσ = keeping 

0 8.0 GPayσ =  for the gasket; for the blue symbol line, the entire region (gasket and sample) 

is rhenium. Coulomb friction is used for all contact surfaces. 

 

Let us consider a sample material in the cylinder of the radius 10 mµ (the same as radius of the flat 

part, see the blue part of the zoomed area in Fig. 1c). It has the same properties as the rhenium 

gasket but two times smaller 0 4.0 GPayσ = instead of 0 8.0 GPayσ =  for the gasket. Results are 

shown in Fig. 9.  With a softer sample, the pressure gradient and consequently pressure are 

expected to be smaller at the center of a sample, since friction stress ≤f yτ τ  is smaller in the 

equilibrium equation (14). The thickness of a softer sample is slightly smaller in Fig. 9b, which 

slightly increases the pressure gradient. However, the effect of a weaker friction stress dominates, 

which causes a lower pressure gradient and pressure in a weaker sample (Fig. 9a). However, 
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reduction is relatively small for such a small sample, because close to the center for any 0yσ  

friction stress reduces down to zero at the symmetry axis. Change in pressure distribution in gasket 

is negligible, because small changes in stresses over small sample area at fixed total force makes 

negligible effect on the force over the large gasket area.   

Note that in experiments micro-semi balls made of nanodiamond have been placed at the 

center, which allowed to reach extreme pressures of 600 GPa [1] and 750 GPa [2]. This pressure 

increase is easily rationalized by an decrease in the sample thickness in the simplified equilibrium 

equation.   

 

IV. CONCLUDING REMARKS 

In this paper, FEM simulations are conducted to investigate large elastoplastic deformations of 

rhenium and elastic deformation of diamond under pressures up to 300 GPa in DAC, with an 

emphasis on the effects of geometric and material properties.  Thermodynamically consistent 

isotropic model for large elastic and plastic deformations of a compressed material with pressure-

dependent yield strength and nonlinear anisotropic model for diamond developed in [14, 24] were 

used.    

In [14], a flat cullet was not included assuming that it should not affect results essentially. 

While experimental pressure distribution from [3] was reproduced without problem, the third-

order elastic constants from literature [31] were modified by 20% to obtain experimentally 

observed cupping at the pressure of 300 GPa. Here, we found that the problem is the absence of 

flat cullet in simulation. With the flat cullet, we reproduced both pressure distribution and cupping 

in [3] using the third-order elastic constants from [27]. Also, we obtained the double cupping, both 

at the center and periphery, which was found in experiments [26]. In addition, significant pressure 
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drop in the region of cup at the periphery observed in experiments [3, 26] was reproduced as well. 

Thus, our model is well verified up to 300 GPa.   

Transition from the material plastic flow from the center to the periphery to partial flow to the 

center followed by elastic deformation without or with small plasticity, all under an increasing 

force, is reproduced and studied. It is caused by double cupping of the diamond under extreme 

pressures. Paradoxical result is found that material flow to the sample center does not change the 

sign of the contact shear stress and pressure gradient. It is explained by finding that, due to 

deformation of the diamond, relative contact sliding does not change sing or is absent. Distribution 

of the contact shear stresses coincides with the distribution of the pressure-dependent yield strength 

in shear, excluding regions near the center of a sample and (for the lowest load) at the periphery. 

This means that plastic friction is realized by localized plastic flow below the contact surface.  

We would like to stress that comparison of the effect of different parameters on the DAC 

mechanical behavior may strongly depend whether it is performed under the same applied load or 

maximum pressure at the center. For example, under the same applied load, an increase in the 

cullet radius reduces pressure and increases the sample thickness under the cullet, but does not 

affect them at the beveled surface until cupping appears. However, at the same maximum pressure 

at the center, the increase in the cullet radius increases pressure everywhere (except for the very 

center), the total force, and bending of an anvil both at the center and periphery. As mentioned, 

introducing cullet allows us to reproduce cupping at the periphery, which is absent at the same 

maximum pressure without cullet.  

At the same applied force, a small increase in the bevel angle increases the pressure 

gradient and pressure at the center and cupping at the center, but reduces cupping at the periphery. 

Increase in sample thickness reduces pressure gradient and pressure at the initial compression 
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stages. This effect reduces with increasing compression and disappears at large compression. Small 

weaker sample within gasket slightly reduces pressure in a sample and does not affect gasket.    

The obtained results help to understand strongly nonlinear mechanical responses of the DAC under 

extreme pressures and large elastoplastic deformations. In future, they may be utilized as a tool for 

computational optimum design of DAC. There are two main goals: (a) reach record high pressure 

once or multiple times and (b) reach the required high pressure in a largest possible sample once 

or multiple times. As the next step, we will use some of the recent experimental results up to 400 

GPa in [26] for tungsten to calibrate our model and then reproduce all the experimental results in 

[26]. Also, phase transformations in a sample will be included, similar to how we did in [33] for 

boron nitride where a lower pressure range was considered.  
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