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Machine Learning in Seismology —Turning Data into Insights

Qingkai Kong, Daniel T. Trugman, Zachary E. Ross, Michael J. Bianco, Brendan

Meade, Peter Gerstoft

Abstract:



This paper provides an overview of current applications of machine learning (ML) in
seismology. ML techniques are becoming increasingly widespread in seismology, with
applications ranging from identifying unseen signals and patterns to extracting features
that might improve our physical understanding. The survey of the applications in
seismology presented here serves as a catalyst for further use of ML. Five research
areas in seismology are surveyed where ML classification, regression, clustering
algorithms show promise: earthquake detection and phase picking, earthquake early
warning, ground motion prediction, seismic tomography, and earthquake geodesy. We
conclude by discussing the need for a hybrid approach combining data-driven ML with

traditional physical modeling.

Introduction

In a broad sense, machine learning (ML) is a set of related techniques that extract
information directly from data using well-defined optimization rules. ML has recently
drawn attention due to its wide-ranging success in various fields (Murphy 2012; Jordan
and Mitchell, 2015; Witten et al., 2016). Seismology has been a data-intensive field
since its very origin. As the years have progressed and the field has expanded,
numerous methods and tools have been developed to detect and characterize
earthquakes and to study earth structure. We as a community have already developed
a rich set of techniques, but ML can bring a different and complementary set of useful

tools.



In seismology, we are currently undergoing rapid changes in the “3 V's” often discussed
by the big data community (Sagiroglu and Sinanc, 2013): volume, variety, and velocity.
For example, the archive of seismic waveform publicly available from Incorporated
Research Institutions for Seismology (IRIS) is increasing in size exponentially (Figure
1). This dramatically increased volume of data (and the secondary products derived
from the raw data) makes manual processing difficult. Many ML algorithms are
designed with large datasets in mind: typically, more data gives better results. Dataset
variety has increased too. Besides seismic data, other types of relevant geophysical
datasets (e.g., GPS time series and INnSAR images) are readily available from UNAVCO
and other resource centers. The use of joint geophysical datasets might provide better
resolution in certain problems, and carefully designed ML techniques can help analyze
these datasets without introducing unnecessary complexity (Khaleghi et al., 2013).
Finally, velocity refers to the speed of data processing and distribution. This is important
for real-time earthquake detection and earthquake early warning, which rely on rapid

analyses of high-velocity data streams.

An exciting aspect of applying ML to seismology is the potential to find unseen patterns
or new and significant features in our datasets. A recent example is using ML to predict
the timing of the next slip event in laboratory slip experiments with features extracted
from low-amplitude acoustic emissions that were previously considered to be noise
(Rouet-Leduc et al., 2017). As seismologists, we have the intuition and logic to analyze
data, but ML could work beyond human intuition to facilitate the discovery of

unconsidered patterns.



In essence, all ML algorithms learn from data using probability theory, which has been
the mainstay of statistical methods for centuries. Most ML algorithms can be grouped
into two main categories: supervised learning and unsupervised learning. Depending on
whether the data has target labels or not (Figure 2), one category may be preferable.
Supervised learning, which comprises predictive modeling and operates on labeled
datasets, can be further subdivided into classification and regression algorithms based
on whether the target outputs are categorical (classification) or quantitative (regression).
Unsupervised learning is subdivided into clustering and dimensionality reduction,
depending on whether we are interested in grouping data into categories based on
similarity, or simply reducing the input data dimensions. There are other more exotic
types of ML algorithms such as semi-supervised learning and reinforcement learning,
for which we refer readers to more advanced texts (e.g., Murphy, 2012; Goodfellow et

al., 2016).

ML algorithms, while diverse in their implementation, tend to follow a basic workflow that
includes the following steps (Figure 3). In Step 1: Data Collection, data is collected and
partitioning into training and testing sets. A key aspect of ML is training the model on a
random subset of the dataset, and then verifying the model on independent testing data.
In Step 2: Preprocessing, data is cleaned and formatted, and missing data are removed
or repaired. Feature extraction, which increases the performance of many ML
algorithms by transforming the raw data into a more useful state for a given task, may

also be performed. In Step 3: Model Training, numerical optimization algorithms are



used to iteratively tune the model parameters based on a cost function specific to the
learning task of the problem. In Step 4: Model Evaluation, model performance is
evaluated on test data. Finally, in Step 5: Production, the finished ML model is applied

in production mode to new data.

ML has received enormous recent interest across a wide range of disciplines (Jordan
and Mitchell 2015; LeCun et al., 2015). We hope that this paper will inspire both
seismologists to further explore ML theory and techniques and data scientists to apply
their latest ML algorithms in seismological fields. While this manuscript provides a high-
level overview of potential ML applications to seismology, there are many wonderful
textbooks and online courses that provide greater details about individual ML algorithms
and their implementations (See Data and Resources). We next discuss recent
applications of ML in seismology and their potential for obtaining new geophysical

insights.

Applications of ML in Seismology

In the following, we present a detailed survey of five specific applications of ML to
earthquake seismology, while acknowledging that there are many other worthy

applications that merit discussion.

Earthquake Detection and Phase Picking

Automated detection and picking of earthquakes are long-standing problems in

seismology, with the first algorithms developed in the late 1970’s (e.g., Allen, 1978).



Today, these subjects are still active research areas, and incorporate technology from
computer science, electrical engineering, statistics, and many other fields to extract as
much information from the data as possible. Some of the earliest applications of ML
learning to seismology were to the problem of discrimination and classification of
seismic events (e.g., Dysart et al., 1990; Fedorenko et al., 1999; Musil and Plesinger,
1996, Ursino et al., 2001), and in recent years this research has expanded to include
utilizing ML to improve earthquake detection and phase picking capabilities (e.g., Dai &
MacBeth 1995; Tiira 1999; Wiszniowski et al.,, 2014; Zhao & Takano 1999). These
efforts have shown considerable promise to date, most notably in the area of deep
learning, and suggest that many exciting new developments are coming in the near
future. In particular, there is a distinct possibility that these algorithms will surpass the
capabilities of human experts for the first time. Here we outline some of the most

promising examples of ML applied to the earthquake detection problem.

Over the last decade, there has been an explosion of interest in using the similarity of
waveforms between nearby sources to detect previously unidentified earthquakes. This
originally began with matched filtering (template matching), which uses waveforms of
known events as templates to scan through continuous waveforms for new event
detection (Gibbons and Ringdal 2006; Shelly et al. 2007; Peng and Zhao 2009; Kato et
al. 2012; Ross et al. 2017, Chamberlain et al. 2018; Beauce et al. 2018). Recently,
there has been an interest in applying ML and data mining algorithms for similarity-
based event detection. In Perol et al. (2018), a convolutional neural network (CNN) was

trained to simultaneously detect and locate earthquakes based on single station



waveform classification. For a given window of data, the goal is to predict which of
several spatial regions the event occurred in, with the option for rejecting all of them.
Alternatively, the Fingerprinting and Similarity Thresholding (FAST) algorithm (Bergen
and Beroza, 2018; Yoon et al., 2015) is a data mining approach that converts an entire
continuous waveform dataset into a database of binary fingerprints. These fingerprints
are compact representations of short segments of continuous waveform data, and are
organized in a special dictionary structure for efficient lookup. A key feature of FAST is
that it is essentially unsupervised: earthquakes can be identified without prior
knowledge of seismicity because, for highly-similar waveforms, fingerprints are more
similar to each other than those of random noise sources. In addition, FAST is
computationally more efficient than template matching, which will help to facilitate

automated processing of large waveform datasets.

A new category of earthquake detection algorithms that has recently emerged is
generalized phase detection (GPD; Ross et al., 2018a). Rather than search for near-
identical waveforms, GPD instead trains convolutional networks to learn generalized
representations of seismic waves from millions of example seismograms. This
knowledge is then used to classify windows of data as P, S, or noise (Figure 4). It has
been shown to reliably identify P- and S-waves with excellent temporal sensitivity and
performance in low SNR conditions, resulting in typically 5-10 times as many events
detected as conventional methods. GPD can simultaneously be used to pick arrival
times with high precision. A key advantage of the method is that once trained, the model

can be applied to datasets other than just those encompassed by the training set, such



as data recorded in different tectonic regimes, large magnitude earthquakes, and active
source explosions. This is advantageous in situations where a seismicity catalog is

unavailable to use for template matching, or in seismic monitoring.

In addition to detecting earthquakes, there have been a number of noteworthy
developments in algorithms for phase picking with ML. Chen (2018) developed an
approach to pick seismic wave arrival times using fuzzy clustering, which is based on
the idea that the amplitudes of the seismic data before and after the arrival can be
treated as separate, but possibly overlapping, clusters. This enables a decision
boundary to be drawn that is taken as the arrival pick. Zhu and Beroza (2018) have
found great success in applying fully-convolutional networks to pick P- and S-wave
arrival times by training on millions of seismograms picked manually in Northern
California. Their method takes complete 3-component seismograms as inputs, and
outputs probability time series corresponding to the likelihood of P- and S-wave onsets.
They demonstrate state-of-the-art picking performance for both phase types, and their
method further provides an important empirical mechanism for estimating the quality of
the picks. This includes difficult cases such as clipped seismograms, where even
human analysts would have a difficult time. Ross et al. (2018b) trained a CNN to pick P-
wave onset times, but instead used the network as a regressor to predict the time index
of the phase onset. They also trained a separate convolutional network to pick first-
motion polarities of P-waves, which are essential ingredients in calculating focal

mechanisms. They demonstrated that the networks can often pick polarities more



accurately than professional seismic analysts, as well as more frequently. This will lead

to more detailed and expanded focal mechanism catalogs.

There have been several other exciting recent applications of ML to earthquake
detection problems. Beyreuther et al. (2012) developed a hidden Markov model (HMM)
to classify and detect events for volcanic and geothermal areas. Treating event
detections as an object detection problem, Wu et al. (2018) cascaded region-based
CNN to capture laboratory slip events of different durations. Finally, Aguiar and Beroza
(2014) and Zhang et al. (2014) combined insights from Google’'s Pagerank and other
image-based search engine methods to obtain waveform templates for low frequency

earthquakes.

Earthquake Early Warning and Real-time Machine Learning

Earthquake Early Warning (EEW) systems provide seconds to minutes of warning
before the strongest shaking by taking advantage of the fact that electronic signals
travel much faster than seismic waves, and that the S-wave and surface wave phases
that produce the strongest shaking travel slower than the first P-wave arrivals (Allen et
al.,, 2009). There have been several recent efforts in EEW using ML algorithms, either
based on hand-selected physical features extracted from seconds of waveforms (Kong
et al., 2016a), or using deep learning algorithms to automatically extract features to
identify the onset of the earthquakes at a single station (see more examples in the
preceding subsection). Li et al. (2018b) trained a Generative Adversarial Network to
learn the characteristics of both earthquake P-wave arrivals and background noise,

resulting in a discriminator that mitigates false triggering. ML techniques such as



Support Vector Machine regression and neural networks (NN) have also been used to
estimate the magnitude, epicentral distance, and other relevant parameters using input
features derived from a short time window of waveform data following the P-wave arrival
(Bose et al., 2008; Cuéllar et al., 2018; Ochoa et al., 2018). Meier et al. (2015) proposed
a method to estimate the magnitude and station-source distance by estimating the
posterior probabilities from the observed frequency content to reduce the uncertainties.
Bose et al. (2012) developed an image recognition based algorithm to classify the
observed ground motion amplitudes into near-source/far-source regions and map a
finite fault rupture estimate automatically. Lastly, Cua and Heaton (2007) proposed a
unified framework for different components of the EEW, including real-time earthquake
source estimation and alert decision-making using a Bayesian approach. Using station
locations, previously observed seismicity, and known fault traces as prior information
could improve the system performance, especially at regions with low station density

(Yin et al., 2018).

Myshake, a recent effort using smartphones to detect nearby earthquakes and provide
EEW to the public, has many ML aspects and demonstrates promising results (Kong et
al., 2016b). Myshake has two levels of detections: a single-phone supervised approach
and a NN-based unsupervised approach. For individual phones, a trained NN is
implemented on each phone to distinguish the earthquake signals from everyday
human activities. Using a two-second sliding window on a filtered three-component
waveform, Myshake extracts three important features from the phone that represent the

amplitude and frequency content of the movement. These features are then fed into a

10



NN algorithm to classify whether the waveform is from an earthquake or from human-
activities (Figure 5). When a phone detects an earthquake-like waveform, it sends a
trigger message to the cloud server with a timestamp, location, and amplitude to make
further confirmation of the earthquake by considering groups of phones within a region
at a network level. The triggers from the phones are aggregated to a proper resolution
grid to reduce the real-time computation burden, and the DBSCAN (Density-based
spatial clustering of applications with noise, Ester et al., 1996) algorithm finds potential
clusters of phones that have likely been triggered by an earthquake. Trigger messages
in the clusters identified by DBSCAN are used to estimate the earthquake location and

magnitude.

Ground Motion Prediction Using Supervised Leaming

Ground motion prediction is a crucial aspect of earthquake hazard assessment, and
while simple in concept it is challenging to perform in practice. At its core, ground
motion prediction answers the question: given a hypothetical earthquake source, how
strong is the shaking likely to be? The basic physical factors controlling ground motion
are well-established: one can think of the ground motion observed at the surface as a
convolution of source, path, and site effects (Boore, 1983). The classical approach to
ground motion prediction uses linear regression to model the first-order aspects of these
effects (Campbell and Bozorgnia, 2008). In a linear ground motion prediction equation
(GMPE), the predicted ground motion Y (in logarithmic units) is a normal-distributed
random variable that is a linear function of the input variables, which include the

earthquake magnitude M and source-site distance R:
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logY =c,+c,M+c,logR +¢; €~ (0, 0. (1)

Here c,, ¢, and c, are empirical coefficients. The misfit term € includes both epistemic
uncertainty that can be reduced through better observational constraints and more
sophisticated modeling approaches, as well as random variability that cannot be
reduced (Douglas and Edwards, 2016). Probabilistic seismic hazard assessments are
particularly sensitive to epistemic uncertainty in GMPEs (Anderson and Brune, 1999),
and its reduction has been a primary focus in developing new GMPEs. For example,
several of the most recent linear regression models developed for the Next Generation
Attenuation Relationships project (Bozorgnia et al., 2014) include dozens of regression
coefficients, which reduces data misfit but at the cost of increased model complexity.
There has also been a significant recent effort to develop generic linear GMPEs that are
regionally-adjustable and hence exportable to different regions (Yenier and Atkinson,

2015).

Despite these advances, it is challenging to incorporate more complex source, site and
path effects within a linear GMPE. A viable alternative is to treat ground motion
prediction as a supervised learning problem, with well-defined input and target variables
but considerably more flexibility on the model design. Moreover, the central focus on
model validation inherent to the ML paradigm, including carefully partitioning of training
and testing datasets, would help alleviate the traditional quixotic focus in GMPE model
development on reducing the data misfit (Bindi, 2017), and instead allows us shift our

attention to improvements in predictive validity.

12



Some of the earliest ML GMPEs (Alavi and Gandomi, 2011) employed shallow NNs,
and this approach is still the most commonly used. Derras et al., (2012) analyzed KiK-
net records collected in Japan using a NN with a single hidden layer to predict peak
ground acceleration (PGA) as a target variable using five input features: magnitude,
epicentral distance, source depth, near-surface shear wave speed, and site resonance
frequency. Derras et al. (2014, 2016) generalized this approach to multiple target
variables, including PGA but also peak ground velocity and pseudo-spectral
accelerations at periods of interest for structural design. NNs are only one of many
viable applications of supervised learning techniques to ground motion prediction.
Alimoradi and Beck (2015) developed a technique to synthesize realistic strong-motion
records by applying Gaussian process regression to a sparse, orthonormal set of basis
vectors called eigenquakes, which represent characteristic earthquake records. Thomas
et al. (2016) developed a randomized adaptive neuro-fuzzy inference system to analyze
records from the Pacific Earthquake Engineering Research database. While these
studies differ in technical details, viewed holistically they demonstrate the potential for
improved predictive performance over linear GMPEs using similar input and target

variables.

The modeling flexibility inherent to supervised learning also allows for the examination
of input features that are not traditionally incorporated in linear GMPEs. To this end,
Trugman and Shearer (2018) used a generalization of the Random Forest supervised

learning algorithm (Breiman, 2001) to quantify the relation between earthquake stress

13



drop and PGA for earthquakes in the San Francisco Bay Area. While the basic
correlation is intuitive - higher stress drop events are enriched in high frequencies and
should have systematically larger ground motion amplitudes (Baltay and Hanks, 2014) -
there exist few quantitative estimates for the importance of this effect and how it varies
with magnitude and source-site distance. Trugman and Shearer (2018) demonstrate
that the event residual terms learned by the Random Forest GMPE have a physical
basis in the variability in earthquake stress drop (Figure 6), thus highlighting the utility of

ML techniques in ground motion modeling.

ML tends to work best in scenarios where high-quality data is plentiful and easily
available. This presents a significant challenge in ground motion prediction, where near-
source records of large magnitude earthquakes -- which pose the greatest hazard -- are
sparse. Future studies may focus on the best ways of integrating limited observational
data in this regime with synthetic data from broadband rupture simulations, which will
become increasingly prevalent in the coming years (Khoshnevis and Taborda, 2018).
Likewise, ML approaches to nonergodic GMPEs, where the predicted ground motions
vary spatially (Anderson and Brune, 1999), have yet to be fully explored. While ML itself
is not a panacea for the outstanding questions in earthquake hazard analysis, a ML
approach to ground motion prediction may prove to be a powerful new tool in the next

generation of seismic hazard assessments.

Tomography and Illluminating Geophysical Structure with Machine Leaming

ML in seismic tomography has shown great promise for improving our understanding of

subsurface geophysical structure. Seismic tomography methods obtain subsurface
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models or ‘images’ from sensor array observations of seismic waves, which are
generated by anthropogenic sources, earthquakes, or ambient noise processing.
Seismic tomography is critical for deducing geophysical structure and characterizing
seismic hazard (Rawlinson et al., 2010). However, the demands placed on these
methods are great, as tomography models are often estimated from limited and noise-
corrupted observations with non-linear forward models. Such ill-posed inverse problems
require regularization or assimilation of hypothesized geophysical structure to obtain
physically plausible solutions. ML represents a modern paradigm for signal processing,
with more sophisticated model priors and latent representations (Murphy, 2012) than
classic inverse methods like Tikhonov or total variation regularization (Aster et al.,
2011). ML priors include sparsity constraints and latent dictionaries. The non-linear
‘general function approximation’ capability of NNs (Bishop, 2006) permits replacement
of seismic data simulation and inversion procedures with NNs. In the following, we
introduce seismic tomography and show how it has benefitted from ML theory, including

unsupervised and deep learning.

Seismic tomography can be categorized as either travel time tomography or full
waveform inversion (FWI; Virieux and Operto, 2009). Travel time tomography calculates
slowness (the inverse of seismic wave speed) perturbations to reference models using
source-receiver travel time measurements. FWI methods calculate perturbations to a
reference model which best predict "full" recorded seismic waveforms. For both

methods, the basic optimization problem is

15



(2)

where is a penalty (e.g. least squares), is the data, denotes the forward model, and
are model parameters. is minimized with respect to , for realizations of data. In travel
time tomography, are travel time observations, and contains ray information relating
the travel times to slownesses . However, solving (2) directly will almost certainly give
poor results, because it is ill-posed and ill-conditioned by the non-uniqueness, non-
linearity, and sensitivity to noise of the forward operator . ML provides a means of
constraining geophysical features in such models, but it is reliant on adequate training

data to obtain reasonable performance.

The application of simple ML implementations to the seismic tomography problem is
problematic due to a lack of training data, because in regional to global-scale seismic
tomography, no geophysical ground truth data exists. This issue has driven
development of more advanced ML-based methods in seismic tomography that do not
depend on large volumes of training data, or that are trained on simulations. Methods
that do not require ground truths are based on adaptive, unsupervised learning
frameworks (Elad, 2010; Mairal et al., 2014). In these adaptive approaches, data

observations themselves are used for training with unsupervised learning.

Adaptive ML-based seismic tomography methods, inspired by image denoising (Elad,

2010) and medical imaging (Ravishankar and Bresler, 2011; Greenspan et al., 2016),

have achieved compelling results. These methods combine sparse modeling with

16



unsupervised learning. In sparse modeling, signals are represented using few (sparse)
atoms from a dictionary of atoms . Such atoms are solved using a least squares
objective function with a sparsity inducing prior. For example, a sparsity constraint is

added to (2), with with , as

(3)

Here, are the sparse coefficients, the -norm enforces sparsity by counting the number
of non-zero coefficients, and is a tuning parameter controlling sparsity that is analogous
to a regularization constant in classical inverse methods. The -norm is non-convex and
is typically solved using greedy methods. Under certain conditions, the -norm can be
replaced by the the -norm, which is convex (Elad, 2010). The atoms in the dictionary D
represent ‘elemental’ geophysical features, and can be represented by functions such

as wavelets.

Sparse representations are appealing because they can model both discontinuous and
smooth geophysical features (Loris et al., 2007). In adaptive tomography, the
dictionaries are learned directly from signal examples using dictionary learning, a form
of unsupervised ML for which many algorithms exist (Mairal et al., 2014). Such learned
dictionaries can better represent specific signals than wavelets. Zhu et al. (2017) used
this sparse and adaptive framework for FWI by iteratively learning the dictionary of
seismic features, while Li and Harris (2018) incorporated a non-local similarity (Mairal et

al., 2014) in the dictionary learning procedure. Bianco and Gerstoft (2018) used a

17



sparse and adaptive framework for 2D (surface wave) travel time tomography, called
locally sparse travel time tomography (LST). Assuming dense, straight-ray sampling,
LST learns a dictionary of slowness features from patches of a least squares inversion.

The learned dictionary is then used to construct a sparse slowness model.

Seismic tomography approaches based on NNs, with early theory developed by Réth
and Tarantola (1994), have also achieved compelling results. Moya et al. (2010) apply a
NN approach to velocity model inversion. Gupta et al. (2018) address the challenges of
limited measurements in travel time tomography using subspace modeling and
convolutional NNs. Moseley et al. (2018) present a fast approximate approach for
seismic wave propagation and inversion using deep learning, based on deep NN for
speech synthesis. Araya-Polo et al., (2018) develop a formulation for FWI that replaces
the iterative inversion scheme for velocity features with a deep NN. Lewis and Vig
(2017) use a deep NN FWI method to better detect salt domes. Such methods appear

to be a future step for generative and inversion architectures.

Earthquake Geodesy and Non-inertial Deformation

While classical seismology has focused on high-frequency inertial deformation of the
earth, the full spectrum of earthquake cycle behaviors also includes prolonged non-
inertial deformation (Ben-Zion, 2008). These motions include postseismic deformation
(durations of years) and interseismic deformation (durations of decades), as well as
slow/silent earthquakes (durations of weeks) (Peng and Gomberg, 2010; Ide and
Beroza, 2011). Because these motions are non-inertial, they are typically measured

using geodetic techniques like GPS and InSAR, estimate time-dependent
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displacements at Earth’s surface. The precision of these measurements (GPS: ~0.1
mm/yr, INSAR: ~5 mm/yr) limits the resolving power of geodetic data to relatively large
earthquakes that occur near Earth’s surface. Earthquakes with M<4 are difficult to
observe geodetically because they are characterized by relatively small fault slip (<1
cm) and static displacements in the elastic crust fall off as the reciprocal of distance
cubed for buried earthquakes. This suggests that there will be orders of magnitude
fewer earthquakes observed geodetically than there are seismically. And this bears on
ML applications because it implies far fewer earthquakes available for creating labeled
datasets from geodetic data. The case is similar for postseismic deformation as well as
silent/slow slip events. Currently, the total number of such geodetically observed events

may be on the order of 1,000.

Given this relative paucity of classically labeled data, ML applications to the non-inertial
part of the earthquake cycle may be somewhat different than those initially applied to
seismic waveforms. In particular, seemingly obvious goals like automating the search
for slow/silent earthquakes may be challenging due to limited training data. Instead,
other opportunities arise. For example, there are numerous non-exclusive mechanisms
involved in postseismic deformation including both linear and non-linear versions of
afterslip, poroelasticity, and viscoelasticity. Here ML approaches developed to infer the
governing partial differential equations directly from observations (Long et al., 2018;
Raissi and Karniadakis 2018; Rudy et al., 2017) may play an essential role in resolving
the nature and relative contributions of the mechanisms responsible for postseismic

deformation. The core idea is that these ML approaches realize the mathematical
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structure of the governing physics (both linear and non-linear) directly from observations
of surface motions rather than relying on theory-driven concepts that have received

traditional focus.

ML approaches also offer the possibility of radically accelerating generative models of
earthquake cycle deformation. Numerical rupture and viscoelastic stress transfer
models are widely used in earthquake science, but they are not ubiquitous. The primary
reason for this is the computational cost of running these simulations and models. In
some cases, it may be possible to train deep learning systems to emulate high-
performance computing earthquake physics codes so that they are represented in
compact mathematical forms as NNs. The central concept here is that we tend to
program calculations in terms of mathematical functions that are readily recognizable
and comprehensible. However familiar these may be, there may exist far more compact
non-linear and non-orthogonal factorizations that enable the solution to be computed
quickly, and NNs are free to construct over complete dictionary representation that may

be vastly more computationally efficient (DeVries et al., 2017; Moseley et al., 2018).

Other applications and future directions

There are many other exciting ML applications in our field of seismology. For example,
the use of probabilistic graphical models and graph theory in seismology has become
increasingly prevalent. The deployment of large-N arrays (Karplus and Schmandt, 2018)
provides one such opportunity, where weak event signals can be extracted using graph

clustering (Riahi and Gerstoft, 2017) or similarity theory (Li et al., 2018a). Separately,
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Trugman and Shearer (2017) use graph theory and hierarchical cluster analysis to
obtain high-precision earthquake hypocentral estimates using differential travel times
from pairs of earthquakes observed at a set of common stations. Telesca and Chelidze
(2018) applied a visibility graph method to seismicity near a dam to find anomalous

seismic activity.

Additional applications of ML to seismology extend well beyond the realm of graph
theory. Araya-Polo et al. (2017) applied a deep NN trained on active seismic data for
hydrocarbon exploration to detect subsurface fault structures. Krischer and Fichtner
(2017) generate synthetic seismograms using Generative Adversarial Networks
(GANSs), training the networks using with synthetic seismic data. Using Bayesian
networks, Hincks et al. (2018) modeled the joint conditional dependencies between
parameters for the Oklahoma seismicity to understand the induced seismicity. Building
on the preliminary analyses of Meade et al. (2017), DeVries et al. (2018) trained a deep
NN to forecast aftershock locations using as input the static stress change tensor

computed from finite fault earthquake rupture models.

The ultimate realization of ML-based methods in seismology would leverage physical
models to obtain synergy between the physical theory from domain scientists and the
enhanced, data-driven constraints from ML and probability theory. While the application
of ML to seismology is becoming increasingly prevalent, ML is often currently applied
without physical modeling (Fig. 8, upper left). Geophysical data sets tend to be poorly

sampled, noisy, and incomplete, and are often difficult to handle using standard ML
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techniques. Thus, often in seismology, we have traditionally deferred to pure physics-
based methods (Fig. 8, bottom). It would be transformative if we could develop a hybrid
modeling framework that combines data-driven ML methods with explicit physical
models (Fig. 8, upper right). This would provide a means of specifying a physical model
as a component of the ML algorithm, or conversely, a means of using ML to train better
physical parameterizations. Transparency of the learned algorithms would enable

human learning and allow validation by testing for physical consistency.

In summary, seismology and machine learning benefit from each other. With its
interesting problems and rich datasets, seismology supplies a real-world testbed for
various ML algorithms, and even a driving force to compel the development of new
algorithms. While ML provides seismology with new tools to extract novel insights
directly from the data, combining classical seismology techniques with ML in a hybrid

approach might lead to radically new discoveries.
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Data and Resources

For further reading on ML fundamentals, we recommend the following textbooks and
online course materials. Bishop (2006) is a more introductory text, whereas Murphy
(2012) provides a more in-depth theoretical development. “Deep Learning” (Goodfellow
et al., 2016) provides a practical introduction to deep neural networks. There are also

many excellent free online courses, such as Ng's “Machine Learning”, Hinton’s “Neural

Networks for Machine Learning”, Tibshirani and Hastie’s “Statistical Learning” , and Li et

al.’s “Convolutional Neural Networks for Visual Recognition”. This is not meant to be an

exhaustive list of ML resources, but is a good place to get started.
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Figure 1. The IRIS DMC (Data Management Center) archive growth (modified from
IRIS). The growth of the seismic waveform data at the IRIS DMC from the time it was
established until the 1st Sep 2018.

(http://ds.iris.eduf/files/stats/data/archive/Archive_Growth.jpg)

Figure 2. Types of machine learning (ML) algorithms. Supervised ML operates on
labeled datasets with the objective to develop models that predict either categorical or
quantitative target variables. Unsupervised ML operates on unlabeled datasets with the
objective to group data by similarity or reduce the dimensionality of the input datasets.

Some common ML algorithms are listed at the bottom for each category.

Figure 3. A generic machine learning workflow that guides many applications: (1) Data
Collection, (2) Preprocessing, (3) Model Training, (4) Model Evaluation, and (5)

Production.

Figure 4. Example of Generalized Phase Detection. a) Cartoon schematic of a CNN for
GPD. A convolutional feature extraction system is combined with a fully connected
neural network to produce class probabilities for P-waves, S-waves, and noise (Ross et

al. 2018a). b) Application of GPD to the 2016 Borrego Springs, CA sequence. Red and
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blue colors indicate P- and S-waves, respectively. Vertical bars indicate automated

picks.

Figure 5. The neural network (NN) used in MyShake earthquake early warning phone
application. (a) The workflow of the NN algorithm on the phone, including extraction of
features from recorded phone motion and implementation of a NN classifier to
distinguish between motions from humans and earthquakes. (b) The interquartile range
and maximum zero-crossing rate are two important features for distinguishing between
earthquake and non-earthquake motions. (c) Example application of Myshake at the
network level to a M4.4 earthquake that occured in January of 2018. NN triggers from

individual users are compared against theoretical P and S arrivals.

Figure 6. Random Forest Ground Motion Prediction Equation (GMPE; Trugman and
Shearer 2018) and earthquake stress drop versus peak ground acceleration (PGA). (a)
Schematic workflow for training Random Forest GMPE. (b) Peak ground acceleration
vs. hypocentral distance for seismicity in the San Francisco Bay Area. Each point
represents a site-corrected PGA measurement from an earthquake at a single station.
Also shown is the median value in equally-spaced magnitude-distance bins (large
markers) and predicted values from the Random Forest GMPE (dashed lines). (c) Event
PGA residuals learned from Random Forest GMPE versus earthquake stress drop. The

least-squares linear fit and correlation coefficient are marked for reference.

Figure 7. Locally sparse travel time tomography (LST) of checkerboard slowness. (a)
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Synthetic checkerboard slowness patterns with 100x100 pixel grid (km) are sampled by
(b) 2016 straight rays from 64 seismic stations. (c) Conventional inversion using
damping and smoothing regularization, and (d) LST. Profiles from the 2D inversion are
shown with true and estimated slownesses. The root-mean-squared error (ms/km)
estimated relative to the true slowness is printed on the 2D estimates. (e) Dictionary
learned from LST contains checkerboard-like atom (100 atoms shown). Each atom

(patch) is 10x10 pixels.

Figure 8. Geophysical insight will be maximized by leveraging the strengths of both
physical and machine learning (ML)-based, data driven models. Analytic physical
models (lower left) give basic insights about physical systems. More sophisticated
models, reliant on computational methods (lower right), can model more complex
phenomena. Whereas physical models are reliant on rules, which are updated by
physical evidence (data), ML is purely data-driven (upper left). By augmenting ML
methods with physical models to obtain hybrid models (upper right), a synergy can be
obtained that balance the complementary strengths of physical intuition with data-driven

insights.
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Figure 2. Types of machine learning (ML) algorithms. Supervised ML operates on
labeled datasets with the objective to develop models that predict either categorical or
quantitative target variables. Unsupervised ML operates on unlabeled datasets with the
objective to group data by similarity or reduce the dimensionality of the input datasets.

Some common ML algorithms are listed at the bottom for each category.
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Figure 3. A generic machine learning workflow that guides many applications: (1) Data
Collection, (2) Preprocessing, (3) Model Training, (4) Model Evaluation, and (5)

Production.
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Figure 4. Example of Generalized Phase Detection. a) Cartoon schematic of a CNN for
GPD. A convolutional feature extraction system is combined with a fully connected
neural network to produce class probabilities for P-waves, S-waves, and noise (Ross et

al. 2018a). b) Application of GPD to the 2016 Borrego Springs, CA sequence. Red and
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blue colors indicate P- and S-waves, respectively. Vertical bars indicate automated

picks.
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Figure 5. The neural network (NN) used in MyShake earthquake early warning phone
application. (a) The workflow of the NN algorithm on the phone, including extraction of
features from recorded phone motion and implementation of a NN classifier to
distinguish between motions from humans and earthquakes. (b) The interquartile range
and maximum zero-crossing rate are two important features for distinguishing between

earthquake and non-earthquake motions. (c) Example application of Myshake at the
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network level to a M4.4 earthquake that occured in January of 2018. NN triggers from

individual users are compared against theoretical P and S arrivals.
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Figure 6. Random Forest Ground Motion Prediction Equation (GMPE; Trugman and

Shearer 2018) and earthquake stress drop versus peak ground acceleration (PGA). (a)
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Schematic workflow for training Random Forest GMPE. (b) Peak ground acceleration
vs. hypocentral distance for seismicity in the San Francisco Bay Area. Each point
represents a site-corrected PGA measurement from an earthquake at a single station.
Also shown is the median value in equally-spaced magnitude-distance bins (large
markers) and predicted values from the Random Forest GMPE (dashed lines). (c) Event
PGA residuals learned from Random Forest GMPE versus earthquake stress drop. The

least-squares linear fit and correlation coefficient are marked for reference.
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Figure 7. Locally sparse travel time tomography (LST) of checkerboard slowness. (a)
Synthetic checkerboard slowness patterns with 100x100 pixel grid (km) are sampled by
(b) 2016 straight rays from 64 seismic stations. (c) Conventional inversion using
damping and smoothing regularization, and (d) LST. Profiles from the 2D inversion are
shown with true and estimated slownesses. The root-mean-squared error (ms/km)

estimated relative to the true slowness is printed on the 2D estimates. (e) Dictionary
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learned from LST contains checkerboard-like atom (100 atoms shown). Each atom

(patch) is 10x10 pixels.
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Figure 8. Geophysical insight will be maximized by leveraging the strengths of both
physical and machine learning (ML)-based, data driven models. Analytic physical
models (lower left) give basic insights about physical systems. More sophisticated
models, reliant on computational methods (lower right), can model more complex
phenomena. Whereas physical models are reliant on rules, which are updated by
physical evidence (data), ML is purely data-driven (upper left). By augmenting ML

methods with physical models to obtain hybrid models (upper right), a synergy can be
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obtained that balance the complementary strengths of physical intuition with data-driven

insights.
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