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SUMMARY

We have developed a new divergence preserving method for thereconstruction of the Cartesian components
of a vector field from the orthogonal projection of a vector field to the normals to edgesin 2D. In this
method, discrete divergences computed from the nodal components and from the normal ones areexactly
the same. Our new method consists of two stages. At the first stage, we use an extended version of the local
procedure described in [J. Comput. Phys., 139:406–409, 1998] to obtain a “reference” nodal vector. This
local procedure is exact for linear vector fields, however, the discrete divergence is not preserved. Then we
formulate a constrained optimization problem, in which this reference vector plays the role of a target and
the divergence constraints are enforced by using Lagrange multipliers. It leads to the solution of “elliptic”
like discrete equations for the cell-centered Lagrange multipliers. The new global divergence preserving
method is exact for linear vector fields.We describe all details of our new method and present numerical
results, which confirm our theory. Copyrightc© 0000 John Wiley & Sons, Ltd.

Received . . .
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1. INTRODUCTION

We continue to develop the foundation of the discrete vectorand tensor calculus (DVTC)

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. From theoretical and practical points of view it is very important

to investigate how different discrete representations of avector field on the same mesh are related

to each other. It is well known, that in continuum case the vector fieldw can be uniquely recovered

from its divergence -divw and curl -curlw and appropriately specified boundary conditions.

This observation suggests that one needs to compare the discrete divergence and the discrete curl

for different representations of the vector field on the mesh. The quality of recovering one discrete

component of the vector from another can be judged by how close are the discrete divergence
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2 R. LISKA AND M. SHASHKOV

and curls to each other for the different representations. Reconstructed vector fields are often used

in different parts of the algorithm to compute discrete analogs of differential operators such as

divergence and curl. Therefore, to estimate the quality of the reconstruction, we need to evaluate

not only the accuracy of the vector itself but also the accuracy of the approximate discreteDIV and

CURL applied to the reconstructed vector field.

In [8], authors have introduced a new procedure for the reconstruction of the Cartesian

components of a vector field at the nodes (see Fig. 1(b)) of a logically rectangular grid, when

this vector field is given by its components normal to the edges of the grid cells (see Fig. 1(a)).

This reconstruction procedure is exact for linear vector functions, which is critical for accurate

computation of the discrete operators. However, in [8] authors have considered an algorithm only for

the internal points of the mesh. Moreover, the method introduced in [8] is not divergence preserving,

that is, the discrete divergence computed from the normal components is not the same as the discrete

divergence computed from the normal components to the edges.

(a) (b)

Figure 1. Two different representations of a vector field on the mesh – normal components to the edges (a)
and vectors at the nodes (b).

There are many areas in which a mimetic reconstruction of vectors is very important [11]. The

reconstruction of the Cartesian components of the vector field from its normal components appears

naturally in the Lagrangian gas dynamics discretizations based on the Godunov method, where

the normal component of the velocity vector on an edge between two cells is computed from the

solution of a 1D Riemann problem, but the Cartesian components are needed at all nodes in order

to compute the nodal motion [12, 13].

This class of methods has to satisfy the Geometric Conservation Law (GCL) [14, 15], which in

the simplest case means that the volume change of the cell computed from the normal components

of the velocity field using the volume evolution equation hasto be the same as from the geometry of

the cell, whose vertexes are moving with the nodal velocities. This is the same as requiring that the

discrete divergences computed using two different representations of the vector field are the same.

Modern Godunov-like methods are trying to satisfy GCL by using some special procedure which

involves nodal Godunov solver, [16, 17, 18, 19].

We have developed a new divergence preserving method for thereconstruction of the Cartesian

components of the vector from the orthogonal projections ofthe vector field to the normals of the
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Figure 2. (a) Zone (cell),z; point (vertex, node),p; edgef . (b) Edgef - pb(f) andpe(f) are the beginning
and end points of the edge. The oriented unit normal to the edge isnf .

edges. In this method, the discrete divergences computed from the nodal components and from the

normal ones areexactlythe same.

Our new method has two stages. At the first stage, we extend thelocal procedure described in [8]

so, that it can also deal with the boundary nodes. The obtained nodal vector is called the “reference”

vector. Then we formulate a constrained optimization problem, in which this reference vector plays

the role of a target and the divergence constraints are enforced by using Lagrange multipliers. It

leads to the solution of “elliptic” like discrete equationsfor the cell-centered Lagrange multipliers.

The presented method is similar to Chorin’s projection method [20] in the context of the solution

of incompressible Navier-Stokes equations. While in Chorin’s method one solves similar equations

for the pressure to satisfy the divergence free conditions,in our case the divergence is arbitrary and

its value comes from the given normal components of the vector field.

We describe all details of our new method and present numerical results which confirm our theory.

The remainder of the paper is organized as follows. In Section 2, we introduce notations for the mesh

elements and for the discrete operators. The local method ofreconstruction of the nodal components

of the vector field from its normal components to the edges is described in Section 3. The statement

of the divergence preserving reconstruction is given in Section 4. The discrete equations, which one

needs to solve for the divergence preserving reconstruction, are derived in Section 5. The normal

boundary conditions for our methods are introduced in Section 6. Numerical tests are presented in

Section 7.

2. NOTATIONS

The point of a mesh is denoted byp = (x, y), a cell (zone) is denoted byz, and the edge of the cell

denoted byf - Fig.2(a). The edge (face)f is given by two pointspb(f) andpe(f). The midpoint of

the edge is given byf = (pb(f) + pe(f))/2 and the oriented unit normal to the edgef is nf - Fig.

2(b).

The theory below is presented for a general mesh consisting of polygonsfor which the formulas

are more compact. At a few places and in the numerical tests weassume that our mesh is logically
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4 R. LISKA AND M. SHASHKOV

rectangular, so that all cells (zones) are quadrilaterals.The nodes are then numbered by indexesi, j

and the cells by half-indexesi+ 1/2, j + 1/2.

A vector field is denoted byw = (u, v). The nodal components of the vector arewp = (up, vp);

the edge component of the vector iswf = (w, nf ), wherenf = (nx
f , n

y
f ) is the unit normal to the

edgef . The edge component of the vector can be defined either as a point value at the center of the

edgewf = w(f) · nf or as an integral average over the edgewf =
∫

f
w · nf d s.

The divergence acting from edges to zones is defined by

(

DIVf w

)

z
=

(

Df w
)

z

Vz
,

(

Df w
)

z
=

∑

f∈F(z)

wf Sf ψf,z, (1)

whereVz is the area (volume) of the zone,Sf is the length of the edge andψf,z is either 1 or -1

depending on the orientation of the normalnf with respect to the zonez (it is 1 whennf is the outer

normal of the zonez and -1 otherwise).F(z) is the set of all edges of the zonez.

The divergence acting from nodes to zones is defined by

(DIVp w)z =
(Dp w)z

Vz
, (Dp w)z =

∑

f∈F(z)

[(

wpb(f) + wpe(f)

2
, Sf,z

)]

, (2)

whereSf,z = Sf nfψf,z.

3. LOCAL METHOD OF RECONSTRUCTION OF THE NODAL COMPONENTS OFA

VECTOR FIELD FROM ITS NORMAL COMPONENTS TO EDGES

The local methods have been introduced in [8], where the authors reconstruct the nodal Cartesian

components of the vector field from its normal components on aset of edges adjacent in some sense

to the given node. This set of edges defines the stencil of somelocal interpolation operator. In [8],

the authors have considered only a reconstruction for the internal points of the mesh. In this paper

we extend this algorithm to all points, i.e., we include alsoboundary nodes.

The algorithm recovers not only the Cartesian components ofthe vector at the nodewp, but also

its gradient∇wp. The method is based on the solution of a local minimization problem. The local

functional has the form

ΦL
p =

∑

f∈S(p)

((wp + (f − p) · ∇wp,nf ) − wf )2, (3)

with S(p) being the stencil of this local operator. For the interior nodes the stencilS(p) includes all

edges of all cells, which have the nodep as their vertex. So, for the logically rectangular mesh, this

stencil includes 12 edges of 4 cells meeting at pointp - Fig. 3 (a). Now, by differentiating of the

functionalΦL
p with respect to two components ofwp and four components of∇wp, we obtain six

linear equations for six unknown components ofwp and∇wp.

The situation for the points on the boundary is more complicated. Consider as an example a point

p on the left boundary of the orthogonal mesh. If we included only 7 edges of two cells joining

this point, then they componentvp would be considered on 3 horizontal edges of these two cells

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids(0000)
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DIVERGENCE PRESERVING RECONSTRUCTION 5

and all three centers of these edges would have the samex coordinate. Thus we would not be able

to approximate thex derivative of thevp component (one component of the gradient∇wp) in any

way. To avoid this problem, we extend the 7 edges stencil (nowback on the logically rectangular

mesh) by one more edge, namely by the logically horizontal edge going logically right from the

edge which joins the two cells on the left boundary. In other words (enumerating nodes by(i, j)

starting with 1), if our pointp on the left boundary has logical indices(1, j), then 7 original edges

of the stencil would include three logically horizontal edges(3/2, j − 1), (3/2, j), (3/2, j + 1) and

four logically vertical edges(1, j − 1/2), (1, j + 1/2), (2, j − 1/2), (2, j + 1/2) and the additional

eighth edge would be(5/2, j), see Fig. 3 (b). On the other boundaries (right, bottom, top)away

from corners, we proceed in a similar way as on the left boundary.

i,j

i−1,j+1
i,j+1

i−1,j

i−1,j−1

i,j−1

i+1,j

i−1,j−1

i+1,j+1

2,j−1

2,j

3,j

1,j+1
2,j+1

1,j

1,j−1

1,2

1,3

1,1

2,2

2,1 3,1

(a) (b) (c)

Figure 3. StencilsS(p) of the functionalΦL
p : (a) internal points; (b) left boundary points; (c) the lower-left

corner point. The midpoints of the edges included in the stencil are marked by a small empty circle.

At the lower left corner of the logically rectangular mesh (see Fig. 3 (c)), we naturally include in

the stencilS(p) four edges of the corner cell and add to them two more boundaryedges attached to

the corner cell, The stencils at the other corners are analogous.

For each boundary pointp we reconstruct here the full vectorwp from the components normal

to the edges. We call this treatment of boundaries the free boundary conditions.Note, that the

described procedure is not an extrapolation, it is an interpolation on the boundary. In the context of

hydrodynamics, these boundary conditions are needed for the outer pressure boundary conditions.

The normal velocity components on the boundary edges are obtained from the outer pressure and

then interpolated to the boundary nodes. The additional interior edges (see Fig. 3 (b)) are included in

the stencil of the functional (3) in order to achieve the second order convergence and for the reason

explained above.In Section 6, we will consider alsopistonboundary conditions.The local method

is exact for any linear vector field.

4. STATEMENT OF THE PROBLEM

Let us assume that the normal componentswf of the vectorw are given and therefore(Df w)z is

given.The goalis to construct the nodal components of the vector fieldwp = (up, vp) such, that its

nodal divergence (2) is the same as its edge divergence (1).

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids(0000)
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6 R. LISKA AND M. SHASHKOV

Because both divergences have the same factor1/Vz, it is sufficient to require

(Dp w)z =
(

Df w
)

z
, (4)

where RHS is the given number which is explicitly computed from the givenwf , using formula (1).

There is no unique solution to this problem, and it is not clear how to formally define the accuracy.

We suggest tofind the stationary point ofthe followingglobalfunctional

Φ(wp, λz) =
1

2

∑

p∈P

(wp − wref
p )2Vp +

∑

z∈Z

[

λz

(

(Dpwp)z − (Dfwf )z

)]

, (5)

where we use an accurate reference approximationwref
p of the vector field in the nodes, obtained

by the local algorithm described in Section 3, from the normal componentswf . This reference

approximation in general does not satisfy the divergence constraints (4). Byfinding the stationary

point of the functionalΦ (5), we are constructing the approximationwp, which satisfies the

divergence constraints and is as close to the reference approximation wref
p as possible. In the

definition of the functional (5), the first sum goes over all points (nodes) of the mesh and the second

one over all cells of the mesh. The second sum is introduced totake into account the constraints (4)

using the Lagrange multiplier approach. The Lagrange multiplierλz is defined at the zonez andVp

is the nodal area, which is taken to be one-fourth(for the interior pointp of the logically rectangular

mesh) of the sum of the zonal areas which share the pointp.

The local method described in Section 3 is exact for linear vector fields. The reference

approximationwref
p thus satisfies the divergence constraints (4) and the functional (5) has a simple

stationary pointwp = wref
p . This means that the proposed global method is also exact forlinear

vector fields.

5. DISCRETE EQUATIONS

The extrema conditions for the functionalΦ (5) with respect toλz give us back equations (4). The

extrema conditions with respect toup, vp are

dΦ/dup = 0 , dΦ/dvp = 0 . (6)

Let us first consider the derivatives of the first sum in (5), which gives

Vp(wp − wref
p ).

To differentiate the second term in (5), it will be useful to give an explicit expression for the

operatorDp. First of all, one can rearrange terms in the expression (2) to get

(Dp w)z =
∑

p∈P(z)

[(

wp,
Sf−(p),z + Sf+(p),z

2

)]

, (7)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids(0000)
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+

−

p

f (p)

f (p)
+

−

Figure 4. Vertexp and vertexesp+ andp−; edgesf−(p) andf+(p);

where the subscriptsf−(p) andf+(p) denote the edges which share the pointp in the counter-

clock-wise order with respect to the zonez, see Fig. 4. If we introduce operatorsδx andδy, which

act on a nodal functiong as

(δx g)z =
1

2

∑

p∈P(z)

(yp+ − yp−) gp , (δy g)z = −
1

2

∑

p∈P(z)

(xp+ − xp−) gp , (8)

then the operatorDp in the form (7) can be written as

(Dp w)z = (δx u)z + (δy v)z . (9)

The part of the second sum of (5) containingDp can be rearranged to summation over the nodes

∑

z∈Z

λz(D
pwp)z =

1

2

∑

p∈P

∑

z∈Z(p)

λz

[

(yp+(z) − yp−(z))up − (xp+(z) − xp−(z)) vp

]

,

which can be differentiated with respect toup andvp, producing the expression

(Gz λ)p = (Dp)
†

p λ =

{
(

δ†x λ
)

p
(

δ†y λ
)

p

, (10)

where for the zonal functionλ the operators
(

δ†x λ
)

p
and

(

δ†y λ
)

p
are defined as

(

δ†x λ
)

p
=

1

2

∑

z∈Z(p)

λz

(

yp+(z) − yp−(z)

)

, (11)

(

δ†y λ
)

p
= −

1

2

∑

z∈Z(p)

λz

(

xp+(z) − xp−(z)

)

, (12)

where the vertexesp−(z), p+(z) are defined with respect to the zonez and are shown in Fig. 5.

These expressions correspond to the contour around the nodep presented in Fig. 5.

Now we are ready to write the equations (6) in the vector form

Vp(wp − wref
p ) +

(

(Dp)† λ
)

p
= 0, (13)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids(0000)
Prepared usingfldauth.cls DOI: 10.1002/fld

This article is protected by copyright. All rights reserved.



8 R. LISKA AND M. SHASHKOV

p

p

p

z

(z)

(z)−

+

Figure 5. Contour for theGz = (Dp)† operator

which allows to expresswp as

wp = wref
p −

1

Vp

(

(Dp)†λz

)

p
. (14)

Substituting this into the divergence constraint at the cell z (4) results in

−

[

Dp 1

Vp
(Dp)†

]

λz = −Dpwref
p + (Dfwf )z , (15)

which has to be valid for any zonez. After solving this global system for allλz, we obtain the desired

wp from (14). The equation (15) written in all zonesz gives a system analogous to the system

obtained for solving an elliptic equation with cell centered discretization of the scalar function and

nodal discretization of the vector function (what is calledthe cell-node discretization in [6]).

The equation (14) has a different stencil and coefficients for the points which are strictly inside

the mesh, on the boundary and at the corners of the mesh. Also the equation (15) has a different

stencil and coefficients for the zones strictly inside (i.e., all edges of the zone are internal edges),

the cells on the boundary and the corner cells.

Solving the linear (elliptic like) system (15) might be considered costly for the interpolation. We

should however note, that the system has a symmetric, positive definite matrix and it is very well

conditioned. Very efficient methods exist for such systems.In particular, for the tests we use the

conjugate gradient method, which might be further speeded up by a preconditioner. The user of this

method will need to decide if the gain obtained is worth the cost.

6. PISTON BOUNDARY CONDITIONS

Let us consider the case when the normal velocity to the boundary is given,which we call the piston

boundary condition. In the context of the hydrodynamics we consider a generic piston, which can be

either a standing or a moving wall.Namely, for these cases we generalize our methods to include

boundary conditions on the normal components to the boundary. In this and the next section we

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids(0000)
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DIVERGENCE PRESERVING RECONSTRUCTION 9

consider only the simplest case of a rectangular domain withhorizontal and vertical boundaries. On

the horizontal boundary they componentvP is given at boundary nodesp, while on the vertical

boundary thex componentuP is given at boundary nodesp. At the corners of the rectangular

domain both components are given.

For the local method, described in Section 3, the normal component ofwp and its tangential

derivative (i.e., thex componentup of wp and itsy derivative on the vertical boundaries or they

componentvp of wp and itsx derivative on the horizontal boundaries) are given at the boundary

pointp. Thus we differentiate the functional (3) according to the four remaining components ofwp

and∇wp to obtain four linear equations for these four remaining components. This system is being

solved for these four components.

For the divergence preserving method described in Section 5, the normal componentw⊥
p = wref⊥

p

of (14) at the boundary pointp is known. Thus at the boundary pointp only the parallel component

of (14) is used when substituting into the divergence constraint (4) (Dp w)z(p) =
(

Df w
)

z(p)
at

the boundary cellsz(p) ∈ Z(p). For the normal component of (14) we usew⊥
p = wref⊥

p , or in

other words, for the boundary pointp the contribution from the normal component of the operator
(

(Dp)† λ
)

p
, i.e., either (11) or (12) is zero.

7. NUMERICAL TESTS

In this section we show several numerical tests of the developed method on different vector fields.

The vector fields are defined analytically. The nodal components of the vector field computed from

the normal components are being compared with the exact point values at the mesh nodes.
On a logically rectangular mesh the explicit form of discrete derivatives of a nodal functiong at

cell i+ 1/2, j + 1/2 is

„

δg

δx

«

i+1/2,j+1/2

=
(gi+1,j+1 − gi,j)(yi,j+1 − yi+1,j) + (gi+1,j − gi,j+1)(yi+1,j+1 − yi,j)

2Vi+1/2,j+1/2
,

„

δg

δy

«

i+1/2,j+1/2

=
(gi+1,j+1 − gi,j)(xi+1,j − xi,j+1) + (gi,j+1 − gi+1,j)(xi+1,j+1 − xi,j)

2Vi+1/2,j+1/2
,

whereVi+1/2,j+1/2 is the area of the celli+ 1/2, j + 1/2. The discrete divergence and curl acting

from nodes to cells are computed from these discrete derivatives.The discrete divergence computed

from these formulas is equivalent to the divergence defined by (2). The discrete divergence

computed from the nodal components is compared with the discrete divergence in the cell computed

from the normal components (1). The discrete curl is compared with the exact value at the cell center.

The errors are evaluated in the max norm.

The normal components used here in the tests are given by the point values at the edges midpoints,

however they can be also defined as the integral averages of the normal components over the edge.

The resulting errors in the tables below are however very close for both definitions of the normal

components.For all tests, unless otherwise noted, we apply the free boundary conditions.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids(0000)
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10 R. LISKA AND M. SHASHKOV

(a) (b)

Figure 6. Types of meshes: (a) - the smooth mesh; (b) - the random mesh

7.1. Types of meshes

Everywhere the mesh covers the square(x, y) ∈ [−1/2, 1/2]2. The simplest mesh is an uniform

mesh withM ×M square cells. A smooth non-orthogonal mesh [8] is obtained by the mapping

x(ξ, η) = ξ + 0.1 sin(2πξ) sin(2πη) , y(ξ, η) = η + 0.1 sin(2πξ) sin(2πη) (16)

from the uniform grid on the square[−1/2, 1/2]2 in the space(ξ, η) into the same square in(x, y),

see Fig. 6 (a). A random non-smooth non-orthogonal mesh is created from the uniform mesh

(consisting of squaresh× h, with h = 1/M ) by randomly moving all internal nodes in squares

with sidesh/4 centered at the position of the node in the uniform mesh, see Fig. 6 (b).

7.2. Smooth test from [8]

In Table I we present the results for the smooth and random meshes with the smooth vector function

from [8]. The vector field is defined by

w = (x− y + x2 − y2, x+ y + x2 + y2). (17)

We present the results for the local reconstruction method as well as for the global divergence

preserving method. The results presented in Table I show that for all cases we observe the second

order convergence for the vector function itself and the first order convergence for its curl. For

the local method we observe the first order convergence for the divergence. For the divergence

preserving global method the divergence is preserved up to the machine precision. It is interesting

to note that the absolute values of the error for the same meshand resolution are almost the same

for the local and global divergence preserving methods.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids(0000)
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DIVERGENCE PRESERVING RECONSTRUCTION 11

Table I. Maximum errors for the smooth test (17) vector field.

grid smooth non-smooth

method M w DIV CURL w DIV CURL

local 32 0.32E-2 0.10E-1 0.98E-2 0.20E-2 0.39E-1 0.21E-1
64 0.80E-3 0.26E-2 0.26E-2 0.54E-3 0.23E-1 0.14E-1

128 0.20E-3 0.64E-3 0.65E-3 0.14E-3 0.11E-1 0.74E-2
256 0.50E-4 0.16E-3 0.16E-3 0.34E-4 0.64E-2 0.42E-2

div-preser 32 0.31E-2 0.65E-13 0.97E-2 0.21E-2 0.17E-13 0.40E-1
64 0.80E-3 0.99E-13 0.26E-2 0.57E-3 0.28E-13 0.33E-1

128 0.20E-3 0.18E-12 0.65E-3 0.14E-3 0.77E-13 0.17E-1
256 0.50E-4 0.43E-12 0.16E-3 0.39E-4 0.18E-12 0.94E-2

7.3. Shock like test from [8]

This is a 1D non-smooth shock like test from [8]. The vector field is defined by

w = (e20x/(1 + e20x), 0). (18)

In Table II we present the results for this function - the results are arranged in the same way as in

Table I. The convergence for the vector function is again second order in all cases. For the local

Table II. Maximum errors for the shock like test (18) vector field.

grid smooth non-smooth

method M w DIV CURL w DIV CURL

local 32 0.27E-1 0.54E+0 0.15E+0 0.19E-1 0.37E+0 0.20E+0
64 0.77E-2 0.19E+0 0.47E-1 0.50E-2 0.12E+0 0.15E+0

128 0.20E-2 0.52E-1 0.13E-1 0.14E-2 0.81E-1 0.72E-1
256 0.51E-3 0.13E-1 0.32E-2 0.35E-3 0.41E-1 0.46E-1

div-preser 32 0.24E-1 0.65E-13 0.15E+0 0.17E-1 0.17E-13 0.19E+0
64 0.65E-2 0.93E-13 0.47E-1 0.45E-2 0.30E-13 0.17E+0

128 0.17E-2 0.18E-12 0.13E-1 0.13E-2 0.74E-13 0.91E-1
256 0.41E-3 0.32E-12 0.32E-2 0.32E-3 0.16E-12 0.47E-1

div-preser 32 0.74E-2 0.82E-13 0.15E+0 0.61E-2 0.22E-13 0.19E+0
piston 64 0.20E-2 0.71E-13 0.47E-1 0.19E-2 0.29E-13 0.17E+0
BCs 128 0.52E-3 0.17E-12 0.13E-1 0.50E-3 0.65E-13 0.91E-1

256 0.13E-3 0.32E-12 0.32E-2 0.14E-3 0.19E-12 0.45E-1

method and the smooth mesh the convergence for the divergence is a little bit better than the first

order. For the local method and the random mesh the convergence for the divergence is about first

order. For curl it is about the first order for all cases. We would like to mention that for this “non-

smooth” function the value of error may oscillate dependingon the position of the mesh with respect

to “front” of the “shock” and it is especially sensitive in the case of the random mesh. Again, for the

global divergence preserving method the discrete divergence is indeed preserved up to the machine

precision.

Table II presents also results for the divergence preserving method with thepiston boundary

conditions, which are presented in Section 6. The errors with thepistonboundary conditions are

smaller than the results with the free boundary conditions for the divergence preserving method.
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The local method with thepistonboundary conditions gives very similar errors (not shown inTable

II) as the local method with the free boundary conditions.

7.4. Noh-like velocity field test

This is a radially symmetric inward directed vector fieldw = −|w|(x, y)/r, wherer =
√

x2 + y2

with the magnitude

|w| =











0 for r ≤ rmin

1−cos(π(r−rmin)/a)
2 for rmin ≤ r ≤ rmin + a

1 for r ≥ rmin + a

,

where the circular front position is atr = rmin + a/2 and the width of the front is given by the

parametera. We use in our test the particular parametersrmin = 0.2 anda = 0.1.

The maximum errors for this test are presented in Table III. The convergence for the vector

function is second order and the divergence is preserved forthe divergence preserving global

method.We also present the convergence for the projectionwt of w to the tangential direction,

which should be zero for the radial field.

Table III. Maximum errors for the Noh-like velocity field.The column labelled bywt contains errors of the
projection ofw to the tangential direction.

grid smooth non-smooth

method M w wt DIV w wt DIV

local 32 0.15E+0 0.32E-1 0.67E+01 0.13E+0 0.31E-1 0.50E+1
64 0.55E-1 0.11E-1 0.27E+01 0.41E-1 0.96E-2 0.28E+1

128 0.16E-1 0.29E-2 0.14E+01 0.12E-1 0.27E-2 0.16E+1
256 0.43E-2 0.76E-3 0.71E+00 0.33E-2 0.78E-3 0.75E+0

div-preser 32 0.72E-1 0.37E-1 0.85E-13 0.52E-1 0.50E-1 0.25E-13
64 0.22E-1 0.12E-1 0.17E-12 0.18E-1 0.18E-1 0.42E-13

128 0.68E-2 0.32E-2 0.42E-12 0.61E-2 0.59E-2 0.70E-13
256 0.17E-2 0.83E-3 0.46E-12 0.18E-2 0.17E-2 0.15E-12

8. CONCLUSION

We have developed a new divergence preserving method for thereconstruction of the Cartesian

components of the vector field at the mesh nodes from the orthogonal projections of the vector

field to the normals to the edges. In this method the discrete divergences computed from the

nodal and from the normal components areexactlythe same.For the application of our method

in hydrodynamics the vector field will be the fluid velocity and one might be interested in

conserving also the circulation (curl), the momentum or theenergy. Our method does not conserve

these additional quantities and, e.g., the kinetic energy conservation would lead to non-linear

optimization. One cannot expect to conserve all quantities.

We present numerical results for smooth and non-smooth vector fields as well as for smooth and

non-smooth meshes. Numerical results demonstrate, that the discrete divergence is in fact preserved
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up to the machine precision and that it does not affect the convergence rate for the vector field itself

and the discrete curl.
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