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Divergence preserving reconstruction of the nodal comptsnaf
a vector field from its normal components to edges
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ﬂeveloped a new divergence preserving method foetoastruction of the Cartesian components
a vec

SUMMARY

=

r field from the orthogonal projection of a vectofdfito the normals to edges 2D. In this
iscrete divergences computed from the nodal coemi® and from the normal ones aneactly
the, Our new method consists of two stages. At the f@gé stve use an extended version of the local
r
or

of

3

prdgedure described id.[Comput. Phys139:406—409, 1998] to obtain a “reference” nodal vector. This
local procedure is exact for linear vector fields, howeves,discrete divergence is not preserved. Then we
f

a constrained optimization problem, in whiclsttéference vector plays the role of a target and
heagi ence constraints are enforced by using Lagrangipirers. It leads to the solution of “elliptic”

-~

i
i te equations for the cell-centered Lagrangetipligrs. The new global divergence preserving
is exact for linear vector fieldd/e describe all details of our new method and present nuaieric
res hich confirm our theory. Copyrig{@ 0000 John Wiley & Sons, Ltd.
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DS: Lagrangian; hydrodynamics; vector interpaati divergence preserving; vector
representation; finite difference

1. INTRODUCTION

meue to develop the foundation of the discrete veetod tensor calculus (DVTC)
[1,34, 5, 6, 7, 8, 9, 10]. From theoretical and practicaihts of view it is very important
tof gate how different discrete representations wctor field on the same mesh are related
to ther. It is well known, that in continuum case theasfeld w can be uniquely recovered
@Tvergence divw and curl -curlw and appropriately specified boundary conditions.
This obServation suggests that one needs to compare thretdistivergence and the discrete curl
s e e M B ST AL Ao G (RS AT S UM oF PCoUaiRG Sneodisebstt
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2 R. LISKA AND M. SHASHKOV

and curls to each other for the different representatiorsoRstructed vector fields are often used
in different parts of the algorithm to compute discrete agalof differential operators such as
divergence and curl. Therefore, to estimate the qualityhefreconstruction, we need to evaluate
not only the accuracy of the vector itself but also the aanucd the approximate discref vV and
CURL applied to the reconstructed vector field.

authors have introduced a new procedure for the rsttoction of the Cartesian
components of a vector field at the nodes (see Fig. 1(b)) ofgddly rectangular grid, when
thi -@ br field is given by its components normal to the sdgfethe grid cells (see Fig. 1(a)).
This reconstruction procedure is exact for linear vectarcfions, which is critical for accurate
Eomtion of the discrete operators. However, in [8] argihave considered an algorithm only for
th al points of the mesh. Moreover, the method intced in [8] is not divergence preserving,
thgi#is,Wge discrete divergence computed from the nornrapoments is not the same as the discrete
diﬁce computed from the normal components to the edges

)

() (b)

Figure 1. Two different representations of a vector field o hesh — normal components to the edges (a)

! and vectors at the nodes (b).

are many areas in which a mimetic reconstruction afoveds very important [11]. The
reconstruction of the Cartesian components of the vectiorffiem its normal components appears

nﬁra”y in the Lagrangian gas dynamics discretizationsed on the Godunov method, where
al component of the velocity vector on an edge betwee cells is computed from the
sala!i'ml)f a 1D Riemann problem, but the Cartesian compisreme needed at all nodes in order

to te the nodal motion [12, 13].

Elass of methods has to satisfy the Geometric Consernvhaw (GCL) [14, 15], which in
est case means that the volume change of the cefiudechfrom the normal components
elocity field using the volume evolution equation tiake the same as from the geometry of
hose vertexes are moving with the nodal velagiflénis is the same as requiring that the
discrete divergences computed using two different reptaiens of the vector field are the same.

Modern Godunov-like methods are trying to satisfy GCL byhgssome special procedure which
involves nodal Godunov solver, [16, 17, 18, 19].

We have developed a new divergence preserving method foetoastruction of the Cartesian
components of the vector from the orthogonal projectionthefvector field to the normals of the

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid§0000)
Prepared usindldauth.cls DOI: 10.1002/fld

This article is protected by copyright. All rights reserved.



DIVERGENCE PRESERVING RECONSTRUCTION 3

Fih.’(a) Zone (celly; point (vertex, node)p; edgef. (b) Edgef - py(f) andpe(f) are the beginning
and end points of the edge. The oriented unit normal to the exdg;.

ed this method, the discrete divergences compuiedtiie nodal components and from the
normal’ones arexactlythe same.
mw method has two stages. At the first stage, we exterilddakprocedure described in [8]
can also deal with the boundary nodes. The oldaindal vector is called the “reference”
en we formulate a constrained optimization grohlin which this reference vector plays
thmf a target and the divergence constraints are @ddoy using Lagrange multipliers. It
he solution of “elliptic” like discrete equatidios the cell-centered Lagrange multipliers.
T c ented method is similar to Chorin’s projection rodtf20] in the context of the solution
ressible Navier-Stokes equations. While in Qfistinethod one solves similar equations
essure to satisfy the divergence free conditionsyr case the divergence is arbitrary and
comes from the given normal components of the véietial.
We descrlbe all details of our new method and present nuaieesults which confirm our theory.
The remainder of the paper is organized as follows. In Se&jave introduce notations for the mesh
and for the discrete operators. The local methagtofistruction of the nodal components
actor field from its normal components to the edgeesedbed in Section 3. The statement
m‘ ergence preserving reconstruction is given irtiSed. The discrete equations, which one
solve for the divergence preserving reconstmycaice derived in Section 5. The normal
ndary conditions for our methods are introduced in 8adi Numerical tests are presented in

usc

ection
: 2. NOTATIONS

t of a mesh is denoted by= (z,y), a cell (zone) is denoted by and the edge of the cell
denoted byf - Fig.2(a). The edge (facq)is given by two pointg,(f) andp.(f). The midpoint of
the edge is given b§ = (p,(f) + pe(f))/2 and the oriented unit normal to the edfj&sn; - Fig.
2(b).

The theory below is presented for a general mesh consistipglggonsfor which the formulas
are more compact. At a few places and in the numerical testsaueme that our mesh is logically
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4 R. LISKA AND M. SHASHKOV

rectangular, so that all cells (zones) are quadrilatefdds.nodes are then numbered by indexgs
and the cells by half-indexest 1/2, j + 1/2.

A vector field is denoted by = (u, v). The nodal components of the vector &g = (u,, v,);
the edge component of the vectorig = (w, ny), wheren; = (n%, n%) is the unit normal to the
edgef. The edge component of the vector can be defined either as avphie at the center of the

W w(f) - n, oras an integral average over the edge= Jew -nsds.
h:divergence acting from edges to zones is defined by
(D7 w),

(DIVfW)Z:T’ (wa)zzfez}-;)wfsfwﬁz, (1)

r

wherel’ is the area (volume) of the zong; is the length of the edge ang; . is either 1 or -1
dependihg on the orientation of the normalwith respect to the zone(it is 1 whenn is the outer
normal of the zone and -1 otherwise)F (z) is the set of all edges of the zone

ergence acting from nodes to zones is defined by

, DP
o1vrw), = B9 ey~ [(W sfvz)}, 2)
z Z)

D)
W|§I’ESf72 = Sf nfi/)fyz.

@CAL METHOD OF RECONSTRUCTION OF THE NODAL COMPONENTS G¥
VECTOR FIELD FROM ITS NORMAL COMPONENTS TO EDGES

| methods have been introduced in [8], where theoasitieconstruct the nodal Cartesian
components of the vector field from its normal components set af edges adjacent in some sense
to mg;/en node. This set of edges defines the stencil of $orakinterpolation operator. In [8],
the authors have considered only a reconstruction for tieerial points of the mesh. In this paper

weffe d this algorithm to all points, i.e., we include ddsaindary nodes.
Ellgorithm recovers not only the Cartesian componeritssofector at the node,, but also
its ntvVw,. The method is based on the solution of a local minimizatiaifem. The local

-+
Oy = Y (wp+(f=p) Vwp,ny) —wy)?, 3)

i feS(p)

g being the stencil of this local operator. For the interiodes the stencif(p) includes all
of all cells, which have the nogas their vertex. So, for the logically rectangular mests thi
cludes 12 edges of 4 cells meeting at ppintFig. 3 (a). Now, by differentiating of the
functional@IE with respect to two components of, and four components &¥w,,, we obtain six
linear equations for six unknown componentssgf andVw,,.

The situation for the points on the boundary is more comf@itaConsider as an example a point
p on the left boundary of the orthogonal mesh. If we includely dhedges of two cells joining
this point, then thgy component,, would be considered on 3 horizontal edges of these two cells

| has the form
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DIVERGENCE PRESERVING RECONSTRUCTION 5

and all three centers of these edges would have the sarnerdinate. Thus we would not be able
to approximate the: derivative of thev, component (one component of the gradi®iw,) in any
way. To avoid this problem, we extend the 7 edges stencil (pagk on the logically rectangular
mesh) by one more edge, namely by the logically horizontgkegbing logically right from the
edge which joins the two cells on the left boundary. In otherds (enumerating nodes If¥ ;)
g;*finglvith 1), if our poinp on the left boundary has logical indicék j), then 7 original edges
of thgstencil would include three logically horizontal edg3/2,j — 1), (3/2,7),(3/2,7+ 1) and
foly vertical edges$l,j —1/2), (1,5 +1/2),(2,7 —1/2), (2,7 + 1/2) and the additional
eighth edge would bé&5/2, j), see Fig. 3 (b). On the other boundaries (right, bottom, tpdy
ﬁo@ers, we proceed in a similar way as on the left bognda

; b " ©

Fig@Stenci@@) of the functionakbﬁ: (a) internal points; (b) left boundary points; (c) the lovieft

point. The midpoints of the edges included in thecitene marked by a small empty circle.
zower left corner of the logically rectangular mesegd-ig. 3 (c)), we naturally include in
the stencilS(p) four edges of the corner cell and add to them two more bouretiggs attached to
thgcorner cell, The stencils at the other corners are anakg

h boundary point we reconstruct here the full vecter, from the components normal
to ges. We call this treatment of boundaries the fremdery conditionsNote, that the
de@iﬂ procedure is not an extrapolation, it is an intatpn on the boundary. In the context of
hy amics, these boundary conditions are neededdavuter pressure boundary conditions.
Lm\al velocity components on the boundary edges aeenaok from the outer pressure and
thgn intgrpolated to the boundary nodes. The additionatimtedges (see Fig. 3 (b)) are included in
tﬂﬁil of the functional (3) in order to achieve the selcorder convergence and for the reason

explaindd aboveln Section 6, we will consider algaistonboundary conditionsThe local method
is or any linear vector field.

4. STATEMENT OF THE PROBLEM

Let us assume that the normal componentf the vectorw are given and therefor@®’ w). is
given.The goalis to construct the nodal components of the vector feld= (u,, v,) such, that its
nodal divergence (2) is the same as its edge divergence (1).

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid§0000)
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6 R. LISKA AND M. SHASHKOV

Because both divergences have the same faglidy, it is sufficient to require
(DPw), = (Df W), 4)

where RHS is the given number which is explicitly computesifrthe givenu,, using formula (1).
I herei's no unique solution to this problem, and it is notichexry to formally define the accuracy.
suggest téind the stationary point ahe followingglobalfunctional

D— B(wpy, \:) = % D> (W = WDV, 4 D [As (DPwy). — (D wy).)] (5)

- — pEP 2€Z

WEL—-E use an accurate reference approximaﬁipﬁ of the vector field in the nodes, obtained

by ghe"gcal algorithm described in Section 3, from the ndrommponentsw;. This reference
uation in general does not satisfy the divergenaostcaints (4). Byfinding the stationary

pmm functional® (5), we are constructing the approximatier),, which satisfies the

di e constraints and is as close to the referenceoxdpyation w;ff as possible. In the
deiimibig@ of the functional (5), the first sum goes over alint® (nodes) of the mesh and the second
oman cells of the mesh. The second sum is introductaké&into account the constraints (4)
usin Lagrange multiplier approach. The Lagrange pligti)\. is defined at the zoneandV,

is gpe nodal area, which is taken to be one-fo(ftin the interior poinfp of the logically rectangular

mesh) of the sum of the zonal areas which share the paint

cal method described in Section 3 is exact for lineastorefields. The reference

appro ationw]rg‘Sf thus satisfies the divergence constraints (4) and the fumadt{5) has a simple
pointw, = w;ff. This means that the proposed global method is also exadinfar

Ids.

all

<
(9%
(9]
—

5. DISCRETE EQUATIONS

extrema conditions for the functionbl(5) with respect to\. give us back equations (4). The
onditions with respect g, v, are

thor

d®/du, =0, d®/dv, =0. (6)

U

Let us tirst consider the derivatives of the first sum in (5)ichlgives

Vo (wy — wph).

A

To differentiate the second term in (5), it will be useful tvegan explicit expression for the
operatorDP?. First of all, one can rearrange terms in the expressioro(@gt

Sr-w.z S+
Drw). = Y|, e R | ™)
pEP(2)
Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid§0000)
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DIVERGENCE PRESERVING RECONSTRUCTION 7

Figure 4. Vertex and vertexep ™ andp—; edgesf ~ (p) and £+ (p);

Cript

e subscriptg~ (p) and f(p) denote the edges which share the pginb the counter-
e order with respect to the zonesee Fig. 4. If we introduce operatarsandd,, which

%%

acﬁwodal function as

1 1
(0z9), = 5 Z Wpt —Yp=-)9p,  (0y9), = 5 Z (@t —Tp-) gy (8)
C peEP(2) pEP(2)

—
>
D

n the operatdd? in the form (7) can be written as

d:

(DPw), = (0 u), + (6, v), . (9)

The of the second sum of (5) containing can be rearranged to summation over the nodes

A:(DPwy). Z D A Wt o) = Yo () Up — (@pr(2) = Tp-(2) V) 5
;D€7D z€Z(p)

m
N

z

él'

ICh can be differentiated with respectitp andv,, producing the expression

of
(G*)), = (D7) A = { (5; A)p , (10)

e fgr the zonal function the operatorgs; >\) and (6] ) are defined as

0ixn), = DA (Wt — Yo (0) (11)
2€2(p)
1
@2, = =5 2 A (wre) —B@) - (12)
2€Z(p)

Autho

where the vertexes™(z), p*(z) are defined with respect to the zonend are shown in Fig. 5.
These expressions correspond to the contour around thepmésented in Fig. 5.
Now we are ready to write the equations (6) in the vector form

ref T _
Vp(wp —w, ™) + ((D”) )\)p =0, (13)
Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid§0000)
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8 R. LISKA AND M. SHASHKOV

p(2)

{

P(2)

crip

Figure 5. Contour for th&* = (D”)T operator

Wmows to expresgr, as

re 1
: Wp = Wp f_ Vp ((DP)T)\Z)p . (14)
Slsstituting this into the divergence constraint at the £é4) results in
1 t ref f
- DPV(DP) A; = =DPwi 4 (D' wy)., (15)
P

as to be valid for any zoneAfter solving this global system for all., we obtain the desired
w (14). The equation (15) written in all zonesgives a system analogous to the system
for solving an elliptic equation with cell centiscretization of the scalar function and
nodal discretization of the vector function (what is called cell-node discretization in [6]).

e equation (14) has a different stencil and coefficientstfe points which are strictly inside
the mesh, on the boundary and at the corners of the mesh. Wdésequation (15) has a different
stq and coefficients for the zones strictly inside (ia8l. edges of the zone are internal edges),
the on the boundary and the corner cells.

!mthe linear (elliptic like) system (15) might be cateyed costly for the interpolation. We

wever note, that the system has a symmetric, yosiéfinite matrix and it is very well
Med. Very efficient methods exist for such systeimgarticular, for the tests we use the
CoRi gradient method, which might be further speegeua preconditioner. The user of this
methodfill need to decide if the gain obtained is worth thgtco

E 6. PISTON BOUNDARY CONDITIONS

Let us consider the case when the normal velocity to the banyrigl givenwhich we call the piston
boundary condition. In the context of the hydrodynamics wesider a generic piston, which can be
either a standing or a moving walNamely, for these cases we generalize our methods to include
boundary conditions on the normal components to the boyntfathis and the next section we

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid§0000)
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DIVERGENCE PRESERVING RECONSTRUCTION 9

consider only the simplest case of a rectangular domainhwittzontal and vertical boundaries. On
the horizontal boundary thg componentp is given at boundary nodgs while on the vertical
boundary ther componentup is given at boundary nodgs. At the corners of the rectangular
domain both components are given.

For the local method, described in Section 3, the normal armapt ofw,, and its tangential

ivatiye (i.e., thec component, of w, and itsy derivative on the vertical boundaries or the

component, of w, and itsx derivative on the horizontal boundaries) are given at thendary
@ hus we differentiate the functional (3) according to therfremaining components ef,
to obtain four linear equations for these four remaining porents. This system is being

goEr these four components.

divergence preserving method described in SectitheHormal componem; = w;e“
of g4 the boundary pointis known. Thus at the boundary poimbonly the parallel component
ofu used when substituting into the divergence cairsti(4) (D? w),,, = (Df w)z(p) at
thmdary cellsz(p) € Z(p). For the normal component of (14) we use- = w;'*, or in

ot ds, for the boundary poiptthe contribution from the normal component of the operator

((ﬁp, i.e., either (11) or (12) is zero.

ction we show several numerical tests of the deeelanethod on different vector fields.
The vector fields are defined analytically. The nodal comptmef the vector field computed from

thg normal components are being compared with the exact yalires at the mesh nodes.
gically rectangular mesh the explicit form of diserderivatives of a nodal functiopat
Cell fomingl /2,7 + 1/21iS

7. NUMERICAL TESTS

(Git1,5+1 — 9i.) Wi j+1 — Yit1,5) + (Git1,5 — Ji,j+1) Wit1,5+1 — Yi,j)
/2,5+1/2 2Vii1/2,541/2

)

(Git1,541 — 9i5)(®iv1y — Tijp1) + (i1 — Gir1,5)(@ir1,5401 — i j)

w/%ﬂrlﬂ 2Vii1/2,541/2 ’

W 1, 1/2,j+1/2 1S the area of the cell+ 1/2, j + 1/2. The discrete divergence and curl acting
fr es to cells are computed from these discrete degaT he discrete divergence computed
from e formulas is equivalent to the divergence defined2). The discrete divergence
ted from the nodal components is compared with theatesdivergence in the cell computed
from ormal components (1). The discrete curl is congaith the exact value at the cell center.

The errors are evaluated in the max norm.

The normal components used here in the tests are given byitie/plues at the edges midpoints,
however they can be also defined as the integral averages abtmal components over the edge.
The resulting errors in the tables below are however vergecfor both definitions of the normal
componentsFor all tests, unless otherwise noted, we apply the free danyrconditions.

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid§0000)
Prepared usindldauth.cls DOI: 10.1002/fld

This article is protected by copyright. All rights reserved.



10 R. LISKA AND M. SHASHKOV
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Figure 6. Types of meshes: (a) - the smooth mesh; (b) - theoramdesh

7 s of meshes

E\mere the mesh covers the squarey) € [—1/2,1/2]%. The simplest mesh is an uniform
m wh/\/ x M square cells. A smooth non-orthogonal mesh [8] is obtainyethé® mapping

m x(&,m) = &+ 0.1sin(27€) sin(2mn) , y(&,n) =n+ 0.1sin(27) sin(27n) (16)

e uniform grid on the squafe 1/2,1/2]? in the spacd¢, ) into the same square i, y),
seed. 6 (a). A random non-smooth non-orthogonal mesheated from the uniform mesh
g of squares x h, with h = 1/M) by randomly moving all internal nodes in squares
with sidesh/4 centered at the position of the node in the uniform mesh, EpéKb).

7.1. Emooth test from [8]

In Jable] we present the results for the smooth and randorhesesith the smooth vector function
fr . The vector field is defined by

w=(z—y+2® -y’ z+y+2’+y°). 17)

%nt the results for the local reconstruction mettodiell as for the global divergence
prese™igg method. The results presented in Table | shoifdhall cases we observe the second

order convergence for the vector function itself and the firsler convergence for its curl. For

the local method we observe the first order convergence ®dibergence. For the divergence
preserving global method the divergence is preserved upetonachine precision. It is interesting

to note that the absolute values of the error for the same @redhesolution are almost the same
for the local and global divergence preserving methods.

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid§0000)
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DIVERGENCE PRESERVING RECONSTRUCTION 11

Table I. Maximum errors for the smooth test (17) vector field.

grid smooth non-smooth

method M w DIV CURL w DIV CURL
local 32 0.32E-2 0.10E-1  0.98E-2 0.20E-2 0.39E-1 0.21E-1
64 0.80E-3 0.26E-2 0.26E-2 0.54E-3 0.23E-1 0.14E-1
128 0.20E-3 0.64E-3  0.65E-3 0.14E-3 0.11E-1  0.74E-2
‘l—' 256 0.50E-4 0.16E-3 0.16E-3 0.34E-4 0.64E-2 0.42E-2

iv-preser 32 0.31E-2 0.65E-13 0.97E-2 0.21E-2  0.17E-1340©-1

64 0.80E-3 0.99E-13 0.26E-2 0.57E-3 0.28E-13 0.33E-1
128 0.20E-3 0.18E-12 0.65E-3 0.14E-3 0.77E-13 0.17E-1
L] 256 0.50E-4 0.43E-12 0.16E-3 0.39E-4 0.18E-12 0.94E-2

" Shyck like test from [8]

ér|

This is@ 1D non-smooth shock like test from [8]. The vectddfie defined by

w = (e*7 /(1 + ¢*°7),0). (18)

us

| we present the results for this function - the Hssare arranged in the same way as in
he convergence for the vector function is agairosdmrder in all cases. For the local

5

.

Table II. Maximum errors for the shock like test (18) vectetdi

d

smooth non-smooth
ethod M w DIV CURL w DIV CURL

cal 32 0.27E-1 O0.54E+0 0.15E+0 0.19E-1 0.37E+0 0.20E+0
64 0.77E-2 0.19E+0 0.47E-1 0.50E-2 0.12E+0 0.15E+0
128 0.20E-2 0.52E-1 0.13E-1 0.14E-2 0.81E-1 0.72E-1
256 051E-3 0.13E-1 0.32E-2 0.35E-3 041E-1  0.46E-1

div-preser 32 0.24E-1 0.65E-13 0.15E+0 0.17E-1  0.17E-13198t0
L— 64 0.65E-2 0.93E-13 0.47E-1 0.45E-2 0.30E-13 0.17E+0
128 0.17E-2 0.18E-12 0.13E-1 0.13E-2 0.74E-13  0.91E-1
o 256 0.41E-3 0.32E-12 0.32E-2 0.32E-3 0.16E-12 0.47E-1

div-preser 32 0.74E-2 0.82E-13 0.15E+0 0.61E-2 0.22E-1319Mt0
iston 64 0.20E-2 0.71E-13 0.47E-1 0.19E-2 0.29E-13 0.17E+0
! BCs 128 0.52E-3 0.17E-12 0.13E-1 0.50E-3 0.65E-13 0.91E-1
256 0.13E-3 0.32E-12 0.32E-2 0.14E-3 0.19E-12  0.45E-1

m nd the smooth mesh the convergence for the divergeiaclittle bit better than the first
r the local method and the random mesh the convegdenthe divergence is about first
r curl it is about the first order for all cases. We lddike to mention that for this “non-

of the “shock” and it is especially sensitive ingltase of the random mesh. Again, for the
global divergence preserving method the discrete divegenindeed preserved up to the machine
precision.

Table Il presents also results for the divergence presgriethod with thepiston boundary
conditions, which are presented in Section 6. The errork thi¢ pistonboundary conditions are
smaller than the results with the free boundary conditi@ngtie divergence preserving method.
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The local method with thpistonboundary conditions gives very similar errors (not showmable
II) as the local method with the free boundary conditions.

7.4. Noh-like velocity field test

This is a radially symmetric inward directed vector field= —|w|(z,y)/r, wherer = /22 + y?
magnitude

o 1—cos(m(r—"min)/a)
|W| - 2 e for ropin <7 < rpin +a

! 1 for r Z Tmin + @

whyre ®ge circular front position is at= ry,i, + a/2 and the width of the front is given by the
pMa. We use in our test the particular parametgrs = 0.2 anda = 0.1.
aximum errors for this test are presented in Table e Tonvergence for the vector
mls second order and the divergence is preservedhfordivergence preserving global
e also present the convergence for the projectiprof w to the tangential direction,
tmguld be zero for the radial field.

aX|mum errors for the Noh-like velocity fiel@he column labelled by, contains errors of the
projection ofw to the tangential direction.

m smooth non-smooth
ethod M w Wi DIV w Wi DIV
32 0.15E+0 0.32E-1 0.67E+01 0.13E+0 0.31E-1 0.50E+1
64 0.55E-1 0.11E-1 0.27E+01 0.41E-1 0.96E-2 0.28E+1
128 0.16E-1 0.29E-2 0.14E+01 0.12E-1 0.27E-2 0.16E+1
256 0.43E-2 0.76E-3 0.71E+00 0.33E-2 0.78E-3 0.75E+0
div-preser 32 0.72E-1 0.37E-1 0.85E-13 0.52E-1 0.50E-1 5B.23
64 0.22E-1 0.12E-1 0.17E-12 0.18E-1 0.18E-1 0.42E-13
128 0.68E-2 0.32E-2 0.42E-12 0.61E-2 0.59E-2 0.70E-13
256 0.17E-2 0.83E-3 0.46E-12 0.18E-2 0.17E-2 0.15E-12

s 8. CONCLUSION
developed a new divergence preserving method faretwnstruction of the Cartesian
c nts of the vector field at the mesh nodes from the gotied projections of the vector
fi ggihe normals to the edges. In this method the discratergences computed from the
gdafand from the normal components asectlythe sameFor the application of our method
in hyO™adynamics the vector field will be the fluid velocity damne might be interested in
conserving also the circulation (curl), the momentum orahergy. Our method does not conserve
these additional quantities and, e.g., the kinetic enemyservation would lead to non-linear
optimization. One cannot expect to conserve all quantities
We present numerical results for smooth and non-smootlowvéetds as well as for smooth and
non-smooth meshes. Numerical results demonstrate, thdigbrete divergence is in fact preserved

-
O
d
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up to the machine precision and that it does not affect theargence rate for the vector field itself
and the discrete curl.
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