

LA-UR-15-26303 (Accepted Manuscript)

Multi-scale predictions of massive conifer mortality due to chronic temperature rise

Mcdowell, Nathan Gabriel; Sevanto, Sanna Annika; Xu, Chonggang; Williams, Park; Rauscher, Sara; Koven, Charles; Domec, JC; Mackay, Scott; Fisher, Rosie; Pockman, William; Dickman, Lee Thoresen; Pangle, Rob; Limousin, JM; Ogee, Jerome; Allen, Craig; Jiang, X; Muss, Jordan; Breshears, David

Provided by the author(s) and the Los Alamos National Laboratory (2019-01-27).

To be published in: Nature Climate Change

DOI to publisher's version: 10.1038/nclimate2873

Permalink to record: <http://permalink.lanl.gov/object/view?what=info:lanl-repo/lareport/LA-UR-15-26303>

Disclaimer:

Approved for public release. Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

1 **Multi-scale predictions of massive conifer mortality due to chronic**
2 **temperature rise**

3
4
5 N.G. McDowell^{1*}, A.P. Williams^{1,2}, C. Xu¹, W.T. Pockman³, L.T. Dickman¹, S. Sevanto¹, R.
6 Pangle³, J. Limousin³, J. Plaut³, D. Scott Mackay⁴, J. Ogee⁵, J.C. Domec^{5,6}, C.D. Allen⁷, R.A.
7 Fisher⁸, X. Jiang⁸, J.D. Muss¹, D.D. Breshears⁹, S. A. Rauscher¹⁰, C. Koven¹¹

8
9
10
11 ¹Earth and Environmental Sciences Division, MS-J495, Los Alamos National Lab, Los Alamos,
12 NM 87545, USA. Correspondence: mcowell@lanl.gov

13 * Author for correspondence

14 ²Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964

15 ³Biology Department, University of New Mexico, Albuquerque, NM, USA

16 ⁴ Department of Geography, University at Buffalo, Buffalo, NY, USA

17 ⁵UMR 1391 ISPA, INRA-Bordeaux Sciences Agro, Villenave d'Ornon, 33140 France

18 ⁶Nicholas School of the Environment, Duke University, Durham, NC 27708, USA

19 ⁷U.S. Geological Survey, Fort Collins Science Center, Jemez Mountains Field Station, Los
20 Alamos, NM 87544 USA.

21 ⁸National Center for Atmospheric Research, Boulder, Colorado, 80305 USA.

22 ⁹School of Natural Resources and the Environment, and Department of Ecology and
23 Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA

24 ¹⁰Department of Geography, University of Delaware, Newark, DE, 19716

25 ¹¹Earth Sciences Division, Lawrence Berkeley National Lab, 1 Cyclotron Rd., Berkeley, CA
26 94720

27

28

29 ***Submission as a Letter to Nature Climate Change***

30

31 **Introduction:** Global temperature rise and extremes accompanying drought threaten forests^{1,2}
32 and their associated climatic feedbacks^{3,4}. Our ability to accurately simulate drought-induced
33 forest impacts remains highly uncertain^{5,6} in part due to our failure to integrate physiological
34 measurements, regional-scale models, and dynamic global vegetation models (DGVMs). Here
35 we show consistent predictions of widespread mortality of needleleaf evergreen trees (NET)
36 within Southwest USA by 2100 using state-of-the-art models evaluated against empirical
37 datasets, whilst the less mechanistic DGVMs lacked sufficient vegetation resolution to predict
38 this regional change but nonetheless predicted $\geq 50\%$ loss of northern hemisphere NET by 2100.
39 Experimentally, dominant Southwest USA NET species died when they fell below predawn
40 water potential (Ψ_{pd}) thresholds (April-August mean) beyond which photosynthesis, hydraulic
41 and stomatal conductance, and carbohydrate availability approached zero. The evaluated regional
42 models accurately predicted NET Ψ_{pd} , and 91% of predictions (10 out of 11) exceeded mortality
43 thresholds within the 21st century due to temperature rise. The independent DGVMs predicted
44 $\geq 50\%$ loss of northern hemisphere NET by 2100, consistent with the NET findings for
45 Southwest USA. Notably, the global models underestimated future mortality within Southwest
46 USA, highlighting that predictions of future mortality within global models may be
47 underestimates. Taken together, the validated regional predictions and the global simulations
48 predict widespread conifer loss in coming decades under projected global warming.

49
50

51 Forest mortality has been widely documented in recent years^{1,2,7,8} and has accelerated in
52 concert with rising CO₂ and temperature (^{2,7}; Fig. 1A, SI 1). The terrestrial carbon sink could be
53 severely diminished over the next century if this acceleration of tree mortality continues with
54 warming and increased extreme drought events^{5,9}, causing a positive feedback on global
55 warming^{3,10}. Unfortunately, predictions of the terrestrial carbon sink vary dramatically across
56 models (e.g. ⁵) in part because the mechanisms of tree death are still poorly understood⁶ thus
57 forecasts remain largely speculative.

58 Here we demonstrate that predawn plant water potential (Ψ_{pd}), through its impact on
59 canopy scale stomatal conductance (G_s) and regulation of carbon and water balance is a key
60 predictive element to mechanistically represent vegetation mortality. We extend this analysis to
61 include multiple process-based and empirical models to investigate the likelihood of future
62 mortality of needleleaf evergreen trees (NET) in Southwest USA. We then compare these results
63 to those from the dynamic global vegetation models (DGVMs) from the CMIP5 (Coupled Model
64 Intercomparison Project, Phase 5) to examine if completely independent simulations provide
65 similar predictions for the NET biome as predicted for Southwest USA. This last step further
66 allows comparison within the Southwest USA of the un-evaluated and less mechanistic DGVMs
67 predictions against the evaluated simulations of the regional models.

68 Plants must balance multiple demands upon stomatal control during drought: severe
69 water potential declines promote hydraulic failure¹¹, while G_s reductions limit this decline and
70 minimize the risk of hydraulic failure but thus inhibit CO₂ diffusion into leaves¹². G_s decline *per*
71 *se* does not induce mortality, but theory and evidence point to drought-induced declines in
72 hydraulic function and photosynthesis (via G_s decline) as the primary drivers of death because of
73 their downstream impacts leading to carbon starvation, hydraulic failure, and biotic attack,

74 particularly if G_s is low for long durations^{6,13-17}. The G_s response to drought varies across the
75 isohydry-anisohydry continuum of hydraulic strategies¹⁸ (Fig. 1B, SI 2). Across this continuum
76 of hydraulic strategies, G_s declines with decreasing soil water potential (Ψ_s) or leaf water
77 potential (Ψ_l), decreasing hydraulic conductance (k), and increasing vapor pressure deficit (D)
78 (Fig. 1B):

79

$$80 \quad G_s = \frac{k(\Psi_s - \Psi_l)c}{D} \quad (1).$$

81

82 Equation (1), where c is a coefficient representing air and water thermodynamic properties, is a
83 simplified model (SI3) that illustrates the dependence of G_s , and therefore photosynthesis, on
84 drought induced declines in k (which declines along the continuum of hydraulic failure during
85 drought), Ψ_s , and increasing D (the atmospheric driving force for transpiration). Equation (1)
86 has been validated in numerous studies (SI3), and assumes steady-state conditions and adequate
87 coupling between the canopy and the atmosphere (reviewed in SI3 and in¹⁷). Because survival
88 depends on sustained maintenance of a net positive G_s ^{6,12-17}, equation (1) also suggests mortality
89 may increase when drought causes a sustained decrease in Ψ_s or k , and an increase in D (Fig.
90 1B). Rising D is potentially the largest threat to survival associated with climate change because
91 global temperature rise is driving a chronic rise in D ²⁰.

92 We first combined observational and experimental datasets with models (using both
93 published and unpublished data and simulations¹³) to examine the likelihood of future mortality
94 and survival for piñon pine and juniper trees (*Pinus edulis* and *Juniperus monosperma*) in
95 Southwest USA. In a field experiment, we removed ~48% of ambient rainfall from three 1600
96 m² plots for five years in a piñon-juniper woodland in central New Mexico, USA (SI 4). We

97 made measurements of Ψ_{pd} , G_s and other variables critical to plant survival during drought⁶.
98 Across the three drought plots, the mature (> 100 years old) piñon pine experienced ~80%
99 whole-tree mortality; trees with April-August mean (growing season²⁰) Ψ_{pd} averaging -2.4 MPa
100 or lower all died (Fig. 2A, SI 4). Crown dieback of juniper started after a continuous April-
101 August period with Ψ_{pd} below -5.3 MPa, resulting in ~50% canopy loss and approximately 25%
102 whole-tree mortality. The Ψ_{pd} value associated with mortality was consistent with the Ψ value
103 associated with zero G_s and zero photosynthesis (Ψ_{A0}) for each species (Fig. 2B, 2C, see SI5 for
104 all regression statistics from Fig 2). Consistent exceedance of Ψ_{pd} below Ψ_{A0} during April-
105 August (i.e. maintaining negative Ψ_{A0} values) resulted in downstream consequences on the
106 physiology of both species, including severe levels of hydraulic failure (percentage loss of
107 whole-tree conductance; Fig. 2D), near-zero whole-tree k (Fig. 2E), and reductions in foliar
108 starch (Fig. 2F). Extreme values in Figure (2B-F) were consistent with the Ψ_{pd} mortality
109 thresholds for each species (Fig. 2A). Additionally, formation of resin ducts for defense against
110 biotic attack declined to nearly zero in the pine trees that died but remained high for those that
111 survived²¹. Therefore, all potential mechanisms of mortality reached similarly critical values at
112 or before species-specific Ψ_{A0} values (Fig. 2; SI6).

113 The Ψ_{pd} mortality thresholds identified from the drought experiment (Fig. 2) validated
114 well against the world's longest continuous Ψ_{pd} record, also for piñon pine and juniper trees in
115 New Mexico (an extension of^{22,23}; SI Fig. 1A). Using this long-term dataset, we assessed if
116 precipitation and D predicted by the CMIP5 multi-model ensembles could be used to infer our
117 long-term Ψ_{pd} observations (1992-2013). Observed annual precipitation and D together explain
118 70 and 80% of the annual variation in growing-season mean Ψ_{pd} for pine and juniper,
119 respectively, at the long-term observational site (SI Fig. 1). An independent test against the

120 drought manipulation site (Fig. 2) also produced a strong predictive relationship for both species
121 (SI Figs. 1,2).

122 The strength of empirical models (e.g. equations SI 2,3) is that they reflect the
123 observations without need to simulate processes; however, they may not capture future non-
124 linearity — in this case, responses to a future world with higher temperature, D , and CO₂. We
125 investigated simulations by the process-based models TREES, MuSICA and ED(X) that account
126 for non-linear effects of changes in these variables (see SI7 and SI Fig. 3). After model tuning
127 (SI6) each model simulated each species Ψ_{pd} as accurately as the empirical model (SI Fig. 2).

128 The “business-as-usual” greenhouse gas emissions scenario (RCP 8.5) from CMIP5
129 suggests that by 2100 AD, precipitation will decrease by 10% and D will increase by 33% in
130 Southwest USA (Fig. 3A, B). Using these climate projections to drive the empirical and process-
131 based models resulted in relatively consistent predictions of declining Ψ_{pd} over time for both
132 piñon and juniper (SI Figs. 4,5), falling below the Ψ_{A0} threshold for both species by 2020-2060
133 (Fig. 3C, SI Fig. 4). This outcome is delayed by approximately one decade when RCP 4.5, a
134 more optimistic greenhouse gas reductions scenario, is used (SI Fig. 6). These predictions are
135 consistent with NET losses for a tree-ring-based forest drought stress model²⁰ and for both
136 Southwest and Northwest USA from the Community Earth System Model (CESM²⁴; Fig. 3C).
137 Averaging all models shown in Figure (3C) suggests that 72% of the regions NET forests will
138 experience mortality by 2050, with nearly 100% mortality of Southwest USA forests by 2100.

139 The simulations shown in Figure (3C) suggest that Southwest NET species, even the
140 particularly drought-tolerant piñon pine and juniper trees, are likely to experience widespread
141 mortality before 2100. Substantial documented piñon mortality in the early 2000s^{1,20,22,23} and
142 widespread observations of recent juniper mortality (SI Fig. 1B) in Southwest USA are

143 consistent with this result, despite juniper's reputation as being this region's most drought
144 tolerant conifer²³. We note that all predictions shown in Figure (3C) are independent except for
145 their use of CMIP5 ensemble climate forecasts. ED(X), the most conservative model, predicted
146 two less severe trends (Fig. 3C). First, ED(X) indicated that juniper could survive well into the
147 22nd century (Figure 3C) due in part to juniper's particularly low vulnerability to cavitation,
148 which is rare amongst the NET plant functional type²⁵. Second, ED(X) was run for 72 one-
149 degree grid cells over Southwest USA (Fig. 3D), predicting that mortality will occur primarily in
150 warmer southern locations. ED(X) results suggest that temperature is the primary driver of
151 mortality through increasing D (SI Figure 7). Given the importance of temperature to tree
152 survival, future forest management may take advantage of potential refugia in cooler landscape
153 locations and planting of warm-adapted genotypes.

154 We placed our results for the Southwest USA into a global context through comparison to
155 independent NET simulations for the Northern Hemisphere from four DGVMs that were run
156 with dynamic vegetation enabled (SI 8). This comparison allowed building of confidence in our
157 predictions if the independent, non-evaluated DGVMs provided similar results for the NET
158 biome at the global scale as those from the evaluated regional process models, and this further
159 allowed direct regional comparison of the DGVMs to the evaluated and more detailed process
160 model predictions for Southwest USA. The first three DGVM simulations are Earth System
161 Models (ESMs) from the CMIP5 archive that have interacting land-atmosphere-ocean dynamics,
162 and are entirely independent of those shown in Figure (3C), thus allowing us to examine the
163 robustness of our predictions of NET loss under alternative modeled drivers and assumptions for
164 climates outside the Southwest USA. These ESMs do not utilize the Ψ_{pd} thresholds identified in
165 this analysis because such extrapolation of a model developed in Southwest USA to wetter,

166 cooler regions of the NET biome, with other species and climate, would likely be inaccurate.
167 These ESMs instead rely on the climate envelope and low growth thresholds typical of DGVMs⁶
168 making them largely independent of the Southwest USA simulations shown in Figure (3C). All
169 three ESMs simulated large NET losses throughout the temperate and southern boreal regions
170 although NET forest gains in MPI outweighed the losses (-14.5 million km² on average; Fig. 4A-
171 C; see SI 9 for calculation explanation). Our fourth DGVM (CESM) simulated NET
172 distributions through 2100 using coupled land-atmosphere dynamics forced by eight different sea
173 surface temperature (SST) scenarios from fully coupled GCMs provided by CMIP3²⁶. SST
174 patterns play an important role in shaping how precipitation may change in a warmer world
175 (e.g.²⁷); therefore the use of different SSTs generates a range of potential future climate scenarios
176 within the same model framework. The eight simulations agreed that at least 50% of the NET
177 plant functional type could be lost within the northern hemisphere by 2100, as indicated by the
178 red swath across the temperate zone (Fig. 4D). Therefore, all four DGVMs and the more
179 rigorous analysis for Southwest USA predict potential large scale NET mortality despite
180 covering different regions and utilizing different mortality algorithms.

181 Despite the consistent predictions of widespread NET mortality highlighted in both Fig.
182 3C and Fig. 4A-D, a notable discrepancy emerges through comparison of the DGVMs
183 predictions of mortality in Southwest USA (Fig. 4E-H) to those of the validated ED(X) model
184 (Figure 3D). This may be caused by the lack of NET coverage in Southwest USA as prescribed
185 by the DGVMs, by the DGVMs lumping of NET species into one plant functional type, and by
186 their simplistic climate envelope and low-growth mortality thresholds. Assuming that the
187 accuracy of the predictions in Fig. (3C) is better than that of the DGVMs (because the models in
188 Fig. 3C were developed and validated for this region), the discrepancy thus suggests that the

189 DGVMs may be too conservative in their predictions of NET mortality, at least for Southwest
190 USA, and provides motivation to improve the realism and evaluate the performance of future
191 DGVM simulations. We note two additional caveats to the results shown in Fig. (4). First, global
192 DGVM predictions have never been validated, so while their predictions represent the state-of-
193 the-art in global simulations, we cannot absolutely trust their outcomes to be realistic. Second,
194 there are multiple processes not included in the models that could cause: (1) overestimates of
195 future mortality, e.g., by not accounting for acclimation, adaptation, and islands of refugia (such
196 as those associated with beneficial topographic settings)²⁸; or conversely (2) underestimate future
197 mortality by not including processes such as acceleration of insect population dynamics,
198 increases in frequency and severity of wildfires, or failure of seedling recruitment^{6,20}.

199 The general agreement of rising mortality rates of the NET biome located within
200 Southwest USA (Fig. 3), western and boreal North America (Fig. 1A^{2,7}), and the northern
201 hemisphere (Fig. 4), based on models and datasets with very different sets of assumptions and
202 mechanisms, suggests a high likelihood that widespread mortality of NET forests will occur by
203 2100. The recently accelerating NET mortality rates are associated with warming (e.g. SI Fig. 7;
204 and see^{2,7,29}). The rise in juniper mortality likelihood has alarming implications for conifers in
205 general because juniper historically experienced far less mortality than other conifers during
206 droughts^{1,13,22,23}. The consequences of such broad-scale change in forest cover are substantial,
207 including massive transfer of carbon to a decomposable pool¹⁰ and changes in the surface energy
208 budget^{3,4}. The carbon consequences of tree mortality across the NET biome averaged 10 Pg C
209 for the models shown in Fig. (4A-C), which is equivalent to predicted boreal carbon loss over the
210 next century³⁰. The projections are more optimistic for the far northern latitudes (Fig. 4);

211 however, these boreal systems have lower carbon fluxes than the majority of temperate zone
212 forests.

213 These simulations of climate-induced vegetation change (Fig. 3C) are among the most
214 rigorously tested by both experimental and observational data sets of physiological conditions
215 associated with tree mortality. The ensemble analyses in this study consistently highlight
216 vulnerability to collapse of the NET biome across many parts of the globe in coming decades,
217 driven by warming temperatures and associated drought stress. Such rapid and extensive forest
218 losses are likely to have profound impacts on carbon storage, climate forcing, and ecosystem
219 services³¹.

220

221 **References and Notes**

222 1. C. D. Allen *et al.*, A global overview of drought and heat-induced tree mortality reveals
223 emerging climate change risks for forests. *Forest Ecology and Management* **259**, 660-684
224 (2010).

225 2. S. Peng *et al.*, A drought-induced pervasive increase in tree mortality across Canada's boreal
226 forest. *Nature Climate Change* **1**, 467-471 (2011).

227 3. G. B. Bonan, Forests and climate change: Forcings, feedbacks, and the climate benefits of
228 forests. *Science* **320**, 1444-1449 (2008).

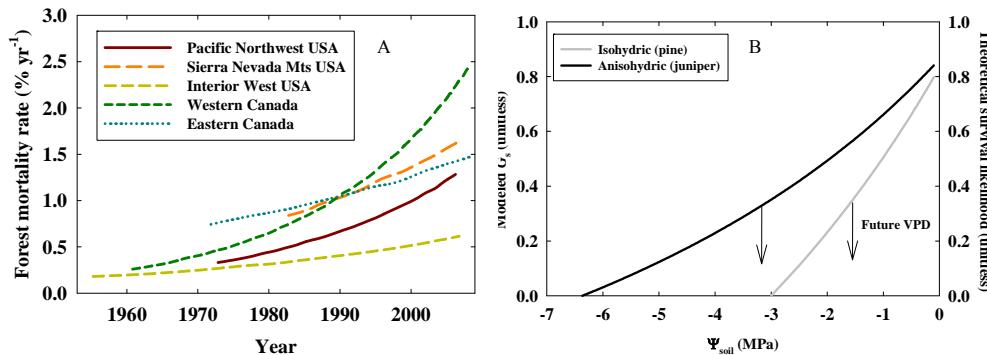
229 4. H. Maness, P. J. Kushner, I. Fung, Summertime climate response to mountain pine beetle
230 disturbance in British Columbia. *Nature Geoscience* **6**, 65-70 (2012).

231 5. P. Friedlingstein *et al.* Uncertainties in CMIP5 Climate Projections due to Carbon Cycle
232 Feedbacks. *Journal of Climate* **27**, no. 2 (2014).

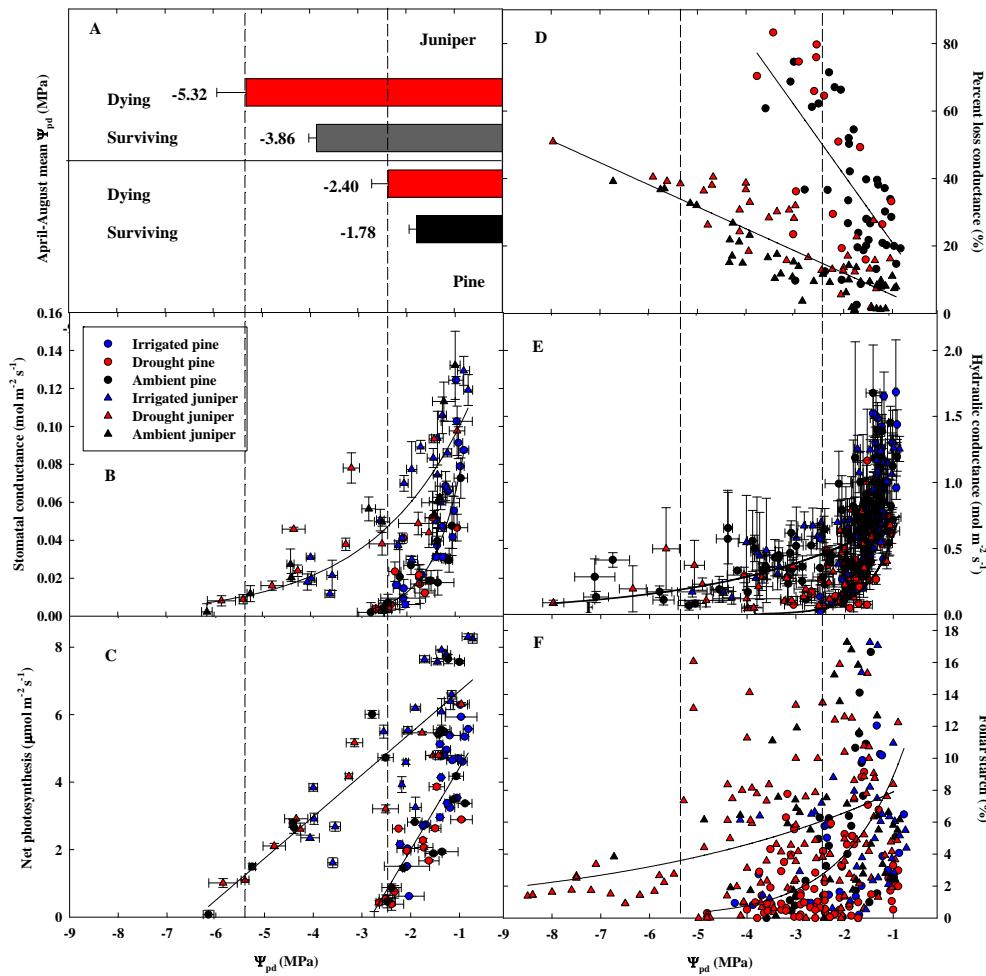
233 6. N. G. McDowell *et al.*, Interdependence of mechanisms underlying climate-driven vegetation
234 mortality. *Trends in Ecology and Evolution* **26**, 523-532 (2011).

235 7. P. J. Van Mantgem *et al.*, Widespread increase of tree mortality rates in the western United
236 States. *Science* **323**, 521-524 (2009).

237 8. O. L. Phillips *et al.*, Drought sensitivity of the Amazon rainforest. *Science* **323**, 1344-47
238 (2009).


239 9. M. Reichstein *et al.*, Climate extremes and the carbon cycle. *Nature* **500**, 287-295 (2013).

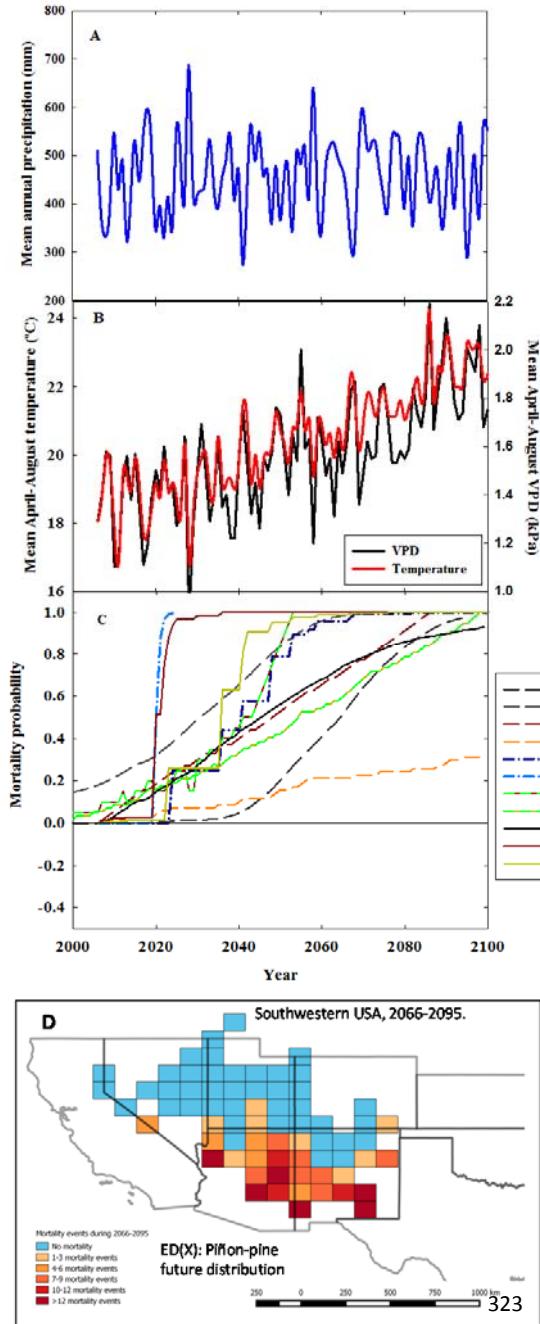
240 10. W. A. Kurz *et al.*, Mountain pine beetle and forest carbon feedback to climate change. *Nature*
241 **452**, 987-990 (2008).


- 242 11. J. Plaut, E.A. *et al.*, Hydraulic limits on water use under experimental drought in a piñon-
243 juniper woodland. *Plant, Cell and Environment* **35**, 1601-1617 (2012).
- 244 12. I. R. Cowan, T. J. Givnish, Economics of carbon fixation in higher plants, in *On the economy*
245 *of plant form and function* (Cambridge University Press, Cambridge, 1986), pp. 133-170.
- 246 13. N. G. McDowell *et al.*, Evaluating theories of drought-induced vegetation mortality using a
247 multi-model-experiment framework. *New Phytologist* **200**, 304-321 (2013).
- 248 14. P.J. Mitchell *et al.*, Drought response strategies define the relative contributions of hydraulic
249 dysfunction and carbohydrate depletion during tree mortality. *New Phytologist* **197**, 862-872
250 (2013).
- 251 15. R. Poyatos *et al.* Drought-induced defoliation and long periods of near-zero gas exchange
252 play a key role in accentuating metabolic decline of Scots pine. *New Phytologist* **200**, 388-401
253 (2013).
- 254 16. S. Sevanto *et al.* How do trees die? A test of the hydraulic failure and carbon starvation
255 hypotheses. *Plant, Cell and Environment* **37**, 153-161 (2013).
- 256 17. N. McDowell, C. Allen. Darcy's law predicts widespread forest loss due to climate
257 warming. *Nature Climate Change* in press.
- 258 18. J. Martínez-Vilalta *et al.* A new look at water transport regulation in plants. *New Phytologist*
259 **204**, 105-115 (2014).
- 260 19. D. Whitehead, P. G. Jarvis, in *Water deficits and growth*, T.T. Kozlowski, Ed. (Academic
261 Press, New York, 1981), vol. 6, pp. 49-152.
- 262 20. A. P. Williams *et al.*, Temperature as a potent driver of regional forest drought stress and tree
263 mortality. *Nature Climate Change* **3**, 292-297 (2013).
- 264 21. M. L. Gaylord *et al.*, Drought predisposes piñon-juniper woodlands. *New Phytologist* **198**,
265 567-568 (2012).
- 266 22. N. G. McDowell *et al.*, Mechanisms of plant survival and mortality during drought: why do
267 some plants survive while others succumb? *New Phytologist* **178**, 719-739 (2008).
- 268 23. D. D. Breshears *et al.*, Tree die-off in response to global-change-type drought: mortality
269 insights from a decade of plant water potential measurements. *Frontiers in Ecology and*
270 *Environment* **7**, 185-189 (2009).
- 271 24. X. Jiang *et al.*, Projected future changes in vegetation in western North America in the 21st
272 century. *Journal of Climate*, 10.1174/JCLI-D-12-00430.1 (2013).
- 273 25. B. Choat *et al.*, Global convergence in the vulnerability of forests to drought. *Nature* **491**,
274 752-755 (2012).
- 275 26. Gerald A. Meehl *et al.*, The WCRP CMIP3 multimodel dataset: A new era in climate change
276 research. *Bulletin of the American Meteorological Society* **88**, 1383-1394 (2007).
- 277 27. S.A. Rauscher, F. Kucharski, D. B. Enfield, The role of regional SST warming variations in
278 the drying of meso-America in future climate projections. *J. Climate*, **24**, 2003–2016 (2011).

- 279 28. Lloret, Francisco, Adrian Escudero, José María Iriondo, Jordi Martínez-Vilalta, and
280 Fernando Valladares. Extreme climatic events and vegetation: the role of stabilizing processes.
281 *Global Change Biology* **18**, no. 3, 797-805 (2012).
- 282 29. Carnicer, Jofre, Marta Coll, Miquel Ninyerola, Xavier Pons, Gerardo Sánchez, and Josep
283 Peñuelas. Widespread crown condition decline, food web disruption, and amplified tree mortality
284 with increased climate change-type drought. *Proceedings of the National Academy of Sciences*
285 **108**, no. 4 (2011): 1474-1478.
- 286 30. C.D. Koven. Boreal carbon loss due to poleward shift in low-carbon ecosystems. *Nature
287 Geoscience*, **6**, 452-456 (2013).
- 288 31. Settele, J., R. Scholes, R. Betts, S. Bunn, P. Leadley, D. Nepstad, J.T. Overpeck, and M.A.
289 Taboada, 2014: Terrestrial and inland water systems. In: *Climate Change 2014: Impacts,
290 Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working
291 Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change*
292 Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee,
293 K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R.
294 Mastrandrea, and L.L. White (eds.). Cambridge University Press, Cambridge, United Kingdom
295 and New York, NY, USA, pp. 271-359.

296
297
298 **Acknowledgments:** This work was funded by the Department of Energy, Office of Science, Los
299 Alamos National Lab's Lab Directed Research and Development program, by NSF-EAR-
300 0724958 and NSF-EF-1340624, by Department of Agriculture AFRI-NIFA program, by
301 U.S.G.S. Climate and Land Use Program, and by a National Science Foundation grant to the
302 University of New Mexico for Long Term Ecological Research.
303

307 **Figure 1A):** Reported mortality observations are increasing throughout North America, across a
 308 mean annual precipitation range of 202 to 3928 mm yr^{-1} and a mean annual temperature range of
 309 -5.7 to 12.0°C (27). **1B):** Predictions of stomatal conductance and by inference, survival of
 310 relatively isohydric and anisohydric species, in response to decreasing soil water potential.
 311 Rising future D forces a shift downward in the curves, thereby reducing G_s and survival
 312 likelihood.



314

315 **Figure 2A). Pre-dawn Ψ measurements are strongly correlated with the mechanisms of**
 316 **mortality**⁶. Trees that die of each species averaged more negative Ψ from April through August
 317 **than trees that survived (p<0.01 for both species). Vertical lines demarcate thresholds for pine and**
 318 **juniper. B) Stomatal conductance, C) net photosynthesis, D) modeled whole-tree percent loss of**
 319 **conductance (hydraulic failure), E) measured whole-tree hydraulic conductance, and F) foliar**
 320 **starch all declined with Ψ_{pd} for both species.**

321

322

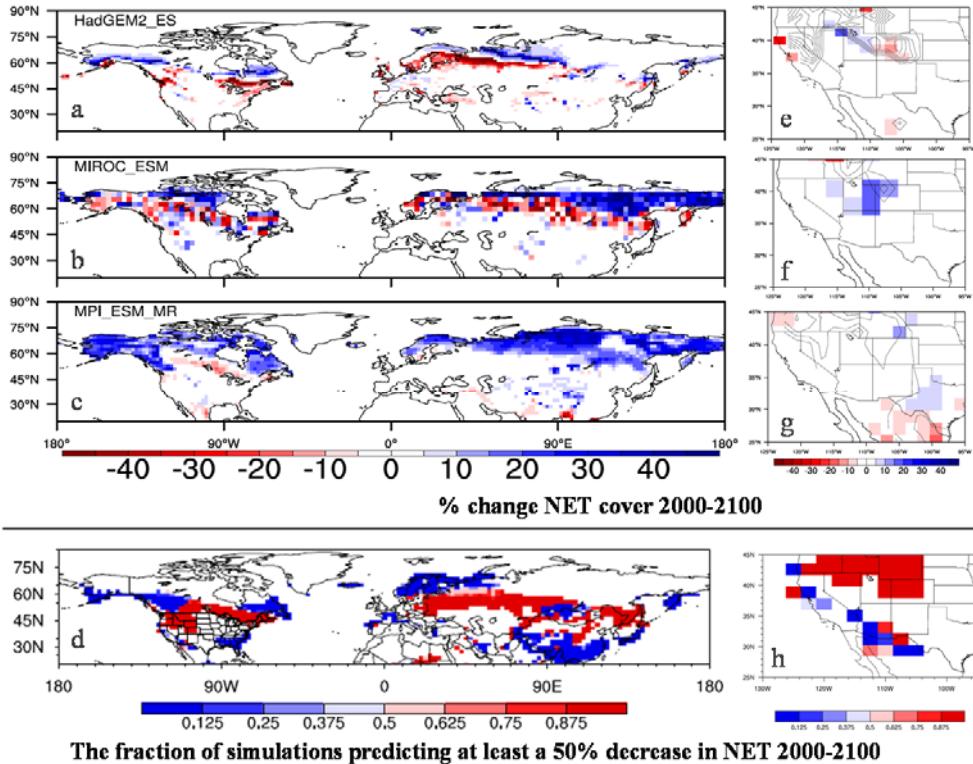


Figure 3. Ensemble forecasts from CMIP5, RCP 8.5, of (A) mean annual precipitation and (B) mean April-August vapor pressure deficit and temperature for the distribution of pine-juniper woodlands in the Southwest USA. (C) Predictions of the probability of future NET mortality events in the Southwest USA based on CMIP5 climate predictions and a variety of modeling approaches. Mortality was a function of simulated Ψ_{pd} exceeding Ψ_{A0} throughout April-August in the empirical model and ED(X), TREES, and MuSICA. CLM²⁴ used its own mortality algorithms and the Forest Drought Stress Index²⁰ used a threshold index based on historical observations. (D) ED(X) simulations of the geographic pattern of pine-juniper mortality in the Southwest USA for RCP8.5 for the period 2066-2095. ED(X)

simulations suggests the southern half of the range is more likely to experience mortality than the northern half. This is particularly due to warming, with an apparent threshold warming of 1.95 °C (SI Fig. 7). This regional heterogeneity may partially explain ED(X)'s relatively conservative mortality predictions (Fig. 3C).

324

325

326

327 **Figure 4. Dynamic global vegetation models predictions of needleleaf evergreen tree (NET)**
 328 **percentage losses between 2000-2100.** a) HadGem2, b) MIROC_ESM, c) MIP_ESMLR, and
 329 d) CESM. Panels (a-c) show the percent change in NET cover between 2000 and 2100. d) The
 330 fraction of eight CESM runs with different sea surface temperature warming patterns, showing
 331 the model agreements that at least 50% of NET cover will be lost by 2100. Panels (e-h) are
 332 blow-ups of panels (a-d) for Southwestern USA, intended for comparison to Figure (3d). (e-g)
 333 are HadGem2, MIROC_ESM, MIP_ESMLR with no change in representation of the results.
 334 Isolines in panels e-g show current NET distributions (in 10% coverage increments). Panels (d
 335 and h) are presented as the fraction of models that simulate a 50% decrease in NET coverage, to
 336 allow more direct comparison to Figure (3d). All simulations are independent of those done for
 337 Southwest USA.

338

Supporting Information for

339 **Convergent predictions of massive conifer mortality due to chronic** 340 **temperature rise**

341

342 N.G. McDowell, A.P. Williams, C. Xu, W.T. Pockman, T. Dickman, S. Sevanto, R. Pangle, J.
343 Limousin, J. Plaut, D. Scott Mackay, J. Ogee, J.C. Domec, C.D. Allen, R.A. Fisher, X. Jiang, J.
344 Muss, D.D. Breshears, S. A. Rauscher, C. Koven

345

346 **Author contributions**

347 ¹Contributed to development of the project and critical important contribution to analysis

348 ²Contributed to field work critical to the project

349 ³Contributed to model simulations and data analysis critical to the project

350 ^{1,2}N.G. McDowell, ^{1,3}A.P. Williams, ^{1,3}C. Xu, ¹W.T. Pockman, ²T. Dickman, ²S. Sevanto, ²R.
351 Pangle, ²J. Limousin, ²J. Plaut, ^{1,3}D. Scott Mackay, ^{1,3}J. Ogee, ^{1,3}J.C. Domec, ¹C.D. Allen, ^{1,3}R.A.
352 Fisher, ^{1,3}X. Jiang, ³J. Muss, ^{1,2}D.D. Breshears, ³S. Rauscher, ³C. Koven

353

354 **Material and methods. Material provided in the order of presentation in the main text.**

355 **SI 1:** Figure 1a description

356 **SI 2:** Figure 1b description

357 **SI 3:** Equation (1) assumptions

358 **SI 4:** Methods associated with Figure 2

359 **SI Figure S1**, and associated predictive equations for Ψ_{pd}

360 **SI 5:** Regressions for Figure 2.

361 **SI 6:** References regarding foliar starch

362 **SI Figure S2**

363 **SI 7:** Model-specific developments, application, and full descriptions (associated with Figure 3)

364 **SI Figure S3**

365 **SI Figure S4**

366 **SI Figure S5**

367 **SI 8:** Calculations of mortality probability (associated with Figure 3)

368 **SI Figure S6**

369 **SI Figure S7**

370 **SI 9:** Methods associated with Figure 4.

371 **SI 1:** Figure 1a shows the trend in mortality over time from five regions. These data were
372 previously published in^{2,7} and were graciously provided by the lead authors.

373
374 **SI 2:** Figure 1b shows predictions of stomatal conductance from equation (1) using a range of
375 soil water potentials and an assumed vapor pressure deficit of 1 kPa, with anisohydric species
376 water potential gradient declining with soil water potential at 50% the rate of the isohydric
377 species. Anisohydric species are rare amongst NET species, with juniper being amongst the most
378 widespread and drought tolerant. Pines, in contrast, are relatively isohydric (for example²⁰).

379
380 **SI 3:** Equation (1) is a fundamental tenet of plant hydraulic theory and has been validated in
381 numerous studies. Most importantly, it has been validated with high rigor and accuracy in field
382 studies (the scale of interest to this study) by Whitehead et al 1984, Whitehead 1998, Oren et al.
383 1999, McDowell et al. 2006, 2008 and Phillips et al. 2002. Equation (1) assumes that vegetation
384 tends toward space-filling relationships (West et al. 1999) that optimize carbon gain for water
385 loss (Cowan and Givnish 1986). Papers in support of Darcy's law derived for trees (equation 1):
386

387 McDowell NG, White S, Pockman WT. Transpiration and stomatal conductance across a steep
388 climate gradient in the southern Rocky Mountains. *Ecohydrology*, **1**:193-204. (2008)

389 McDowell NG, Adams HA, Bailey JD, Hess M, Kolb TE. Homeostatic maintenance of
390 ponderosa pine gas exchange in response to stand density changes. *Ecol Appl* **16**(3):1164-1182
391 (2006)

392 Oren R, Sperry JS, Katul GG, Pataki DE, Ewers BE, Phillips N, Schäfer K VR. Survey and
393 synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit.
394 *Plant Cell and Environ* **22**: 1515-1526. (1999)

395 Phillips N, Bond BJ, McDowell NG, Ryan MG. Canopy and hydraulic conductance in young,
396 mature and old Douglas-fir trees. *Tree Physiol* **22**:205-211 (2002)

397 Whitehead D, Edwards WRN, Jarvis PG. Conducting sapwood area, foliage area, and
398 permeability in mature trees of *Picea sitchensis* and *Pinus contorta*. *Can J For Res* **14**:940-947.
399 (1984)

400 Whitehead D. Regulation of stomatal conductance and transpiration in forest canopies. *Tree
401 Physiol.* **18**:633-644. (1998)

402 Cowan I. R., Givnish T. J., Economics of carbon fixation in higher plants, in *On the economy of
403 plant form and function* (Cambridge University Press, Cambridge, 1986), pp. 133-170.

404 West G.B., Brown J.H., Enquist B.J., A general model for the structure and allometry of plant
405 vascular systems. *Nature* **400**, 664-667 (1999).

406
407 **SI 4:** The results shown in Figure 2 are all from the Sevilleta Long Term Ecological Research
408 (LTER) project at the Sevilleta National Wildlife Refuge in central New Mexico, USA (Pangle
409 et al. 2012). Our experimental plots were established on the eastern slope of the Los Pinos
410 Mountains (34°23'11" N, 106°31'46" W) in the northeastern corner of the wildlife refuge at a

411 mean elevation of 1911m. The site is a piñon pine (*Pinus edulis*, Engelm.) and juniper
412 (*Juniperus monosperma* (Engelm.) Sarg.) woodland, with piñon and juniper basal area and
413 canopy coverage that averaged $20.0 \text{ m}^2 \text{ ha}^{-1}$ and 36.7% respectively across the study site.
414 Climate records (20-yr, 1989-2009) from a nearby LTER meteorological station (Cerro Montoso
415 #42; <http://sev.lternet.edu/>) indicate a mean annual precipitation total of 362.7 mm/yr. The
416 region is strongly influenced by the North American Monsoon, with a large fraction of annual
417 precipitation occurring in July, August, and September. Mean annual temperature (20-yr) at this
418 nearby LTER site was 12.7 °C, with a mean July maximum of 31.0 °C and a mean December
419 minimum of -3.3 °C. In total, our study site consisted of 12 experimental plots located in three
420 replicate blocks that varied in slope %, aspect, and soil depth. A more detailed description and
421 discussion of the vegetative cover and soil properties at this site have been presented elsewhere
422 (see Pangle et al. 2012 and Plaut et al 2012).

423 The study utilized four different experimental treatments applied in three replicate blocks.
424 The four experimental treatments included 1) un-manipulated, ambient control plots, 2) drought
425 plots, 3) supplemental irrigation plots, and 4) cover-control plots. The three replicated blocks
426 differed in their slope and aspect. One block was located on south facing slopes, one on north
427 facing slopes, and one in a flat area of the landscape. Drought, cover-control, and irrigation
428 infrastructure was installed in 2007, with drought treatments effectively in place by August 2007.
429 The irrigation system was tested in 2007, and supplemental irrigations began in year 2008.

430 To effectively reduce water availability to trees, we constructed three replicated drought
431 structures that covered an area of $40 \text{ m} \times 40 \text{ m}$ (1600 m^2). Each drought plot consisted of 29
432 parallel troughs running across the 40 m plot, constructed with overlapping $3 \text{ ft} \times 10 \text{ ft}$ ($0.91 \text{ m} \times$
433 3.05 m) pieces of thermoplastic polymer sheets fixed to horizontal rails that were approximately
434 1m in height. The plastic sheets were bent into a concave shape to collect and divert the
435 precipitation off plot. The total plastic coverage in each plot is $\sim 45\%$ ($\pm 1\%$) of the 1600 m^2 plot
436 area, resulting in $\sim 55\%$ of ambient precipitation reaching the ground in drought plots. For an in-
437 depth discussion that compares the severity of our experimentally imposed drought to historical
438 drought conditions observed in the past 100 years, please see Plaut et al. 2013.

439 In addition, we built cover-control infrastructures to investigate the impact of the plastic
440 drought structures independent of changes in precipitation. The cover-control treatment had the
441 same dimensions as the drought plots, with plastic attached to the rails in a convex orientation so
442 precipitation would fall off the plastic and onto the plot, thus these plots received the same
443 amount of precipitation as un-manipulated ambient plots. Our irrigation system consisted of
444 above-canopy sprinkler nozzles configured to deliver a supplemental rainstorm event of 19 mm
445 (\sim rate of 19 mm hr^{-1}). Our supplemental water was trucked to site and stored in above ground
446 tanks prior to irrigation events. Supplemental irrigations (19 mm event^{-1}) were applied through-
447 out the growing season (\sim monthly intervals) at an annual rate of 57, 69.5, 112, 107, and 95 mm
448 yr^{-1} from years 2008 thru 2012. At no time did we attempt to alter the timing or the onset of
449 either pre-monsoon or monsoon season precipitation events; our supplemental irrigations were
450 only intended to alleviate plant water stress during the entire frost-free growing season.

451 Multiple physiological characteristics of ten sample trees (five piñon and five juniper)
452 within each plot were monitored by automated sensors and periodic manual measurements to
453 assess tree responses to precipitation manipulations. Leaf level gas exchange was measured
454 from 2010 through 2012 using standard approaches explained in Limousin et al. (2013). We
455 performed periodic assessments of canopy greenness and canopy dieback (for the same sample

456 trees) during each growing season (across all plots). Accordingly, across all replicate blocks, a
457 total of n=120 trees (n=60 per species) were initially designated and monitored across the 6+
458 year duration of the study. For each treatment factor, a subset of n=30 monitored trees (n=15 per
459 species) within this group were subjected to each level of precipitation manipulation (i.e.,
460 ambient, drought, supplemental irrigation, and cover-control treatment). And, when available
461 within a given experimental plot, extra replacement trees were designated and monitored in place
462 of original sample trees that experienced either mortality or severe canopy dieback over the 6+ yr
463 duration of the experiment.

464 Predawn (Ψ_{PD}) and mid-day (Ψ_{MD}) plant water potentials were measured with multiple
465 Scholander-type pressure chambers (PMS Instrument Co, Albany, OR) on excised foliage from
466 sample trees (n=10 per plot) throughout the growing season of each year across all plots. Stem
467 sap-flow (J_S) was measured in sample trees (n=10 per plot) using Granier heat dissipation sap
468 flow sensors installed in 2007 in each plot within the south aspect block (plots 9-12). Trees in
469 north facing (plots 5-8) and flat blocks (plots 1-4) were instrumented with sap-flow sensors
470 during the 2009 season, and the south facing block was re-instrumented with new replacement
471 sapflow sensors in year 2010. All sample trees had two 10 mm Granier sap-flow sensors
472 installed in the outermost sapwood (Granier 1987). Each sensor used the traditional two probe
473 heated and unheated reference design (Granier 1987), with two additional probes located 5 cm to
474 the right side of the primary probes to correct for axial temperature gradients in the stem
475 (Goulden and Field 1994). We found that this compensation for axial temperature gradients is
476 critical to reduce measurement noise resulting from the open-canopy and high radiation
477 environment of this ecosystem. In addition, stems were wrapped with reflective insulation
478 (Reflectix Inc., Markleville, IN) in an effort to shield sap-flow probes from short term ambient
479 temperature fluctuations and direct solar irradiance. Sap-flow (J_S) was calculated according to
480 the methods outlined in Granier (1987) and Goulden and Field (1994). Sapwood depth was
481 greater than 10 mm on the majority of instrumented trees, thus only a very small % of
482 measurements across the 2007-2012 period required a correction due to sensor installation in
483 non-functional stem heartwood (see Clearwater et al. 1999). All data from sap-flow sensors was
484 recorded using Campbell Scientific AM16/32 multiplexers and CR1000 dataloggers (Campbell
485 Scientific, Logan, UT). Data processing was performed using Matlab software (R2011a; The
486 Mathworks, Natick, MA, USA).

487 Plant hydraulic conductance (K_s , units of $\text{mol m}^{-2} \text{ s}^{-1} \text{ MPa}^{-1}$) was calculated using the
488 following relationship based on Darcy's law (Wullschleger et al. 1998, Sperry et al. 2002);

$$489 K_s = E / (\Psi_{PD} - \Psi_{MD}),$$

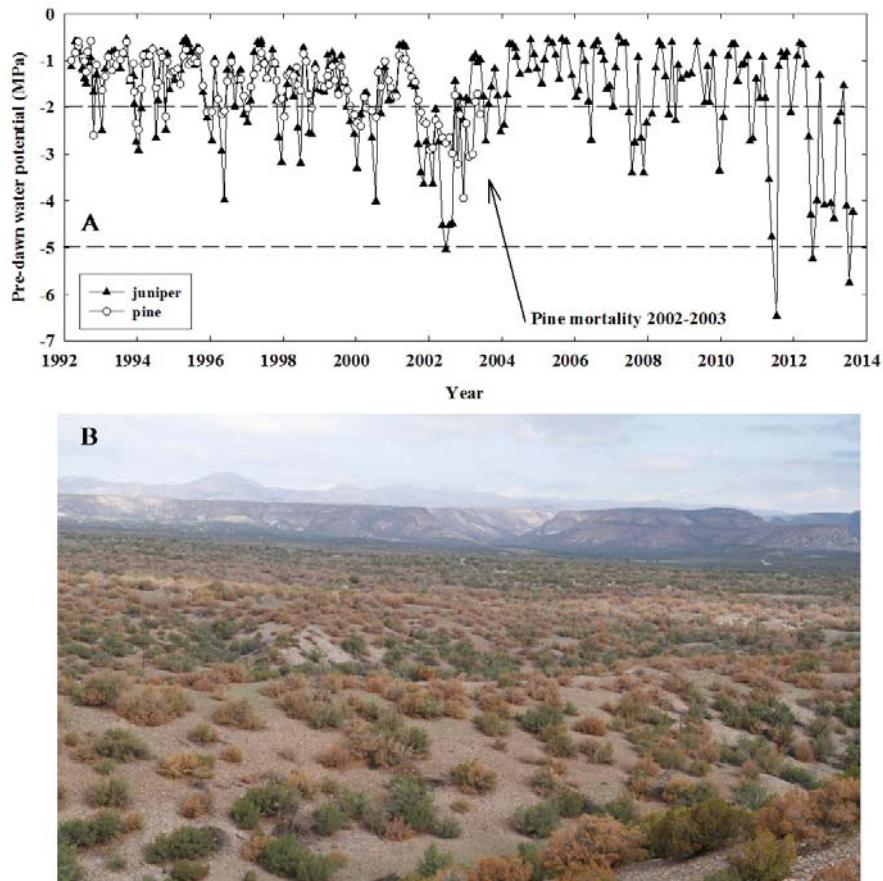
490 with E equal to midday J_S (per unit sapwood area) measured from 1100-1400 hours, and Ψ_{PD} and
491 Ψ_{MD} representing soil (Ψ_S) and midday leaf (Ψ_{MD}) water potential respectively. Due to the short
492 stature of our sample trees (mean height = 4.0 m, range 2.2 to 6.3 m), we did not consider or
493 account for height/gravitational effects in our K_s assessments. For calculations of K_s , only
494 measurements with a midday water potential gradient of least 0.5 MPa difference between Ψ_{PD}
495 and Ψ_{MD} ($\Delta\Psi$) were retained in the analysis. The use of a 0.5 MPa $\Delta\Psi$ gradient threshold served
496 to minimize erroneous K_s estimates that would result from the use of small denominator estimates
497 in calculations (i.e., particularly small $\Delta\Psi$ values). Furthermore, a 0.5 MPa $\Delta\Psi$ cut-off served to
498 remove a significant % of periods where stomata were closed at midday due to drought
499 conditions. Thus these estimates are conservative.

500 Percentage loss of conductance was estimated as the ensemble product of five model
501 simulations: Sperry, MuSICA, TREES, ED(X), and CLM(ED). These simulations were highly
502 tuned using on-site measurements and represent whole-tree hydraulic conductance loss. More
503 details can be found in (13).

504 Leaf samples for starch analysis were collected approximately monthly from all target trees on
505 ambient, irrigation, and drought plots in block three starting in February 2007. Collections began
506 on all target trees in the other two blocks in 2009. In 2009 and 2010, winter collections were
507 excluded and sampling was focused on seasonal changes during the growing season, with
508 collections in spring (March-April), pre-monsoon (May-June), monsoon (July-Sept), and post-
509 monsoon (Oct-Nov) periods. There was no spring collection in 2010. Cover control samples
510 were collected on the first four sampling dates in 2009. These samples did not reveal significant
511 differences in nonstructural carbohydrate (NSC) from ambient samples, and so sampling was
512 discontinued on cover control plots after June 2009. To reduce the number of samples for
513 analysis, samples from trees on non-drought plots (ambient, cover control, irrigation) and the
514 drought plot in block one (because no trees on the plot had died as of the 2011 growing season)
515 were pooled by plot, species, tissue, and date. This pooling reduced sample number on these
516 plots from 5 to 1 within a given plot, species, tissue and date. The only non-pooled samples were
517 from drought plots in blocks two and three. When trees died (defined as 100% foliar browning;
518 Gaylord et al. 2013) they were excluded from the collection protocol. Piñon sampling was
519 discontinued in August 2009 after the last of the drought trees in blocks two and three had died.
520 Foliar starch was analyzed following the protocol described by Hoch et al. (2002), with minor
521 modifications. All samples were covered in dry ice immediately after collection and stored at -70
522 °C after transport to the lab. Samples were microwaved at 800 watts for 5 minutes to stop
523 enzymatic activity, then dried at 65 °C for 48 hours and ball-milled to a fine powder (High
524 Throughput Homogenizer, VWR). Samples that were pooled to reduce the number of samples
525 for analysis were thoroughly homogenized after milling. Approximately 12 mg of fine ground
526 leaf material was extracted in a 2mL deep-well plate with 1.6 mL distilled water for 60 minutes
527 in a 100 °C water bath (Isotemp 105, Fisher Scientific). Following extraction, an NAD-linked
528 enzymatic assay was used to evaluate NSC content. NSCs are defined here as free, low
529 molecular weight sugars (glucose, fructose, and sucrose), plus starch. All NSCs were hydrolysed
530 to glucose, linked to the reduction of NAD⁺ to NADH, and monitored at 340 nm with a
531 spectrophotometer (Cary 50 UV-Vis). Starch was calculated as NSC minus low molecular
532 weight sugars. All NSC content values are expressed as percent of dry matter.

533

534 Clearwater, Michael J., Frederick C. Meinzer, José Luis Andrade, Guillermo Goldstein, and N.
535 Michelle Holbrook. Potential errors in measurement of nonuniform sap flow using heat
536 dissipation probes. *Tree Physiology* **19**, no. 10: 681-687. (1999)


537 Goulden, M. L., and C. B. Field. Three methods for monitoring the gas exchange of individual
538 tree canopies: ventilated-chamber, sap-flow and Penman-Monteith measurements on evergreen
539 oaks. *Functional Ecology*: 125-135. (1994)

540 Granier, A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow
541 measurements. *Tree Physiology* **3**, no. 4: 309-320. (1987)

542 Hoch, G., Popp, M. Körner, C. Altitudinal increase of mobile carbon pools in *Pinus cembra*
543 suggests sink limitation of growth at the Swiss treeline. *Oikos* **98**: 361–374. (2002)

- 544 McDowell, Nate G., Rosie A. Fisher, Chonggang Xu, J. C. Domec, Teemu Hölttä, D. Scott
545 Mackay, John S. Sperry et al. Evaluating theories of drought-induced vegetation mortality using
546 a multimodel–experiment framework. *New Phytologist* **200**, no. 2: 304-321. (2013)
- 547 Pangle RE, Hill JP, Plaut JA, Yepez EA, Elliot JR, Gehres N, McDowell NG, Pockman WT.
548 Methodology and performance of a rainfall manipulation experiment in piñon-juniper woodland.
549 *Ecosphere* **3**: art28. (2012).
- 550 Wullschleger, Stan D., F. C. Meinzer, R. A. Vertessy. A review of whole-plant water use studies
551 in trees. *Tree Physiology* **18**, no. 8-9: 499-512. (1998)
- 552 Sperry, J. S., U. G. Hacke, R. Oren, and J. P. Comstock. "Water deficits and hydraulic limits to
553 leaf water supply." *Plant, Cell & Environment* **25**, no. 2: 251-263. (2002)
- 554
555

556 **SI Figure S1: Long-term water potential record and interpretation.**

557
558 **SI Figure S1A)** A 21-year time series of monthly pre-dawn Ψ of piñon pine and juniper in Los
559 Alamos, New Mexico, extending prior time series^{22,23}. Piñon trees died in 2002-03, with
560 surviving juniper trees becoming the dominants. The species-specific Ψ_{A0} values are presented
561 as horizontal dashed lines. **B)** Dying juniper trees in northern New Mexico in 2013, photo
562 courtesy Mark Watson.

563 The water potential data shown in SI Figure 1A was collected on a minimum of five trees for
564 pine and another five for juniper (often we sampled around 10 trees each). The methods were
565 identical to those described for the Sevilleta plot (SI 4), except we sample two twigs per tree
566 rather than just one, and average the within tree values. Canopy loss and mortality was observed
567 weekly during the drought events at both sites^{21,23}. In pine trees, the entire canopy turns from
568 green to orange within a few weeks, with litterfall happening immediately thereafter.
569

570 D rises exponentially with temperature, thus chronic temperature rise is forcing a particularly
571 rapid rise in D^{20} with implications for Ψ , G_s and survival (equation 1 and Fig. 1B). To ascertain
572 the likelihood of future mortality, we first determined if climate parameters predicted from the
573 Coupled Model Intercomparison Project (CMIP5) multi-model ensembles such as precipitation
574 and D could be used to infer our long-term Ψ_{pd} observations (1992-2013). Using the dataset
575 from the long-term monitoring site (SI Fig. 1A) we found annual precipitation and annual mean
576 D together explain 70 and 80% of the annual variation in growing-season mean Ψ_{pd} for pine and
577 juniper, respectively (SI Fig. 2). An independent test against the drought manipulation site (Fig.
578 2) also gave a strong predictive relationship for both species (SI Fig. 2). The final relationship
579 using both field sites is:

580

$$\text{pine } \Psi_{pd} \text{ (april-august)} = -10^{[0.993-0.455 \cdot \log_{10}(\text{ppt})+0.028 \cdot D]} \quad (2),$$
$$\text{juniper } \Psi_{pd} \text{ (april-august)} = -10^{[1.461-0.724 \cdot \log_{10}(\text{ppt})+0.059 \cdot D]} \quad (3),$$

581 in which annual precipitation (ppt, mm) and D (hPa) are total and average, respectively.
582 Equations (2,3) are extremely similar to that used to predict tree ring growth²⁰, suggesting
583 growth and Ψ_{pd} are coupled and that these variables are broadly applicable.

584

585 **SI5:** Regressions for Figure 2.

586 Figure 2B pine: $G_s = 0.345e^{1.66\Psi_{pd}}$, $r^2=0.79$

587 Figure 2B juniper: $G_s = 0.162e^{0.51\Psi_{pd}}$, $r^2=0.80$

588 Figure 2C pine: photosynthesis = $2.82 * \Psi_{pd} + 7.4$, $r^2=0.66$

589 Figure 2C juniper: photosynthesis = $1.287 * \Psi_{pd} + 7.9$, $r^2=0.74$

590 Figure 2D pine: PLC = $-20.23 * \Psi_{pd} + 1.80$, $r^2=0.46$

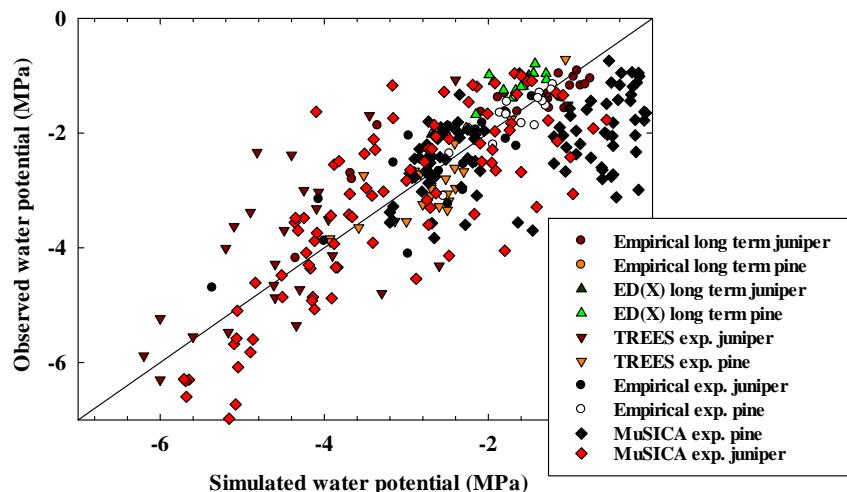
591 Figure 2D juniper: PLC = $-6.42 * \Psi_{pd} - 0.20$, $r^2=0.69$

592 Figure 2E pine: hydraulic conductance = $0.83e^{0.30\Psi_{pd}}$, $r^2=0.21$

593 Figure 2E juniper: hydraulic conductance = $1.01e^{0.36\Psi_{pd}}$, $r^2=0.36$

594 Figure 2F pine: NSC = $1.44 * \Psi_{pd} + 6.45$, $r^2=0.14$

595 Figure 2F juniper: NSC = $0.62 * \Psi_{pd} + 7.21$, $r^2=0.06$


596

597 **SI6:** Foliar starch has proven a robust indicator of the carbon starvation process in piñon pine
598 (Adams et al. 2013; McDowell et al. 2013; Sevanto et al. 2014; Dickman et al. 2014), and
599 redwood (Quirk et al. 2013) but may underestimate the process in some conifers (e.g. Hartmann
600 et al. 2013).

601 H.D. Adams, *et al.* 2013. Nonstructural leaf carbohydrate dynamics of *Pinus edulis* during
602 drought-induced tree mortality reveal role of carbon metabolism in mortality mechanism. *New*
603 *Phytologist* 197: 1142-1151.

- 612 H. Hartmann, Trumbore, S. and Ziegler, W. (2013) Lethal drought leads to reduction in
 613 nonstructural carbohydrates (NSC) in Norway spruce tree roots but not in the canopy. *Functional*
 614 *Ecology* 27: 413-427.
- 615 L.T. Dickman, N.G. McDowell, S. Sevanto, R.E. Pangle, W.T. Pockman. 2014. Carbohydrate
 616 dynamics and mortality in a piñon-juniper woodland under three future precipitation scenarios
 617 *Plant, Cell and Environment*, DOI: 10.1111/pce.12441.
- 618 N.G. McDowell, Fisher RA, Xu C, Domec JC, Hölttä T, Mackay DS, Sperry JS, Boutz A,
 619 Dickman L, Gehres N, Limousin JM, Macalady A, Martinez-Vilalta J, Mencuccini M, Plaut JA,
 620 Ogee J, Pangle RE, Rasse DP, Ryan MG, Sevanto S, Waring RH, Williams AP, Yepez EA,
 621 Pockman WT. 2013. Evaluating theories of drought-induced vegetation mortality using a multi-
 622 model-experiment framework. *New Phytologist* 200(2), 304-321
- 623 S. Sevanto, McDowell NG, Dickman LT, Pangle R, Pockman WT. 2013. How do trees die? A
 624 test of the hydraulic failure and carbon starvation hypotheses. *Plant, Cell and Environment*, doi:
 625 10.1111/pce.12141
- 626 J. Quirk, N.G. McDowell, J.R. Leake, P.J. Hudson, D.J. Beerling. Carbon dioxide starvation,
 627 drought, and Cenozoic forest retreat. 2013. *American Journal of Botany*, 100: 582-591.
- 628

629 **SI Figure S2: Evaluation of model predictions of predawn water potential**

- 630
- 631 **SI Figure 2**) Predictions of April through August mean Ψ versus observed Ψ for the long-term
 632 (21 year) observations as well as the drought manipulation study for juniper and piñon pine. For
 633 pine and juniper, respectively, the empirical water potential approach yielded r^2 values of 0.70
 634 and 0.77, ED(X) simulation yielded r^2 values of 0.82 and 0.77, TREES simulation yielded r^2
 635 values of 0.69 and 0.68, and MuSICA simulation yielded r^2 values of 0.24 and 0.73.

636 Annual growing-season Ψ_{pd} records were developed for each species at the experimental
637 (Sevilleta, SI 4) and long-term observational (Los Alamos, Fig. S1) sites. At the experimental
638 site, a record was developed for each precipitation treatment. Ψ_{pd} measurements were made
639 approximately once per month, generally toward the end of the month. Growing-season records
640 were then calculated by averaging across April–August values. These records covered 1992–
641 2013 at the Los Alamos site and 2007–2013 at the Sevilleta site. For each species, we related the
642 Ψ_{pd} records to seasonal climate data. Based on a priori knowledge of climate responses in the
643 region²⁰, we developed multivariate equations that estimated growing-season Ψ_{pd} from annual
644 (previous September through growing-season August) precipitation total and mean vapor-
645 pressure deficit (D). We elected to use annual rather than seasonal climate data to avoid over-
646 fitting the multivariate equations. Notably, annually averaged D is dominated by variability in
647 the warm-season, which is when the ecological influence of D variability appears to be strongest
648 in the region²⁰.

649 **SI 7: Model-specific developments and application**

650 **Table S1:** A summary of how empirical variables were utilized or simulated by models. The
 651 model input parameters are typically static (e.g. soil texture), model driver parameters typically
 652 change over time (e.g. micrometeorological data), and model output represents simulated
 653 variables. See ¹³ for more details.

654

655

Variable	TREES	MuSICA	ED(X)
Mortality	n/a	n/a	Output
LAI	Input	Input	Output
Density	n/a	Input	Input
Height	Input	Input	Input
Cover	n/a	n/a	Output
NSC	Output	Output	Output
SLA	Input	Input	Input
Ψ_{pd} , Ψ_{md}	In/Output ¹	Output	Output
E^2	In/Output ¹	Output	Output
Respiration	Output	In/Output	n/a
V_{cmax}	Input	Input	Input
Vulnerability	Input	Input	Input
Ψ_{soil}	Output	Output	Output
SWC	Output	Output	n/a
Soil depth	Input	Input	Input
Soil temp.	Input	Output	n/a
Soil texture	Input	Input	Input
Allometry	Input	Input	Input
Air temp.	Driver	Driver	Input
VPD	Driver	Driver	Input
PAR	Driver	Driver	Input
Wind speed	Driver	Driver	Input
Atm Press.	Driver	Driver	Input
Hyd Cond	Output	Output	Input

656 ¹ Ψ_{pd} , Ψ_{md} , and E at saturated hydraulic conductance (K) input; values at other times output

657 ²Used for evaluation of all models

658

659 **Model specific developments and application**

660 **TREES:** The Terrestrial Regional Ecosystem Exchange Simulator (TREES) (Samanta *et al.*,
 661 2007; Loranty *et al.*, 2010; Mackay *et al.*, 2012; Roberts 2012) is a dynamic model of plant
 662 water and carbon flows. A unique methodological improvement in TREES is a full coupling of
 663 the Sperry *et al.* (1998) model of plant water balance and cavitation with stomatal conductance
 664 (G_s), photosynthesis (A), and E driven by energy supply and vapor demand. Thus, TREES
 665 explicitly incorporates A and dynamic plant hydraulic conductance into a unified numerical
 666 solution. It also predicts PLC , NSC , growth efficiency, and carbon allocation to leaves, roots, and
 667 stem. The model was calibrated using pre-drought gas exchange, transpiration, water potentials,

668 and vulnerability curve measurements (Plaut *et al.*, 2012, Limousin *et al.*, 2013). Root-to-leaf
669 area (RL) ratios for each species were optimized to maximize carbon uptake for a given amount
670 of water loss, a conservative approach that is appropriate for the dry Southwest climates. This
671 analysis predicted an optimal root RL of 2 for pine and 3 for juniper. TREES was set up to re-
672 adjust the plant hydraulic conductance once per year, in early spring (on year-day 60), to account
673 for refilling. The rooting zone had a maximum depth in the shallow simulations of 19cm, and a
674 maximum depth in the deep simulations of 89cm. Soil water balance was updated in each half-
675 hour time step for each layer using precipitation inputs, drainage, and rhizosphere fluxes. Water
676 potentials, hydraulic conductances, and fluxes were calculated based on the updated soil
677 moisture, cavitation status, and transpiration demand. Allocation of carbon to leaves was allowed
678 to adjust upward based on available NSC and downward with increasing PLC. Root area was
679 recomputed annually using the updated leaf area and the pre-set optimal RL.

680 **MuSICA:** The MuSICA model is a multilayer, multi-leaf process-based biosphere-atmosphere
681 gas exchange model that simulates the exchanges of mass (water, CO₂) and energy in the soil-
682 vegetation-atmosphere continuum (Ogée *et al.*, 2003). The version of the model used in this
683 study includes a more detailed description of root water uptake and plant water storage
684 dynamics, as well as soil water hydraulic redistribution and root cavitation (Domec *et al.*, 2012;
685 McDowell *et al.* 2013) and plant NSC storage dynamics (Ogée *et al.*, 2009; McDowell *et al.*
686 2013). Stand density, biomass, leaf area, and soil properties were taken from Pangle *et al.* (2012)
687 and Plaut *et al.* (2012). The model was calibrated using pre-drought gas exchange and
688 photosynthetic parameters, stomatal response to water potentials and vulnerability curve
689 measurements (Plaut *et al.*, 2012, Limousin *et al.*, 2013). Maximum rooting depth and root
690 distribution for both species were taken from Plaut *et al.* (2012). Both species were modeled at
691 the same time and thus competed for the same soil water.

692 To evaluate the model performance we forced the MuSICA model with meteorological values
693 (radiation, wind speed, temperature, humidity, precipitation) collected at the site and quantified
694 its ability to reproduce midday and predawn leaf water potentials and daily tree transpiration
695 measured on each species between 2007 and 2011 (e.g., see SOM Fig. 2).

696 For the simulations shown in the main text, we forced MuSICA with two CMIP5 climate
697 scenarios (see main text) assuming either shallow or deep rooting depths for both species, and all
698 other parameters being equal. Mortality rates for each species were computed as with the other
699 models, using predawn leaf water potential predictions from MuSICA over the four simulations
700 (2 climate scenarios × 2 rooting depths).

701
702 **ED(X):** The Ecosystem Demography (ED) model tracks cohorts of trees based on their sizes
703 (Moorecroft *et al.*, 2001). ED(X) simulates tree mortality of cohorts based on the assumption of
704 carbon starvation (Fisher *et al.*, 2010) and hydraulic failure (Xu *et al.* 2013). To better present
705 the seasonal cycles of carbon storage, instead of using GPP directly for growth, it is first all fed
706 into the NSC pool, which is then used by respiration and growth of new tissue determined by
707 carbon sink strength (13). Plant hydraulics and hydraulic failure are simulated using existing
708 theories on plant water storage (Meinzer *et al.* 2003) and hydraulic conductivity (Sperry *et al.*
709 1998). Specifically, the model simulates water storage in tree xylem, which declines during
710 drought due to leaf and root water loss. The reduced water content can lead to cavitation
711 (forming of bubbles in xylem conduits), which impairs the xylem conductivity (Sperry 2000). If

- 712 the amount of cavitation passes a critical threshold, xylem becomes dysfunctional and hydraulic
713 failure ensues (Urli *et al.* 2013). The model is first tuned to fit the Sevilleta data of predawn leaf
714 water potential. Then it is applied for the independent long-term observation site at Los Alamos
715 shown in SI Fig. 1A for model evaluation, with different soil depth and texture.
- 716 Domec J-C, Ogée J, Noormets A, Jouangy J, Gavazzi M, Treasure E, Sun G, McNulty S, King
717 JS. Interactive effects of nocturnal transpiration and climate change on the root hydraulic
718 redistribution and carbon and water budgets of Southern US pine plantations. *Tree Physiology*
719 **32**: 707-723. (2012)
- 720 Fisher R, McDowell N, Purves D, Moorcroft P, Sitch S, Cox P, Huntingford C, Meir P,
721 Woodward FI. Assessing uncertainties in a second-generation dynamic vegetation model caused
722 by ecological scale limitations. *New Phytologist* **187**: 666-681. (2010)
- 723 Limousin JM, Bickford CP, Dickman LT, Pangle RE, Hudson PJ, Boutz AL, Gehres N, Osuna
724 JL, Pockman WT, McDowell NG. Regulation and acclimation of leaf gas-exchange in a piñon-
725 juniper woodland exposed to three different precipitation regimes. *Plant, Cell & Environment*,
726 DOI: 10.1111/pce.12089. (2013)
- 727 Loranty MM, Mackay DS, Ewers BE, Traver E, Kruger EL. Competition for light between
728 individual trees lowers reference canopy stomatal conductance: results from a model. *Journal of*
729 *Geophysical Research - Biogeosciences* **115**: G04019, doi:10.1029/2010JG001377 (2010).
- 730 Mackay DS, Ewers BE, Loranty MM, Kruger EL, Samanta S. Bayesian analysis of canopy
731 transpiration models: A test of posterior parameter means against measurements. *Journal of*
732 *Hydrology* **432-433**: 75-83 (2012)
- 733 McDowell, Nate G., Rosie A. Fisher, Chonggang Xu, J. C. Domec, Teemu Hölttä, D. Scott
734 Mackay, John S. Sperry *et al.* Evaluating theories of drought-induced vegetation mortality using
735 a multimodel-experiment framework. *New Phytologist* **200**, no. **2**: 304-321. (2013)
- 736 Meinzer, F. C.; James, S. A.; Goldstein, G.; Woodruff, D., Whole-tree water transport scales
737 with sapwood capacitance in tropical forest canopy trees. *Plant Cell Environ*, **26**(7), 1147-1155.
738 (2003)
- 739 Moorcroft PR, Hurtt GC, Pacala SW. A method for scaling vegetation dynamics: the ecosystem
740 demography model (ED). *Ecological Monographs* **71**: 557-585. (2001)
- 741 Ogée J, Brunet Y, Loustau D, Berbigier P, Delzon S. MuSICA, a CO₂, water and energy multi-
742 layer, multi-leaf pine forest model: evaluation from hourly to yearly time scales and sensitivity
743 analysis. *Global Change Biology* **9**: 697-717. (2003)
- 744 Ogée J, Barbour MM, Wingate L, Bert D, Bosc A, Stievenard M, Lambrot C, Pierre M, Bariac T,
745 Loustau D *et al.* A single-substrate model to interpret intra-annual stable isotope signals in tree-
746 ring cellulose. *Plant, Cell & Environment* **32**: 1071-1090. (2009)
- 747 Pangle RE, Hill JP, Plaut JA, Yepez EA, Elliot JR, Gehres N, McDowell NG, Pockman WT.
748 Methodology and performance of a rainfall manipulation experiment in piñon-juniper woodland.
749 *Ecosphere* **3**: art28. (2012)
- 750 Plaut JA, Yepez EA, Hill J, Pangle R, Sperry JS, Pockman WT, McDowell NG. Hydraulic limits
751 preceding mortality in a piñon-juniper woodland under experimental drought. *Plant, Cell and*
752 *Environment* **35**: 1601-1617. (2012)

- 753 Roberts. *Development of a coupled ecosystem exchange plant hydraulic model to explore*
 754 *drought related plant mortality*. Master Thesis, University at Buffalo, Buffalo, NY, USA. (2012)
- 755 Samanta S., Mackay DS, Clayton M, Kruger EL, Ewers BE. Bayesian analysis for uncertainty
 756 estimation of a canopy transpiration model. *Water Resources Research* **43**: W04424,
 757 doi:10.1029/2006WR005028. (2007)
- 758 Sperry JS, Adler FR, Campbell GS, Comstock JP. Limitation of plant water use by rhizosphere
 759 and xylem conductance: results from a model. *Plant Cell & Environment* **21**: 347-359. (1998)
- 760 Sperry, J. S., Hydraulic constraints on plant gas exchange. *Agric For Meteorol*, **104**, (1), 13-23.
 761 (2000)
- 762 Urli, M.; Porté, A. J.; Cochard, H.; Guengant, Y.; Burlett, R.; Delzon, S., Xylem embolism
 763 threshold for catastrophic hydraulic failure in angiosperm trees. *Tree Physiol*,
 764 10.1093/tpt/030. (2013)
- 765
- 766 Xu, Chonggang, Nate G. McDowell, Sanna Sevanto, and Rosie A. Fisher. Our limited ability to
 767 predict vegetation dynamics under water stress. *New Phytologist* **200**, no. 2: 298-300. (2013)
- 768

769 **Detailed model descriptions:**

770 **TREES:** The Terrestrial Regional Ecosystem Exchange Simulator (TREES) (Mackay *et al.*,
 771 2003; Samanta *et al.*, 2007; Loranty *et al.*, 2010; Mackay *et al.*, 2012) that operates as a
 772 physiology model at the scale of individual trees or as an ecosystem model for whole stands. At
 773 the plant scale the model couples photosynthesis, stomatal conductance, and transpiration in a
 774 steady state solution for sun and shade canopy at 30-minute time steps, and forced with
 775 micrometeorological data (air temperature, wind speed, radiation, vapor pressure deficit, and soil
 776 temperature). This coupled canopy model and the plant water balance model (Sperry *et al.*, 1998)
 777 were combined into a single, integrated model to explicitly simulate soil-plant hydraulics and
 778 hydraulic failure, and to provide both demand and supply limits on stomatal control of carbon
 779 uptake and water loss (Roberts, 2012), as well as carbon utilization and allocation.

780

781 At the whole plant canopy scale stomatal conductance (G_s) was calculated by combining Darcy's
 782 Law and Fick's law of diffusion as

783

784
$$G_s = K_L (\Psi_s - \Psi_L)/D \quad (1)$$

785

786 where $K_L(\Psi)$ and Ψ_L are whole-plant hydraulic conductivity and leaf water potential,
 787 respectively; D is vapor pressure deficit in the canopy; and Ψ_s is soil water potential integrated
 788 over the rooting depth of the plant. The canopy and plant water balance model components are
 789 solved iteratively until they converge on a transpiration rate, with simultaneous solution of
 790 photosynthesis and stomatal conductance. For this study TREES discretized each modeled tree
 791 into three root modules, each having an absorbing and conducting element, and one canopy
 792 module having a conducting element and a lateral element with sun and shade sub-elements for
 793 gas exchange. The rhizosphere around each absorbing root element was discretized into five sub-

elements for transporting water between the bulk soil and the absorbing root (see Sperry *et al.*, 1998 for details). The root zone soil water balance was maintained by the model and updated, in separate layers defined by discrete root depth, using rhizosphere flux rates determined as part of the plant water balance model solution. The model moves water at the soil-root interface either from soil to root or from root to soil as a function of the pressure gradients. Once the plant hydraulic solution converges the photosynthetic assimilation is accumulated and for daily updating of NSC.

801

802 Plant mortality due to hydraulic failure can be predicted using TREES because of cavitation.
803 Plant mortality due to carbon starvation is not explicitly modeled. However, changes in NSC are
804 simulated as the difference in carbon uptake and utilization. A reduction in carbon uptake occurs
805 when stomatal closure reduces photosynthetic assimilation of carbon. Using hydraulic
806 conductance as a proxy for carbon transport reduces carbon utilization. Consequently, as a
807 simulated tree approaches a condition that suggests that it would be susceptible to mortality due
808 to stomatal closure and reduced water for carbon transport, both carbon uptake and utilization
809 decline, which means the rate of change of NSC can be negligible. Although this would not
810 directly predict mortality due to carbon starvation a combination of plant hydraulic conductivity,
811 hydraulic safety, cavitation, changes in NSC, carbon uptake, and carbon use collectively can be
812 used to diagnose the health status of a simulated tree.

813

814 Changes in NSC for the whole plant were calculated at daily time steps as

815

$$816 \frac{dC_{NS}}{dt} = C_A - C_G - C_M \quad (2)$$

817

818 where C_{NS} is NSC, C_A is photosynthetically assimilated carbon for period t (*i.e.* 1 day), C_G is
819 growth and growth respiration allocated in time t , and C_M is maintenance respiration over period
820 t . Carbon is allocated first to C_M and then to C_G . C_M was calculated using separate temperate-
821 based respiration rates for leaf, stem, and roots as

822

$$823 C_M = (R_{root} C_{root} T^{root} + R_{stem} C_{stem} T^{stem} e^{0.67 * \log(10C_{stem}) / 10} + R_{leaf} C_{leaf} T^{leaf}) f_{M-K} \quad (3)$$

824

825 where R terms refer to root, stem, and leaf intrinsic respiration rates (fraction), C terms are
826 carbon pools, T terms are temperatures, r is a respiration coefficient, and f_{M-K} is a function that
827 reduces the transport of NSC to sites for maintenance respiration as a function of hydraulic
828 conductivity and saturated hydraulic conductivity K_{Lsat} as

829

$$830 F_{M-K} = K_L(\Psi) / K_{Lsat} \quad (4)$$

831

832 When root temperature is at least 5 °C, then C_G is calculated as a parameterized fraction (β_G) of
833 C_A as

834

835
$$C_G = \beta_G C_A f_{G-K} \quad (5)$$

836

837 where f_{G-K} is function that reduces the transport of NSC to sites for growth as a function of
838 hydraulic conductivity and saturated hydraulic conductivity K_{Lsat} as

839

840
$$f_{G-K} = [K_L(\Psi)/K_{Lsat}]^2 \quad (6)$$

841

842 TREES was parameterized and run on individual trees using individual tree data to the extent
843 possible. The model was tuned to each tree using species-specific allometric equations and the
844 basal area of each respective tree, and sap flux data for each respective tree. TREES carbon pools
845 were initialized for each individual tree using allometric equations for the root, stem, and leaf
846 structural carbon pools and measured NSC (McDowell *et al.*, *unpublished data*). TREES was
847 parameterized for hydraulics by species using vulnerability to cavitation curves (Plaut *et al.*,
848 2012), and by individual tree using sap flux data to obtain midday transpiration at saturated
849 hydraulic conductivity. Measured pre-dawn and mid-day water potentials at saturated hydraulic
850 conductivity were also used. Site-specific soil texture data was used to parameterize the soil
851 hydraulic properties. The photosynthesis routines were parameterized using species and
852 treatment specific data collected in the study. All canopy calculations were expressed on a per
853 unit leaf area basis, and so leaf area index by individual tree was obtained from allometry and
854 taking the calculated total leaf area divided by projected crown area (Loranty *et al.*, 2010;
855 Mackay *et al.*, 2010). We assumed that each tree operated independently of its neighbors, and so
856 there were no interactions between root uptake rate among trees. The trajectory of carbon and
857 water pools and fluxes for each tree was therefore independently calculated, and determined as a
858 function of each respective tree's carbon pools, hydraulic properties, and effect on its local soil
859 water conditions.

860

861 **MUSICA:** The multilayer, multi-leaf, process-based biosphere-atmosphere gas exchange model
862 MuSICA has been primarily developed to simulate the exchanges of mass (water, CO_2) and
863 energy in the soil-vegetation-atmosphere continuum and is particularly well designed for studies
864 on conifer trees because it deals with needle clumping of various needles cohorts (Ogée *et al.*,
865 2003). MuSICA assumes the terrain to be relatively flat and the vegetation horizontally
866 homogeneous. Several species can share a common soil and the mixed canopy is partitioned into
867 several vegetation layers (typically 10-15) where several leaf types (sunlit/shaded, wet/dry) for
868 each cohort and species are distinguished. Stand structure is therefore explicitly accounted for
869 and competition for light and water between species can be explored. The version of MuSICA
870 used in this study is the same as in other studies (e.g. Domec *et al.*, 2012; McDowell *et al.* 2013).
871 It typically produces output at a 30-min time step and can be run over multiple years or decades
872 as long as the vegetation structure is given. A brief overview of the different sub-models
873 embedded in this MuSICA version is given below.

874 The radiative transfer scheme is based on the radiosity method and supports multiple (broad-leaf
875 or needle-leaf) species in a given vegetation layer (Sinoquet *et al.*, 2001). Rain interception and
876 canopy evaporation are computed for each species and vegetation layer using the concept of
877 maximum storage capacity (Rutter *et al.* 1971). Vertical profiles of the microclimate (air
878 temperature, humidity and CO₂) within the vegetation canopy are computed using the
879 Lagrangian near-field theory (Raupach 1988). A multilayer, coupled heat and water soil transport
880 model that explicitly accounts for root water uptake for each species is also implemented. Water
881 storage in the plants is accounted for using a single water storage capacity for each species that
882 scales with leaf area (Williams *et al.*, 2001). The soil water retention curve and the unsaturated
883 soil hydraulic conductivity are described according to the model of Van Genutchen (1980). The
884 leaf-to-air energy, water and CO₂ exchange model consists of a photosynthesis model (Farquhar
885 *et al.*, 1980), a stomatal conductance model (Leuning, 1995), a leaf boundary-layer model
886 (Nikolov *et al.*, 1995) and a leaf energy budget equation. Species-specific photosynthetic
887 parameters are the maximum rates of carboxylation and electron transport, mitochondrial
888 respiration and quantum yield. All these parameters vary with leaf temperature and/or leaf
889 ontogeny and are thus prescribed at a given temperature (25°C) and for young and old leaves or
890 needles. Day respiration is computed using the night respiration rate parameterization and a light
891 inhibition factor. Woody respiration is scaled using living biomass, basal respiration rates and
892 Q₁₀ values and is assumed to depend on air temperature only. Soil and litter respiration rates are
893 a function of soil temperature and soil moisture. Soil water deficit affects the maximum stomatal
894 conductance and photosynthetic capacity and is described by a sigmoid curve of leaf water
895 potential, with a common threshold and slope for both variables. Soil water deficit also induces
896 root cavitation that is described by Weibull-like curves of plant water potential (Domec &
897 Gartner 2001).

898 The parameterisation of the model was done as follows. Stand density, woody biomass, leaf area,
899 and soil properties were taken from Pangle *et al.* (2012) and Plaut *et al.* (2012). Maximum
900 rooting depth and root-to-shoot area ratios were taken from Plaut *et al.* (2012). Living tissue
901 respiration was parameterized using basal respiration rates determined at the site (McDowell *et*
902 *al.* 2013). Soil and litter respiration rates were parameterized from soil respiration data collected
903 at the site in 2006 and 2007 (White, 2008). Stomatal conductance and photosynthetic parameters
904 (maximum rates of carboxylation, rate of photosynthetic electron transport and mesophyll
905 conductance) were taken from Limousin *et al* (2013).

906 To evaluate the model performance we forced the MuSICA model with meteorological values
907 (radiation, wind speed, temperature, humidity, precipitation) collected at the site and quantified
908 its ability to reproduce midday and predawn leaf water potentials and daily tree transpiration
909 measured on each species between 2007 and 2011 (e.g., see SOM Fig. 2).

910 For the simulations shown in the main text, we forced MuSICA with two CMIP5 climate
911 scenarios (see main text) assuming either shallow or deep rooting depths for both species, and all
912 other parameters being equal. Mortality rates for each species were computed as with the other
913 models, using predawn leaf water potential predictions from MuSICA over the four simulations
914 (2 climate scenarios \times 2 rooting depths).

915

916

- 917 Dewar RC, Medlyn BE, McMurtrie RE. A mechanistic analysis of light and carbon use
918 efficiencies. *Plant, Cell and Environment* , **21**: 573–588 (1998).
- 919 Domec JC, Gartner BL (2001) Cavitation and water storage capacity in bole xylem segments of
920 mature and young Douglas-fir trees. *Trees*, **15**: 204–214 (2001).
- 921 Farquhar, G.D., S. von Caemmerer and J.A. Berry. A biochemical model of photosynthetic CO₂
922 assimilation in leaves of C3 species. *Planta* **149**, 78–90 (1980).
- 923 Leuning, R. A critical appraisal of a combined stomatal-photosynthesis model for C3 plants.
924 *Plant Cell Environ.* **18**:339–356 (1995).
- 925 McDowell, Nate G., Rosie A. Fisher, Chonggang Xu, J. C. Domec, Teemu Hölttä, D. Scott
926 Mackay, John S. Sperry et al. Evaluating theories of drought-induced vegetation mortality using
927 a multimodel–experiment framework. *New Phytologist* 200, no. 2: 304-321 (2013).
- 928 Sinoquet H, Le Roux X, Adam B, Ameglio T, Daudet F. RATP: a model for simulating the
929 spatial distribution of radiation absorption, transpiration and photosynthesis within canopies:
930 application to an isolated tree crown. *Plant Cell Environ.*, **24**: 395–406 (2001).
- 931 Williams, M., E.B. Rastetter, G.R. Shaver, J.E. Hobbie, E. Carpino B.L. Kwiatkowski. Primary
932 production in an arctic watershed; an uncertainty analysis. *Ecol. Appl.* **11**: 1800-1816 (2001).
- 933 Wingate, L., Ogee, J., Burlett, R., Bosc, A., Devaux, M., Grace, J., Loustau, D., and Gessler, A.
934 Photosynthetic carbon isotope discrimination and its relationship to the carbon isotope signals of
935 stem, soil and ecosystem respiration, *New Phytol.*, **188**, 576–589 (2010).
- 936
- 937 **ED(X):** ED(X) generated the most conservative forecasts, with the likelihood of pine mortality
938 approaching 100% (for the average grid cell) by 2078 and only 31% likelihood of juniper
939 mortality by 2100. We used the Ecosystem Demography (ED) model (Moorcroft *et al.*, 2001)
940 with modifications described by Fisher *et al.* (2010), McDowell et al (2013) and Xu et al (2013).
941 The model simulates a water storage pool for the plants and calculates the xylem water potential
942 changes based on the relative water content in xylem (Barnard et al 2011). For each 30-minutes
943 time step, the model simulates leaf water potential based on the water balance, which is
944 calculated as the difference between water supply as determined by the Ball-Berry stomata
945 conductance and vapor pressure gradient from leaf to air, and the water demand as determined by
946 the xylem conductance, tree height and the difference between leaf water potential and xylem
947 water potential. The water storage pool is recharged by the root water uptake as determined by
948 the pressure gradient from soil to xylem and the xylem conductance. During the drought, the
949 plant halts photosynthesis if the xylem water potential is lower than minimum leaf water
950 potential with no water recharge from the soil and the water storage will decline due to the loss
951 of water by cuticular transpiration and the root water loss to soil. Regeneration processes were
952 turned off in our simulations because we were focused on the mortality patterns. ED(X)
953 generated the most conservative forecasts in Figure (3), with the likelihood of pine mortality
954 approaching 100% (for the average grid cell) by 2078 and only 31% likelihood of juniper
955 mortality by 2100.

956 This ED version uses a single soil layer. The soil water potential (ψ_s) is simulated based
957 on an empirical equation as follows (Niu and Yang 2006):

958

959 $\psi_s = \psi_{s0}\theta^{-\lambda}$ where ψ_{s0} is the reference soil water potential for saturated soil, θ is the
 960 volumetric saturation of water in soil pores, and λ is the exponent determined by soil texture, as
 961 follows:

962

963 $\lambda = 2.91 + 0.159P_{clay}$,

964

965 where P_{clay} is the percent of clay in the soil.

966 The maximum plant water supply is calculated based on the water potential gradient
 967 between leaf and xylem and xylem resistance as follows:

969 $W_{supp} = \frac{\psi_x - \psi_{l\min}}{r_c R_x / A_s + R_l}$

970

971 where the denominator represents the water transport resistance from trunk to leaf assuming the
 972 transport distance is the tree crown radius. Specifically, R_x is the resistance of water transport in
 973 xylem ($m^3 \cdot \text{Mpa} \cdot \text{s} / \text{kg}$) with A_s representing the sap wood area (m^2). R_l is the resistance of water
 974 transport from branch to leaf ($m^3 \cdot \text{Mpa} \cdot \text{s} / \text{kg}$) and r_c is the crown radius (m).

975 The xylem conductivity ($\frac{1}{R_x}$) may reduce due to xylem cavitation (Sperry *et al.*, 1998). The
 976 proportion loss of conductivity (PLC) is calculated based on the xylem water potential using the
 977 Weibull equation as follows (Neufeld *et al.*, 1992):

978

979 $PLC = 1.0 - e^{-(\psi_x/\Phi_{73})^c}$,

980

981 where Φ_{73} is the critical soil water potential that cause 73% loss of xylem conductivity and c is
 982 the shape parameter for conductivity loss.

983 The water demand of each leaf layer for a cohort is calculated based on the stomata
 984 conductance and relative humidity. Specifically,

985

986 $W_{dem} = \frac{18.0}{r_b + r_s} \frac{(e_s - e_a)}{RT}$,

987

988 where r_b and r_s are the boundary layer and stomata resistance of water (s/m). R is the gas
 989 constant (8, 314 $J/K/kmole$) and T is the air temperature (K). e_s and e_a are the vapor pressure
 990 inside leaf and of the canopy air (Pa). r_s is calculated based on the empirical Ball-Berry model
 991 (Ball *et al.*, 1987). Specifically,

992

$$993 \quad r_s = \frac{1}{C_f} \left(m \frac{A}{C_a} \frac{e_a}{e_s} P_{atm} + 2000 \right),$$

994

995 where C_a is the CO₂ partial pressure in the canopy air and P_{atm} is the atmospheric pressure (Pa). C_f
 996 is the conversion factor from s/m to s·m² / umol,

$$997 \quad C_f = \frac{P_{atm}}{RT} 10^9.$$

998 The xylem water potential is calculated based on the relative water content as follows (Barnard
 999 et al 2011):

$$1000 \quad \psi_x = \frac{a(1-RWC)}{1+b(1-RWC)},$$

1001 where RWC is the relative xylem water content.

1002 The xylem water content changes resulting from the balance of xylem water recharge and
 1003 water loss from root and leaf. The xylem water recharge rate (kg water/s) is calculated based on
 1004 the water pressure gradient from soil to xylem and the xylem resistance (R_x , m³·Mpa·s / kg
 1005 water) and the soil-root resistance (R_{rs} , s·MPa/m),

$$1006 \quad W_{recharge} = \frac{\psi_s - \psi_x + 9.8h / 1000}{hR_x / A_s + R_{rs}},$$

1007 where ψ_s is the soil water potential (MPa) and h is the height of tree (m). If the soil water
 1008 potential is less than xylem water potential during drought, the xylem water reduces with root
 1009 and leaf water loss. The root water loss (kg water/s) is calculated based on the water potential
 1010 gradient from root to soil as follows:

$$1011 \quad W_{loss} = g_r \max(\psi_x - \psi_s, \psi_{sr_max}),$$

1012 where g_r is the root water loss rate (m/s/Mpa) and the ψ_{sr_max} is the maximum water potential
 1013 gradient between soil and root due to potential isolation of root from soil under very dry
 1014 conditions (Tardieu and Simonneau 1997). When the xylem water potential become less than
 1015 prescribed minimum leaf water potential, the stomata closes and r_s is equal to the cuticular
 1016 resistance (r_{s0}). The leaf water loss (W_{loss}) is calculated based on cuticular resistance (r_{s0} ; s/m)
 1017 and the vapor pressure difference between leaf and air,

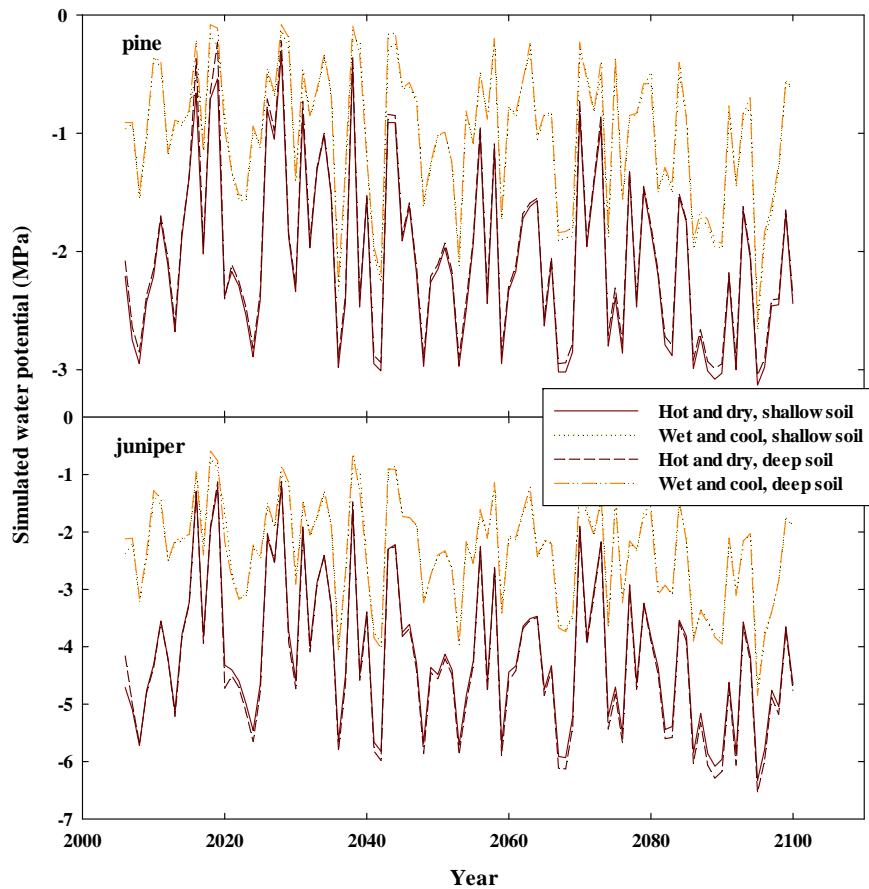
1018
$$W_{loss} = \frac{18.0}{r_b + r_{s0}} \frac{(e_s - e_a)}{RT}.$$

1019

1020

1021 **Table S2:** Key hydraulic parameter values used for the ED model. See McDowell *et al.* (2013)
 1022 for parameters of carbon dynamics and allometry.

Parameter	Description	Value for pine	Value for juniper	Sources
$\psi_{l\min}$	Minimum leaf water potential	-2.1	-4.1	Empirical
ϕ_{s0}	critical soil water potential that cause 50% loss of conductivity	-3.57	-8.45	Data
ϕ_s	shape parameter for conductivity loss	4.07	2.2	Data
A	Coefficient for xylem water potential calculation	-0.683	-1.283	(Barnard et al 2011) [*]
B	Coefficient for xylem water potential calculation	-0.981	-0.981	(Barnard et al 2011) ⁺
r_{s0}	cuticular resistance (s/m)	1.0e6	1.0e6	Data
g_r	Root water loss rate (m/s/Mpa)	1.5e-10	2.5e-10	Fitted to predawn
ψ_{sr_max}	Maximum water potential gradient between soil and root (MPa)	2	3	Empirical


1023

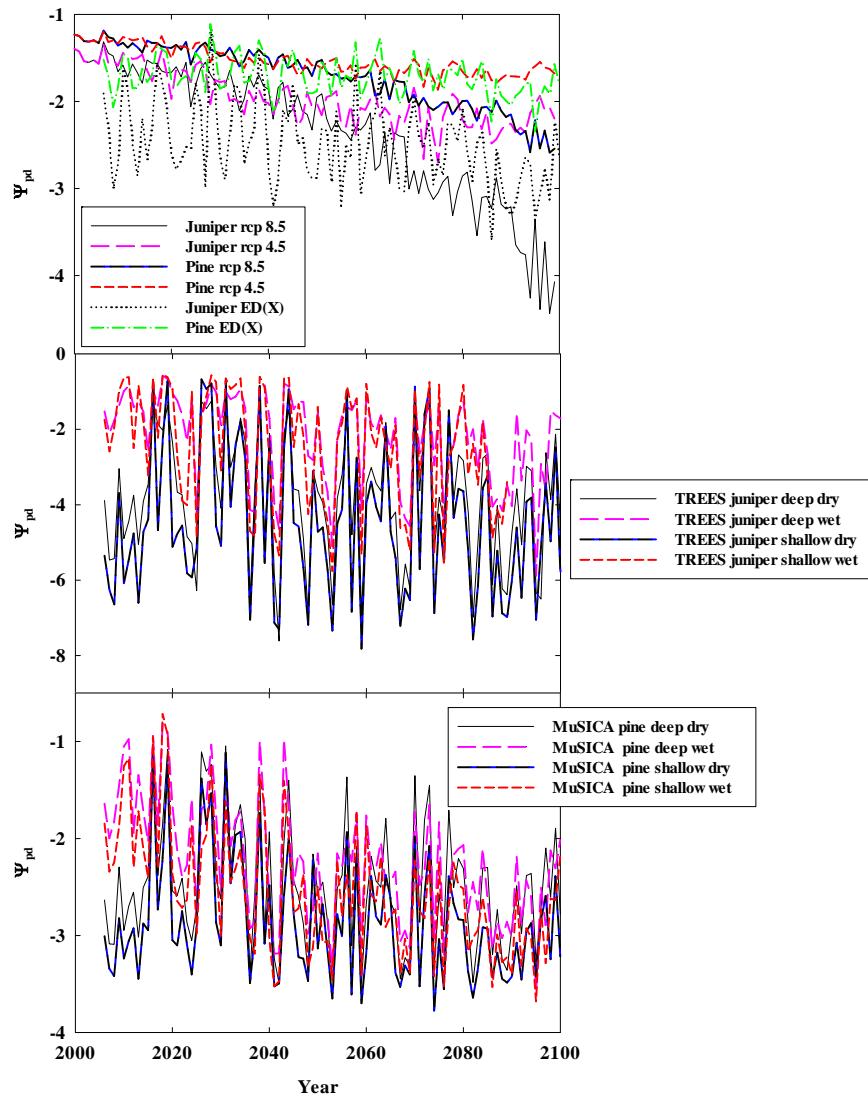
1024 J. T. Ball, I. E. Woodrow, J. A. Berry, in *Progress in Photosynthesis Research*, J. Biggins, Ed.
 1025 (Martinus Nijhoff Publishers, Netherlands), vol. 4, pp. 221–224. (1987)

1026 D. M. Barnard *et al.*, Climate-related trends in sapwood biophysical properties in two conifers:
 1027 avoidance of hydraulic dysfunction through coordinated adjustments in xylem efficiency, safety
 1028 and capacitance. *Plant Cell Environ* **34**, 643 (2011).

- 1029 H. S. Neufeld *et al.*, Genotypic variability in vulnerability of leaf xylem to cavitation in water-
1030 stressed and well-irrigated sugarcane. *Plant Physiol* **100**, 1020 (1992).
- 1031 G.-Y. Niu, Z.-L. Yang, Effects of Frozen Soil on Snowmelt Runoff and Soil Water Storage at a
1032 Continental Scale. *J Hydrometeorol* **7**, 937 (2006).
- 1033 J. S. Sperry, F. R. Adler, G. S. Campbell, J. P. Comstock, Limitation of plant water use by
1034 rhizosphere and xylem conductance: results from a model. *Plant Cell Environ* **21**, 347 (1998).
- 1035 F. Tardieu, T. Simonneau, Variability among species of stomatal control under fluctuating soil
1036 water status and evaporative demand: modelling isohydric and anisohydric behaviours. *J Exp Bot*
1037 **49**, 419 (Mar, 1998).
- 1038 C. Xu, N. G. McDowell, S. Sevanto, R. A. Fisher, Our limited ability to predict vegetation
1039 dynamics under water stress. *New Phytol* **200**, 298 (2013).
- 1040
- 1041

1042 **SI Figure S3. Examples of simulations used to calculate mortality probability.**

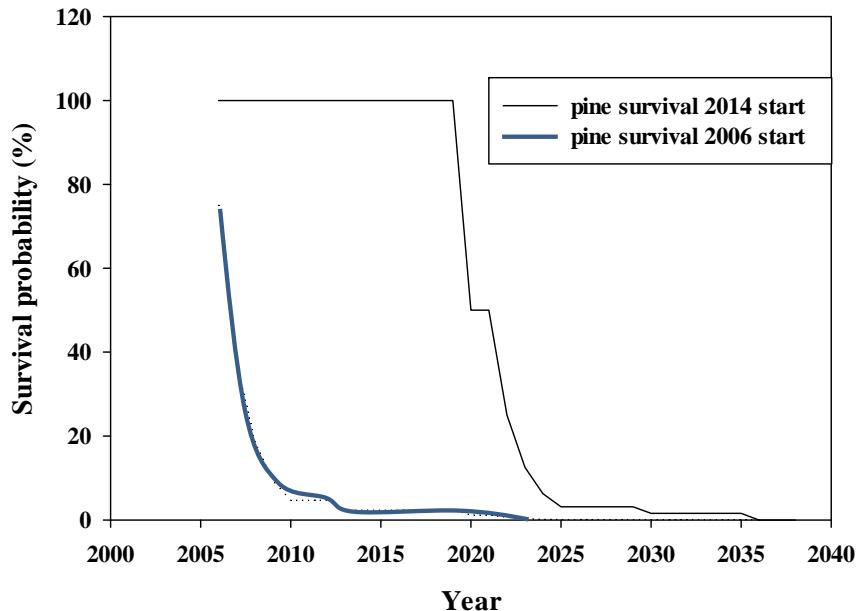
1043
1044 **SI Figure S3.** An example of the range of simulations of pre-dawn water potential (averaged for
1045 April-August) employed to calculate mortality probabilities shown in Figure 3C. In this case,
1046 MuSICA was driven with climate data from a wet and cool grid cell and a hot and dry grid cell
1047 from Figure (3D), with an assumed soil depth of either 50cm (shallow) or 150cm (deep).
1048 Climate is more important than soil depth on simulated Ψ . TREES was driven similarly. ED(X)
1049 used climate forecasts for each grid cell shown in Figure (3D) with an assumed soil depth of
1050 50cm.


1051

1052

1053

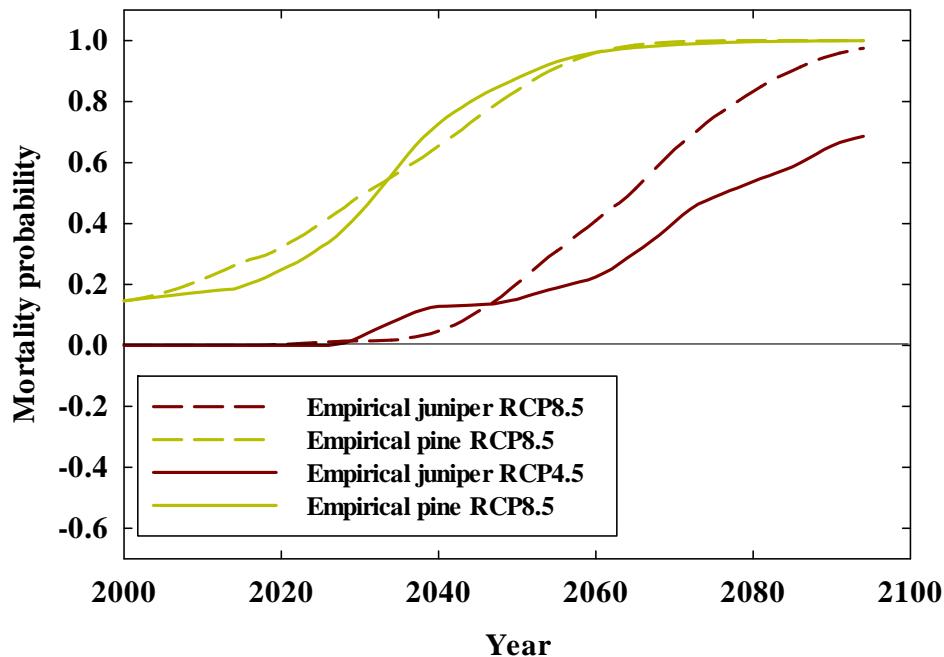
1054


1055 **SI Figure S4.** Future water potential simulations (April-August average) by each model.

Comment [MNG1]: Remember Scott Mackay
was concerned with one of these figures, try to fix it.

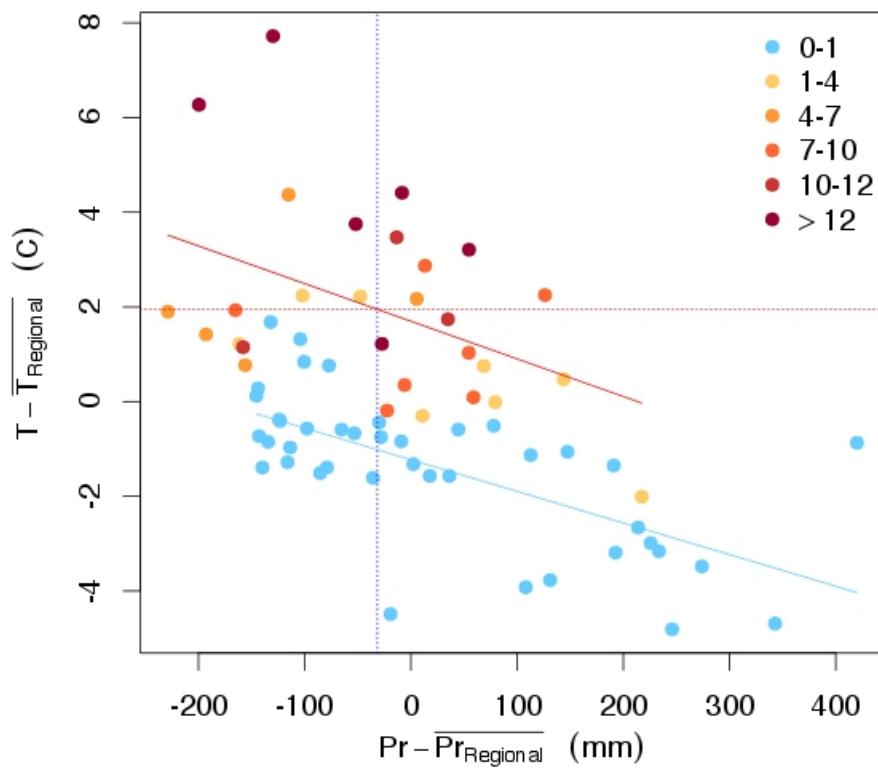
1056
1057 **SI Figure S4 A)** Simulations by the tree-ring based model for both species and for RCP 4.5 and
1058 8.5, as well as by ED(X), **B)** simulations by TREES, **C)** simulations by MuSICA.
1059

1060 **SI Figure S5. Survival likelihood is sensitive to origination year (2006 vs 2014).**



1061
1062 **SI Figure S5.** Survival probability was calculated either starting in 2006 or 2014, during the
1063 interim CMIP5 predicted multiple years of drought. Simulations are shown using the empirical
1064 model; however, all models showed the same sensitivity to the origination year of the
1065 calculations of mortality. This indicates the results presented in Figure 3C are very conservative
1066 because all model calculations of mortality probability used 2014 as a start date rather than 2006.

1067
1068


1069 **SI 8:** In all cases future predictions of mortality relied on CMIP5 predictions of future climate.
1070 The empirical calculation used all 16 model predictions of future climate, predicted mortality
1071 probability, and then averaged them. TREES and MuSICA used a particularly hot and dry, and a
1072 particularly wet and cool, grid cell, respectively, from the CMIP5 predictions for the piñon-pine-
1073 juniper woodlands. They then assumed either 50 cm or 150 cm soil depths, respectively. The
1074 odds of Ψ crossing the species-specific thresholds were then summed across the permutations for
1075 each time step (year) and combined multiplicatively over time. ED(X) did a similar exercise but
1076 for 71 different grid cells in the piñon-pine-juniper woodland region. The empirical calculation
1077 used the CMIP5 predictions for the entire piñon-pine-juniper woodland region and equations (SI
1078 2,3).

1079 **SI Figure S6.** Comparison of mortality probability predicted by the empirical method using
1080 RCP8.5 (business as usual) vs. RCP4.5 (moderate emissions controls).

1081
1082
1083
1084

1085 **SI Figure 7.** ED(X) simulations shown in Figure 3D are replicated here with the same color
 1086 coding for number of mortality events between 2066-2095, except plotted here is the mean
 1087 temperature and precipitation of the grid cell during that period relative to the regional means.
 1088 The regression for grid cells that experienced 0-1 mortality events is: $-0.007(\text{Pr-Pr}_{\text{Regional}}) -$
 1089 1.22 ($p < 0.001$, $R^2 = 0.43$); the regression for sites that experienced greater than one mortality
 1090 event is: $-0.008(\text{Pr-Pr}_{\text{Regional}}) + 1.70$ ($p < 0.001$, $R^2 = 0.20$). The dashed lines indicate the mean
 1091 $T - \bar{T}_{\text{Regional}}$ (1.95°C) and mean $\text{Pr-Pr}_{\text{Regional}}$ (-31.7mm) for the sites that experienced greater
 1092 than one mortality event.

1093
 1094
 1095
 1096

1097 **SI 9: Figure 4a-c. CMIP5 DGVM results:** The changes in NET cover were calculated from
1098 three CMIP5 models that include dynamic vegetation distributions: HadGEM2-ES [TRIFFID
1099 DGVM (Cox, 2001), MIROC-ESM [SEIB-DGVM (Sato et al, 2007)], and MPI-ESM (Reick et
1100 al., 2013) models. Models are from the RCP8.5 scenario and include the percentage change in
1101 the PFT corresponding most closely to NET for each model: Needleleaf Trees (HadGEM2),
1102 Boreal Evergreen (MIROC), and Extra-tropical Evergreen Trees (MPI-ESM). Each of these
1103 models treats vegetation distributional dynamics differently: HadGEM2 uses a Lotka-Volterra
1104 approach to parameterize competition by PFTs for space and light (Cox, 2001); MIROC-ESM
1105 uses an individual-based model that considers spatially-explicit competition by PFTs for
1106 resources as well as bioclimatic limits on PFT growth (Sato et al, 2007); MPI-ESM simulates
1107 competition based on NPP (Reick et al., 2013).

1108
1109 There are two ways to calculate the loss and gain of NET in Figures 4A-C: (1) the total area that
1110 is gaining (blue color) and losing (red color) NET, or (2) the total area that lost and gained NET,
1111 i.e. the integral of the percentage lost and gained.

1112
1113 For method (1):
1114 HadGEM2_ES lost 17.8 million km² and gained 20.3 million km²;
1115 MIROC_ESM lost 11.9 million km² and gained 19.4 million km²;
1116 MPI_ESM_MR lost 14.0 million km² and gained 31.8 million km².

1117
1118 For method (2),
1119 HadGEM2_ES lost 1.88 million km² and gained 1.52 million km²;
1120 MIROC_ESM lost 2.09 million km² and gained 3.47 million km²;
1121 MPI_ESM_MR lost 0.70 million km² and gained 4.25 million km².

1122
1123 **Figure 4d.** Our simulations used the atmosphere (CAM, the Community Atmosphere Model)
1124 and land surface components (CLM, the Community Land Surface Model) of the Community
1125 Earth System Model (CESM). For the atmosphere, we employed the finite volume (FV)
1126 dynamical core and CAM version 4 physics with 26 vertical levels (Neale et al. 2010). The
1127 spatial resolution of the model is 1.9° latitude by 2.5° longitude. Exchanges of heat, moisture,
1128 and momentum fluxes between the land and the atmosphere are simulated by the land surface
1129 model, CLM, version 4.0. In CLM4.0, vegetation coverage is described in each grid cell by
1130 fractional areas of plant functional types (PFTs). There are 17 PFTs including bare ground, 11
1131 tree PFTs, three grass PFTs, and two crop PFTs. CLM4.0 includes a carbon-nitrogen (CN)
1132 biogeochemical model that predicts vegetation, litter, soil carbon and nitrogen states, and
1133 vegetation phenology (Thornton et al. 2007). The dynamic vegetation is based on the Lund-
1134 Potsdam-Jena (LPJ) model (Sitch et al. 2003), wherein vegetation change is represented by a
1135 change in the fractional PFT coverage of a grid cell at the end of each year (Sitch et al. 2003).
1136 The LPJ dynamic component in CLM4.0 is among the most mechanistic of the existing DGVMs
1137 (McDowell et al. 2011). Plant functional types can change according to twenty-year climate
1138 envelopes based on temperature and precipitation limits as well as due to mortality mechanisms.
1139 Mortality can occur due to heat stress (based on an accumulation of growing degree days), fire,
1140 and growth efficiency. In our simulations, the interaction between the land and atmosphere
1141 components is two-way, unlike previous studies performed to evaluate the basic performance of
1142 CLM in CESM (e.g., Gotangco Castillo et al. 2012).

1143 The sea surface temperature data used as boundary conditions include results from simulations of
1144 21st century climate under a medium-high emissions range (Special Report on Emissions
1145 Scenarios A1B, (Nakicenovic *et al.* 2000)). Output from the following eight models in the
1146 Coupled Model Intercomparison Project version 3 (CMIP3) (Meehl *et al.* 2007) were used: the
1147 National Center for Atmospheric Research Community Climate Model, version 3 (NCAR-
1148 CCSM3); Météo-France / Centre National de Recherches Météorologiques Coupled Global
1149 Climate Model, version3 (CNRM-CM3); Max Planck Institute for Meteorology ECHAM5 (MPI-
1150 ECHAM5); Geophysical Fluid Dynamics Laboratory Climate Model version 2.1 (GFDL-CM2-
1151 1); Goddard Institute for Space Studies Model R, coupled with Russell ocean component (GISS-
1152 ER); Hadley Centre Coupled Model, version 3 (UKMO-HadCM3); Hadley Centre Met Office
1153 Hadley Centre Global Environmental Model, version 1 (UKMO-HadGEM1); and
1154 Meteorological Research Institute Coupled Atmosphere- Ocean General Circulation Model,
1155 version 2.3.2 a (MRI-CGCM2.3A).The CESM simulations employed here proved accurate for
1156 simulating the current vegetation coverage in North America (Jiang *et al.* 2013).
1157

1158 Cox, P. M. Description of the TROLL dynamic global vegetation model, *Hadley Centre*
1159 *Technical note*, 24 (2001).

1160 Gotango Castillo, C. K., S. Levis, and P. Thornton, Evaluation of the new CNDV option
1161 of the Community Land Model: Effects of dynamic vegetation and interactive nitrogen on CLM4
1162 means and variability. *J. Climate*, 25, 3702–3714. (2012)

1163 McDowell, N.G., D. Beerling, D. Breshears, R. Fisher, K. Raffa, M. Stitt. Interdependence
1164 of mechanisms underlying climate-driven vegetation mortality. *Trends in Ecology and*
1165 *Evolution*, 26, 523-532. (2011)

1166 Meehl, G. A., C. Covey, K. E. Taylor, T. Delworth, R. J. Stouffer, M. Latif, B. McAvaney,
1167 J. F. B. Mitchell, The WCRP CMIP3 multimodel dataset: A new era in climate change research.
1168 *Bull. Amer. Meteor. Soc.*, 88, 1383–1394. (2007)

1169 Nakićenović, N., *et al*, Special Report on Emissions Scenarios. Cambridge University Press, 570
1170 pp. (2000)

1171 Neale, R. B., *et al*, Description of the NCAR Community Atmosphere Model (CAM 4.0). NCAR
1172 Tech. Note NCAR/TN-485+STR, 212 pp. [Available online at
1173 http://www.cesm.ucar.edu/models/ccsm4.0/cam/docs/description/cam4_desc.pdf.] (2010)

1174 Reick, C. H., T. Raddatz, V. Brovkin, and V. Gayler, Representation of natural and
1175 anthropogenic land cover change in MPI-ESM, *Journal of Advances in Modeling Earth Systems*,
1176 5(3), 459-482. (2013)

1177 Sato, H., A. Itoh, and T. Kohyama, SEIB–DGVM: A new Dynamic Global Vegetation Model
1178 using a spatially explicit individual-based approach, *Ecological Modelling*, 200(3–4), 279-307.
1179 (2007)

1180

1188 Sitch, S., *et al.*, Evaluation of ecosystem dynamics, plant geography and terrestrial carbon
1189 cycling in the LPJ dynamic global vegetation model. *Global Change Biol.*, **9**, 161–185.
1190 (2003)

1191

1192 Thornton, P. E., J. F. Lamarque, N. A. Rosenbloom, and N. M. Mahowald, Influence of
1193 carbon-nitrogen cycle coupling on land model response to CO₂ fertilization and climate
1194 variability. *Global Biogeochem. Cycles*, **21**, GB4018, doi:10.1029/2006GB002868. (2007)