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Abstract

We present novel stochastic optimization models to improve power systems resilience to extreme
weather events. We consider proactive redispatch, transmission line hardening, and transmission line
capacity increases as alternatives for mitigating expected load shed due to extreme weather. Our model
is based on linearized or "DC" optimal power flow, similar to models in widespread use by independent
system operators (ISOs) and regional transmission operators (RTOs). Our computational experiments
indicate that proactive redispatch alone can reduce the expected load shed by as much as 25% relative to
standard economic dispatch. This resiliency enhancement strategy requires no capital investments and is
implementable by ISOs and RTOs solely through operational adjustments. We additionally demonstrate
that transmission line hardening and increases in transmission capacity can, in limited quantities, be
effective strategies to further enhance power grid resiliency, although at significant capital investment
cost. We perform a cross validation analysis to demonstrate the robustness of proposed recommendations.
Our proposed model can be augmented to incorporate a variety of other operational and investment
resilience strategies, or combination of such strategies.

1 Introduction

The United States Presidential Policy Directive 21 (PPD-21) originally outlined the nation's need for secure
and resilient critical infrastructure and identified 16 critical infrastructure sectors, including the electric power
sector [13]. Subsequently, national focus on improving critical infrastructure resiliency has only increased.

In particular, the resilience of electric power systems is vital for both the economy and public health and
safety. Physical components of power systems may be damaged by natural disasters (e.g., earthquakes and

hurricanes) and by intentional acts (e.g., perpetrated by nation-state actors), ultimately impacting the ability
to deliver power to consumers. The annual cost of power outages due to severe weather in the United States

alone between 2003 and 2012 is estimated to be between $18 billion to $33 billion USD [8].
Informally, resilience refers to the ability of a system to withstand and quickly recover from adverse events

[32]. Here, we specifically focus on power systems resilience to severe weather events, e.g., hurricanes and
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ice storms. A necessary first step toward improving power system resilience to such events is estimating the
impact of these events on power systems. Such estimation involves weather forecasting, predicting the effect

of severe weather conditions on power system components, and modeling the performance (operations) of

power systems given sets of damaged components [1 0, 1 6-1 8].

Panteli et al. [1 9] describe the concept of a "resilience trapezoid" toward evaluation and quantification of
critical infrastructure resilience. The resilience trapezoid, illustrated in Figure 1, highlights the performance

of a system during an adverse event (Phase I), immediately following an adverse event (Phase II), and during
the restoration process (Phase III). Panteli et al. [1 9] subsequently introduced the 0AELI resilience metric

system based upon the different phases of the resilience trapezoid. The 0AEll resilience metric system is

composed of four components:

• 0: The slope of system performance during Phase I

• A: The amount by which performance drops from Phase I to Phase II (i.e., the baseline resilience

minus the post-disturbance resilience: R0 — Rpd)

• E: The duration of Phase II

• II: The slope of the system performance during Phase III

The 0AETI metric system provides a conceptual framework for categorizing different approaches to improv-
ing resilience.

In the context of power systems operations, the primary considerations for Phase I of the resilience
trapezoid are minimization of unserved demand due to component damage and the prevention of cascading

outages (i.e., blackouts). Cascading outages are complex phenomena due to the complex interactions
between system components, component failures, and protection schemes. Many different failure types

may contribute to a blackout, including cascading overloads, transient instabilities, and voltage collapse [3].

2



Typical mitigation strategies include remedial action schemes such as generation trip, brake insertion, fast
valve/gen ramp, HVDC ramp, islanding, intentional load shed, excitation forcing, shunt capacitor/reactor
switching, and series capacitor/reactor switching [26]. Chen et al. [6] propose a decision-event tree to help

operators respond rapidly to an event and prevent cascading outages. Wide area monitoring and backup
protection systems have also been proposed for preventing blackouts [25, 35]. Song and Kezunovic [23]

present an early detection scheme that uses the vulnerability index, margin index, and power flow solutions
to predict possible failures. Cascading outages may also be prevented by partitioning the network into

islands by minimal cut sets [28] and using graph partitioning methods in the context of mixed-integer linear

programming (MILP) models [9].

Extensive research has been conducted to develop improved strategies for post-blackout restoration

(Phase III). Wang et al. [29] divide restoration into three stages (preparation, system restoration, and load
restoration) and provide a review of research conducted to address each stage. Preparation primarily involves

identification of the status of various system components [1]. System restoration deals with restarting
generators and reconnecting and synchronizing the power grid. For example, Sun et al. [24] propose a MILP

model to determine an optimal generator restart sequence in order to maximize system generation capability.
Load restoration (also known as distribution system restoration) deals with scheduling load pickup while

maintaining system frequency. This process must be coordinated with generation capability [1, 29].
In this paper, we focus on optimization-based strategies for demonstrably improving the performance

of power systems in Phase II, i.e., increasing the post-disturbance resilience Rpd. Many hardening options
are available to achieve this goal, including hardening transmission lines, elevating substations, the addition

of distributed generation, the introduction of storage devices, and system network reconfiguration (e.g.,
switching) [19]. Computational approaches are generally required to rigorously select from among these
various options. Zare et al. [34] introduce a stochastic MILP optimization model for switch placement in

power distribution systems in order to isolate faulted areas; network flows are not considered. In general,
determining which option, or combination of options, is computationally challenging, driving research

toward more efficient approaches. Panteli et al. [19] propose hardening transmission lines according to each
corridor's Resilience Achievement Worth (RAW) index. Wang et al. [30] perform Monte Carlo sampling to

assess line outage impacts on generation unit scheduling. However, such heuristic approaches to improving
resilience generally do not generally provide optimal solutions. They may provide significantly worse-than-

optimal solutions in the presence of a diverse set of strategies and large system sizes.
Alternatively, rigorous optimization approaches based on mathematical programming can provide opti-

mal solutions in these contexts, although the computational challenges can be significant. This difficulty is
illustrated in the body of literature on bi-level and tri-level optimization models and corresponding solution
algorithms for critical infrastructure defense planning [2, 21, 33]. These models consider critical infrastruc-

ture defense strategies in the context of an intelligent adversary, and focus on mitigating worst-case impacts
to a power system. For example, Shao et al. [22] and Wang et al. [27] use similar strategies to mitigate

the impact of component failures (contingencies) within the context of long-term (i.e., investment) and
short-term (i.e., operations) planning, respectively. The former introduces a two-stage tri-level optimization

model and imposes an upper limit on load shed. The latter introduces a two-stage robust optimization model
to minimize a linear combination of operating cost and load shed, focusing again on the worst-case loss

induced by component failure. Both of these models are solved using decomposition strategies in which
the model is partitioned into a MILP master problem and bi-level subproblems. The bi-level subproblems
(which are typically more computationally demanding) are used to find the worst-case contingencies, which
are iteratively integrated into the master problem. Hardening strategies recommended by such models are
designed to be effective against an omniscient adversary with full knowledge of the power system under

consideration, e.g., a nation state actor.
The above and related optimization models are not appropriate for mitigating the impact of extreme

weather on power systems, where component failures are strongly a function of geography and typically
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highly correlated. To improve power systems resilience to extreme weather events, we instead propose a novel
optimization model that explicitly considers a range of possible component outages due to extreme weather
events. Specifically, we introduce a two-stage stochastic MILP optimization model — based on linearized

or "DC" power flow, of the type widely used in power systems operations — whose solution determines
optimal dispatch and / or investment planning in the first stage (pre-storm) to minimize the expected load

shed due to system component damage from different realizations of a second-stage extreme weather event.
We demonstrate the utility of our stochastic MILP model on both small (30 bus) and large (2383 bus)

benchmark power systems. Although not detailed here, we note that we performed similar analyses with a
large-scale, proprietary utility, yielding qualitatively identical results; these analyses drove the development
of the stochastic MILP model presented herein. We also perform a cross validation analysis that demonstrates
our model can yield a near-optimal solution (with respect to out-of-sample performance) considering less
than 0.001% of all possible outage realizations.

The remainder of this paper is organized as follows. In the following section, we describe strategies for
generating extreme weather outage realizations (i.e., scenarios) and briefly discuss data challenges associated

with these strategies. We then present our stochastic MILP model for improving power system resiliency

to sampled extreme weather outage scenarios. Subsequent sections then detail (1) computational results

obtained with our stochastic MILP model considering both small and large benchmark power systems
and (2) cross validation results illustrating the robustness of our solutions, which can be obtained using

only a small fraction of all probable component outage scenarios. We then conclude by summarizing our
contributions and discuss extensions for future research.

2 Scenario Construction

We construct a set of relevant probabilistic scenarios that capture transmission line outages (e.g., due to
damage or de-energization) associated with extreme weather event(s) of interest. These scenarios are used as

a key input to our stochastic MILP optimization model, and explicitly represent uncertainty regarding future
possible realizations of component damage associated with adverse weather conditions. We note that these

scenarios can be associated with a specific operational event (e.g., an oncoming hurricane) or a set of adverse
events common to a specific region (e.g., ice storms and high winds), when considering system planning.

Ideally, such scenarios would be obtained from statistical models representing system component outages,
constructed (e.g.,) using historical component failure data. For the synthetic test systems we consider here,
we instead construct scenarios by first sampling the number of transmission line outages from a negative
binomial distribution, and then determine which lines were not in service by sampling from a uniform
distribution.

For our real-world utility case study, extensive historical component failure data was available. Using
this data, we first determined the probability of an outage for each transmission line due to specific weather-

related failures. Most regions of a power system historically have very few to no observed outages. When
no priors were available, we estimated failure probabilities based on the average failure probability across all

transmission lines in the network that are operating at the same voltage level. Regions that are more prone to
certain types of weather hazards due to equipment age, geographical location, and/or line routing commonly

have a disproportionate number of weather-related outages. We apply the calculated probabilities to simulate
such failures on each transmission line and construct a set of scenarios comprised of both 'standard' and

`extreme' weather events. We determine the standard scenarios through random sampling of the associated
failure probabilities for each transmission line. This approach results, on average, in very few failures. In
contrast, we create the extreme scenarios by sampling for a target number of outages that is equivalent to the

number of lines failures observed in historical data from significant weather events. These extreme scenarios
model the "tail" of the distribution, and represent low-probability but still observed weather conditions.
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For example, such extreme scenarios have dozens to hundreds of outages that historically occurred in the

real-world utility's power system.

3 Stochastic Programming Models for Enhancing Resiliency

We now present a series of two-stage stochastic optimization models to improve power systems resilience to
extreme weather events. We begin by briefly reviewing key concepts in power systems modeling, specifically

the linearized or "DC" approximation of power flow. We then introduce a stochastic linear program (LP),
without discrete decision variables, to optimally and proactively redispatch generators in advance of an
extreme weather event. Subsequently, we extend this base stochastic LP model to consider various capital
investment strategies for improving resiliency, specifically transmission line hardening and increases in
transmission line capacity. The latter options involve the introduction of binary (i.e., discrete) decision

variables into our optimization model, resulting in a more difficult stochastic MILP.

3.1 Linearized Power Flows

Power systems are modeled as a network of nodes and links In this case, the nodes represent buses, and
the links represent branches (transmission lines and/or transformers). We use a common linearization of the
transmission line generalized g-model referred to as the DC approximation. This linearization assumes that

the resistance of each transmission line is much less than its reactance, the voltage magnitude at each bus
is close to nominal (i.e., 1 in the per unit system), and the voltage angle difference between interconnected

buses is small [36]. These assumptions result in the following linear angle-to-power relationship to define
the real power flow on line k:

Pk XkTk
(
0 — n Os: t) V(k, b, n) E L (1)

where L is the set of triplet indices including line k, and its interconnected buses b and n; Xk, Tk, and Coskhift

are the reactance, transformer tap ratio, and transformer phase shift of branch k, respectively; and Ob and

On are the voltage angles at the "from" and "to" buses of branch k, respectively. The real power flow pk is
limited by

srx pk srax Vk E (2)

where Sr is the transfer capacity of line k. Additionally, the power transfer between interconnected buses

b and n can be limited by the maximum voltage angle difference Om(baxn) in

®1(nb;) 61, — On

where is a set of adjacent bus pairs.
Buses may have shunts, loads, and/or generators. An energy balance at each bus b requires

®I(nbax,n)

E PgG E Pk E pk = Pb + G'15,
gEgb k Of' 1,0c-out

- -b

V(b, n) E 3l (3)

Vb E B (4)

where 23 is the set of all buses, is the set of generators at bus b, qcin is the set of all transmission lines

with bus b as its "to" bus, nut is the set of all transmission lines with bus b as its "from" bus, 6 is the real
component of the power generated at generator g, PbL is the real component of the power demand at bus b,
pk is the real component of the power flowing along transmission line k, and Gbs is the shunt conductance at
bus b.
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3.2 Resilient Dispatch Formulation

We now present our two-stage stochastic LP model to optimally dispatch generators in preparation for extreme

weather events. The first decision stage of the model captures steady state power system operations prior
to the event. The second decision stage represents post-event steady-state operation following a number

of component outages due to the event. For simplicity, we only consider transmission line outages; the
model can be generalized to consider bus and generator outages as well. Any first stage (proactive dispatch)

decisions must be made before any uncertainty is revealed, and are therefore non-anticipative. Uncertainty
is revealed between decision stages one and two. Decisions (reactive dispatch and load shed) in stage two

are known as recourse decisions, as they are made following realization of any potential uncertainties — in

our case, component outages. As described previously, this uncertainty is captured via a finite number of

discrete scenarios, each with a (potentially distinct) probability of occurrence.
Generator ramping rates are the key linkage between the first and second decision stages; operational

characteristics of thermal generators dictate that they can only feasibly change power output levels at a
limited rate. In this context, the optimization objective is to identify a first stage dispatch that minimizes the
expected load-shed across the set of extreme event scenarios S. The second stage decisions can be viewed

loosely as a "play book" — if a scenario s E S is realized, then the optimal action to minimize load shed is to
re-dispatch according to the recourse pgG values.

Our model, which we refer to as the Resilient Dispatch Formulation (RDF), is

E pL,sshed a E 4,scur)min E 
s ES 12E23 g Eg

(5a)

s.t.

Vb E BE 13 gG,0 + E Pk,o — E Pk,o = Pf; + GIs, (5b)

gEgb k En keVut
b

DG,min < G < DG,max
1 g lig,0 Eg Vg E g (5c)

1
Pk,0 = f,, k7,k(S 9 b,0 — 072,0 — ®skhift) V(k, b, n) E _C (5d)

— STax Vk E IC pk,o STax (5e)

— 07",n) < 0 b,O — 0 n,O 01(11ba",,,,) V(b, n) E ,.71 (5f)

_ pG,R ~ „ _ 
F 
,,G 

s g
G g ~ p,R Vg E Vs E S (5g)g I' g,

G 
0 g, 

Oref,() = 0 (5h)

E (pg,G,s 
— 
PgG:scur) + E

Pk,s — E Pk,s
8 egb ken k EVut

b

pL L,shed GS
= 

+
b 
„
b,s b

DG,min G pG,max
g Pg,s g

1 ,
Pk,s

Akik
kOb s 

_ ns _ kshift)

Pk,s = 0

— srax Pk,s Srax

— Oinclax 0b,s n,s

Orets = 0

L,shed
P b,s rb

Vb E B,Vs E S (5i)

VgEg,VsES

V(k, b, n) E \_Es, VS E S (5k)

VkE1Cs VsES (51)

VkE1C,VsES (5m)

V(b, E 3(5, Vs E S (5n)

Vs E S (5o)

Vb E B,Vs E S (5p)
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0 < pgG,scur < pgG s Vg E g,vs E S (5q)

where constraints (5b) — (50 are related to first stage decisions and are denoted by the index 0, constraints
(5i) — (5q) are related to second stage decisions and are denoted by scenario s, and constraint (5g) enforces
the ramping capability for all generators from the nominal operating state in the first stage to the outage state
in the second stage.

The objective function, (5a), is to minimize the sum of the load shed and the over-generation. The

over-generation term is needed for feasibility (e.g., generators may become islanded). Constraints (5b) and
(5i) represent the nodal real power balance at every bus. Constraints (5c) and (5j) limit the real power

output at each generator. Constraints (5d) and (5k) determine the real power flow on each line k between
interconnected buses b and n , where ..C\Xs denotes all transmission lines that are in service in scenario s.
For the transmission line outages in scenario s, constraint (51) enforces zero real power flow. Constraints (5e)
and (5m) limit the real power flow on each transmission line, and constraints (5f) and (5n) limit the voltage

angle difference between connected buses. Since an infinite number of solutions exist for equivalent voltage
angle differences Ob — On over all (b, n) E gt, constraints (5h) and (5o) set the voltage angle at the reference

bus (denoted with subscript "ref") to determine a single solution. For each adverse weather event scenario
s, constraint (5p) limits the nonnegative load shed below the specified load, /1, and constraint (5q) limits
the nonnegative curtailment needed below the generator's operating level, pgG,. The generator curtailment

constraint approximates the more realistic model in which generators either shut-down or operate at an output
between the minimum operating level (MOL), PgG'', and its maximum capacity, if max.

The RDF is applicable for hours to days before a severe weather event to obtain a resilient dispatch for a
given weather forecast that is used to construct scenarios (see Section 2). The resilient dispatch may be less

efficient than the economic dispatch used in standard operating conditions. However, the RDF operates the
generators in a state that enables transition to contingency states with as little load shedding and generator

curtailment as possible. Additionally, because the problem is entirely continuous and linear, it may be solved
efficiently with commercial solvers such as Gurobi [11] and CPLEX [14] in the short time frame between

weather forecasts and actual weather events.

3.3 Extensions for Long Term Investments

The RDF can be extended to consider many possible long term planning investments for improved grid
resilience. Possible investments for improving resilience include hardening transmission lines, elevating

substations, increasing transmission capacity, placing switches for transmission switching, and many others.

All of these could be modeled within a stochastic programming framework. We demonstrate the extensibility
of the RDF with the following two examples: (1) transmission line hardening and (2) increasing transmission

capacity.

3.3.1 Hardening Transmission Lines

Transmission lines can be hardened to severe weather. A few possible hardening strategies include burying
transmission lines underground, installing guy wires, and upgrading crossarm materials [29]. However, it is

unreasonable to harden every component in the network. Therefore, it is important to understand the priority

of lines to be hardened and the impact of this investment on grid resiliency.
Therefore, we augment the RDF in (5) to optimally determine the set of branches to harden for a given

budget. We introduce a binary variable, 6k, to indicate whether a transmission line is hardened (6.k = 1) or

not (6.k = 0). The assumption is that once a line is hardened, it becomes invulnerable to the current weather

event. We replace constraints (5k) — (5n) as follows:

1 1 — eskhift) V(k, b, n) E L\..E,,,Vs E S (6a)Pk,s = -,, rr 01, s — on,s
ilk i k '
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— M(1 — 8k) Pk,sXalc—
V(k, b,n) E -Ls, Vs ES (6b)

(0b,s — en,s — eskhi") M(1 — 51c)

— Siknax pk,s STax Vk E IC\ICs,Vs E S (6c)

— STax6k Pk,s Srax6k Vk E 1C5,V s E S (6d)

— 1(1/7, xn ) b,s ri,s ®1(nba,xn) V(b, n) E As, Vs E S (6e)

— Corn) — M (1 — 6k) Ob,s — On,s Urn) + — 61c) V(k, b,n) E Ls, Vs ES (6f)

E 4:51‘ C

kEIC

(6g)

6k E {0, 1} Vk E (6h)

Constraint (6a) is the real power flow for in-service lines, and constraint (6b) enables real power flow
for transmission line outages that have been hardened using Big-M notation. Constraint (6d) enforces the
transfer capacity limits on hardened lines, and otherwise prevents power flow on lines that remain in an

out of service state. In other words, constraint (6b) results in an unconstrained voltage angle difference
when constraint (6d) is inactive. Then constraint (6e) enforces the voltage angle difference limits between

connected buses, and constraint (6f) only enforces this limit when there exists a hardened line out of the set
of outages for interconnections between buses b and n in scenario s. Constraint (6g) limits the number of
hardened transmission lines to C. Constraint (6h) defines the first-stage binary variable 6k.

3.3.2 Increasing Transmission Capacity

An alternative hardening investment is to increase the pre-existing transmission capacity. In this case, we
introduce a binary variable, yk, to represent whether the capacity of the corresponding transmission line has

been increased (yk = 1) or not (yk = 0). Constraint (5m) is replaced by the following:

yk) — ASTaxyk Ps,k Snl — yk) + ASryk Vk E 7C Vs E S (7a)

Yk C (7b)
kEic

yk E {0, 1} Vk E IC (7c)

where A is the factor by which the transmission capacity will be increased. Constraint (7a) enforces the
nominal capacity limits when yk = 0, and increases the limits by a factor of A when yk = 1. Constraint
(7b) limits the number of transmission lines for which the thermal limits can be increased. Constraint (7c)
defines the first-stage binary variable yk.

4 Computational Results

The stochastic programming formulations (RDF, THF, and TCF) presented in Section 3 were successfully

applied to a large real-world utility with scenarios constructed as discussed in Section 2. However, the data
and results are proprietary, so we instead present results from two standard test cases from the publicly

available Matpower software package for power flow analysis: case30 and case2383wp [36].
The network sizes for the test cases and the proprietary utility are summarized in Table 1. One hundred

scenarios were used for case30, and fifty scenarios were used for case2383wp. The number of transmission

line outages in each scenario was drawn from a negative binomial distribution, and the transmission lines that
were out of service were drawn from a uniform distribution. The resulting problem sizes for the Resilient
Dispatch Formulation (RDF), Transmission Hardening Formulation (THF), and Transmission Capacity
Formulation (TCF) are given in Table 2.
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Table 1. Summary of network sizes

case30 case2383wp Proprietary Utility

# of Buses 30 2383 0(10, 000)
# of Generators 6 327 0(1, 000)
# of Transmission Lines 41 2896 0(10, 000)

Table 2. Problem size statistics

Test Case Formulation
Continuous
Variables

Binary
Variables

Equality
Constraints

Inequality
Constraints

case30 RDF 9,677 0 6,662 8,664

case30 THF 14,579 41 10,762 11,613

case30 TCF 13,777 41 10,762 10,189
case2383wp RDF 390,755 0 267,767 341,639
case2383wp THF 537,401 2,896 412,567 347,950
case2383wp TCF 535,555 2,896 412,567 344,820
Utility RDF 1,583,730 0 1,279,810 100,882
Utility THF 1,635,443 972 1,313,286 141,531
Utility TCF 1,625,018 1,588 2,122,236 182,176

The stochastic programming formulations were modeled with Pyomo [12] and solved with CPLEX [14].

The THF and TCF formulations for case30 were solved to less than a 0.01% optimality gap. The THF
problems for case2383wp were solved to less than a 2% gap, and the TCF formulations for case2383wp were

solved to less than a 4% gap. The weight a on the generator curtailment term in the objective was 0.01. The
value of A used in the TCF formulation was 2. Due to a lack of ramp rate data for the synthetic test cases, a
correlation was developed between the maximum power output of the generator and the ramp rate using real

proprietary utility data. The correlation was then used to estimate ramp rates for these cases. A conservative
5-minute ramp rate was used in order to limit the overall change of the state of the grid during the severe

weather event because the system dynamics were not modeled.
The results are presented in Figures 2 and 3; incremental variants variants are shown in Figures 4 and

5. The left and right panels illustrate results for the THF and TCF formulations, respectively. The y-axis
shed\indicates the expected load shed E (pi, ) across all scenarios, i.e.,

E (pL,shed) . Ens V L,shed
Z_d P b,s

sES bE53

in the objective function (5a). The asterisk represents the baseline, which is the case where no preparation is

done before the severe weather event. Rather, the generator outputs in the first stage are fixed (as determined
by economic dispatch), and the expected load shed is simply the evaluation of the effect of each scenario

on the system. Note that when the number of lines hardened is zero, this corresponds to the RDF solution
(redispatch only). The same is true for the TCF figure (i.e., optimal value at zero is the RDF solution).

The RDF results in Figures 4 and 5 indicate that simply redispatching generators before a severe weather
event reduces the expected load shed by 25.0% and 16.6% for case30 and case2383wp, respectively. We
note that the incremental reduction in expected load shed is calculated as the percentage with respect to the

baseline load shed. This substantial reduction in load shed does not require any capital investments and
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therefore is immediately implementable by the system operator through operational adjustments.

The THF results indicate that line hardening can be very effective, with higher marginal gains from the

initial investments. The left panels of Figures 4 and 5 show the incremental reduction in expected load shed

decreasing with increasing number of lines hardened. For case30, the first two transmission lines hardened
each reduce the expected load shed by over 13%. After the first two, there is a significant drop to about 7%

followed by a continued gradual decline. Then for case2383wp, hardening just one transmission line reduces

the expected load shed by 10%, followed by a significant decrease in which each transmission line hardened
after the fifth decreases the expected load shed by less than 1.5%.

The TCF results indicate a slightly less effective strategy, as illustrated in the right panels of Figures 4
and 5. Our results for case30 indicate that doubling the transmission capacity of three transmission lines

results in over 9% total reduction in expected load shed. For case2383wp, doubling the transmission capacity
of five transmission lines results in approximately a 4.4% reduction in expected load shed. Increasing the

capacity of transmission lines is clearly less effective than hardening per transmission line. Depending on
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Fig. 4. Incremental reduction in expected load shed for each additional hardened line (left) and each
additional line with increased capacity (right) for case30.
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Fig. 5. Incremental reduction in expected load shed for each additional hardened line (left) and each
additional line with increased capacity (right) for case2383wp.

the cost of increasing the transmission capacity of each of these lines, this could be combined with RDF and

THF strategies for improved resilience.

4.1 Out-of-Sample Cross Validation

Even for a small test network such as case30, including all possible scenarios in the stochastic programming
formulation is intractable. On average, the scenarios for case30 contained 7 transmission line outages. Over
22 million scenarios would be necessary to consider every combination of 7 outages. To demonstrate that
only a small fraction of all possible scenarios is needed to obtain a high quality solution, a cross validation

case study was performed with case30.
A set of 10 randomly sampled scenarios (different from the one hundred scenarios used above) was

used to solve the RDF and THF problems. The solution was then used to evaluate the performance of the

first stage solution on the original 100 scenarios used in Section 4. This process was then repeated with 30
and then 100 randomly sampled scenarios. The results are shown in Figure 6. Both the line labeled "True

Scenarios" and the line in Figure 2 detail results when the stochastic programming problems are solved with
the original 100 scenarios and the load shed in the second stage is evaluated on the same 100 scenarios. This
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Fig. 6. Cross validation results for case30. The line labeled "True Scenarios" shows the expected load
shed when the solution to the stochastic programming problem is evaluated on the same 100 scenarios used

to solve the stochastic programnaing problem. The remaining lines show the expected load shed when the
stochastic programming problem is solved with a different set of scenarios than those used to evaluate the

expected load shed.

quantity represents the best possible performance.
Figure 6 shows that when only 10 scenarios are used to determine how to dispatch the generators in

the first stage, the performance of the original 100 scenarios in the second stage is actually worse than the
baseline. This is still true even after four transmission lines have been hardened, illustrating just how critical

scenario selection is. The 30 scenario case performs significantly better, and the 100 scenario case performs
almost as well as using the "True Scenarios." Thus, we obtained a high quality solution with less than

0.001% of all possible scenarios.

5 Conclusions and Future Work

Our proposed stochastic programming models for enhancing power systems resilience to extreme weather
events shows promise, based on results obtained using synthetic and real world test systems. Specifically,
relatively simple operational changes can significantly reduce the impact of extreme weather events, and
hardening transmission can yield further reductions. Surprisingly, the non-capital approach (proactive
re-dispatch) yields more significant reductions than the two capital approaches investigated.

Many modeling and algorithmic challenges remain. First of all, there are many resilience actions
other than transmission line hardening and increasing transmission capacity that can be integrated with

the proposed Resilient Dispatch Formulation (RDF). Such actions include transmission switching (i.e.,
network reconfiguration), investments in hardening current substations and generators, and development
of new facilities including storage and microgrids. For example, recent studies have demonstrated that
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microgrids can prevent cascading outages (Phase I) [7], mitigate performance degradation (Phase II) [15, 31],

and improve restoration (Phase III) [5]. Moreover, these strategies can be considered in combination by
considering, for example, information from the system operator or utility on budget availability, potential
siting locations for hardening existing or installing new equipment, and possible operational actions.

Furthermore, the size of the stochastic programming problem increases with the product of the network

size and the number of scenarios, making the solution of large scale systems computationally challenging.
When the extensive form cannot be solved directly in the time allotted, stage-based or scenario-based

decomposition methods such as progressive hedging [20] or Benders decomposition [4] can be applied.
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7 Notation

Sets

As

B

gb

IC

nut

Parameters

PL,

GS
pG,min

g

pG,max

g

Set of pairs (b, n) specifying adjacent buses;

Set of pairs (b, n) specifying adjacent buses in scenario s, c Yt;

Set of all buses;

Set of all generators;

Set of generators at bus b, c g;

Set of all lines;

Set of lines connected to bus b E B, c gC;

Set of lines with bus b E B as the "to" bus, 14,n c IC;

Set of lines with bus b E B as the "from" bus, but;

Set of lines out of service in scenario s, Ifs c qC;

Set of 3-tuples denoting line k and interconnected buses b and n

where (b, n) E Y{;

Set of 3-tuples denoting lines out of service in scenario s, C .E; and

Set of all scenarios.

Real power load at bus b;

Shunt conductance at bus b;

Minimum power output for generator g ;

Maximum power output for generator g ;
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DG,R
1 g

Sr-

Tk

Xk

ns

okshift

omax
(b,n)

M

Variables
L,shed

Pb

P
G

”G,cur
g

Pk

dk

Yk

Ob

References

Maximum power ramp rate for generator g;

Maximum power flow on branch k;

Transformer tap ratio for branch k;

Reactance of branch k;

Probability of occurrence for scenario s;

Transformer phase shift angle for branch k;

Maximum allowable voltage angle difference between buses b and n; and

"Big-M" parameter value.

Real power load shed at bus b;

Real power output at generator g;

Real power curtailment at generator g;

Real power flow on line k;

Binary indicator for whether line k is hardened;

Binary indicator for whether the capacity of line k is increased; and

Voltage angle at bus b.
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