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We provide a comprehensive overview of mixed integer programming formulations for the unit commitment
problem (UC). UC formulations have been an especially active area of research over the past twelve years,
due to their practical importance in power grid operations, and this paper serves as a capstone for this line
of work. We additionally provide publicly available reference implementations of all formulations examined.
We computationally test existing and novel UC formulations on a suite of instances drawn from both aca-
demic and real-world data sources. Driven by our computational experience from this and previous work,
we contribute some additional formulations for both production upper bound and piecewise linear produc-
tion costs. By composing new UC formulations using existing components found in the literature and new
components introduced in this paper, we demonstrate that performance can be significantly improved — and

in the process, we identify a new state-of-the-art UC formulation.
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Nomenclature
Indices and Sets

geg Thermal generators

lel, Piecewise production cost intervals for generator g: 1,...,L,.

s€ES, Start-up categories for generator g, from hottest (1) to coldest (S,).
teT Hourly time steps: 1,...,T.

[t,t') € X, Feasible intervals of non-operation for generator g with respect to its min-
imum downtime, i.e., [t,t') € T x T such that ¢ > ¢+ DT, including times
(as necessary) before and after the planning horizon 7.

neN Set of buses: 1,...,N.

9€G, Thermal generators at bus n.

ke Set of branches (lines): 1,..., K.

k€t (n) Lines to bus n, CN.
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k€ d (n) Lines from bus n, CN.

Parameters
By, Susceptance of branch k.
o Cost coefficient for piecewise segment [ for generator g ($/MWh).
6; Cost of generator g producing P MW of power ($/h).
Cl Cost of generator g running and operating at minimum production P, ($/h).
Cs Start-up cost in category s for generator g ($).
Cy Shutdown cost for generator g ($).
Crp Penalty cost for failing to meet or exceed load ($/MWh).
Crp Penalty cost for failing to meet reserve requirement ($/MWh).
D, (t) Load (demand) at time ¢ at bus n (MW).
D,  Number of hours generator g is required to be off at t =1 (h).
DT, Minimum down time for generator g (h).
F; Transmission capacity of branch & (MW).
k(n) From bus for branch k, € V.
k(m) To bus for branch k, € .
py(0) Power output of generator g at time 0, € [0, P,] (MW).
P, Maximum power output for generator g (MW).
P; Maximum power available for piecewise segment [ for generator g (MW).
P,  Minimum power output for generator g (MW).
R(t) System-wide spinning reserve at time ¢ (MW).
RD, Ramp-down rate for generator g (MW /h).
RU, Ramp-up rate for generator g (MW /h).
SD, Shutdown rate for generator g (MW /h).
SU, Start-up rate for generator g (MW /h).
TC, Time down after which generator g goes absolutely cold, i.e., enters state S,.
T Time offline after which the start-up category s is available (I}] = D, T 59 =
TC,).
ugy(0) State of generator g at time 0, € {0,1}.
U, Number of hours generator g is required to be on on at t =1 (h).
UT, Minimum run time for generator g (h).
W, (t) Aggregate renewables generation that is must-take at bus n at time ¢ (MW).
W ,(t) Aggregate renewables generation available at bus n at time t (MW).
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Variables

pg(t)  Power generated for generator g at time ¢t (MW), > 0.

p,(t)  Power generated above minimum for generator g at time ¢t (MW), > 0.
p,(t)  Maximum power available for generator g at time ¢ (MW), > 0.
Py(t)  Maximum power available above minimum for generator g at time ¢ (MW), > 0.

pwa(t) Aggregate renewable generation used at bus n at time ¢t (MW), > 0.
pl(t)  Power from piecewise interval [ for generator g at time ¢ (MW), > 0.
rq(t)  Spinning reserves provided by generator g at time ¢ (MW), > 0.

t)  Commitment status of generator g at time ¢, € {0,1}.

) Commitment transition status of generator g at time ¢, € {0,1}.
vy(t)  Start-up status of generator g at time ¢, € {0,1}.

wy(t)  Shutdown status of generator g at time ¢, € {0,1}.

cb(t)  Production cost over P, for generator g at time ¢ ($), > 0.

Y(t) Start-up cost for generator g at time ¢ ($), > 0.

D(t)  Shutdown cost for generator g at time ¢ ($), > 0.

65(t)  Start-up in category s for generator g at time ¢, € {0,1}.

x4(t,t") Indicator arc for shutdown at time ¢, start-up at time ¢, uncommitted for i €
[t,t'), for generator g, € {0,1}, [¢,t') € &,

) Voltage angle at bus n at time ¢ (radians).

fr(t)  Power flow on branch k from bus k(n) to k(m) at time ¢ (MW).

) Load mismatch at bus n at time ¢t (MW).

sr(t)  Reserve shortfall at time ¢ (MW), > 0.

1. Introduction

Unit commitment (UC) is a foundational problem in real-world power systems operations
and planning. The UC problem is to determine an operating schedule — which specifies unit
on/off statuses and associated production levels — for a fleet of thermal power generators to
meet forecasted load at minimum total production cost, while satisfying a range of physical
(e.g., Kirchhoff’s laws) and operational (e.g., unit production ramping limits) constraints.
Variants of UC are used in power systems operations for day-ahead market clearing, and
day-ahead and intra-day reliability processes. Simplified versions of these UC variants

also see widespread use in power systems planning, specifically in production cost models.
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Beginning with the PJM (Pennsylvania-Jersey-Maryland) independent system operator in
2005, power systems operators in the United States have transitioned from solving UC
via heuristics based on Lagrangian relaxation to formulating UC as mixed-integer (linear)
programs (MIPs) (O’Neill 2017) that are solved via commercial branch-and-cut engines
such as CPLEX (International Business Machines Corporation 2018) and Gurobi (Gurobi
Optimization, Inc. 2018). The savings associated with this transition are estimated at $5
billion USD annually in the United States alone (O’Neill 2017). For a recent high-level
overview on UC and its importance in power systems operations and planning, we refer
to Anjos et al. (2017).

The typical real-world day-ahead UC problem is solved for an hourly time resolution over
36 to 48 hours, and considers hundreds to thousands of thermal generators and transmission
systems with up to tens of thousands of buses and lines. Because the size of the transmission
system can make solving the UC problem prohibitively difficult in practice, typically only a
small subset of transmission constraints are considered in the day-ahead UC variant (Chen
et al. 2016). While system operators commonly have up to three hours to solve their day-
head UC, much of that time is consumed verifying the input data (e.g., market bids and
offers), performing post-solve feasibility checks (e.g., considering AC power flow), re-solving
after integration of feasibility cuts, performing a pricing run, and finally publishing the
results. Consequently, it is strongly desirable in practice to have a UC solution available
in 10 to 15 minutes.

The importance of UC in practice and the size of real-world power systems has led
to significant interest from both the research and practitioner communities in develop-
ing improved mathematical programming formulations of UC, in order to reduce branch-
and-cut solve times. It is well-known that the choice of MIP formulation for any given
optimization problem can have a significant impact on practical computational difficulty,
and UC is no exception. Consequently, there has been significant research focus over the
past twelve years in developing improved UC MIP formulations, i.e., focusing on “tighter”
formulations with improved linear programming (LP) relaxations in order to reduce the
tree exploration time associated with branch-and-cut. In this context, this paper makes

the following contributions:
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e We catalog existing formulations in the literature for the UC problem as originally
defined by Carrion and Arroyo (2006), who additionally introduce the base MIP UC for-
mulation that we consider herein. Improvements to this base formulation have been the
subject of many subsequent papers, and such improvements are closely tracked by industry.

e We computationally examine the performance 41 different UC formulations on 68
instances considering three generator fleets of increasing size. This analysis carefully quan-
tifies the performance of UC formulations reported in the literature, and identifies the
present state-of-the-art.

e We make publicly available on GitHub (please contact the authors until the paper has
completed the review process) the reference implementations for all of the UC formulations
we consider, expressed in the Pyomo (www.pyomo.org) algebraic modeling language Hart
et al. (2011, 2017), and additionally release all instances. The release of these reference
implementations will allow the community to consider additional combinations we have
not considered on their own test instances. The availability of tested MIP model and
instances for UC will significantly reduce the time required to examine alternative novel
UC formulations, ensures that accurate and controlled computational experiments can be
conducted across the community, and provides a performance baseline against which the
efficacy of novel UC formulations can be assessed.

e Driven by the computational experience from Damci-Kurt et al. (2016), Knueven et al.
(2017) and preliminary work for this paper, we introduce two formulation enhancements.
One is a set of strong variable upper bound inequalities for a ramping-constrained genera-
tor. The other is a tightening of the piecewise linear production costs. The later allows us
to derive, in an online supplement (Knueven et al. 2018¢c), a convex hull result for a gen-
erator with piecewise linear production costs, start-up and shutdown ramping constraints,
and minimum uptime/downtime constraints.

e We introduce two novel UC formulations, one of which represents new combinations of
components from existing UC formulations, and the other drawls on new components and
existing formulations. We demonstrate that the later formulation significantly improves of
the performance of any previously reported UC formulation, establishing a new state-of-
the-art UC formulation.

In all, this paper puts forth a new benchmark for the unit commitment problem. While

we do not consider various extensions of UC, e.g., stochastic or robust variants, different
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reserve products, or improvements to the network model, nearly every extension has at
its core formulations of the generation units, the variants of which is the primary focus of
this paper. We therefore believe the results herein are broadly relevant to extensions of the
unit commitment problem.

The remainder of this paper is organized as follows. We begin in Section 2 by introduc-
ing the basic UC model and key issues in its formulations. In Section 3, we detail the key
formulation variants introduced for UC to date. Our computational experiments are based
on several complete UC formulations introduced by researchers over the past twelve years;
these are documented in Section 4, placed in the notational context of Section 3. We addi-
tionally consider some new UC formulations, as described in Section 5. Our computational
experiments are summarized in Section 6, and we conclude with a summary of our findings

and contributions in Section 7.

2. Overview

We formulate the general unit commitment problem as follows

min Z Z cy(t) (1a)

geg teT

s.t. ZAg(pg,]_)g,ug)—l—N(s) =L (1b)
g€g
(Pg, Dy g, Cg) €T Vgeqg. (1c)

Here c, is the vector cost associated with p,, p,, u4, such that the objective function (1a) is to
minimize system operation cost. The vectors py, p,, and u, represent the feasible generation
schedule, maximum power available, and the on/off status for generator g, respectively. The
matrix Ag(py, P, ug) determines how the generator interacts with the system requirements,
which are written in matrix form as equation (1b). Here the variable s is other potential
decision variables involving the operation of the system. Finally, constraint (1c) defines the
feasible region for each generator’s schedule and the cost associated with that schedule.
Because generators usually have a discrete component to their operation (they are either
on and operating above some minimum level P or off), the set II, is often non-convex.
In reality the system constraints (1b) are non-convex as networks usually use alternating

current; in practice this is often approximated using a linear set of constraints. For the
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purposes of this paper will we assume the system constraints are linear in nature, and we
consider only a minor variation with regards to how the reserve is modeled.

Most of the research for MIP formulations of UC has focused on better descriptions of
the non-convex set II,. We will refer to the conv(Il,;) as the generator polytope. Tighter
descriptions for I, tend to increase the linear-programming relaxation bound of (1), which
often reduces computation times by reducing the enumeration necessary to find and prove
an optimal solution. However, in general tighter descriptions tend to use more variables
and/or constraints, so which description to use in practice is a balance between the tight-
ness and the compactness for the given choices. Further, modern commercial MIP solvers
have sophisticated cut-generation and pre-solve routines which can serve to tighten a for-
mulation automatically.

Common constraints for II, are minimum/maximum generation levels when on, produc-
tion ramping limits, minimum up-times and down-times, piecewise linear convex produc-
tion costs, and time-dependent start-up costs. Most of the UC literature involves finding
a locally ideal or locally tighter formulation for a subset of the constraints in IIy, that is,
just considering one (or two) of the types of constraints above and deriving a result for
that (or those) constraint type(s).

Regarding the minimum uptime/downtime constraints, Lee et al. (2004) shows a convex
hull description of these constraints alone is exponential in the space of the u variables,
though the constrains can be separated in linear (in 7°) time. Malkin (2003) and Rajan and
Takriti (2005) show these same minimum uptime/downtime constraints have a linear-sized
convex hull when one adds the start-up variable v(t), indicating the generator is switched
on at time ¢. Subsequent work has shown the uptime/downtime constraints provided
by Malkin (2003) and Rajan and Takriti (2005) to be computationally beneficial (Ostrowski
et al. 2012, Morales-Espana et al. 2013a), and are usually one of the core components of a
modern unit commitment model.

Frangioni et al. (2009) demonstrates how to tighten the piecewise linear production
costs using perspective cuts. These serve to accurately model the production costs not just
in the space of the p variables, but in the space of the (p,u) variables. The formulation
given is the convex hull of the piecewise linear production costs with the addition of
basic minimum/maximum power constraints. Sridhar et al. (2013) gives similar results

for a broad class of potential piecewise linear formulations, and Wu (2016) confirms this
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result for the SOS2-type formulation as gives an additional locally ideal reformation of the
piecewise linear constraints from Carrion and Arroyo (2006). Chen and Wang (2017) gives
yet another locally ideal formulation which is a modification of the SOS2-type formulation.
In this paper we will present another formulation which is locally ideal for the piecewise
production cost, generation limits, start-up and shutdown ramps, and the minimum up-
time/down-time constraints. An extension of the result from Knueven et al. (2018b) will
show this is also tight when time-dependent start-up costs are added.

Morales-Espafia et al. (2013a) presents a tightening of the generation limits when there
are start-up and shutdown ramping limits, which are the maximum the generator can
produce when turning on and turning off, respectively. A follow-up paper, Gentile et al.
(2017), shows that a slight modification of this formulation is locally ideal for the generation
limits, start-up/shutdown ramp limits, and minimum up/down times.

Morales-Espafia et al. (2013a) also introduces and computationally evaluates a reformu-
lation for the time-dependent start-up costs, which had been typically modeled as in Nowak
and Romisch (2000). Knueven et al. (2018b) proves the formulation from Morales-Espana
et al. (2013a) is tighter than that of Nowak and Rémisch (2000) and introduces a new for-
mulation that is as tight, but smaller, than a locally ideal formulation for time-dependent
start-up costs. Knueven et al. (2018b) further shows that any formulation ideal in the
uptime/downtime constraints of Malkin (2003) and Rajan and Takriti (2005) will have an
integer optimal solution when the start-up cost formulation introduced therein is added.
Queyranne and Wolsey (2017) give a convex hull description for time-dependent start-up
costs which requires O(T?) constraints.

The ramping constraints are perhaps the most studied. Ostrowski et al. (2012) introduces
strengthening inequalities for ramping, some of which are shown to be facets of certain
projections of II,. Damci-Kurt et al. (2016) defines the convex hull for the two-period
ramp-up polytope and the two-period ramp-down polytope, as well as several classes of
facet-defining inequalities for the ramp-up and ramp-down constraints, respectively. Pan
and Guan (2016) gives the convex hull description for 7' =3 with minimum up/down
time constraints, production limits, ramping limits, and start-up/shutdown limits, and
facet-defining inequalities for this polytope when T > 3. Pan and Guan (2017) extends
this result for general T for a couple special cases, and gives convex hull descriptions for

the ramping-up polytope (that is, minimum up/down time constraints, production limits,
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ramp-up limits, and start-up limit) and ramping-down polytope for general T'. However,
all these formulations require an exponential number of constraints when expressed with
the p,u,v (and/or w) variables.

As was the case with the minimum up-time/down-time constraints, an extended formu-
lation may prevent such exponential blow-up in the number of constraints. Knueven et al.
(2017) shows the generator polytope conv(Il,) can be expressed with O(7?) variables and
constraints. Guan et al. (2018) give two different extended formulations for the generator
polytope. However, all of the extended formulations for the whole of conv(Il,) tend to be
too large for direct incorporation into a UC MIP model.

So while a perfect formulation for a generator exists, it is not practical to use within
a MIP formulation for UC. The question then is an engineering one-what formulation is
good in practice? That is, determine a formulation which typically performs well when
solving UC with a modern commercial MIP solver. This has often been discussed in the
literature as a trade-off between tightness and compactness. A “tight” formulation for a
generator is either a convex hull description for II, or a set of equations which are thought
to provide a good approximation for conv(Il,;), where as a “compact” formulation is one
which describes II, without using “too many” variables and constraints. The thought is
that a tight formulation will provide a better bound for the MIP solver to exploit, at
the cost of increasing the size of the linear programming relaxation, whereas a compact
formulation will result in faster node solve times, at the cost of weakening the lower bound
given by the linear programming relaxation.

However, this paradigm is not an entirely accurate presentation of the landscape. Mod-
ern commercial MIP solvers have both sophisticated heuristics and cut-generation routines
which work on finding better incumbent solutions and lower bounds, respectively. Because
of this, many UC problems can be solved to a reasonable optimality gap a the root node or
with only minimal enumeration. Differences in formulation may affect the cut-generation
routines or the heuristics in ways that are difficult to anticipate. For example, it has been
observed that tighter formulations often improve the performance of MIP heuristics (Roth-
berg 2018). For these reasons, it is important to evaluate UC formulations empirically, as

it is difficult to know a priori the effect of making a formulation tighter or more compact.
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3. Formulations

Throughout much of this section, we discuss formulations for constraints and variables
describing II,. When describing the formulation for a single generator, we will drop the
subscript g for clarity and ease of presentation. Most of the constraints described here
could be applied to every generator g € G; we will explicitly point out when this is not
the case. In a similar fashion, most constraints can be applied to every time period, so we
will often forgo the qualifier Vt € 7, and put an additional qualifier on the time step ¢ if
necessary. In general, the variables v(t) and w(t) for ¢ < 1 should be based on historical

data, and for ¢ > T they can be assumed to be 0.

3.1. State variables and minimum up-time/down-time constraints

3.1.1. Three- (and two-) binary formulations Garver (1962) first proposed using three
binary variables to represent the state of the generator: u(t) for if the generator is on at
time ¢, v(t) if the generator is turned on at time ¢, and w(t) if the generator is turned off
at time t. Garver (1962) also first formulated the logical constraints, which relate the three

binary variables:
u(t) —u(t—1)=v(t) —w(t) teT. (2)

Common to all models is the need to enforce the initial uptime and downtime constraints
based on the generator ¢’s history. As some generators can have very long minimum up-
times and down-times, these are formulated as:

min{U,T'}

Z w(i) =min{U, T} (3a)
min{D,T'}

> u(i)=0. (3b)

i=1
Any reasonable formulation of these constraints should cause the solver to preprocess away
the involved variables in short order. Note that if U or D are 0 these sums become empty,
thus eliminating these constraints.

A now common way to formulate minimum up-time and down-time are the turn on/turn
off inequalities proposed by Malkin (2003) and Rajan and Takriti (2005):

t

> (i) <uf(t) te{UT,...,T} (4)

i=t—UT+1
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t

> w(i) <1—u(t) te{DT,...,T}. (5)

i=t—DT+1
Malkin (2003) and Rajan and Takriti (2005) independently showed that these constraints
are facets of the convex hull of the uptime/downtime polytope, which together with (2)
and variable bounds are an ideal formulation for up-time/down-time. A more recent and
general proof can be found in Queyranne and Wolsey (2017), which extends this result
to minimum up-time and down-times which vary across the planning horizon, as well as
mazimum up-times and down-times. One may use equation (2) to project out either the
v or w variables while not losing strength. Typically the w variables are projected out as
there are costs usually associated with start-up but not shutdown. The resulting logical

and minimum down-time constraints, respectively, are

v(t) > u(t) —u(t—1) VieT (6)
> w(i) <1—u(t—DT) te{DT,...,T}. (7)

While not often used, this version of the logical and minimum down-time constraints was
tested computationally in Yang et al. (2017) (which completely projects out the shutdown
variables w), and a version of equation (7) was computationally tested in Atakan et al.
(2018). Note that in what follows, if only the two-binary variables u(t) and v(t) are used,

we can always use the substitution provided by (2) to eliminate w(t) from the expression.

3.1.2. State transition variables Atakan et al. (2018) suggest replacing the variable
u(t) with a state-transition variable @(¢) which encodes if the generator g remains opera-
tional at time ¢. (The state transition variables for start-up and shutdown are equivalent

to Garver’s.) They also give the mathematical relationship
u(t) = a(t) +v(t), (8)

which allows for the transformation of constraints for Garver’s three-binary variables to
those for the state-transition variables.

In particular, the logic constraint (2) becomes

a(t) —a(t—1) = v(t — 1) —w(t) teT, 9)
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and Atakan et al. (2018) uses constraints (4) and (7) with this transformation applied for
minimum up-time/down-time:

t—1

| > (i) <af(t) te{UT,...,T} (10)

> w(i)<1—da(t— DT) te{DT,...,T}. (11)
i=t—DT
The historical stay-on and turn-on at ¢ =0, 4(0) and v(0), can be inferred from the initial
information. Similarly, constraints such as (3) can be formulated to enforce the initial
run-time or off-time.

There are many other potential ways to formulate the minimum up-time/down-time
constraints using two or three binary variables, but the ones presented above are most
common in the MIP UC literature. Hedman et al. (2009) gives an overview of other possi-
ble formulations. We detail additional formulations for uptime and downtime from Dillon
et al. (1978), Takriti et al. (2000), and Carrion and Arroyo (2006) in the online supple-
ment (Knueven et al. 2018¢, Section B.1).

3.2. Power and reserve variables

There are two suggestions in the literature for formulating the power output of a generator:
(1) py(t) to represent the power produced by generator g at time ¢, and (2) p|(t), which
represents the power produced above P, by generator g at time ¢. The former formulation
has been more common, though the later was suggested by Garver (1962) and has recently
been put forward by Morales-Espana et al. (2013a). The two variable choices are equivalent

mathematically through the linear relationship

Py(t) = pg(t) + Lgyuy(t). (12)

For the reserve contribution, here again the literature suggests two possible approaches.
One, introduced by Carrion and Arroyo (2006), is to model the maximum power available
for generator g at time ¢, which we will call p, (t). The other, introduced by Morales-Espana
et al. (2013a), is to model the reserves contributed by generator g at time ¢, which we refer

to as r,(t). For this paper we introduce a third possibility, which is to have a variable for
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the maximum power available above minimum for generator g at time ¢, referred to as

et : . :
P, (t). Here we have the linear relationships

Py(t) =Py (t) + Pyuy(t) (13)
Py(t) =1 (1) +7y(t) (14)
Py(t) = pg(t) +14(1), (15)

so like with power these three variable choices are mathematically equivalent. Note we also

have the relationships

py(t) <D, (t) (16)

py(t) <Ty(t), (17)

both of which can be appropriately translated using the equations above.

The linear relationships provided by equations (12)—(15) allow for the translation of
constraints involving one group of variables into constraints involving another through
simple substitution. In the proceeding we will use the constrains as they were presented in
the papers that introduced them; applying the transformations directly when they allow for
cancellations which reduce the number of non-zeros or simplify the constraint. Practically,

formulations with p{(¢) are more difficult to implement if P, P, are functions of time.

3.3. Generation limits and upper bounds
The simplest generation limits, when stated in terms of the p, p variables is given by Carrion

and Arroyo (2006)
Pyug(t) < pylt) <5, (1) < Pyuglt). (18)

Additionally, to ensure total capacity is not exceeded as the generator ¢ is shutting

down, Arroyo and Conejo (2000) define the constraint
Py(t) < Py(uy(t) —wy(t +1)) + SDgwy(t +1). (19)

Morales-Espafia et al. (2013a) proposes using the start-up and shutdown ramping limits

to tighten the variable upper bounds:

p;(t) + gt} < (Pg— Bg)ug(t) - (Fg —SU,)vy(t) — (Fg —8Dg)w,(t+1) g€ G (20)
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p;(t) +1y(t) < (ﬁg - Bg)ug(t) - (Fg —SU,)v4(2) geg' (21a)
p;(t) +7y(t) < (Fg - Bg)ug(t) - (Fg —SDg)wy(t+1) ge gla (21b)

where G771 :={g€ G |UT, > 1} and G' :={g€ G| UT, = 1}. With the D variables con-

straint (20) can be equivalently expressed
ﬁg<t) < Fgug(t) - (?g —SU,)vy(t) — (]_Dg — 8Dg)w,y(t+1) gec G, (22)

and (21) can similarly be translated. Note that (21b) is the same expression as (19)
through (13) and (14). Damci-Kurt et al. (2016) showed that (21a) and (21b) are facets
of the two-period ramp-up and ramp-down polytopes, respectively. Here the two-period
ramp-up and ramp-down polytopes are simply the generator polytope for T'= 2 while only
considering the ramp-up and ramp-down constraints, respectively.

For g € G', when SU, # SD,, constraints (21) can be tightened (Gentile et al. 2017)

plg(t) +1g(t) < (?g _Bg)ug(t) - (ﬁy — 8Ug)v,(t) — [8U, — SDQ]+wg(t +1) g€ G' (23a)
p;(t) +1y(t) < (Fg _£g>u9(t) - (ﬁg —SDy)wy(t+1) = [SDy — SUg]+Ug(t) gec G, (23b)

where []* :=max{-,0}. Note that when UT, =1, it is possible for v,(t) =1 and w,(t+1) =
1. This modification ensures that in this case both constraints are tight. Gentile et al.
(2017) also gave a convex hull result using these tightened constraints along with (20). In
particular, if r,(t) is fixed to zero and UT, > 1, then (2), (4), (5), and (20), along with
the basic [0, 1] bounds on the binary variables, provides a convex hull description for these
constraints (in particular, minimum up-time/down-time, start-up/shutdown ramps, and
generation limits), for a single generator. If UT, =1, then (2), (4), (5), and (23), along
with the variable bounds is a convex hull description for a single generator with these
constraints. In either case, adding ramping constraints, piecewise linear production costs,
and/or time-dependent start-up costs will result in a description that, in general, is no

longer a convex hull description.

3.4. Ramping constraints

Ramping constraints are given by Arroyo and Conejo (2000) as
p(t) —p(t—1) < RUu(t—1)+ SUwv(t) (24)
p(t—1) —p(t) < RDu(t) + SDw(t). (25)
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These ramping constraints encode the physical limit that a generator’s power output must
not vary excessively within a certain time period. When the p’ variables are used along
with (20) or (21), Morales-Espana et al. (2013a) demonstrated these could be encoded

more simply as

p)+r'(t)—p'(t—1)<RU (26)
p(t—1)—p'(t) < RD. (27)

3.4.1. Strengthening Ramping Ostrowski et al. (2012) introduced strengthened
inequalities for ramping, under certain assumptions on the generator. Two ramp-up

inequalities are proposed. The first holds for g € G with RU > SD — P and UT > 2:

p(t) —p(t—1) < RUu(t) — Pw(t) — (RU — SD + P)w(t+ 1)
+ (SU — RU)v(t) te{l,...., T—1}, (28)

and the other when RU > SD — P, UT > 2, and DT > 2:

p(t) — p(t —2) < 2RUu(t) — Pw(t — 1) — Pw(t)
+(SU - RU)w(t— 1)+ (SU — 2RU)u(t)  te{2,....,T—2}.  (29)

Though not mentioned in (Ostrowski et al. 2012), the p(¢) variable in (28) and (29) can
be replaced with p(t) without loosing validity. Ostrowski et al. (2012) also proposes three
ramp-down inequalities. The first is analogous to (28), and holds for g € G with RD >
SU—-P and UT > 2:

p(t—1) —p(t) < RDu(t) + SDw(t) — (RD — SU + P)v(t — 1)
— (RD — P)uv(t) teT, (30)

the second, when RD > SU — P, UT > 3, and DT > 2:

p(t—1)—p(t) < RDu(t+1)+ SDw(t) + RDw(t+1)
—(RD—-SU+ P)v(t—1)— (RD+ P)u(t)
— RDv(t+1) te{l,..., T—1}, (31)
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and the last, again when RD > SU — P, UT > 3, and DT > 2:

p(t—2) —p(t) <2RDu(t) + SDw(t —1) + (SD + RD)w(t)
—2RDv(t—2) — (2RD + P)v(t — 1)
— (2RD+ P)v(t) te{2,...,T—2}. (32)

Ostrowski et al. (2012) showed that (28)—(32) are facets for projections of the generator
polytope onto the time periods and variables involved in these equations.
Damci-Kurt et al. (2016) suggest a different formulation for the ramp-up and ramp-down

inequalities, namely

p(t) —p(t—1) <(SU - P - RU)v(t) + (B+ RU)u(t) — Pu(t — 1) (33)
p(t—1)—p(t) <(SD—P—RD)w(t)+ (P+ RD)u(t — 1) — Pu(t). (34)

Damci-Kurt et al. (2016) demonstrate that these inequalities are facets of the two-period
ramp-up and ramp-down polytopes, respectively. Validity is not affected if p(t) is replaced

with p(¢) in (33). These inequalities are sparser when expressed using the p/(¢) variables:

p(t)—p(t—1)<(SU—P—RU)v(t)+ RUu(t) (35)
p(t—1)—p'(t) <(SD—P— RD)w(t)+ RDu(t —1). (36)

These inequalities are as sparse as (24) and (25) while having some guarantee on their
strength. We detail a two-period ramp-up and ramp-down inequalities from Damci-Kurt
et al. (2016) in the online supplement (Knueven et al. 2018c, Section B.3). Damci-Kurt
et al. (2016) also give two additional exponential classes of two-period ramp-up and ramp-
down inequalities; however, such inequalities require separation and hence will not be
covered here. Similarly, Pan and Guan (2016) provide several exponential classes of two-
and three-period ramping inequalities which are valid and facet-defining for the generator

polytope, but as they also require separation we will not consider them here.

3.4.2. The Generator Polytope Knueven et al. (2017) introduces a perfect formulation
for a generator with ramping constraints, and Guan et al. (2018) introduces three additional
extended formulations for a ramping-constrained generator. While extended formulations

for the generator polytope have been an interesting topic of research the past several years,
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like the exponential classes of ramping inequalities from (Damci-Kurt et al. 2016, Pan
and Guan 2016, 2017), they are probably not appropriate for direct incorporation into
the UC MIP because the additional variables and/or constraints become too burdensome.
Thus we will not consider them for our computational comparisons to follow as they
should be implemented in a more advanced way, such as using them as a separator for
cut generation. However, we discuss these results in the online supplement (Knueven et al.

2018c¢, Section B.4).

3.5. Variable upper bounds with ramp limits
When ramping constraints are added, there maybe be an exponential number of vari-
able upper bound inequalities in the three- or two-binary space which are tight (that is,
they describe facets of the convex hull of the generator polytope), even when SU = SD
and RU = RD (Damci-Kurt et al. 2016, Pan and Guan 2016). However, computational
experience with separating cuts from the generator polytope suggests that upper bound
inequalities are often important in practice (Damci-Kurt et al. 2016, Knueven et al. 2017),
so they are worthy of special attention.

For notational ease, let THV = L%J and THP = {%J. That is, TRV (THP) is the
number of time periods the generator spends ramping to go from SU (P) to P (SD).
Ostrowski et al. (2012) proposes tighter upper bounds on p(t) based on the ramp-down

trajectory of the generator

KSD(t

p(t) < Pul(t Z — (SD +iRD))w(t+1+1), (37)

where K°P(t) = min{T?P UT —1,T —t —1}. This constraint enforces the maximum limit
on the generator as it is shutting down, that is, if w(t+2) =1, and the generator remains
off past t + K(t), then the upper bound on p(t) is SD + RD, reflecting generator ¢’s
ramp-down and shutdown constraints.

Pan and Guan (2016) introduce several variable upper bound, the linear class of which
is based on the ramp-up and shutdown trajectory of the generator

min{UT—-2,TEV}
p(t) < Pu(t)+ (P —SD)w(t+1) — Y (P-SU-iRU(t—i).  (38)

i=0
The has a nearly symmetric effect to that of (37), enforcing the maximum limit on the

generator as it is starting up. This inequality additionally included the shutdown limit,
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Figure 1 Feasible region defined by inequalities (39) for a generator that turns on at ¢ =1 and turns off at t =9
with UT =6, R=RU =RD, S=SU=SD, P=0, and T"V =T%P =2,

so it can also be seen as a generalization of (20). Note that because this inequality just
involves the ramp-up trajectory with the shutdown limit, we can replace p(t) with p(t) as
we have done here.

Note that in both cases care must be taken with the minimum uptime UT'. In particular,
the minimum uptime must be such that if one of the v’s or w’s in inequalities (37) or (38)
is 1, this implies u(t) = 1. Like with (20), it must also be the case that at most one of the
v’s or w’s in each inequality can be 1 to maintain validity. Finally, these type of inequalities
need only “look back” (38) or “look forward” (37) enough time steps to capture 7%V or
TEP In the online supplement we detail how (37) is derived from (Ostrowski et al. 2012,
Eq. (19)) and how (38) is derived from (Pan and Guan 2016, Eq. (28)), and we also present
some additional variable upper bounds (Knueven et al. 2018¢, Section B.5).

By combining the insights from (37) and (38), one can derive similar polynomial classes
of variable upper bounds. As an example, provided UT > TRV 4+ TEP 4 2. the following
inequality

TRU TRD

p(t) <Pu(t)— Y (P—(SU+iRU))v(t—i)— Y (P—(SD+iRD))w(t+1+1) (39)

i=0 i=0
is valid for all ¢t € [T®YV, T — TRP]. The logic of (39) is similar to that of (37) and (38).
Because UT > THP + THP 1 2 at most one of the v’s or w’s on the right-hand side is 1.
When one of these variables is 1, the bound on p(t) is adjusted downward to take into
account the maximum power allowed by that ramp-up or ramp-down trajectory. Note that
when UT < TRV 4+ THP + 2. one can truncate the sums in (39) to ensure that at most
one v or w is 1 and any v or w being 1 implies u(f) = 1, given the minimum uptime

UT. Figure 1 demonstrates how the inequalities (39) encode the ramping trajectory for a
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ramping-constrained generator. We discuss an extension to when UT =T®V +THRP 11 in
the online supplement (Knueven et al. 2018¢, Section B.5).

By combining some of the inequalities and ideas above we can create a set of strong
variable upper bound inequalities which are complementary. Consider again inequality (38).
If UT — 2 < TEY | we may not cover the entire start-up ramping trajectory. In this case, we
can augment (38) by shifting the terms

min{UT—1,TRV}

pt)<Pu(t)— Y (P-SU—iRU)w(t—1i), (40)

i=0
which with (38) covers an additional time period. Given (38) and (40), we notice the
shutdown ramp trajectory is not considered. Here we can use a modified version of (39).

Let KSP(t) be as in (37) and K*Y(t) = min{THY UT — 2 — [KSY(¢)]*,t — 1}, then

KSD (t) KSU (t
p(t) — Y (P—(SD+iRD))w(t+1+i)— > (P—(SU+iRU))v(t—1),
=0 1=0

if K°P(t)>0 (41)

where K°P(t) and K5V (t) serve to include as many v’s and w’s as possible given UT and the
beginning and ending time period. If K5V (¢t) < THY we add the term —[(SU + (K5Y(t) +
1)RU)) — (SD +TEPRD)]Tv(t — (K°Y(t) + 1)) for additional tightening similar to (23b).
Here we give preference to having more w’s so as to correctly capture the shutdown ramp
trajectory, given that the start-up ramp trajectory is covered by (38) or (40). Notice that
if we are not near the beginning or end time periods and UT > THV + TEP 42 then (41)
is exactly (39). If K°P(t) <0, this inequality should be omitted as it is dominated by (38).

3.6. Piecewise Linear Production Costs
For the purposes of this paper we will assume production costs (the marginal cost per
MW of power) are piecewise linear and convex. While in reality the production costs
follow a nonlinear (often quadratic) curve, in most electricity markets in the United States
generators bid in piecewise offers. Further, we suspect that the general results in this
paper would hold true for various potential MIQP formulations of UC where the marginal
production cost is represented using a convex quadratic function. Frangioni et al. (2009)
gives a method for solving a MIQP formulation for UC as a MILP using cutting-planes.
Garver (1962) included piecewise production costs in his original formulation. For each

segment [ € £, and t € T, the variable p'(t) represents the contribution to output from
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piecewise segment [. Like Garver, we will assume throughout that P> P for every [, and
for convenience we define P° = P. (A simple preprocessing of the data will ensure this is

the case.) Garver’s formulation can then be written as

)< (P =P Hu(t) leL, (42)
> pt)=r1) (43)
lel
> Clplt)=c(t). (44)
lel

In actuality, Garver (1962) opted to use equation (43) to substitute out the p’ variables,
which do not explicitly appear in his model. However, with the basic limits on the p'(t)
variables, p/(t) < (P — P)u(t), this formulation is locally ideal, that is, (42), (43), and
p'(t) < (P — P)u(t) along with the unit bounds on u(t) are a convex hull description for
these constraints (Wu 2016). This is essentially one of the production cost formulations
from Wu (2016), except with (12) applied to (43). Finally, we substitute Y,_. C'p'(t) for
c?(t) in the objective function whenever ¢?(t) appears in and only in an equality constraint.

Carrion and Arroyo (2006) suggest a slightly simpler formulation, replacing (42) with
P<@ -P Y leL. (45)

Notice that (45) is the same as (42), except the binary on/off variable is not in the former.
Because of this, this formulation does not have the locally ideal property (Sridhar et al.
2013).

Knueven et al. (2018a) tightens the bounds on p'(t) with the start-up and shutdown

variables using the start-up and shutdown ramp:
Pt < (P =P Hut) — C*(D)u(t) — C*(Dw(t +1) leL, (46)

where

0 P <su 0 P'<SD
C'(l):={ P -su P '<su<P, C“(1)=XP_-sp P '<sD<P,

-1 ==l-1 -l

P -P P " >SU P-P P >SD
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for generators with UT > 1. When UT =1, (46) must be replaced with:

Pt <@ =P ) — (1)) lel (472)
Yu(t) — C¥(Dw(t+1) e L, (47D)

Notice that both (46) and (47) enforce that the piecewise production variables never exceed
SU (SD) when the generator is turning on (off). Of course, these additional terms are
not necessary for validity, they only serve to tighten the model. Finally, when UT =1 and
SU # SD, one can improve (47), in a similar fashion to (23a) and (23b):

P < (P =P Hut) — C*(D)u(t) — [C°(1) — C ()] Tw(t +1) leL (48a)

p'(t) < (P —P Hu(t) - C*Dw(t+1)—[CU(1) — C*(D)]Tv(t) leL. (48b)

We show in the online supplement (Knueven et al. 2018c, Section A) that when UT > 2,
(46) can be used to build an ideal formulation for a generator with piecewise produc-
tion costs, minimum up/down times and start-up/shutdown ramping limits. In a similar
fashion, we also show when UT =1, (48) can be used to build an ideal formulation for a
generator with start-up/shutdown ramping limits and piecewise production costs. We addi-
tionally show the start-up cost formulation from Knueven et al. (2018b) can be added to
this without loosing strength. The inclusion of such strengthening for the piecewise linear
costs may improve extended LMP calculation when the generator is turning on or turning
off (Chen and Wang 2017, Hua and Baldick 2017). The generalization to considering the
ramping trajectories when starting-up or shutting-down, as in (39), in the limits on p'(t)
is straightforward but tedious.

Another common way to model convex piecewise production costs is by considering the
typical epigraph formulation using p/(t) and ¢?(¢). That is (Atakan et al. 2018):

-1 -1

) >C'H @) - (P —P)+C VieL. (49)

Just a before, we can devise a locally ideal version for these production costs. This is
sometimes called the perspective formulation (Frangioni and Gentile 2006, Frangioni et al.
2009). The form used here for convex piecewise linear production costs is given by (Hua

and Baldick 2017):

) >CY )+ (C =P = P))u(t) VieL. (50)
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As before, notice how the status variable u serves to adjust upward the production costs
when u(t) is fractional, which tightens the formulation. Notice that if the p variables are

used this constraint simplifies a bit:
P(t) > Clp(t) + (C = P Hu(t) VieL. (51)

We detail SOS2-type formulations for piecewise production costs in the online supple-

ment (Knueven et al. 2018c, Section B.6).

3.7. Time-dependent start-up costs
When a thermal unit is switched off, the heat still left over begins to dissipate. However,
if the unit is started-up while there is still heat remaining, it will cost less to bring it back
up to operating temperature, and hence on-line.

Most UC models use an approximated and discretize version of these time-dependent
start-up costs by considering different start-up types for each generator, often just hot,
cold, and sometimes warm. In principle however, the formulations given below apply to an

arbitrary number of start-up types.

3.7.1. Formulations with Additional Variables A common approach for start-up cost
modeling is to add new variables to keep track of the generator’s off-time and new con-
straints to tie these to the typical 3-binary variables.

On possibility is to use indicator variables for each start-up type s € S,, for each g€ G
and each t € T. This was originally proposed in Muckstadt and Wilson (1968), and has
been more recently considered in Simoglou et al. (2010). We will use the more general
formulation from Morales-Espana et al. (2013a)

IS+1_1

F(y< Y w(t—i) seS\{S} (52)

=T*

S
v(t)=> 5%t (53)

S
SUt) = CUa (1), (54)

where ¢5U(t) can be eliminated from the formulation by substituting it for ZSSZI C*6°(t) (we
always make this substitution for cost variables in the objective function which are defined

by equalities). These same indicator variables can be used to track the power output during
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different start-up and shutdown types, more accurately reflecting the generator’s output
as it comes on-line or goes off-line (Morales-Espana et al. 2013b). We also note that we
can project out 0°(¢), the variable representing the coldest start-up type, by replacing (53)
and (54) with

v(t) > 6°(t) (55)

SUE) = So(t) — S (CF — C*)5%(2), (56)

respectively. Convex hull results for time-dependent start-up costs using these variables can
be found in Queyranne and Wolsey (2017) and Silbernagl (2016); however, in both cases
a quadratic number of constraints is required. Additionally, both convex hull descriptions
are somewhat cumbersome in their formulations.

Another formulation using indicators is presented in Knueven et al. (2018b). It uses the

down-time arcs z(¢,t’), but only for [t,t') € X such that ¢ —TC <t <t'— DT

t—DT

> a(tt) <o) (57)
t'=t—TC+1
t+1TC—1

>zt t) <w(t) (58)

t'=t+DT

n

SY(t) = Su(t) — _I(C'S - C¥) i z(t',t) | . (59)

S

1 Y=t—T5t141

If 75 < T — 1 for some s € S\ {S}, then some of these arcs may be redundant, in
the sense that there is more than one of them per start-up type for a given time period.
However, Knueven et al. (2018b) showed this formulation to be as strong for increasing
(non-decreasing) start-up costs as a perfect formulation. Like the other indicator vari-
able formulations, this one too can be used to model power output for different start-up
and shutdown types. We detail additional start-up cost formulations in the online supple-

ment (Knueven et al. 2018c, Section B.7).

3.8. Shutdown costs
Shutdown costs are often 0, but in the case there are shutdown costs, the can be modeled

in one of two ways. If the w variables are included, then the shutdown cost is simply

SP(t) = CPw(t). (60)
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We handle the additional cases in the online supplement (Knueven et al. 2018c, Sec-

tion B.8).

3.9. System Constraints
For the purposes of this paper, we will hold the system constraints constant, up to substi-

tution of the variables used to describe the generators.

3.9.1. Renewables We will consider only aggregate renewables available at each bus n
at time ¢, pw,(t), and further assume they have zero marginal cost. To the extent that
renewables bid into the market, they could be modeled as thermal generators as described
above. Allowing for some (none to all) portion of the renewables to be must-take, this is

modeled simply as
W, (1) < pwan(t) S W, (1) Vte T,VneN, (61)

where either parameter W, (¢) or W, (¢) may be 0 depending on policy and availability.

3.9.2. Network Constraints We will use the B,0 DC approximation for the transmis-

sion network, when one is provided. Consider the following network constraints:

Fi() = Bi (Or(n) (t) — Ok (1)) Vke,VteT (62a
— F, < fi(t) < By, VkeK,VteT (

—m<0,(t)<m VneN,VteT (62c
01(t) =0 vteT. (62d

Equation (62a) is Kirchhoff’s law; equation (62b) are the capacity constraints for the
branches. We additionally bound the voltage angles to be no more than 7 in magni-
tude (62c) and fix the first bus to be the reference bus (62d). The flow balance constraints

are:

Zpg(t)+pW7z Z fk Z fk +5n —Dn(t> VTLEN,VtGT, (63)

9€Gn kedt(n keé—

where the constraint is satisfied if s,(¢) =0. It is common for system operators to relax
certain constraints — for example, if a demand cannot be met without an extraordinarily
high cost, it may make sense for economic reasons to relax demand, and put a high penalty

on s,(t) #0. This is modeled in a linear way using the typical auxiliary variables s (t)
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and s (t) to represent (respectively) the positive and negative part of the slack at bus n

at time t, along with the constraints

sp(t) = st (t) — s, (t) VneN,VteT (64a)
sh(t), s, (t) >0 VneN,VteT. (64b)

The penalty cost ¢z p can then be put on both the s (¢) and s, (t) variables in the objective
function. If appropriate, the variables p,(t) are replaced by the equivalent expression pj (t) +
Pu,(t), depending on the variables used to represent generator output.

Finally, if there is only one bus (i.e., the network constraints are relaxed), (62) falls away,
and the sums involving the fy(¢) variables in equation (63) are empty, resulting in a simple

system-wide demand constraint.

3.9.3. Reserve Requirement For this paper will we just consider a simple, system-wide
spinning reserve requirement R(t). Other ancillary services tend to vary by market.
The reserve requirement in (Carrion and Arroyo 2006, Ostrowski et al. 2012) is modeled

as additional power above demand:

> p,(t)+sr(t) > D)+ R(t), vteT (65)
geg neN

whereas in (Morales-Espana et al. 2013a) the reserve requirement is modeled separately

from total demand:

> rg(t) + sa(t) > R(t) VteT. (66)

geg

Which one is used depends on how reserve production is modeled for the generators. If the
p,(t) or py(t) variables are used, then equation (65) is the natural choice for the reserve
requirement, substituting p; (t) + P u,4(t) for p,(t) if the p| (t) variables are used. Conversely,
if the r,(t) variables are use to model reserve production, then equation (66) is more
sensible. In either case note the relationship between these variables: r,(t) = p,(t) — py(t) =
P, (t) —pj,(t). In both cases we also relax the global reserve requirement and add the penalty

term cgrsg(t) to the objective for each t € T.
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3.10. Objective Function

Finally, the objective is minimizing system operation cost:

mlnz (Z (Cg(t) —|— C’fug(t) -+ ch(t) == ch(t)> -+ Z CLP (Sz(t) == S;(t)) =+ CRPSR(t)> y

teT \geg neN
(67)

where when cb(t), cgU(t), or ch(t) are expressed using equality constraints, we make the

appropriate substitution directly into (67).

4. State-of-the-Art UC Formulations

Our analysis considers a range of UC formulations from the literature. Where possible, we
mirror the authors’ original formulation. However, some papers in the literature do not
deal with every aspect of the UC problem discussed above. For example, many papers do
not consider a network (Carrion and Arroyo 2006, Ostrowski et al. 2012, Morales-Espana
et al. 2013a, Yang et al. 2017, Atakan et al. 2018), and even the seminal papers (Ostrowski
et al. 2012, Morales-Espana et al. 2013a) do not consider piecewise production costs. We
attempt to fill in these missing pieces by making a judgment about what would have
been state-of-the-art at the time the source paper was published, and explicitly mention
these differences as they arise. In this way, we hope to track the improvements in UC
formulations over the past twelve years. When we state variable names when describing
these formulations, they should be assumed to be T-dimensional vectors, e.g., u, € Z”,
p, € RT. Similarly, the indexing set for those variables included in a model is implied.

For brevity, in the main text of this paper we only consider recent UC formulations that
we show are computationally competitive performance. However, we additionally consid-
ered six other formulations from the literature, labeled CA, OAV-0O, OAV-UD, OAV,
OAV-T, and ALS. The first is from (Carrion and Arroyo 2006), the last from (Atakan
et al. 2018), while the rest are variants tested in (Ostrowski et al. 2012). In general, these
formulations are not competitive, as detailed with full computational results in the online
supplement (Knueven et al. 2018¢, Section C). This leaves two competitive UC formula-
tions, which we denote MLR and KOW, which represent the current state-of-the-art.

Morales-Espafia et al. (2013a) proposes many changes to the base UC formulation as
compared to Carrion and Arroyo (2006), including the use of p(t) and r,(t) variables for

power and reserves, start-up type indicator variables 5;(1&), and tighter bounds on generator
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Table 1 Specification of the formulation proposed in Morales-Espaiia et al. (2013a)
Morales-Espana et al. (MLR)
objective: (67)
variables: g, v, Wg,05,D,,74, €L, Pwins fir Ons ST, 8,350, 8R

uptime/downtime: (2), (3), (4), (5)
generation limits: (20), (21)
ramp limits: (26), (27)
piecewise production: (50)
start-up cost: (52), (53), (54)
shutdown cost: (60)
system constraints: (62), (63), (64), (66)

Table 2 Specification of the formulation proposed in Knueven et al. (2018a)

Knueven et al. (KOW)

objective: (67)
variables: wug,v wg,fcg,p’g,rg,plg,pw,n,fk,Hn,sj;,s;,sn,sR
uptime/downtime: (2), (3), (4), (5)
generation limits: (2
ramp limits: (2
piecewise production: (4
(5
(6
(6

)
)
), (46) if UT, > 1, else (47)
), (59

, (63), (64), (66)

start-up cost:
shutdown cost:
system constraints:

production. We add the perspective formulation for piecewise cost curves (50) and the
(B,#) network formulation, which was referenced in (Morales-Espafia et al. 2013a) but not
considered therein for simplicity. Table 1 gives the complete formulation, which we refer
to as MLR.

Knueven et al. (2018a) report a UC formulation similar to that of Morales-Espafia et al.
(2013a), with start-up costs formulated as in (Knueven et al. 2018b) in addition to a tighter
description for piecewise production costs. As with MLR, we add the (B, #) network
formulation. The resulting formulation has the property that identical generators which
are not ramping-constrained (i.e., RU,, RD, > P, — P,), can be exactly aggregated. Such
aggregation can result in significant speed-ups for UC instances with identical generators,
as symmetry issues are mitigated. Table 2 gives the complete formulation, which we refer

to as KOW.

5. Novel Formulations
We now introduce two UC formulations that draw on various ideas presented above, yield-
ing novel combinations of formulation components that have not been explicitly considered

previously in the literature. The first formulation builds what should be a tight formulation,
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Table 3 Specification of the “tight” formulation

Tight (T)
objective: (67)
variables: g, Vg, Wey gy D,y Doy Bhs Prins Jis Ons 8t 187 1 80y 8
uptime/downtime: (2), (3), (4), (5)
generation limits: (17), (23), (38), (40) if T,V > UT, -2, (41)
ramp limits: (35), (36)
piecewise production: (43), (44), (46) if UT, > 1, else (48)
start-up cost: (57), (58), (59)
shutdown cost: (60)
system constraints: (62), (63), (64), (65)

while sacrificing some compactness yet also exhibiting good computational performance.
We refer to this formulation, presented in Table 3, as T. The differentiating features of the
T formulation are the enhanced generation limits discussed in Section 3.5 and the tighter
formulation for piecewise production cost discussed in Section 3.6. The T formulation also
uses the two-period ramping limits from the ramp-up and ramp-down polytopes introduced
in Damci-Kurt et al. (2016) and the tight start-up cost formulation introduced in Knueven
et al. (2018b). Finally, as with formulation KOW, formulation T has the property that
identical generators with redundant ramping constraints can be aggregated exactly.

The second formulation we consider is also drawn from some of the tighter UC for-
mulations reported in the literature, but emphasizes compactness at the potential loss of
tightness. We refer to this formulation, presented in Table 4, as Co. This formulation is
probably most similar to MLR (Morales-Espana et al. 2013a), with two exceptions: (1) we
use the 1_); (t) variables for the reserve production because they empirically yield improved
performance in practice relative to the 74(t) variables and (2) we use the ramping limits
described in (Damci-Kurt et al. 2016) used in formulation T in place of the ramping limits
used in MLR.. As with the MLR formulation, we use the perspective formulation to model

piecewise production costs.

6. Computational Experiments

We now analyze the performance of various UC formulations, considering a variety of
realistic test instances. All UC models were expressed using the Python-based Pyomo
algebraic modeling library (www.pyomo.org) (Hart et al. 2011, 2017). In order to facilitate
the comparison of a wide range of UC formulations, we developed a modular modeling

framework that allows users to easily combine disparate formulation components from the



Knueven, Ostrowski, and Watson: On MIP Formulations for the Unit Commitment Problem 29

Table 4 Specification of the “compact” formulation
Compact (Co)
objective: (67)

variables: ug,vmwmé}p;,ﬁ;,cg,pw,n,fk,Gn,s:{,s;,smsR
uptime/downtime: (2), (3), (4), (5)
generation limits: (17), (20), (21)
ramp limits: , (36)

start-up cost:
shutdown cost:

(2
(1
(3
piecewise production: (5
(5
(6
system constraints: (6

literature to form both existing and novel UC models. This framework, in addition to
all supporting code and problem instances, are available on GitHub (please contact the
authors until the paper has completed the review process). While it is beyond the present
scope to evaluate all possible UC formulations that can be expressed in the framework, our
aim in this software release is to enable researchers and practitioners to quickly evaluate
potential novel UC formulations by providing reference implementations of most of the
formulation ideas found in the existing literature. Additionally, we solicit and will actively
integrate new formulations for UC model components, as well as novel combinations that

prove to be effective in practice.

6.1. Instances

We now describe the set of UC instances we consider in our computational experiments.
We use realistic UC instances, based on real-world data, in order to avoid pathological
issues that many of the synthetic instances reported in the UC literature possess. For
example, the instances from (Carrion and Arroyo 2006, Ostrowski et al. 2012, Morales-
Espana et al. 2013a) have excessive symmetry, which ends up dominating the solve time
when not properly addressed, e.g., by the approaches reported by (Ostrowski et al. 2015,
Knueven et al. 2018a,b). In all cases we consider a 48-hour scheduling horizon, mirroring
the more difficult day-ahead (as opposed to reliability or intra-day UC) power systems
operations context.

We consider three test sets, each based on realistic data. The first set, “RTS-GMLC,”
consists of twelve instances (corresponding to distinct days) associated with the newly
introduced RTS-GMLC system (https://github.com/GridMod/RTS-GMLC) (Barrows
et al. 2018). We consider variants both with and without the transmission network, for a

total of 24 instances. The RTS-GMLC system is relatively small, with 73 thermal units.
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Reserves are set at 3% of system load. The second set, “CAISO,” is based on publicly
available data available from the California Independent System Operator (CAISO) in
the US. For the CAISO set, we consider five demand/renewable profiles and four system
reserve levels, yielding a total of 20 instances. All CAISO instances consist of 410 thermal
generators. Because it is sensitive critical infrastructure, we do not consider the transmis-
sion network. The third and final test set, “FERC,” is based on data publicly available
obtained from the US Federal Energy Regulatory Commission (FERC) (Krall et al. 2012),
with demand, reserve quantities, and wind profiles taken from the PJM system operator
in the US. The generator fleet from (Krall et al. 2012) is itself based on market data from
PJM. Twelve demand /renewable profiles are considered, and the renewable data is scaled
up to 30% penetration to create twelve additional instances. The FERC instances are
the largest we consider, with approximately 900 thermal generators. In total, we solve 68
UC instances for each formulation considered in the computational experiments reported
below. Further details on the test sets is available in the online supplement (Knueven et al.

2018c, Section D).

6.2. Novel UC Formulations

To demonstrate the utility of our modular framework for composing UC formulations, we
sampled at random 1,000 formulations and solved each of the resulting formulations on
each of our twenty-four RT'S-GMLC instances. The formulations were sampled without
replacement by selecting at random each of the eight components of a generator formula-
tion (status variables, power variables, reserve variables, generation limits, ramping limits,
production costs, uptime/downtime constraints, and start-up costs) based on the formu-
lations discussed herein and the online supplement (Knueven et al. 2018¢). Formulations
with incompatible components were discarded. Each run used the Gurobi 8.0.1 (Gurobi
Optimization, Inc. 2018) solver, limited to a single thread, with a 60 second time limit and
a 0.0 optimality gap threshold. From these 1,000 formulations, we selected the two such
UC formulations which scored in both the top 1% of shifted geometric mean optimality
gap and geometric mean time. To compute the shifted geometric mean optimality gap,
we add 1 to the optimality gap and compute the geometric mean of the resulting values.
The two selected formulations are shown in Tables 5 and 6. Though we did not explicitly

count the number of formulations our framework enables, we were able to generate 100,000
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Table 5 Specification of the first randomly sampled UC formulation

Random1 (R1)

objective:

variables:
uptime/downtime:
generation limits:
ramp limits:
piecewise production:
start-up cost:
shutdown cost:
system constraints:

67)
, W 5g7pg pgacgva,nafkvgnaSnﬁ n,S ySR
9), (10), (11)
(20), (21)
» (36)

;» (55), (56)
, (63), (64), (65)

).

(3),

(17),
(35)
(50)
(52)
(60)
(62)

Table 6 Specification of the second randomly sampled UC formulation

Random2 (R2)

objective:
variables:
uptime/downtime:
generation limits:
ramp-up limits:
ramp-down limits:

2-ramp-up limits:
2-ramp-down limits:
piecewise production:

Ug, U 5sapgvpg7 gvanvfkv ns n78”,8 ySR

3,4, &
(23), (38), (40) if TRV > UT, —2, (41)

);

)if RU, < SD,— P, or UT, <2 else (28)

)it RD, <S’U P orUT <2,

else (30) if UT, <301 DT, <2 else (31)

if RU, > §D,— P, UT, >2, and DT, >?2
it RD, > SU,—P,, UT, >3, and DT, > 2

)

(25
(17
(24
(25

shutdown cost:

9
2
0
2
0
system constraints: 2

)
)
); (53), (54)
)
)

(2

(3

(5
start-up cost: (5 53), (5

(6

(62), (63), (64), (65)

different formulations for UC, so we have explored no more than 1% of the search space
with our sampling.

Inspection indicates that the first random formulation (denoted R1) is a modification
of that introduced in Atakan et al. (2018) (see Table 6), but replaces the generation
limits with those from Morales-Espafia et al. (2013a), the modified start-up costs also
from Morales-Espana et al. (2013a) (as presented in Section 3.7.1), and the perspective
production cost formulation. Conversely, the second random formulation (denoted R2) is
a mixture of diverse UC formulation ideas from the literature. Inspection indicates that
R2 essentially draws aspects from both the T and Co formulations, sharing the same set
of variables as formulation Co, and adding the Morales-Espana et al. (2013a) start-up
cost formulation and the perspective production cost formulation. However, R2 further
brings in the combination of generation limits used in formulation T and all of the ramping
limits from Ostrowski et al. (2012), making it one of the denser formulations in terms of

the number of power variables.
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6.3. Results

All computational experiments were conducted on a Dell PowerEdge T620 with two Intel
Xeon E5-2670 processors, 256 GB of RAM, and running the Ubuntu 16.04.4 Linux oper-
ating system. Gurobi 8.0.1 was the MIP solver used in all tests, with the default settings
preserved except for the time limit. Hence we attempt to solve all instances to a 0.01%
relative optimality gap. No other intensive jobs were running on the system at the time
the experiments were carried out.

We report the performance of each of the six UC formulations examined in summary
tables, which report the following quantities: wall clock time, optimality gap, number of
time outs (instances for which the time limit was reached), number of times a solution
was found in the fastest overall time, and number of times a solution was found in the
second fastest overall time. To rank the UC formulations, “times best” refers to the fastest
solve time or if every formulation times out, the lowest optimality gap. “Times second”
similarly refers to the second fastest solve or if every or all but one formulation times out,
the second lowest optimality gap. In columns labeled “Time (s)” we report the geometric
mean solve time in seconds, substituting the time limit for instances which time out. In

” we report a shifted geometric mean optimality gap, where

columns labeled “Opt gap (%)
for each instance solved we replace the terminating optimality gap reported by the solver
with the default tolerance of 0.01%. Because the optimality gap can be (close to) 0, we
first add 1 to the optimality gap, compute the geometric mean, and subtract 1 from the
result; the latter is the reported mean. We adjust the terminating optimality gap as the
solver often terminates with a gap significantly less than 0.01%, and we do not wish to
bias the reporting with this behavior. Thus, if every instance timed out, “Time (s)” would
report the time limit, and conversely if every instance solved “Opt gap (%)” would report

0.01%. Full summary tables and detailed results are respectively provided in the online

supplement (Knueven et al. 2018c), Sections E and G.

6.3.1. RTS-GMLC Summary computational results for the RT'S-GMLC instances are
reported in Table 7. Due to their relatively small size, we set the time limit for each solve
of these instances to 300 seconds. We first note that two state-of-the-art formulations from
the UC literature — MLR and KOW - perform very similarly, likely because they share
many formulation components. Both the MLR and KOW formulations are outperformed

by the T and Co formulations. Between formulations T and Co, Co is on average faster,
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Table 7 Summary computational results for RTS-GMLC instances.

Formulation Time (s) Opt gap (%) Time outs Times best Times 2nd
MLR  86.19 0.0165% 5 0 0

KOW 94.81 0.0165% 4 0 1

T  50.65 0.0121% 2 4 4

Co 43.11 0.0121% 1 1 4

R1 32.37 0.0114% 1 14 6

R2 36.94 0.0114% 1 4 8
Table 8 Summary computational results for CAISO instances.

Formulation Time (s) Opt gap (%) Time outs Times best Times 2nd
MLR 117.1 0.0119% 2 0 1

KOW  79.02 0.0102% 2 4 7
T 56.90 0.0100% 0 15 3

Co 100.6 0.0100% 0 0 5
R1 1474 0.0102% 1 0 1
R2 1041 0.0100% 1 1 3

but T yields the fastest solve times more often. Even though T has an additional time-out
over Co, their shifted geometric mean optimality gaps are identical. Finally, we observe
that the best of the randomly sampled UC formulations — R1 and R2 — outperform even
the T and Co formulations. Together, these two formulations together claim the majority
of first and second place spots available across the formulations, and further possess the
shortest geometric mean solve times and lowest shifted geometric mean optimality gap. It
is worth emphasizing that these two random UC formulations were based on tests on the
RTS-GMLC instances, so this result is not entirely surprising. However, the result does
highlight that novel UC formulations can yield performance above that of state-of-the-art

formulations reported in the literature.

6.3.2. CAISO Summary computational results for the CAISO instances are reported
in Table 8. A time limit of 300 seconds for each solve of these instances was imposed,
identical to that used for the RTS-GMLC experiments. The results indicate that formula-
tion MLR is competitive on these instances, but is outperformed by KOW and the other
four formulations introduced in this paper. Formulations R1 and R2 perform somewhat
similarly on these instances, with R2 leading in terms of time-to-solution. Formulation
R2’s single time-out has a optimality gap of just over 0.01%, which is why its reported

shifted geometric mean optimality gap is 0.0100%. However, in contrast to the results on
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Table 9 Summary computational results for FERC instances.

Formulation Time (s) Opt gap (%) Time outs Times best Times 2nd

MLR  340.5 0.0555% 3 4 1
KOW  390.2 0.0117%
T 268.6 0.0104%

Co 309.5 0.0596%
R1  308.9 0.0480%
R2 373.1 0.0665%

=W W = N
O Wk 0w
= O U = Ut

RTS-GMLC, the clear winner on the CAISO instances is formulation T, which yields the
smallest geometric mean runtime and is fastest on three quarters of the instances. Further,
as documented in the online supplement, the largest solve time given formulation T was
129.9 seconds, compared to a maximum time of 261.9 seconds for Co and 300+ seconds

for the other four formulations.

6.3.3. FERC Summary computational results for the FERC instances are reported in
Table 9. Because the FERC instances have over twice the number of thermal generators as
the CAISO instances, we increase the solve time limit to 600 seconds. The results indicate
that UC formulations using some variant of the start-up cost formulation from Morales-
Espana et al. (2013a) (MLR, Co, R1, and R2) all perform similarly. In contrast, the
start-up cost formulation from Knueven et al. (2018b) appears to be essential to achieving
high-quality solutions across the FERC instance set, i.e., as can be seen for results obtained
by the UC formulations KOW and T. Variant T slightly outperforms KOW in terms
of geometric mean time to solution. Further, even on the one FERC instance for which

formulation T hits the solve time limit, the terminating optimality gap is only 0.018%.

6.3.4. Summary Analysis Across the three test instance sets considered, the newly
introduced “Tight” formulation T performs the best — establishing what we believe to be
a new state-of-the-art in UC performance. Formulation T has the fewest time-outs overall,
and is consistently the fastest on the larger and more difficult CAISO and FERC instances.
In the worst case for T, Gurobi returns with a terminating gap of 0.05%, which is the
best-worst case performance across all UC formulations examined. The performance of T
is weakest on the RTS-GMLC instances, and in particular on the RTS-GMLC instances
with a network. Upon closer examination, we believe this discrepancy is likely due to

the lower number of nodes explored in the branch-and-cut process relative to the more
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Table 10 Selected results for changing various components of the tight formulation T. For each row, we swap
equations for the component in formulation T (e.g. uptime/downtime) with that defined by the equations given.

RTS-GMLC CAISO FERC
Time (s) Opt gap (%) Time (s) Opt gap (%) Time (s) Opt gap (%)
T 50.65 0.0121% 56.90 0.0100% 268.6 0.0103%

uptime/downtime
RT 2bin: (4)(7) 48.29 0.0120% 51.30 0.0100% 235.1 0.0100%

generation limits
MLR: (20)(21) 51.29 0.0122% 52.44 0.0100% 254.8 0.0100%
GMR: (20)(23) 51.37 0.0122% 52.42 0.0100% 254.1 0.0100%

ramping limits
MLR: (26)(27) 49.28 0.0119% 48.53 0.0100% 242.6 0.0100%

piecewise production
CA: (43)(44)(45)  48.93 0.0119% 57.87 0.0100% 230.2 0.0100%

compact formulations, i.e., Co, R1, and R2. Our analysis of solver logs suggests that
Gurobi has difficulty generating cuts at the root node of the branch-and-cut tree when the
(B, 0) linearized network representation is considered. Typically, system operators do not
use this network representation when solving UC in practice, and instead rely on a Power
Transfer Distribution Factor (PTDF) or related network formulations (Van den Bergh
et al. 2014, Chen and Wang 2017). Because the vast majority of transmission lines will not
have binding thermal limits in an optimal UC solution, those likely not to be at their limits
can be dropped from the formulation (Chen et al. 2016) or treated as lazy constraints.
Further, one can generate cover inequalities for the PTDF transmission constraints, which

may tighten the relaxation (Wu 2016).

6.4. Detailed Analysis of the “Tight” Formulation

We undertook a detailed computational study to determine what aspects of formulation T
are essential to its superior performance, and conversely which aspects could possibly be
improved upon. For brevity, we report the full results in the online supplement (Knueven
et al. 2018c, Section F), but provide selected results in Table 10. Overall, the results clearly
indicate that there is some room for improvement over the base formulation T. Examining
Table 10, formulating the uptime and downtime constraints using only two binary variables
(in this case u4(t) and v,y(¢)) resulted in a surprising performance improvement on the larger
CAISO and FERC instances, with no degradation in performance on the RTS-GMLC

instances.
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Further examining Table 10, we see computational performance is moderately improved
when considering the simpler MLR or GMR generation limits from Morales-Espana et al.
(2013a) and Gentile et al. (2017), respectively. Interestingly the simple ramping limits
from Morales-Espana et al. (2013a) improved the performance of T; this is likely because
with the variable upper bounds used in T, the ramping constraints become mostly redun-
dant. Finally, perhaps the formulate production costs from Carrion and Arroyo (2006) also
exhibited some improvement in the FERC test instances over the tight but more compli-
cated formulation introduced in this paper. However, because of the risk of over-fitting for
these test cases, we will not explore combinations of these options, though they may prove

beneficial for the practitioner.

7. Conclusion

This paper has undertaken a thorough examination of the state-of-the-art in formulations
for the unit commitment problem, with subsequent computational analysis. The compu-
tational results presented herein suggests that with a modern formulation, realistic UC
problems with up to a thousand generators and 48 time periods are easily solvable with
modest hardware and a modern commercial MIP solver. The current challenges therefore
in deterministic UC are (1) the interaction between unit commitment and the transmission
system (Van den Bergh et al. 2014, Wu 2016), (2) virtual transactions, which may weaken
our ability to tighten system constraints (Chen et al. 2016), (3) realistic modeling of the
transmission system, including the need for reactive power support (Castillo et al. 2016),
and (4) better modeling of the ancillary products, which tend to vary by market. Additional
model changes will have to be considered with the continued increase in uncertain energy
supply due to renewables, which could entail stochastic variants of UC, robust variants
of UC, or additional reserve products, though all of these would have the deterministic

formulations presented here at their core.
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A Ideal Formulation for Generator with Piecewise Production
Costs and Start-up/Shutdown Ramping Limits

Theorem 1. The system (2), (4), (5), (43), (44), (46) with variable bounds is an ideal formulation for a
generator with minimum up/down times, piecewise production costs, and start-up/shutdown ramping limits
if UT > 2. If UT = 1, then the system (2), (4), (5), (43), (44), (48) with variable bounds is an ideal

formulation for a generator with piecewise production costs and start-up/shutdown ramping limits.

Proof. When UT = 2, a straightforward extension of [12, Theorem 5] with the p!(¢) variables playing the
same role as the p; variables in the proof of [12, Theorem 5] shows this is true for the system (2), (4), (5), (46)
with variable bounds. An application of [12, Lemma 4] shows the addition of the equality constraints (43)
and (44) do not affect integrality. Notice that generation limits on p/(¢) are redundant because of (43) with

(46). Finally, the above is also true when UT = 1 with inequalities (48) in place of (46). O



Remark 1. When the start-up cost formulation (57),(58),(59) from [19] is added to the formulation from

Theorem 1 and start-up costs are non-decreasing, the resulting polytope has integer optimal vertices.

Remark 1 is a direct result of Theorem 1 and Knueven et al. [17, Remark 1]. It implies that a 1-UC for
a generator with minimum up/down times, piecewise production costs, start-up/shutdown ramping limits,

and non-decreasing time-dependent start-up costs can be solved as a linear program.

B Other Formulations

This section details formulations choices in addition to those in the main text.

B.1 Additional formulations for minimum up-time/down-time

Given Garver’s state variables, one possibility for writing the up-time/down-time is given by Dillon et al. [8]

and more recently by Arroyo and Conejo [1]:

t+UT—1

> (i) > UTw(t) te{U+1,...,T-UT+1} (70a)

T:t

> (uli) = v(t) 2 0 te{T -UT+2,...,T} (70b)
t+D;—1

> (1-wu(i)) > DTw(t) te{D+1,...,T— DT +1} (71a)
T_t
> (1= u(i) —w(t) >0 te{T—-DT+2,...,T}. (71b)

Another common formulation is to just consider one binary variable to represent the state of generator
g at time ¢, u(t). Based on the logical constraint (2), the v and w variables are completely determined by
the u variables, and so in some sense are redundant. However, results both theoretical and computational
suggest this is not entirely true.

Takriti et al. [32] formulate the minimum up-time/down-time constraints as

u(t) —u(t—1) <u(r) Vre{t+1,...,min{t + UT — 1, T}},t €T (72)

u(t—1) —u(t) <1—u(r) Vre{t+1,... min{t + DT —1,T}},t€T. (73)

These constraints are simple, but could be up to quadratic in 7" if the minimum up-time or down-times are

very long.



Carrion and Arroyo [5] formulate these same constraints as

t+UT-1

> (i) > UT(u(t) — u(t — 1)) te {41, er T — U411 (74a)
=
> (uli) = (u(t) — u(t — 1)) > 0 te{T-UT+2,...,T} (74b)
t+D_T 1
> (1—wu()) = DT(u(t — 1) — u(t)) te{D+1,...,T—DT +1} (75a)
T_t
D (1 —u() = (ult—1) —u(t))) >0 te{T-DT+2,...,T}, (75b)

which are in the same form as (70) and (71), but with the v and w variables projected out.

However, unlike with the three- and two-binary formulations for minimum up-time/down-time, there is
no compact convex hull description for these constraints in the u variables alone. The convex hull of the min-
imum up-time/down-time constraints has an exponential number of facets in the space of the u variables [21].
Hence the two- or three-binary formulations are often preferred as the minimum up-time/down-time con-
straints have a compact (linear) convex hull description which can be directly incorporated into UC MIP

formulations.

B.2 Additional Generation and Ramping Limits from Carrion and Arroyo [5]

To enforce the shutdown ramp limits, Carrion and Arroyo [5] define the constraint
Py(t) < Pgug(t+ 1) + SDg(ug(t) — ug(t + 1)) te T\{T}, (76)

which is the same as constraint (19) with the shutdown variable w removed. Similarly, Carrion and Arroyo

[5] formulate the ramping limits as

p(t) —p(t —1) < RUu(t — 1) + SU (u(t) — u(t — 1)) + P(1 — u(t)) (77)
P(

p(t —1) — p(t) < RDu(t) + SD(u(t — 1) — u(t)) + P(1 — u(t — 1)), (78)

which eliminate the variables v and w from (24) and (25), respectively.

B.3 Additional Ramping Inequalities from Damci-Kurt et al. [7]

Like Ostrowski et al. [24], Damci-Kurt et al. [7] also give polynomial classes of ramp-up and ramp-down

inequalities which hold under certain conditions. In some ways these are complementary to those given



by Ostrowski et al. [24], as they hold under somewhat complementary conditions, when RD = RU and
SU = SD. Both ramping inequalities are extensions of (33) and (34). When SU > P+ RU (RU < SU —P)

we have

p(t+j) —p(t) < (B+ jRU)u(t +j)

+ z]: min{(SU — P —iRU), (P — P — jRU)}v(t + i) — Pu(t), (79a)

i=1

which holds for Vj € {L...,min {T —t, S%(}B}} ,t € T. Note this is in contrast to inequalities (28)
and (29), which in addition to requirements on UT and DT also require RU > SD — P. Damcr-Kurt et al.
[7] also show (79a) is a facet of the ramp-up polytope if and only if P + jRU < P. There is an analogous
class of ramp-down inequalities, which are valid when SD > P+ RD (RD < SD — P)

p(t) = p(t +7j) < (P +jRD)u(t) — Pu(t + j)

+ i min{(SD — P — (j—i+1)RD),(P — P — jRD)}w(t + i), (79b)

1=1

Vj € {1, ...,min {T —t, sggg}} ,t € T. Like its ramp-up counterpart (79a), (79b) is a facet of the ramp-
down polytope if and only if P + jRD < P. For both inequalities (79a) and (79b), it is not often the case

that LS%{]EJ > 2or {SgBEJ > 2, and when these quantities are 1 these two inequalities are just (33)

and (34) respectively. Hence the inequalities (79a) and (79b) may not be very useful in practice.

B.4 The Generator Polytope

Knueven et al. [16] presented the first perfect formulations for a generator with ramping constraints as well
as time-dependent start-up costs, work that was independently discovered by Frangioni and Gentile [10, 11]
and Guan et al. [13]. While the formulations are very similar, all having on the order of | 7]® and constraints,
they differ in how they “link” the underlying economic dispatch polytopes. Knueven et al. [16] shows that
only O(|T]) many linking constraints are needed to describe the instances with no time-dependent start-up
costs, and Guan et al. [13] gives the same result for instances with time-dependent start-up costs. We present
here a formulation from Knueven et al. [16] which directly incorporates reserve capability. Note that any
of these formulations can be extended to include most ancillary service products while still maintaining
integrality, so long as the dispatch is a polytope when the on/off schedule is fixed. That is, there is a perfect
formulation for II,, in the sense that the vertices of said formulation are integer in the binary variables.
First, we need define an additional set and variable. Let [¢,t") € Y, be the feasible intervals of operation for

generator g with respect to its minimum uptime, that is, [¢t,t') € T x T such that ¢’ > t + UT, including



times (as necessary) before and after the planning period 7, and y4(¢,t') be the binary indicator arc for
start-up at time ¢, shutdown at time ¢’, committed for i € [t,t’), [¢t,t') € ), for generator g € G. Then put

broadly, said formulation is

Aleddplea)  AEDGD < pleddy(, ) vfi, j) € ¥ (802)
S () = p(t) Vie T (80b)
[2,5)€Y
ST P () = B(t) VieT (80c)
[i,9)€Y
>oooatk)= > yig) VteT (80d)
{[k.DHex|i=t} {li,5)eYli=t}
Y. )= Y akD vteT, (80e)
{li,5)eyli=t} {[k,)eX[k=t}

where the pli7)(t) (B9 (t)) represent the power (power available) at time ¢ given the generator started-up
at time i and shutdown at time j, and the polytope {pli1), plt7) | Alid) plid) 4 Z[i’j);ﬁ[i’j) < bl"9)} represents
the physical (minimum power, ramp up/down limits, maximum power) when the generator is turned on at
time ¢ and turned off at time j. So long as the power and ancillary services provided can be represented as a
(bounded) polytope when the commitment status is fixed, (80) is a perfect formulation for said generator [16].
Constraints (80b) and (80c) serve to calculate the total power produced (or available) for the generator.
Constraints (80d) and (80e) ensure that an off-arc is followed by an on-arc and visa versa. Notice that time-
dependent start-up costs and fixed running costs can be accounted for by placing the appropriate coefficients
on the z(4,j) and y(i,j) variables respectively. Piecewise production costs can be handled by considering
fld )(p[i’j )), where fl47) is a piecewise convex function. (Note such production costs should be incorporated
into constraints (80a).)

While this extended formulation could be directly considered in a full-scale UC problem, its size, which
is O(T?), poses computational challenges. Namely, the extra copies of the continuous variables are not
well-handled by linear programming solvers, in addition to increasing the size of the formulation. Knueven
et al. [16] use it as a basis for a cut-generation routine for this reason.

However, there may be some cases where incorporating (80) directly in the UC formulation is worth
while. As shown in Knueven et al. [18], if there are several copies of the same generator at the same location,
sometimes (80) is advantageous and can be directly incorporated into the formulation, so long as the multiple
generators are aggregated. Knueven et al. [18] demonstrates this aggregation can be done while maintaining
optimality and feasibility. Such a formulation may be useful especially in capacity expansion problems, where
one may have the option of building many generators of the same type. Further, since the dispatch decisions

are often relaxed as part of a two-stage framework, having a convex hull representation provides the best



approximation for dispatch. For the same reason, (80) may also be useful as part of the pricing problem,
as it ensures convex hull prices are obtained [14]. Though in this context it may still be best to solve the
pricing linear program using some sort of decomposition technique. Finally, we note that a version of (80)
can be used in a two-stage stochastic setting by replicating (80a)—(80c) for each scenario, giving the convex
hull for generator scheduling under uncertainty.

Guan et al. [13] introduce three extended formulations for ramping. The first which is similar to (80)
except it replaces the shortest path polytope (80d)—(80e) with an integer polytope directly taken from the
dual of a modified version of the dynamic program for 1-UC suggested by Frangioni and Gentile [9]. They
demonstrate this extended formulation has the property of having integer extreme points when production
costs are convex. Additionally, Guan et al. [13] gives two other related extended formulations, one for a tra-
ditional deterministic setting an the other for a stochastic setting. We discuss the deterministic formulation
below; the stochastic formulation is similar.

As in Guan et al. [13], consider the case when S = SU = SD and R = RU = RD, and there are no
reserves, so we can assume 7; = 0 or p; = p,, for all t € 7. Further define a; = max{t € T | P +tR < P}
and ag = max{t € T | S +tR < P} and let

Q = {07 (B + tR)ta:lOa (S + tR)?iOv (F - tR)?:lO . (81)

In this case, Q are the p-components of the vertices of the generator polytope [13]. Of course, if we add the
additional reserve variables or drop the assumptions on the ramp-rates, we may have more vertices, and so
need to enlarge the set Q. Guan et al. [13] make such an extension to piecewise production costs. Given
this, one can define a state-space for a given time ¢ which is dependent on UT, DT, and |Q| as follows.
Fo(t) are all the states when the generator is off-line at time ¢, which is defined by the 4-tuple (p(t), u(t),
v(t), d(t)), where p(t) = u(t) = v(t) = 0 as the generator is not operating, and d(¢) is how many time
periods the generator has been off at time ¢, up to DT. #(t) are all the states when the generator is
on-line at time ¢, again defined by a 4-tuple (p(¢), u(t), v(t), d(t)), when p(t) € Q, and d(t) is how many
time periods the generator has been on-line up to UT. Let .7 (t) = . (t) U .#(¢). Then we can put in the
feasible transition arcs between . (¢) and (¢ + 1) which respect the ramping, start-up/shutdown limits,
and minimum up-time/down-time constraints, and similarly between .#(¢) and . (¢t — 1). Guan et al. [13]
show that this flow formulation is integer in the variables for the state-transition arcs, and hence integer
in the p, u, and v variables as well (see [13] for the full description). Additionally, the number of nodes in
a state .#(t) is O(DT +3-UT[(P — P)/R]), so this formulation may be useful for generators whose UT,
DT, and/or [(P — P)/R] are small. Notice that the formulation (80) has the property that the set ) (and
hence the number of variables and constraints) grows larger at UT gets smaller, so in some sense these two

extended formulations are complementary. However, this formulation from [13] is not as extensible as that



of (80), in that a full vertex description in the continuous variables p (and p, if included) is needed to specify

the formulation. This may be especially problematic when the assumption R = RU = RD does not hold.

B.5 Additional Variable Upper Bounds
Ostrowski et al. [24] stated inequality (37) as

K(t) K(t)
p(t) < Pu(t+ K(t)+ > (SD+ (i — YRD)w(t +i) — Y Po(t+1i), (82)
i=1 i=1
where K(t) := max{r € {1,...,UT} | SD+ (r —1)RD < Pand 7+t < T}. Note that the K(t) =
K9P(t) 4+ 1 for given t, where like for (37), K°P(t) = min{T®P, UT — 1,T —t — 1}. To see that this
is equivalent to (37), we will show that (2) can be applied to (82) to obtain (37). Note that by (2),
v(t+i) =u(t+4) —u(t+i—1)+w(t +1i). Applying this to the final sum in (82), we have
K(t) K(t)
p(t) S Pu(t+ K(t)+ Y (SD+ (i—1)RD = P)w(t +i) — Y Plu(t+i) —ult +i—1)). (83)
i=1 g=1
Canceling the inside terms of the last sum leaves in its place P(u(t 4+ K(t)) — u(t)), which when canceled
with the first term yields
K(t)
p(t) <Pu(t)+ > (SD+ (i — )RD — P) w(t +1), (84)
i=1
which gives exactly (37) after pulling a negative out of and reindexing the sum as K(t) = K5P(t) + 1.
Damci-Kurt et al. [7] give two exponential classes of variable upper bound inequalities with polynomial
time separation algorithms. However, such classes of inequalities require a separation procedure, which is
usually implemented as a callback to the solver. Pan and Guan [25] also present a linear and two exponential
classes of variable bound inequalities for the generator polytope with minimum up/down times and ramp-
up/ramp-down constraints. Again we will not consider the exponential classes here, but the linear class is
a form of the inequalities alluded to above. First, we note that [25] assumes no difference between ramp-up
and ramp-down, so let R = RU = RD and S = SU = SD. Then we have
k—1

p(t) < Sut) +(P—-8S)(ut+1)—vit+1)—> (P-S—(G—-1)Rw(t—i+1), (85)

|

1§

(2

which is valid for k € {1,..., min{UT,T" + 2}} and t € {k,...,T — 1}, where TF = {PT?SJ. Pan and

Guan [25] prove this is facet of the generator polytope when k = min{UT,T" + 2} and (1) UT < 3 or (2)



UT > 4 and t =T — 1. Using the transformation given by (2) we can relate (85) to the those above. As

u(t+1) —v(t+1) =u(t) —w(t+ 1), we can re-arrange (85) as (re-indexing the sum as well):

min{UT—-2,T7}
p(t) < Pu(t) + (P — S)w(t+1) — > (P-S—iRw(t—1). (86)
=0

Further, now it is clear which S plays the role of SU and SD, and similarly for R, so we arrive at the
following valid inequality
min{UT—-2,TEY}

p(t) < Pu(t) + (P — SD)w(t+1) — > (P — SU —iRU)v(t — i), (87)
=0

which is just (38).

TRU

Finally we outline the extension of (39) to when UT = + TEP 4 1. In this case, we can derive a

couple of inequalities in the spirit of (23)

p'(t) < (P — P)u(t) — T%ZU:_l(F — (SU +iRU))v(t—i) — TZRI:D(F — (SD +iRD))w(t+ 1+ 1)

— [(5D + TRDRZZ_)(; — (SU+ TR RU)] F o(t — sz;;) (88a)
p'(t) < (P — P)u(t) — Tg(ﬁ — (SU +iRU))v(t— i) — T%D:l("ﬁ — (SD + iRD))w(t+ 1+ 1)

—[(SU + TRUJ;_C(;) — (SD + THPRD)] Tw(t+ T;[I)) +1). (88b)

When UT < THEP + TRP the number of potential valid and strong inequalities for upper-bound continues

to double.

B.6 Additional Piecewise Production Cost Formulations

Another possibility for modeling convex piecewise linear production costs is a relaxed SOS2 model. Let
A e [0,1)T, for I € L, represent the fraction of generation coming from piecewise segment [, and \° € [0,1]7

represent the faction of generation coming from the unit operating at P. Then another formulation for



convex piecewise linear production is

Y @ -PA)=p0) (89)
leLu{0}
Y (@ TN =) (90)
leLu{0}
S N =1 (91)

1e£U{0}

(The cost of operating the generator at minimum power is factored in to c¢.) Sridhar et al. [31] showed that

if (91) is replaced with

> ) = u(),

1e£u{o}

(92)

then the resulting formulation is locally ideal, in the same sense as (42)—(44).

The formulation proposed by Chen and Wang [6] is also locally ideal, and comes from noticing that the

coefficient on \°(¢) is 0 in both (89) and (90). Hence A’(t) can be dropped from both equations without

issue, and we can then project out \°(¢), leaving

Y (@ - P)N(t) =y (1) (93)
lel
(@ - T = e(t) (94)
lel
ST N() < (o) (95)
lel

Chen and Wang [6] observed that projecting out A\°(¢) had a dramatic effect on the root relaxation time for

MISO’s day-ahead UC.

B.7 Additional Start-up Cost Formulations

One class of start-up cost

without needing additional

formulations use points on the epigraph of ¢U(t) to calculate start-up costs,

variables. An example of such a formulation, introduced by Knueven et al. [19],

uses the start-up and shutdown indicator variables v and w

SYt) > Cou(t) —

SY(t) > o.

s—1 IkJrl—l
(€ =C*) Y wt—i) seS (96)
k=1 i=Tk
(97)



It was shown in Silbernagl [29] that the formulation (52)—(54) has the same linear programming relaxation
value as the formulation given by (96),(97).

One simple start-up cost formulation, introduced Nowak and Romisch [23] and used in [5], just relies on
the auxiliary variable ¢3U(t) for each time period ¢ and the status variable u:

SY) > [ ult) = u(t—1) VseS (98)

Nl

1

-
I

SYt) >0 vteT. (99)

Silbernagl et al. [30] showed constraint (98) could be strengthened by increasing the coefficients in the sum:

DT s—1 Th+
& = (u(t) = uft- i)) =S [er=-ck) > ui-i) VseS. (100)

=1 k=1 i:Ik )

Brandenberg et al. [4] shows the convex hull for non-decreasing start-up costs has an exponential number
of facets in the u, %Y space, but provides a linear-time separation algorithm. It is not difficult to show the
inequalities (96) dominate (100) which dominate (98) [19].

Yang et al. [34] and Atakan et al. [2] both propose a different auxiliary variable, Y (t), which represents

the start-up cost over a hot-start. Yang et al. [34] then writes the start-up costs as:

P
V() > (C° = C) [w(t) =) u(t—1i) Vse S\ {1} (101)
() >0 (102)
AU = clo(t) +2°Y (1), (103)

where (103) is substituted into the objective function. Note that Yang et al. [34] only considers two start-up
types, though the above formulation is its natural extension to arbitrary start-up types. Substituting (103)
into (101) and (102) we see that this formulation is dominated by (96),(97). Atakan et al. [2] proposes a

similar formulation, and explicitly models arbitrary start-up types, replacing (101) with

T

V() > (C* =) [ w(t) — Z v(t —i) — a(t — T*) Vs € S\ {1}. (104)

i=DT

10



This same constraint can be written with u(t) as:

T°-1
U = (C* =0 [v(t) = D vt —i)—ut-T° Vse S\ {1}. (105)

i=DT

Hence we see that (105) dominates (101) and requires no more non-zeros. Notice that we can also re-

place (101) with a modified version of (96):

s—1 Tr+L_q
&U(t) > (C° = CHu(t) — (C°—C*) Y wt—i) Vs € S\ {1} (106)
k=1 i=Tk

and using (2) we can “push” u(t — %) through the sum in (105) to arrive at

T°—1
Ut > (C* - C") [v(®) —u(t-DT)+ Y w(t—1i) Vse S\ {1}. (107)

i=DT

It is clear that (106) dominates (107), while requiring fewer non-zeros.

B.8 Additional Shutdown Cost Formulations

If the v variables are in the formulation but not the w variables, then the shutdown cost can be modeled

using the implied shutdown status variable:
SP(t) = CP(v(t) — u(t) —u(t — 1)). (108)

In either case ¢ (t) can be substituted out of the objective function. Lastly, if neither the w nor v variables

are in the model, then ¢*P(t) must remain a variable in the model, and we add the constraints

SPt) > C¥(ut — 1) —u(t)) (109)

Y

o () (110)

C Other Formulations from the Literature

The first paper to consider a mostly complete UC formulation is Carrion and Arroyo [5]. The formulation
given by that paper is shown in Table 1 and will be referred to as CA. Note that given the variables involved
in this formulation, we may apply some of the transformations discussed above to arrive at the formulation
given. For example, the formulation in Table 1 includes constraint (43), which has the term pj (). In this

case, the transformation given by (12) is applied to arrive at a constraint valid for this model (and which
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Table 1: Specification of the formulation proposed in Carrion and Arroyo [5] (CA)

Carrion-Arroyo (CA)
objective: (67)
variables: ugvpgaﬁgvpév C§U7 CgDapW,na fk» env 51—7 57:7 SnySR
uptime/downtime:  (3), (74), (75)

generation limits: (1 )
ramping limits:  (77), (78)
piecewise production: (43), (44), (45)
start-up cost:  (97), (98)
shutdown cost:  (109), (110)
system constraints:  (62), (63), (64), (65)

Table 2: Specification of the “original” formulation from Ostrowski et al. [24] (OAV-0)

Ostrowski et al. “original” (OAV-0)
objective:  (67)
variables: ug,vg,wg,pg,z_?g,cg,cgU,pW)n,fk,é?n,sj;,sg,sn,sR
uptime/downtime:  (2), (3), (70), (71)
18

generation limits:  (18), (19)
ramping limits:  (24), (25)
piecewise production: (51)
start-up cost:  (97), (98)
shutdown cost:  (60)
system constraints:  (62), (63), (64), (65)

is the same as that in Carrion and Arroyo [5]). Note the only difference between the formulation given by
Table 1 and that labeled “MILP-UC” in Carrion and Arroyo [5] is the addition of the network constraints
and the slacks on nodal balance and reserves.

Carrion and Arroyo [5] also test a 3-binary formulation, however the formulation considered is not pre-
cisely specified. A possible variant of this formulation is considered in Ostrowski et al. [24], and is called the
“original” formulation therein. Most of the generator description except for start-up costs, shutdown costs,
and production costs are based on the formulation from Arroyo and Conejo [1]. As piecewise production
costs are not specified in [24], we use the perspective formulation referenced therein, which is (51). Simi-
larly [24] does not consider a network. The formulation considered is given in Table 2 and will be referred
to as OAV-0. Another 3-binary formulation replaces (70) and (71) in Ostrowski et al. “original” with (72)
and (73), respectively. This is called “Up/Downtime” in Ostrowski et al. [24], and we refer to it as OAV-UD.
It is given in Table 3. Note that in all the formulations derived from [24], we add the perspective piecewise
production (51), the systems constraints, as well as the upper-bound constraint (19), the last (which limits

the reserves when the generator is turning-off) being necessary for this formulation to agree with [5].
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Table 3: Specification of the “Up/Downtime” formulation from Ostrowski et al. [24] (OAV-UD)

Ostrowski et al. “Up/Downtime” (OAV-UD)
objective: (67)
variables: Ug, Vg, wgvpg,l_?ga g’ g vana fk» ny S;tv Sy S0 SR
uptime/downtime:  (2), (3), (4), (5)
generation limits:  (18), (19)
ramping limits:  (24), (25)
piecewise production:  (51)
start-up cost:  (97), (98)
shutdown cost:  (60)
system constraints:  (62), (63), (64), (65)

Table 4: Specification of a formulation from Ostrowski et al. [24] (OAV)

Ostrowski et al. (OAV)
objective:  (67)
variables: ug,vg,wg,pg,]_og,cg,cgU,pW,n,fk,Gn,s:{,s;,sn,sR
uptime/downtime:  (2), (3), (4), (5)
generation limits:  (18), (19)
ramp-up limits:  (24) if RU,; < SDy — P, or UT, < 2, else (28)
(25)
Ise

ramp-down limits: if RD < SU —P,or UT, <2,
else (30) if UT, <3 or DT, < 2, else (31)
piecewise production: (51)
start-up cost:  (97)
shutdown cost:  (60)
system constraints:  (62)

Table 5: Specification of a tighter formulation from Ostrowski et al. [24] (OAV-T)

Ostrowski et al. tighter (OAV-T)
objective:  (67)
variables: ug,vg,wg,pg,ﬁg,cZ,ciU,pW’n,fk,H,,,,s;;,sg,sn,sR
uptime/downtime:  (2), (3), (4), (5)

)
generation limits:  (18), (19), (37)
ramp-up limits:  (24) if RU, < SDy, — P, or UT,; < 2, else (28)
ramp-down limits:  (25) if RD < SU - P or UT <2,
else (30) 1f UT, <3 or DTy < 2, else (31)
2-ramp-up limits:  (29) if RU, > SD =P, UT > 2, and DTy > 2
2-ramp-down limits:  (32) if RD > SU P , UTy > 3, and DT >
piecewise production: (51)
start-up cost:  (97), (98)
shutdown cost:  (60)
system constraints:  (62), (63), (64), (65)
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Table 6: Specification of the formulation proposed in Atakan et al. [2] (ALS)

Atakan et al. (ALS)

objective: (67)
variables:
uptime/downtime:  (3)
generation limits: (16
ramp limits: (35
piecewise production: (49
(10
(60
(62

P o =SU 4+ =
,’Ug7wg7pgapguc§7cg 7pW,n7fk70n7Sn»sn»5naSR

, (9), (10), (11)
» (19)
» (36)

Q

start-up cost:
shutdown cost:
system constraints:

Because Ostrowski et al. [24] proposes adding the additional constraints (37), (28)—(32) as user cuts,
a feature unique to CPLEX [15], we will consider two variants of the formulation proposed in Ostrowski
et al. [24]. The first of which replaces the consecutive-period ramping constraints with their tighter coun-
terparts (28), (30), (31), when possible, and the other also adds the upper bound constraint (37) and the
two-period ramping constraints (29) and (32). The two formulations are in Tables 4 and 5 and will be re-
ferred to as OAV and OAV-T, respectively. Note we add the network constraints, the perspective piecewise
production (51), and (19) to these models.

Recently Atakan et al. [2] presented a reformulation for UC using the state-transition variables discussed
in Section 3.1.2. Other aspects of this formulation are the combination of the p|(t) variables with the p(t)
variables and the inclusion of the ramping constraints from Damci-Kurt et al. [7]. Relying heavily on the
transformations (8), (12), and (13), in Table 6 we give the formulation from Atakan et al. [2] with the

addition of network constraints. We will refer to this formulation as ALS and it is given in Table 6.

D Detailed Summary of Instances

D.1 RTS-GMLC

The RTS-GMLC system [3] is an update to the RTS-96, and is publicly available on GitHub at https:
//github.com/GridMod/RTS-GMLC. As is, none of the generators have ramping constraints over an hourly
time horizon. In order to create instances which are sensitive to various formulation changes, we considered
a 3% reserve margin, let SU, = SD, = P, for all g € G, and reduced the ramp rates by a factor of three.
The later change is not overly restrictive, in that units marked as coal can ramp up/down in two to three
hourly time periods, whereas the units marked as gas can ramp up/down in a single time period.

The RTS-GMLC system has 73 thermal generators, 81 renewable generators including wind, hydro,

utility-scale photo-voltaic, and rooftop photo-voltaic generators. Each thermal generator has four piece-
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wise production segments and between one and three start-up types. The rooftop photo-voltaic and hydro
generation is modeled as must-take, but the wind and utility-scale photo-voltaic units are fully curtailable.
The system also includes a network with 73 buses and 120 transmission lines. Hourly day-ahead data are
provided for both load and renewable generation for the year 2020. For this test set we selected twelve days
from the year, Jan 27, Feb 9, Mar 5, Apr 3, May 5, Jun 9, Jul 6, Aug 12, Sep 20, Oct 27, Nov 25, and Dec 23.
Jan 27, Feb 9, Nov 25 and Dec 23 were selected because they contain significant wind-ramping events, Apr
3 and Jun 9 were selected because there is very little renewable generation online, and the remaining days
were selected arbitrarily to have a test-set containing one day per month to capture seasonal variations. The
initial generator status for all days is given from the provided PLEXOS solution. For each day we consider

an instance with and without the network constraints, for a total of 24 instances.

D.2 CAISO

The “CAISO” instances have 410 schedulable thermal generators and another 200 must-run thermal gen-
erators. These instances are based on publicly-available market and regulatory data from the California
Independent System Operator (CAISO). No network data is included. As the generator offer curve provided
is quadratic, we approximate each curve using Ly, = 2 for each g € G. Each generator only has two start-up
categories. Five 48-hour demand scenarios are considered, one for each season based on historical data,
and another, “Scenario400,” representing a hypothetical scenario where wind is on average 40% of energy
demand. Wind generation is treated as fully curtailable. The wind profile for this instance was collected
from historical data and then scaled appropriately. Four different reserve margins were considered for each
demand profile, 0%, 1%, 3%, and 5%. In total then we have 20 CAISO UC instances.

This system consists of mostly small and flexible generating units: only 20 of the 410 schedulable units
have irredundant ramping constraints (that is, RU, > (P, — P,) and RDy > (P, — P,)), and account for
75% of the schedulable capacity. Additionally, 370 of the schedulable units have UTy = DT, = 1, accounting

for 66% of the schedulable capacity. These are the same instances considered in [19, 18].

D.3 FERC

The “FERC” instances are based on two sets of generators publicly available from the Federal Regulatory
Energy Commission (FERC) in the United States [20]. Twelve 48-hour instances were constructed from
publicly available load, reserve, and wind data from 2015 provided by PJM [26, 27]. One day was selected
from each month so as to capture the seasonal variation, with the “Summer” generators being used for
months April — September and the “Winter” generators for the remaining months. PJM was selected for the
load profile because the FERC generator set is itself based on data from PJM. To create additional more

interesting test instances, we scaled the provided wind profile by a factor of 15 to increase the average wind
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Table 7: Summary computational results for RTS-GMLC instances.

Formulation Time (s) Opt gap (%) Time outs Times best Times 2nd

CA 300.0 13.806% 24 0 0
OAV-0O 172.8 0.3335% 13 0 0
OAV-UD 163.2 0.2541% 13 0 0
OAV 169.7 0.2352% 12 0 0
OAV-T 178.0 0.2498% 12 0 0
MLR 86.19 0.0165% 5 0 0
ALS 58.29 0.0122% 2 1 1
KOW 94.81 0.0165% 4 0 1
T 50.65 0.0121% 2 4 4

Co 43.11 0.0121% 1 1 4

R1 32.37 0.0114% 1 14 6

R2 36.94 0.0114% 1 4 8

energy supply to 30% of demand. In both cases, wind generation is treated as fully curtailable. Hence there
are a total of 24 FERC instances, twelve “low-wind” instances which use the data as provided and twelve
“high-wind” instances which scale the wind by a factor of 15. These are the same instances considered
in [16, 19].

The Summer set of generators has 978 units and the Winter set has 934 units. Missing data is as in [16].
Piecewise production curves are based market data such that 1 < L, < 10, and each generator has at most
two start-up types. Given the number of generators and the potential number of piecewise production points,
this test set is very large as measured by the number of nonzeros in the constraint matrix, regardless of the
formulation chosen. As compared to CAISO, this system has many fewer flexible generators; generators with
irredundant ramping constraints comprise only 50% of units and 35% of capacity for both the Winter and

Summer set of generators.

E Summary Computational Results, Including Other Formula-

tions

E.1 RTS-GMLC

Summary computational results for the RT'S-GMLC instances are reported in Table 7. As in the main text,
the time limit was set at 300 seconds. Full results are in Tables 17 and 20. We note formulation CA is
completely uncompetitive on these instances, and fails to find and certify quality solution (with a optimality
gap less than 1%) for every instance within the time allotted. The OAV formulations all perform similarly,

and are again uncompetitive, but at least manages to find and certify a quality solution in most instances.
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Table 8: Summary computational results for CAISO instances.

Formulation Time (s) Opt gap (%) Time outs Times best Times 2nd

CA 300.0 1.0987% 20 0 0
OAV-0O 300.0 6.7647% 20 0 0
OAV-UD 300.0 6.2269% 20 0 0
OAV 300.0 3.6319% 20 0 0
OAV-T 300.0 6.1679% 20 0 0
MLR 117.1 0.0119% 2 0 1
ALS 260.4 0.0577% 12 0 0
KOW 79.02 0.0102% 2 4 7
T 56.90 0.0100% 0 15 3

Co 100.6 0.0100% 0 0 )

R1 147.4 0.0102% 1 0 1

R2 104.1 0.0100% 1 1 3

Formulation ALS, while clearly superior to MLR and KOW on this test set, is outperformed by Co, R1,
and R2.

E.2 CAISO

Summary computational results for the CAISO instances are reported in Table 8. As in the main text, a
time limit of 300 seconds was also set for these instances. Full results are in Tables 18 and 21. On these
instances we see that the CA and OAV variants are uncompetitive. The CAISO generation set has mostly
small, flexible generators with UT = DT = 1, so the poor representation of the start-up costs used for ALS

is problematic, though it is still able to find and certify a quality solution in all cases by the time limit.

E.3 FERC

We report summary computational results for the FERC instances in Table 9. The time limit was set at 600
seconds, as in the main text. Full results are in Tables 19 and 22.

Here again we see that the CA and OAV variants are uncompetitive. Interestingly, however, we do see
a difference in solution quality and verification at 600 seconds when comparing OAV-0O to the other OAV
variants, demonstrating the effectiveness of the uptime and downtime constraints from Rajan and Takriti
[28]. The slightly weaker start-up cost formulation from Atakan et al. [2] is again the likely reason ALS
performs slightly worse than the variants MLR, Co, R1, and R2.
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Table 9: Summary computational results for FERC instances.

Formulation Time (s) Opt gap (%) Time outs Times best Times 2nd

CA 600.0 43.333% 24 0 0
OAV-0O 599.7 11.716% 23 0 0
OAV-UD 588.2 1.4575% 20 0 0
OAV 588.4 1.3104% 21 0 0
OAV-T 582.4 1.4389% 22 0 0
MLR 340.5 0.0555% 3 4 1
ALS 394.7 0.0933% 7 2 2
KOW 390.2 0.0117% 2 3 5
T 268.6 0.0104% 1 8 4

Co 309.5 0.0596% 3 4 )

R1 308.9 0.0480% 3 3 6

R2 373.1 0.0665% 4 0 1

Table 10: Summary of computational results, changing the power variable used.

RTS-GMLC CAISO FERC
Time (s) Opt gap (%) Time (s) Opt gap (%) Time (s) Opt gap (%)
T 50.65 0.0121% 56.90 0.0100% 268.6 0.0103%
CA: py [5] 55.59 0.0131% 63.86 0.0100% 415.6 0.0223%

F Analysis of the “Tight” Formulation

Because formulation T is the best performer across the test bed, we examined it further to determine which
components are the most critical to its success. Approximately 30 variants of the Tight formulation were
considered by swapping one component (power variables, reserve variables, uptime/downtime constraints,
generation limits, ramp limits, piecewise production, start-up costs) for another considered in this paper.
The motivation here is two-fold. First, this process may discover a better formulation, and second, the
practitioner has a sense of what changes they should prioritize if considering a formulation change.

We first consider changing the power variable from pj (¢) to the simpler py(¢). A summary of the results
are presented in Table 10, and the full results are in Tables 23-25 in Appendix G. As we can see, holding all
else constant, using the variable p,4(t) to represent total output leads to a degradation in overall performance.

Next we consider changing the variable used for reserve allocation. Formulation T uses ﬁ;(t% S0 we
considered both p, (t) from Carrion and Arroyo [5] and ry(t) from Morales-Espana et al. [22]. The full results
are available in appendix Tables 26-28. Overall again it seems like the p?_’g (t) variables are the best choice,
but the results are more mixed than for the power variable selection.

For this experiment we considered two other ways of formulating the minimum uptime and downtime.
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Table 11: Summary of computational results, changing the reserve variable used.

RTS-GMLC CAISO FERC
Time (s) Opt gap (%) Time (s) Opt gap (%) Time (s) Opt gap (%)
T 50.65 0.0121% 56.90 0.0100% 268.6 0.0103%
MLR: r, [22] 76.91 0.0128% 80.01 0.0100% 2304 0.0106%
CA: p, [5] 52.41 0.0121% 50.77 0.0100% 397.2 0.0101%

Table 12: Summary of computational results, changing the uptime and downtime constraints used.

RTS-GMLC CAISO FERC
Time (s) Opt gap (%) Time (s) Opt gap (%) Time (s) Opt gap (%)
T 50.65 0.0121% 56.90 0.0100% 268.6 0.0103%
RT 2bin: (4)(7) [28] 48.29 0.0120% 51.30 0.0100% 235.1 0.0100%
DEKT: (70)(71) [§]  59.30 0.0124% 46.31 0.0100% 410.0 0.0163%

The first is simply the uptime/downtime polytope given by Rajan and Takriti [28] with just the unit on
variable wu,y(t) and the start-up variable vy(t), given by (4) and (7). The other is the older formulation
originally given by Dillon et al. [8] and more recently by Arroyo and Conejo [1], which was discussed in
Section B.1. Summary results are reported in Table 12; full results are given in Tables 29-31. It is obvious
that the DEKT formulation leads to an overall degradation in performance, whereas the 2bin variant of
the uptime/downtime polytope seems to improve performance over the variant which included the turn-off
variables. The “RT 2bin” formulation for the uptime/downtime constraints solved every instance of CAISO
and FERC to within 0.01% of optimality within the time limit, while timing out on an additional RTS-
GMLC instance over T. Still, its shifted geometric mean optimality gap is slightly less on RTS-GMLC while
being faster on average.

In Table 13 we show the computational summary for changes to the generation limits for formulation
T; the complete results are in Tables 32-34. As we can see, the MLR, GMR, and GMR+PG variants are
all competitive with the generation limits used in T, which are essentially GMR+PG+(41). Conversely, the
PG, AC, OAV, and CA variants result in degraded performance on at least two fo the three instance sets.

Table 14 summarizes the computational results for formulation T under changes to the ramping limits.
Overall it is difficult to distinguish between the various formulations. However, the sparser MLR formulation
from [22] has a definite advantage, whereas the denser ramping limits from the OAV-T formulation only
serve to reduce performance. The performance of the MLR ramping inequalities is likely because the strong
variable upper bound inequalities used in T make the ramping constraints mostly redundant. The complete

results are in the appendix, Tables 35-37.

19



Table 13: Summary of computational results, changing the generation limits used.

RTS-GMLC CAISO FERC
Time (s) Opt gap (%) Time (s) Opt gap (%) Time (s) Opt gap (%)
T 50.65 0.0121% 56.90 0.0100% 268.6 0.0103%
MLR: (20)(21) [22] 51.29 0.0122% 52.44 0.0100% 254.8 0.0100%
GMR: (20)(23) [12] 51.37 0.0122% 52.42 0.0100% 254.1 0.0100%
PG: (38) [25] 57.22 0.0128% 88.97 0.0100% 299.2 0.0100%
GMRA+PG: (23)(38) 50.10 0.0116% 50.70 0.0100% 255.0 0.0103%
AC: (19) [1] 72.94 0.0145% 93.44 0.0100% 362.1 0.0101%
OAV: (19)(37) [24]  75.44 0.0125% 96.72 0.0100% 229.7 0.0101%
CA: (18)(76) [5] 73.78 0.0179% 92.97 0.0100% 307.7 0.0100%

Table 14: Summary of computational results, changing the ramping limits used.

RTS-GMLC CAISO FERC
Time (s) Opt gap (%) Time (s) Opt gap (%) Time (s) Opt gap (%)
T 50.65 0.0121% 56.90 0.0100% 268.6 0.0103%
DKRA: (35)(36)(79)[7] 50.45 0.0119% 52.59 0.0100% 281.9 0.0100%
MLR: (26)(27) [22] 19.28 0.0119% 48.53 0.0100% 242.6 0.0100%
AC: (24)(25) [1] 51.67 0.0124% 53.59 0.0100% 313.7 0.0107%
OAYV ramp limits [24] 51.27 0.0119% 59.60 0.0100% 268.3 0.0101%
OAV-T ramp limits [24] 53.76 0.0121% 59.94 0.0100% 324.0 0.0120%

Table 15: Summary of computational results, changing the production cost formulation used.

RTS-GMLC CAISO FERC
Time (s) Opt gap (%) Time (s) Opt gap (%) Time (s) Opt gap (%)
T 50.65 0.0121% 56.90 0.0100% 268.6 0.0103%
CA: (43)(44)(45) [5] 48.93 0.0119% 57.87 0.0100% 230.2 0.0100%
Wu: (42)(43)(44) [33]  49.64 0.0136% 55.55 0.0100% 323.9 0.0101%
KOW prod. costs [18] 50.28 0.0119% 52.63 0.0100% 282.2 0.0100%
CW: (93)(94)(95) [6] 50.00 0.0114% 47.68 0.0100% 320.7 0.0101%
SOS2: (89)(90)(91) 59.90 0.0146% 50.67 0.0100% 277.5 0.0100%
SLL: (89)(90)(92) [31]  46.83 0.0115% 48.25 0.0100% 304.1 0.0102%
Epi: (49) 57.33 0.0143% 68.24 0.0100% 277.3 0.0134%
HB: (50) [14] 57.27 0.0119% 71.53 0.0100% 364.5 0.0130%
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Table 16: Summary of computational results, changing the start-up cost formulation used.

RTS-GMLC CAISO FERC
Time (s) Opt gap (%) Time (s) Opt gap (%) Time (s) Opt gap (%)
T 50.65 0.0121% 56.90 0.0100% 268.6 0.0103%
MLR: (52)(53)(54) [22] 4923 0.0117% 6637  0.0100% 291.9 0.0571%
KOW 3bin: (96)(97) [19] 49.25 0.0121% 104.3 0.0106% 326.9 0.0788%
A-K: (102)(103)(106) [2, 19]  49.65 0.0120% 55.86 0.0100% 276.4  0.0609%
MLR proj: (52)(55)(56) 44.15 0.0121% 65.47 0.0100% 289.3 0.0520%

The literature has many possibilities for formulating piecewise production costs; Table 15 summarized
the computational results under changes to the production cost formulation for T. The full results are in
the appendix, Tables 38—40. It is clear from Table 15 that the SOS2 and Epi variants result in performance
degradation, and HB does not perform as well as we might expect. Gurobi seems to prefer formulations with
additional variables, as even the non-ideal CA variant out-performs HB across the board. Interestingly, CA
does surprisingly well, only timing out on the difficult RTS-GMLC instance “2020-04-03 NC.” This may be
in part because CA is sparse: the limits on the pé(t) variables are just variable bounds and hence are not
additional rows in the simplex tableau.

Lastly, we consider the effect changing the start-up cost formulation has on the performance of formulation
T. The summary results are in Table 16, and the full results are in the appendix, Tables 41-43. On the
RTS-GMLC and CAISO instances, none of the other formulations are a significant improvement over T,
and on the FERC instances the start-up costs formulation from Knueven et al. [19] allows T to achieve a

high-quality solution in 10 minutes on all instances.

G Full Computational Results

In this appendix we report the full computational results for the formulations and instances tested.
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Table 17: Computational results for RT'S-GMLC instances. Wall clock times are reported in seconds. When
the 300 second time limit is reached, the terminating optimality gap is reported in parentheses. The best
value for each instance is bold-faced. Each instance is named by the date from which the beginning of the
48-hour load profile was selected and whether the system with considered with (NC) or without (CP) a
network.

MLR ALS KOW T Co R1 R2
Instance (2013) (2018) (2018)

2020-01-27 CP  (0.056%) 219.7 (0.073%) 88.8 101.5 94.8 99.7
2020-02-09 CP  49.8 20.4 47.6 23.0 28.0 21.3 23.3
2020-03-05 CP  91.5 34.7 92.2 25.3 26.6 25.9 40.2
2020-04-03 CP  (0.047%) (0.020%) (0.032%) 42.6 51.2 51.2 39.1
2020-05-05 CP  37.3 34.9 56.7 19.5 25.0 25.8 20.9
2020-06-09 CP  14.6 12.1 18.6 5.8 6.3 4.7 6.4
2020-07-06 CP  13.3 10.8 13.2 6.8 6.8 5.3 9.7
2020-08-12 CP  29.0 12.1 14.1 12.2 6.0 6.8 7.4
2020-09-20 CP 424 11.6 39.5 7.4 12.7 8.3 8.5
2020-10-27 CP  79.6 39.2 59.7 24.3 214 21.1 29.0
2020-11-25 CP  115.0 47.0 176.2 33.4 34.3 26.7 35.7
2020-12-23 CP  35.1 20.7 53.9 19.4 21.% 13.4 15.5
2020-01-27 NC  103.2 89.1 188.4 157.6 53.7 56.3 38.6
2020-02-09 NC 193.8 192.1 206.5 212.6 60.9 55.8 56.6
2020-03-05 NC  (0.017%) 300.0 217.8 (0.021%) 292.4 113.5 230.1
2020-04-03 NC  (0.048%) (0.054%) (0.051%) (0.050%) (0.061%) (0.043%) (0.044%)
2020-05-05 NC 197.1 205.2 (0.039%) 212.8 249.2 67.6 108.6
2020-06-09 NC 37.1 26.6 384 49.8 18.9 19.2 16.0
2020-07-06 NC  40.0 25.5 55.7 39.3 22.9 16.1 18.9
2020-08-12 NC 414 42.3 49.4 67.3 56.5 37.8 26.2
2020-09-20 NC  81.1 51.9 135.8 69.3 40.8 39.4 39.8
2020-10-27 NC  (0.037%) 222.7 295.2 153.7 191.9 135.4 168.9
2020-11-25 NC  206.7 93.5 209.9 164.9 100.3 64.0 108.8
2020-12-23 NC  219.3 211.6 236.9 226.1 244.3 82.1 89.8
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Table 18: Computational results for CAISO instances. Wall clock times are reported in seconds. When the
300 second time limit is reached, the terminating optimality gap is reported in parentheses. The best value
for each instance is bold-faced. Each instance is named by the date or hypothetical scenario from which the
beginning of the 48-hour load profile was selected, followed by the reserve level, considered as a percentage
of load.

MLR ALS KOwW T Co R1 R2
Instance (2013) (2018) (2018)
2014-09-01 0% 72.5 189.0 39.1 51.7 37.2 71.2 37.2
2014-12-01 0%  60.7 (0.014%) 33.7 45.1 66.7 122.8 64.0
2015-03-01 0% 36.4 207.5 27.4 32.1 90.9 1183 38.7
2015-06-01 0% 23.7 190.4 12.1 19.1 43.3 878 47.3
Scenario400 0% 98.9 (0.139%) 50.4 31.0 92.3 162.6 146.4
2014-09-01 1% 81.6 163.8 56.5 25.4 35.8  88.8 41.6
2014-12-01 1% 116.7 (0.012%) 85.0 84.5 103.2 138.8 92.2
2015-03-01 1% 95.1 (0.012%) 39.6 36.4 87.7 123.3 131.9
2015-06-01 1%  93.9 176.2 69.9 38.3 54.5  98.2 7.7
Scenario400 1% 163.4 (0.283%) 99.6 66.5 131.6  207.5 140.3
2014-09-01 3% 297.1 (0.010%) 198.7 83.5 128.3 142.2 127.1
2014-12-01 3% 165.2 (0.021%) 73.4 106.8  152.8 176.3 104.9
2015-03-01 3% 83.2 241.7 88.0 67.4 109.9 114.5 88.5
2015-06-01 3% 166.8 284.3 159.2 57.8 124.9 107.3 160.9
Scenariod00 3%  (0.017%) (0.324%) (0.010%) 103.8 261.9 273.1 (0.010%)
2014-09-01 5% 191.8 (0.025%) 132.3 92.7 138.6 198.4 111.8
2014-12-01 5% 268.1 (0.046%) 147.4 129.9 156.9 2354 187.0
2015-03-01 5% 97.6 (0.018%) 75.7 54.6 145.1 176.6 140.3
2015-06-01 5% 145.8 260.3 113.8 56.7 147.1  246.6 136.7

Scenario400 5%  (0.041%) (0.169%) (0.014%) 106.9 165.6 (0.015%) 279.7
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Table 19: Computational results for FERC instances. Wall clock times are reported in seconds. When the
600 second time limit is reached, the terminating optimality gap is reported in parentheses. The best value
for each instance is bold-faced. Each instance is named by the date from which the beginning of the 48-hour
load profile was selected and whether it is low-wind (LW) (wind supply is 2% of energy demand for the year)
or high-wind (HW) (wind supply is scaled to be 30% of energy demand for the year).

MLR ALS KOW T Co R1 R2
Instance (2013) (2018) (2018)
2015-01-01 LW 265.3 348.1 310.5 107.6 105.0 185.3 161.4
2015-02-01 LW  543.2 (0.022%) 266.3 133.5 508.0 570.2 438.2
2015-03-01 LW  423.0 221.9 (0.049%) 244.0 237.6 282.3 337.4
2015-04-01 LW  414.1 240.0 311.2 411.6 184.7 279.4 398.2
2015-05-01 LW  160.4 128.8 3104 221.6 190.5 136.4 182.6
2015-06-01 LW  120.6 266.4 311.2 282.6 128.4 159.2 276.9
2015-07-01 LW 555.9 338.1 521.2 429.6 237.4 469.8 509.8
2015-08-01 LW  551.2 365.8 273.6 281.5 401.5 358.7 527.1
2015-09-01 LW  541.9 542.6 394.8 541.8 501.6 403.8 439.8
2015-10-01 LW  165.4 287.0 320.1 201.9 141.1 148.5 217.6
2015-11-02 LW  166.2 419.2 317.5 166.0 282.2 217.8 368.9
2015-12-01 LW 217.3 251.5 383.8 114.5 118.5 154.9 152.9
2015-01-01 HW  (0.793%) (1.379%) 415.4 2104  (1.151%) (0.895%) (1.263%)
2015-02-01 HW  (0.256%) (0.430%) 435.6 136.0  (0.055%) (0.027%) (0.076%)
2015-03-01 HW  411.5 (0.016%)  559.7 379.2 420.5 277.5 573.9
2015-04-01 HW  508.5 369.8 595.3 244.6 296.6 252.3 290.3
2015-05-01 HW  122.3 277.7 246.7 244.4 258.0 235.5 191.5
2015-06-01 HW  254.6 385.7 263.6 351.2 435.8 319.3 409.1
2015-07-01 HW  223.9 (0.016%) (0.010%) 548.1 (0.020%) 493.3 549.2
2015-08-01 HW  391.2 591.5 448.1 361.7 436.9 386.3 459.5
2015-09-01 HW  (0.075%) (0.191%) 439.5  (0.018%) 554.5 (0.024%)  (0.044%)
2015-10-01 HW  486.1 499.8 (0.012%) 351.6 331.0 294.3 336.8
2015-11-02 HW  586.9 (0.025%) 343.2 321.1 492.8 512.1 (0.021%)
2015-12-01 HW  346.7 483.6 497.5 287.3 385.9 283.0 526.6
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Table 20: Computational results for RT'S-GMLC instances, older formulations. Wall clock times are reported
in seconds. When the 300 second time limit is reached, the terminating optimality gap is reported in
parentheses. Each instance is named by the date from which the beginning of the 48-hour load profile was
selected and whether the system with considered with (NC) or without (CP) a network.

CA OAV-O OAV-UD OAV OAV-T
Instance  (2006) (2012)  (2012) (2012)  (2012)

2020-01-27 CP  (29.439%) (1.617%) (1.363%)  (1.295%) (1.161%)
2020-02-09 CP  (7.566%)  103.5 63.5 62.5 75.3
2020-03-05 CP  (11.437%) 204.0 163.8 154.0 169.5
2020-04-03 CP  (11.256%) (0.044%) (0.017%)  (0.031%) (0.037%)
2020-05-05 CP (9.583%)  144.0 69.1 77.0 101.3
2020-06-09 CP  (2.676%)  42.7 38.0 37.8 47.6
2020-07-06 CP (2.536%)  59.9 62.6 64.3 89.4
2020-08-12 CP  (3.548%)  59.1 43.7 44.3 56.8
2020-09-20 CP (9.302%)  60.2 53.0 56.4 66.8
2020-10-27 CP  (18.483%) (0.180%) (0.019%)  (0.155%) (0.099%)
2020-11-25 CP (23.601%) (1.220%) (0.654%)  (0.829%) (0.790%)
2020-12-23 CP (8.972%)  88.3 80.8 114.0 169.2
(
(
(
(
(
(
(
(
(
(
(
(

2020-01-27 NC  (35.790%) (0.531%) (0.448% (0.547%)  (0.489%
2020-02-09 NC
2020-03-05 NC
2020-04-03 NC
2020-05-05 NC
2020-06-09 NC
2020-07-06 NC
2020-08-12 NC
2020-09-20 NC
2020-10-27 NC
2020-11-25 NC
2020-12-23 NC

18.107%

)

) (0.828%
13.130%)

)

)

)
( ) 0.480%
(0.807%)
e

)
0.372%) ( )
(0.579%)
=

)
0.545%)  ( )
(0.635%)
o

)
( )
(0.571%)
16.058%) (0.487%) (0.355%)  (0.084%) (0.262%
16.950%) (0.312%) (0.260%)  (0.165%) (0.252%
5.735%)  100.0 108.4 88.5 117.6
3.136%) 1174 132.0 220.7 126.3
7.401%)  110.1 174.3 224.6 204.9
13.968%

) (0.016%
26.777%)

)

)

) (0.011%) 2733 179.6
(0.786%)
(0.674%)
(0.417%)

)
(0.713%)  (0.619%) (0.703%)
(0.553%)  (0.540%) (0.665%)
(0.493%)

35.007%

10.101% (0.266%)  (0.369%)
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Table 21: Computational results for CAISO instances, older formulations. Wall clock times are reported
in seconds. When the 300 second time limit is reached, the terminating optimality gap is reported in
parentheses. Each instance is named by the date or hypothetical scenario from which the beginning of the
48-hour load profile was selected, followed by the reserve level, considered as a percentage of load.

CA OAV-O OAV-UD OAV OAV-T
Instance  (2006) (2012) (2012) (2012) (2012)
2014-09-01 0%  (0.266%) (0.249%)  (0.299%)  (0.260%)  (0.286%)
2014-12-01 0%  (0.540%) (0.301%)  (0.273%)  (0.244%)  (0.257%)
2015-03-01 0%  (1.073%) (0.414%)  (0.261%)  (0.476%)  (0.406%)
2015-06-01 0%  (0.248%) (0.199%)  (0.217%)  (0.210%)  (0.211%)
Scenariod00 0%  (2.684%) (63.420%) (52.212%)  (1.852%)  (50.837%)
2014-09-01 1%  (0.358%) (0.608%)  (0.390%)  (0.697%)  (2.334%)
2014-12-01 1%  (0.489%) (0.344%)  (0.297%)  (0.346%)  (0.359%)
2015-03-01 1%  (0.960%) (0.334%)  (0.363%)  (0.465%)  (0.597%)
2015-06-01 1%  (0.318%) (0.305%)  (0.352%)  (0.266%)  (0.275%)
Scenario400 1%  (3.182%) (44.939%) (23.811%) (16.637%) (50.386%)
2014-09-01 3%  (0.278%) (0.188%)  (4.311%)  (5.619%)  (4.056%)
2014-12-01 3%  (0.560%) (0.480%)  (0.404%) (0.217%)  (0.571%)
2015-03-01 3%  (1.649%) (0.356%)  (0.307%)  (12.475%) (0.458%)
2015-06-01 3%  (0.458%) (2.655%)  (1.931%)  (7.124%)  (9.985%)
Scenario400 3%  (3.158%) (17.791%) (38.164%) (7.291%)  (9.758%)
2014-09-01 5%  (0.353%) (0.194%)  (4.865%)  (0.286%)  (1.633%)
2014-12-01 5%  (0.750%) (13.422%) (1.922%)  (3.532%)  (0.411%)
2015-03-01 5%  (1.342%) (0.811%)  (0.626%)  (0.726%)  (0.677%)
2015-06-01 5%  (0.365%) (0.327%)  (0.319%)  (0.356%)  (0.342%)
Scenariod00 5%  (3.048%) (8.326%)  (8.579%)  (16.152%) (6.425%)
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Table 22: Computational results for FERC instances, older formulations. Wall clock times are reported
in seconds. When the 600 second time limit is reached, the terminating optimality gap is reported in
parentheses. Each instance is named by the date from which the beginning of the 48-hour load profile was
selected and whether it is low-wind (LW) (wind supply is 2% of energy demand for the year) or high-wind
(HW) (wind supply is scaled to be 30% of energy demand for the year).

CA OAV-O OAV-UD OAV OAV-T
Instance  (2006) (2012) (2012) (2012) (2012)

2015-01-01 LW (2.710%)  (0.552%)  (0.093%)  (0.083%) (0.137%)
2015-02-01 LW (2.593%)  (1.268%)  (0.471%)  (0.779%) (0.878%)
2015-03-01 LW (1.747%)  (0.264%)  (0.016%)  (0.071%) (0.115%)
2015-04-01 LW (23.563%) (2.157%)  (0.013%)  (0.013%) (0.040%)
2015-05-01 LW (2.151%)  592.1 566.5 468.7 355.4
2015-06-01 LW (4.241%)  (0.949%)  529.2 540.6 (0.096%)
2015-07-01 LW (38.678%) (1.635%)  (0.029%)  (0.042%) (0.194%)
2015-08-01 LW (4.372%)  (1.458%)  (0.692%)  (0.750%) (1.003%)
2015-09-01 LW (11.635%) (3.155%)  (0.559%)  (0.644%) (0.689%)
2015-10-01 LW (34.530%) (3.988%)  (0.085%)  (0.282%) (0.913%)
2015-11-02 LW (57.216%) (4.354%)  (2.145%)  (0.820%) (1.267%)
2015-12-01 LW (28.359%) (1.672%)  (0.569%)  (0.247%) (0.899%)
2015-01-01 HW  (89.979%) (14.934%) (5.845%)  (5.765%) (5.596%)
2015-02-01 HW  (77.601%) (6.419%)  (3.069%)  (3.723%) (3.871%)
2015-03-01 HW  (15.793%) (6.696%)  (1.935%)  (2.150%) (2.383%)
2015-04-01 HW  (92.072%) (66.194%) (6.103%)  (6.252%) (6.239%)
2015-05-01 HW  (58.044%) (0.123%)  510.5 533.1 495.2
2015-06-01 HW  (90.847%) (11.658%) (0.775%)  (0.619%) (1.623%)
2015-07-01 HW  (73.523%) (7.871%)  (1.236%)  (1.788%) (1.059%)
2015-08-01 HW  (89.531%) (26.264%) (3.219%)  (1.932%) (3.238%)
2015-09-01 HW  (66.341%) (43.264%) (4.737%)  (3.331%) (1.774%)
2015-10-01 HW  (99.977%) (36.145%) 524.8 (0.038%)  (0.082%)
2015-11-02 HW  (97.372%) (40.326%) (3.014%)  (2.306%) (2.004%)
2015-12-01 HW  (86.932%) (27.849%) (0.737%) (0.147%)  (0.742%)
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Table 23: Computational results for RT'S-GMLC instances. Wall clock times are reported in seconds. When
the 300 second time limit is reached, the terminating optimality gap is reported in parentheses. Each instance
is named by the date from which the beginning of the 48-hour load profile was selected and whether the
system with considered with (NC) or without (CP) a network. We replace the variable p/ () in formulation
T with that listed in each heading.

T CA [5]
Instance Dg
2020-01-27 CP 88.8 94.4
2020-02-09 CP 23.0 23.7
2020-03-05 CP 25.3 26.9
2020-04-03 CP 42.6 71.4
2020-05-05 CP 19.5 34.2
2020-06-09 CP 5.8 8.2
2020-07-06 CP 6.8 7.3
2020-08-12 CP 12.2 13.1
2020-09-20 CP 74 10.6
2020-10-27 CP 24.3 24.9
2020-11-25 CP 33.4 35.4
2020-12-23 CP 194 21.2
2020-01-27 NC 157.6 100.2
2020-02-09 NC 212.6 244.7

2020-03-05 NC  (0.021%)  183.3
2020-04-03 NC  (0.050%)  (0.044%)
2020-05-05 NC ~ 212.8  (0.051%)

2020-06-09 NC 49.8 48.9
2020-07-06 NC 39.3 68.2
2020-08-12 NC 67.3 48.2
2020-09-20 NC 69.3 78.0
2020-10-27 NC 153.7 195.1
2020-11-25 NC 164.9 122.8
2020-12-23 NC 226.1 271.8
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Table 24: Computational results for CAISO instances. Wall clock times are reported in seconds. When the
300 second time limit is reached, the terminating optimality gap is reported in parentheses. Each instance
is named by the date or hypothetical scenario from which the beginning of the 48-hour load profile was
selected, followed by the reserve level, considered as a percentage of load. We replace the variable py () in
formulation T with that listed in each heading.

T CA [

Instance Dg

2014-09-01 0%  51.7 59.9
2014-12-01 0%  45.1 33.6
2015-03-01 0%  32.1 34.5
2015-06-01 0%  19.1 22.4
Scenario400 0%  31.0 52.0
2014-09-01 1% 25.4 43.9
2014-12-01 1%  84.5 57.9
2015-03-01 1% 36.4 53.3
2015-06-01 1%  38.3 58.0
Scenariod00 1%  66.5 68.4
2014-09-01 3%  83.5 82.4
2014-12-01 3% 106.8 98.6
2015-03-01 3% 67.4 85.3
2015-06-01 3%  57.8 96.5
Scenario400 3% 103.8  104.2
2014-09-01 5%  92.7 78.3
2014-12-01 5% 129.9 140.0
2015-03-01 5%  54.6 59.8
2015-06-01 5%  56.7 74.5
Scenario400 5% 106.9  85.9
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Table 25: Computational results for FERC instances. Wall clock times are reported in seconds. When the
600 second time limit is reached, the terminating optimality gap is reported in parentheses. Each instance
is named by the date from which the beginning of the 48-hour load profile was selected and whether it is
low-wind (LW) (wind supply is 2% of energy demand for the year) or high-wind (HW) (wind supply is scaled
to be 30% of energy demand for the year). We replace the variable p(t) in formulation T with that listed
in each heading.

T CA [5]
Instance Dg

2015-01-01 LW 107.6 304.2
2015-02-01 LW 133.5 246.6
2015-03-01 LW 244.0 414.5
2015-04-01 LW 411.6 472.2
2015-05-01 LW 221.6 360.8
2015-06-01 LW 282.6 473.3
2015-07-01 LW 429.6 329.5
2015-08-01 LW 281.5 480.2
2015-09-01 LW 541.8 581.1
2015-10-01 LW 201.9 312.0
2015-11-02 LW 166.0 366.9
2015-12-01 LW 114.5 210.6
2015-01-01 HW 2104 420.1
2015-02-01 HW 136.0 441.7
2015-03-01 HW 379.2 457.2
2015-04-01 HW 244.6 375.0
2015-05-01 HW 2444 383.6
2015-06-01 HW 351.2 503.1

2015-07-01 HW 548.1 (0.273%)
2015-08-01 HW 361.7 (0.015%)
2015-09-01 HW  (0.018%) (0.039%)

2015-10-01 HW 351.6 971.8
2015-11-02 HW 321.1 498.1
2015-12-01 HW 287.3 335.1

30



Table 26: Computational results for RT'S-GMLC instances. Wall clock times are reported in seconds. When
the 300 second time limit is reached, the terminating optimality gap is reported in parentheses. Each instance
is named by the date from which the beginning of the 48-hour load profile was selected and whether the
system with considered with (NC) or without (CP) a network. We replace the variable 7 (t) in formulation
T with that listed in each heading.

T MLR [22]  CA [5]

Instance Ty Dyg
2020-01-27 CP 88.8 (0.021%) 90.9
2020-02-09 CP 23.0 53.6 18.0
2020-03-05 CP 25.3 48.8 21.7
2020-04-03 CP 42.6 (0.029%) 48.5
2020-05-05 CP 19.5 42.0 15.9
2020-06-09 CP 5.8 11.9 6.8
2020-07-06 CP 6.8 16.0 6.8
2020-08-12 CP 12.2 12.9 9.0
2020-09-20 CP 7.4 26.9 14.2
2020-10-27 CP 24.3 50.8 23.2
2020-11-25 CP 33.4 79.7 36.3
2020-12-23 CP 19.4 56.7 20.5
2020-01-27 NC 157.6 97.3 152.8
2020-02-09 NC 212.6 212.8 193.2

2020-03-05 NC  (0.021%)  162.5  (0.020%)
2020-04-03 NC  (0.050%)  (0.046%)  (0.050%)

2020-05-05 NC 212.8 227.0 248.6
2020-06-09 NC 49.8 46.2 66.1
2020-07-06 NC 39.3 52.1 44.1
2020-08-12 NC 67.3 56.2 56.0
2020-09-20 NC 69.3 65.6 111.4
2020-10-27 NC 153.7 192.4 178.4
2020-11-25 NC 164.9 147.4 146.2
2020-12-23 NC 226.1 2134 210.0
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Table 27: Computational results for CAISO instances. Wall clock times are reported in seconds. When the
300 second time limit is reached, the terminating optimality gap is reported in parentheses. Each instance
is named by the date or hypothetical scenario from which the beginning of the 48-hour load profile was
selected, followed by the reserve level, considered as a percentage of load. We replace the variable ]3; (t) in
formulation T with that listed in each heading.

T  MLR[22] CA[5]

Instance Tg Dy
2014-09-01 0%  51.7 40.8 36.8
2014-12-01 0%  45.1 33.4 35.3
2015-03-01 0%  32.1 29.3 30.7
2015-06-01 0%  19.1 13.8 17.6

Scenario400 0%  31.0 30.3 34.8
2014-09-01 1% 25.4 61.4 28.5
2014-12-01 1% 84.5 82.0 60.9
2015-03-01 1%  36.4 38.4 45.2
2015-06-01 1%  38.3 68.5 40.8

Scenario400 1%  66.5 191.8 62.2
2014-09-01 3%  83.5 242.9 67.9
2014-12-01 3% 106.8 71.9 98.1
2015-03-01 3%  67.4 99.5 77.4
2015-06-01 3%  57.8 120.4 35.8

Scenario400 3% 103.8 126.8 86.0

2014-09-01 5%  92.7 114.1 70.8
2014-12-01 5% 129.9 158.1 58.8
2015-03-01 5%  54.6 123.1 56.7

2015-06-01 5%  56.7 173.6 104.9
Scenario400 5%  106.9 266.0 67.8
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Table 28: Computational results for FERC instances. Wall clock times are reported in seconds. When the
600 second time limit is reached, the terminating optimality gap is reported in parentheses. Each instance
is named by the date from which the beginning of the 48-hour load profile was selected and whether it is
low-wind (LW) (wind supply is 2% of energy demand for the year) or high-wind (HW) (wind supply is scaled
to be 30% of energy demand for the year). We replace the variable p (Z) in formulation T with that listed
in each heading.

T MLR [22] CA [5]

Instance rg Py
2015-01-01 LW 107.6 175.7 310.0
2015-02-01 LW 133.5 108.1 297.1
2015-03-01 LW 244.0 254.0 420.4
2015-04-01 LW 411.6 364.3 577.4
2015-05-01 LW 221.6 110.1 304.0
2015-06-01 LW 282.6 200.9 243.1
2015-07-01 LW 429.6 (0.013%) 548.3
2015-08-01 LW 281.5 191.8 456.0
2015-09-01 LW 541.8 465.6 543.1
2015-10-01 LW 201.9 131.5 296.0
2015-11-02 LW 166.0 120.6 356.8
2015-12-01 LW 114.5 112.8 281.5
2015-01-01 HW 210.4 223.8 340.2
2015-02-01 HW 136.0 290.3 286.3
2015-03-01 HW 379.2 193.6 394.9
2015-04-01 HW 244.6 270.0 447.2
2015-05-01 HW 2444 103.8 294.0
2015-06-01 HW 351.2 181.7 496.3
2015-07-01 HW 548.1 (0.021%) 534.1
2015-08-01 HW 361.7 443.1 478.8
2015-09-01 HW  (0.018%) 294.5 (0.012%)
2015-10-01 HW 351.6 362.8 355.5
2015-11-02 HW 321.1 335.4 478.6
2015-12-01 HW 287.3 219.6 544.7
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Table 29: Computational results for RT'S-GMLC instances. Wall clock times are reported in seconds. When
the 300 second time limit is reached, the terminating optimality gap is reported in parentheses. Each instance
is named by the date from which the beginning of the 48-hour load profile was selected and whether the
system with considered with (NC) or without (CP) a network. We replace the uptime/downtime constraints
from T with those listed.

T RT 2bin [28] DEKT 8]
Instance (4)(7) (70)(71)
2020-01-27 CP 88.8 90.9 105.8
2020-02-09 CP 23.0 18.7 23.9
2020-03-05 CP 25.3 24.0 26.3
2020-04-03 CP 42.6 49.1 53.9
2020-05-05 CP 19.5 24.3 26.8
2020-06-09 CP 5.8 6.2 6.8
2020-07-06 CP 6.8 9.4 10.6
2020-08-12 CP 12.2 7.6 124
2020-09-20 CP 7.4 9.6 11.3
2020-10-27 CP 24.3 22.7 279
2020-11-25 CP 33.4 31.7 53.0
2020-12-23 CP 19.4 18.1 16.6
2020-01-27 NC 157.6 135.7 180.8
2020-02-09 NC 212.6 (0.011%) 283.2

2020-03-05 NC  (0.021%)  (0.018%)  (0.020%)
2020-04-03 NC  (0.050%)  (0.050%)  (0.052%)

2020-05-05 NC 212.8 120.9 169.6
2020-06-09 NC 49.8 52.9 55.9
2020-07-06 NC 39.3 38.3 43.6
2020-08-12 NC 67.3 43.8 43.1
2020-09-20 NC 69.3 97.4 124.7
2020-10-27 NC 153.7 192.4 214.2
2020-11-25 NC 164.9 127.6 (0.015%)
2020-12-23 NC 226.1 102.9 227.2
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Table 30: Computational results for CAISO instances. Wall clock times are reported in seconds. When the
300 second time limit is reached, the terminating optimality gap is reported in parentheses. Each instance
is named by the date or hypothetical scenario from which the beginning of the 48-hour load profile was
selected, followed by the reserve level, considered as a percentage of load. We replace the uptime/downtime
constraints from T with those listed.

T  RT 2bin [28] DEKT [g]

Instance (4)(7) (70)(71)
2014-09-01 0%  51.7 42.0 55.6
2014-12-01 0%  45.1 23.3 39.5
2015-03-01 0%  32.1 23.6 31.3
2015-06-01 0%  19.1 12.0 18.2

Scenario400 0%  31.0 38.5 32.0
2014-09-01 1% 25.4 28.0 25.9
2014-12-01 1%  84.5 56.9 34.5
2015-03-01 1%  36.4 16.9 33.2
2015-06-01 1%  38.3 41.7 32.5

Scenario400 1%  66.5 86.7 40.7
2014-09-01 3%  83.5 83.4 51.5
2014-12-01 3% 106.8 57.5 68.6
2015-03-01 3%  67.4 61.5 66.7
2015-06-01 3%  57.8 95.4 38.5

Scenario400 3% 103.8 108.1 91.7
2014-09-01 5%  92.7 71.0 59.0
2014-12-01 5% 129.9 100.9 98.7
2015-03-01 5%  54.6 71.9 33.3
2015-06-01 5%  56.7 95.0 75.0

Scenario400 5% 106.9 102.8 107.8
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Table 31: Computational results for FERC instances. Wall clock times are reported in seconds. When the
600 second time limit is reached, the terminating optimality gap is reported in parentheses. Each instance
is named by the date from which the beginning of the 48-hour load profile was selected and whether it is
low-wind (LW) (wind supply is 2% of energy demand for the year) or high-wind (HW) (wind supply is scaled
to be 30% of energy demand for the year). We replace the uptime/downtime constraints from T with those
listed.

T RT 2bin [28] DEKT 8]
Instance (4)(7) (70)(71)
2015-01-01 LW 107.6 102.9 197.5
2015-02-01 LW 133.5 88.0 268.1
2015-03-01 LW 244.0 211.7 318.1
2015-04-01 LW 411.6 369.7 271.8
2015-05-01 LW 221.6 117.1 192.0
2015-06-01 LW 282.6 187.6 345.1
2015-07-01 LW 429.6 389.7 480.3
2015-08-01 LW 281.5 275.0 374.8
2015-09-01 LW 541.8 422.1 (0.012%)
2015-10-01 LW 201.9 125.4 350.9
2015-11-02 LW 166.0 140.1 213.3
2015-12-01 LW 114.5 135.5 427.3
2015-01-01 HW  210.4 254.2 (0.030%)
2015-02-01 HW 136.0 175.8 380.7
2015-03-01 HW 379.2 277.3 471.3
2015-04-01 HW 244.6 275.8 580.4
2015-05-01 HW 2444 184.4 433.0
2015-06-01 HW 351.2 246.8 395.3
2015-07-01 HW 548.1 4104 (0.026%)
2015-08-01 HW 361.7 421.6 (0.034%)
2015-09-01 HW  (0.018%) 474.6 (0.026%)
2015-10-01 HW  351.6 4015 (0.019%)
2015-11-02 HW 321.1 330.3 583.3
2015-12-01 HW 287.3 286.0 (0.075%)
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Table 32: Computational results for RTS-GMLC instances. Wall clock times are reported in seconds. When the 300 second time limit is
reached, the terminating optimality gap is reported in parentheses. Each instance is named by the date from which the beginning of the
48-hour load profile was selected and whether the system with considered with (NC) or without (CP) a network. We replace the generation
limits except (17) from T with those listed.

T  MLR[22] GMR[12] PG [25] GMR+PG AC[l]] OAV[24] CA [5]

Instance (20)(21)  (20)(23)  (38) (23)(38) 19)  (19)(37)  (18)(76)
2020-01-27 CP 88.8 146.7 147.3 108.0 146.8 177.3 147.3 149.5
2020-02-09 CP 23.0 23.2 23.5 24.6 23.8 28.3 34.1 32.5
2020-03-05 CP 25.3 27.6 27.8 33.1 32.3 31.9 39.3 30.0
2020-04-03 CP 42,6 70.7 72.8 149.4 40.2 (0.025%) (0.016%)  175.5
2020-05-05 CP 19.5 23.7 23.9 31.0 20.0 26.0 27.2 43.2
2020-06-09 CP 5.8 6.4 6.3 6.6 6.2 8.8 9.4 9.2
2020-07-06 CP 6.8 10.6 10.7 10.8 7.0 11.1 15.1 7.1
2020-08-12 CP 12.2 10.6 10.7 13.9 9.3 14.6 21.0 26.0
2020-09-20 CP 7.4 7.7 7.9 12.0 9.0 9.8 15.8 15.6
2020-10-27 CP 24.3 20.5 20.6 21.7 26.6 33.8 47.7 42.7
2020-11-25 CP  33.4 30.8 30.5 35.0 28.9 48.3 52.5 51.7
2020-12-23 CP 194 20.4 20.4 35.7 221 29.6 24.4 28.2
2020-01-27 NC  157.6 89.1 88.4 103.6 139.9 172.1 158.5 193.7
2020-02-09 NC 212.6 109.7 108.7 98.5 264.4 255.7 224.5 243.5

2020-03-05 NC  (0.021%) (0.018%)  (0.018%)  (0.012%) 1293  (0.017%) (0.016%)  258.5
2020-04-03 NC  (0.050%)  (0.054%)  (0.054%) (0.075%)  (0.049%)  (0.054%) (0.059%) (0.052%)

2020-05-05 NC 212.8 262.4 265.5 296.2 263.6 (0.052%) 279.9 293.3
2020-06-09 NC 49.8 54.7 54.2 52.9 46.1 92.9 68.2 85.1
2020-07-06 NC 39.3 44.2 43.5 93.6 44.3 64.9 87.0 71.4
2020-08-12 NC 67.3 53.3 53.3 48.8 50.8 57.8 50.2 54.8
2020-09-20 NC 69.3 117.7 116.9 74.3 114.7 121.0 110.8 119.8
2020-10-27 NC 153.7 152.8 152.5 175.7 149.8 234.9 212.3 204.2
2020-11-25 NC 164.9 149.4 150.0 107.7 175.5 191.2 143.8 140.8

2020-12-23 NC 226.1 122.4 121.8 125.3 94.2 270.1 273.2 (0.157%)
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Table 33: Computational results for CAISO instances. Wall clock times are reported in seconds. When the 300 second time limit is reached, the
terminating optimality gap is reported in parentheses. Each instance is named by the date or hypothetical scenario from which the beginning
of the 48-hour load profile was selected, followed by the reserve level, considered as a percentage of load. We replace the generation limits
except (17) from T with those listed.

T MLR [22] GMR[12] PG [25] GMR+PG AC[1] OAV [24] CA [5]

Instance (20)(21)  (20)(23)  (38)  (23)(38)  (19)  (19)(37)  (18)(76)
2014-09-01 0%  51.7 31.6 31.8 46.6 46.3 50.0 76.2 50.5
2014-12-01 0%  45.1 39.1 39.3 35.8 31.7 37.4 43.7 38.5
2015-03-01 0%  32.1 40.3 41.0 53.8 36.2 44.7 45.4 49.5
2015-06-01 0%  19.1 20.2 20.3 19.6 21.4 18.4 18.8 18.0

Scenario400 0%  31.0 40.6 39.8 46.6 45.4 57.9 61.8 61.3
2014-09-01 1% 254 26.7 26.2 45.2 21.9 48.4 44.2 73.2
2014-12-01 1% 84.5 76.2 75.9 140.8 81.3 141.8 153.1 98.0
2015-03-01 1% 36.4 33.9 33.7 66.3 35.6 57.8 67.5 54.8
2015-06-01 1%  38.3 38.5 38.6 74.6 40.1 132.7 76.4 142.8

Scenario400 1%  66.5 46.1 46.4 84.4 35.8 132.9 149.4 121.5
2014-09-01 3%  83.5 54.6 54.9 168.1 62.7 158.6 165.5 156.2
2014-12-01 3% 106.8 119.9 117.7 139.4 72.7 154.5 151.6 145.1
2015-03-01 3% 67.4 64.6 64.4 105.0 79.0 128.6 140.1 121.1
2015-06-01 3%  57.8 62.8 62.9 206.6 38.3 91.0 58.5 98.0

Scenario400 3% 103.8 109.7 110.3 175.7 102.6 167.0 227.1 (0.011%)
2014-09-01 5%  92.7 58.9 58.6 164.4 71.0 106.2 126.1 138.3
2014-12-01 5% 129.9 106.0 106.7 130.6 64.1 208.7 149.4 106.6
2015-03-01 5%  54.6 38.8 38.8 116.8 58.6 108.0 156.1 105.6
2015-06-01 5% 56.7 54.4 54.9 117.3 55.5 162.4 181.9 150.1

Scenario400 5% 106.9 128.8 128.1 168.9 128.1 221.9 224.6 170.5




6€

Table 34: Computational results for FERC instances. Wall clock times are reported in seconds. When the 600 second time limit is reached,
the terminating optimality gap is reported in parentheses. Each instance is named by the date from which the beginning of the 48-hour load
profile was selected and whether it is low-wind (LW) (wind supply is 2% of energy demand for the year) or high-wind (HW) (wind supply is
scaled to be 30% of energy demand for the year). We replace the generation limits except (17) from T with those listed.

T  MLR[22) GMR[12] PG [25] GMR+PG AC[]] OAV [24] CA [5]

Instance (20)(21)  (20)(23)  (38)  (23)(38) (19)  (19)37)  (18)(76)
2015-01-01 LW 107.6 106.3 106.5 167.6 107.9 183.5 123.3 163.0
2015-02-01 LW 133.5 93.3 93.1 199.9 86.8 302.1 241.1 238.7
2015-03-01 LW 244.0 196.2 193.7 243.4 194.1 327.2 328.2 536.5
2015-04-01 LW 411.6 383.2 382.3 423.5 366.4 600.0 253.3 387.0
2015-05-01 LW 221.6 177.4 177.4 201.7 213.1 253.1 103.3 212.3
2015-06-01 LW 282.6 304.1 303.6 443.8 287.4 340.0 171.1 406.9
2015-07-01 LW 429.6 398.4 400.6 528.5 508.5 594.0 463.9 407.6
2015-08-01 LW 281.5 386.5 381.9 357.3 364.7 386.5 133.0 415.2
2015-09-01 LW 541.8 437.7 436.9 354.3 407.3 (0.013%)  (0.013%) 544.9
2015-10-01 LW 201.9 126.1 123.8 226.1 181.1 302.3 176.0 138.2
2015-11-02 LW 166.0 148.2 146.2 243.8 124.7 219.7 163.2 106.6
2015-12-01 LW 114.5 115.1 114.9 198.5 131.4 334.0 256.3 229.0
2015-01-01 HW 210.4 273.7 272.8 222.3 254.6 401.1 211.7 280.6
2015-02-01 HW 136.0 171.3 171.7 248.8 152.7 353.6 188.2 268.9
2015-03-01 HW 379.2 248.6 246.2 351.1 247.9 327.2 540.4 290.3
2015-04-01 HW 244.6 289.7 288.5 216.1 239.0 321.7 192.4 510.7
2015-05-01 HW 244.4 349.8 349.4 297.4 288.4 374.3 184.1 420.4
2015-06-01 HW 351.2 369.7 369.8 308.7 326.3 410.1 146.5 282.7
2015-07-01 HW 548.1 424.1 429.7 544.9 (0.018%) 572.6 344.6 400.9
2015-08-01 HW 361.7 402.4 406.6 392.2 432.3 469.0 348.6 484.0
2015-09-01 HW  (0.018%) 462.0 463.2 435.0 (0.010%) 475.4 243.1 412.9
2015-10-01 HW 351.6 342.9 329.7 326.2 318.2 331.0 369.2 346.5
2015-11-02 HW 321.1 301.3 300.5 359.1 244.0 208.1 142.7 186.6

2015-12-01 HW 287.3 269.3 278.3 278.8 239.2 312.6 227.9 345.5
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Table 35: Computational results for RTS-GMLC instances. Wall clock times are reported in seconds. When the 300 second time limit is
reached, the terminating optimality gap is reported in parentheses. Each instance is named by the date from which the beginning of the
48-hour load profile was selected and whether the system with considered with (NC) or without (CP) a network. We replace the ramping limits
from T with those listed.

T DKRA [7] MLR[22] AC[l] OAV [24] OAV-T [24]

Instance (35)(36)(79)  (26)(27)  (24)(25) ramp limits ramp limits
2020-01-27 CP 88.8 99.8 90.8 86.9 96.9 87.0
2020-02-09 CP 23.0 35.3 28.7 26.8 26.0 32.6
2020-03-05 CP 25.3 20.7 28.0 32.2 27.6 33.6
2020-04-03 CP 42.6 53.8 38.8 66.8 44.7 68.2
2020-05-05 CP 19.5 22.8 23.5 244 23.6 22.7
2020-06-09 CP 5.8 6.4 6.6 6.3 6.0 7.3
2020-07-06 CP 6.8 9.6 6.2 7.0 10.3 10.4
2020-08-12 CP 12.2 10.6 9.3 10.7 10.7 10.3
2020-09-20 CP 7.4 11.2 8.2 8.3 8.1 9.6
2020-10-27 CP 24.3 19.2 29.5 26.5 31.2 26.5
2020-11-25 CP 33.4 32.9 33.2 26.8 38.9 42.7
2020-12-23 CP 19.4 20.3 18.7 24.6 18.9 16.5
2020-01-27 NC 157.6 1374 167.3 143.5 79.1 139.6
2020-02-09 NC 212.6 259.2 220.1 217.3 242.1 (0.015%)

2020-03-05 NC  (0.021%)  (0.015%) (0.018%)  (0.019%)  (0.015%) (0.020%)
2020-04-03 NC  (0.050%)  (0.049%) (0.048%)  (0.058%)  (0.050%) (0.045%)

2020-05-05 NC 212.8 138.9 133.4 143.8 225.2 242.5
2020-06-09 NC 49.8 53.4 45.9 51.3 52.9 50.4
2020-07-06 NC 39.3 42.2 59.5 33.1 47.8 47.6
2020-08-12 NC 67.3 61.6 50.3 53.3 46.4 46.9
2020-09-20 NC 69.3 67.9 63.1 109.2 110.0 65.4
2020-10-27 NC 153.7 178.7 186.0 165.4 151.5 175.1
2020-11-25 NC 164.9 129.8 132.1 121.2 145.0 119.5

2020-12-23 NC 226.1 91.0 116.4 196.0 108.5 116.7
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Table 36: Computational results for CAISO instances. Wall clock times are reported in seconds. When the 300 second time limit is reached, the
terminating optimality gap is reported in parentheses. Each instance is named by the date or hypothetical scenario from which the beginning
of the 48-hour load profile was selected, followed by the reserve level, considered as a percentage of load. We replace the ramping limits from
T with those listed.

T  DKRA[7] MLR[22] AC[l] OAV [24] OAV-T [24]

Instance (35)(36)(79)  (26)(27)  (24)(25) ramp limits ramp limits
2014-09-01 0%  51.7 57.0 42.3 41.1 62.0 61.6
2014-12-01 0%  45.1 32.0 30.9 35.2 24.2 25.1
2015-03-01 0%  32.1 36.2 34.8 39.4 34.8 36.7
2015-06-01 0%  19.1 20.2 17.1 21.9 22.7 22.1

Scenario400 0%  31.0 36.3 15.9 35.0 377 37.5
2014-09-01 1%  25.4 36.5 32.8 32.3 48.9 50.2
2014-12-01 1%  84.5 73.8 1.7 62.1 69.6 69.5
2015-03-01 1% 364 35.6 27.5 42.5 40.6 41.0
2015-06-01 1%  38.3 41.5 45.3 55.2 56.5 58.5

Scenario400 1%  66.5 63.4 68.2 39.1 44.5 44.2
2014-09-01 3%  83.5 55.5 7.2 69.6 76.4 76.2
2014-12-01 3% 106.8 89.5 71.0 82.2 110.9 111.1
2015-03-01 3% 674 63.5 68.0 76.0 71.3 70.8
2015-06-01 3%  57.8 35.3 71.4 54.3 36.7 36.8

Scenario400 3%  103.8 102.8 93.8 97.2 101.7 98.2
2014-09-01 5%  92.7 68.7 58.6 59.3 86.8 87.3
2014-12-01 5% 129.9 84.5 72.0 116.0 201.7 202.7
2015-03-01 5%  54.6 43.6 51.4 474 57.4 57.5
2015-06-01 5%  56.7 72.7 70.9 62.7 76.7 77.2

Scenario400 5%  106.9 101.7 55.4 101.5 118.6 120.5
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Table 37: Computational results for FERC instances. Wall clock times are reported in seconds. When the 600 second time limit is reached,
the terminating optimality gap is reported in parentheses. Each instance is named by the date from which the beginning of the 48-hour load
profile was selected and whether it is low-wind (LW) (wind supply is 2% of energy demand for the year) or high-wind (HW) (wind supply is
scaled to be 30% of energy demand for the year). We replace the ramping limits from T with those listed.

T DKRA [7] MLR[22] AC[l] OAV [24] OAV-T [24]
Instance (35)(36)(79)  (26)(27)  (24)(25) ramp limits ramp limits
2015-01-01 LW 107.6 114.4 107.9 132.5 111.9 119.3
2015-02-01 LW 133.5 107.1 139.3 139.4 98.5 99.7
2015-03-01 LW 244.0 259.5 124.2 293.5 223.7 263.7
2015-04-01 LW 411.6 395.9 342.1 (0.017%) 400.0 359.8
2015-05-01 LW 221.6 224.9 166.3 263.9 229.1 2779
2015-06-01 LW 282.6 341.5 302.3 358.1 328.6 449.0
2015-07-01 LW 429.6 595.3 203.5 484.4 514.1 (0.032%)
2015-08-01 LW 281.5 417.9 385.2 376.1 401.6 438.5
2015-09-01 LW 541.8 568.1 399.3 584.4 392.7 568.4
2015-10-01 LW 201.9 212.3 390.1 160.9 132.2 127.0
2015-11-02 LW 166.0 138.7 137.6 177.6 126.8 133.6
2015-12-01 LW 114.5 161.8 148.3 174.6 144.4 162.7
2015-01-01 HW 2104 250.3 276.0 251.5 242.1 303.2
2015-02-01 HW 136.0 156.5 172.6 178.0 149.5 351.6
2015-03-01 HW 379.2 293.0 342.7 494.1 339.4 (0.013%)
2015-04-01 HW 244.6 282.4 250.9 296.4 258.1 308.0
2015-05-01 HW 2444 255.0 117.2 278.8 227.8 246.3
2015-06-01 HW 351.2 464.6 373.0 431.6 386.1 437.5
2015-07-01 HW 548.1 5922.3 282.8 979.0 489.1 (0.022%)
2015-08-01 HW 361.7 398.3 562.9 476.5 456.2 (0.011%)
2015-09-01 HW  (0.018%) 373.6 413.8 (0.019%)  (0.012%) (0.021%)
2015-10-01 HW 351.6 349.3 346.1 368.3 326.7 454.1
2015-11-02 HW 321.1 348.8 192.7 409.5 340.7 396.2

2015-12-01 HW 287.3 268.6 272.9 256.9 319.0 372.4
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Table 38: Computational results for RTS-GMLC instances. Wall clock times are reported in seconds. When the 300 second time limit is
reached, the terminating optimality gap is reported in parentheses. Each instance is named by the date from which the beginning of the
48-hour load profile was selected and whether the system with considered with (NC) or without (CP) a network. We replace the production
cost formulation from T with those listed.

T CA [5] Wu [33] KOW [18]  CW [6] SOS2 SLL [31] Epi  HB [14]
Instance (43)(44)(45)  (42)(43)(44) prod. costs  (93)(94)(95) (89)(90)(91)  (89)(90)(92)  (49) (50)

2020-01-27 CP 88.8 75.8 102.3 99.8 82.0 84.0 78.0 87.7 72.9
2020-02-09 CP 23.0 20.2 23.8 35.5 21.4 33.1 20.6 38.6 28.3
2020-03-05 CP 25.3 22.4 21.5 20.3 23.0 24.6 22.2 28.1 30.4
2020-04-03 CP 42.6 53.6 51.3 53.8 42.7 45.4 55.3 67.7 49.7
2020-05-05 CP 19.5 30.8 24.9 22.5 15.9 29.1 17.1 33.9 23.3
2020-06-09 CP 5.8 6.5 6.9 6.3 5.8 6.5 5.7 6.8 6.3
2020-07-06 CP 6.8 7.9 7.9 9.5 8.8 11.7 7.6 13.2 11.1
2020-08-12 CP 12.2 6.3 8.4 10.7 7.6 8.5 7.5 8.8 12.1
2020-09-20 CP 7.4 8.1 11.3 11.2 8.2 12.2 8.9 8.1 11.7
2020-10-27 CP 24.3 30.5 25.0 18.6 23.2 25.0 26.6 23.8 22.6
2020-11-25 CP 33.4 32.9 31.2 32.0 33.5 30.9 36.4 39.2 57.5
2020-12-23 CP 194 13.3 24.0 20.1 22.2 35.1 22.1 26.2 18.9
2020-01-27 NC 157.6 202.1 93.7 137.7 164.0 163.6 129.1 191.5 140.7
2020-02-09 NC 212.6 176.7 156.9 258.4 207.1 255.6 209.7 102.1 187.2
2020-03-05 NC  (0.021%) 210.5 125.8 (0.016%) 258.9 247.2 182.5 279.3 172.7
2020-04-03 NC  (0.050%)  (0.054%) (0.067%)  (0.049%)  (0.043%)  (0.076%) (0.047%)  (0.072%)  (0.055%)
2020-05-05 NC  212.8 125.2 (0.039%) 139.0 141.3 (0.055%) 954.6 (0.051%)  299.7
2020-06-09 NC  49.8 60.1 471 54.0 61.2 80.6 58.1 63.5 54.5
2020-07-06 NC 39.3 61.6 43.6 42.4 51.0 82.6 41.5 45.2 87.0
2020-08-12 NC 67.3 45.8 67.2 61.1 69.1 61.6 42.0 51.5 75.9
2020-09-20 NC 69.3 77.1 67.2 68.4 73.9 125.4 77.0 121.8 113.8
2020-10-27 NC 153.7 203.6 205.8 179.3 183.5 229.2 184.3 180.3 184.1
2020-11-25 NC 164.9 86.9 212.5 130.4 155.2 136.9 113.2 123.0 125.0

2020-12-23 NC 226.1 276.3 114.0 91.1 235.7 156.8 97.0 239.1 229.1
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Table 39: Computational results for CAISO instances. Wall clock times are reported in seconds. When the 300 second time limit is reached, the
terminating optimality gap is reported in parentheses. Each instance is named by the date or hypothetical scenario from which the beginning
of the 48-hour load profile was selected, followed by the reserve level, considered as a percentage of load. We replace the production cost
formulation from T with those listed.

T CA [5] Wu [33] KOW [18]  CW [6] SOS2 SLL [31]  Epi HB[14]
Instance (43)(44)(45) (42)(43)(44) prod. costs  (93)(94)(95) (89)(90)(91) (89)(90)(92) (49) (50)
2014-09-01 0%  51.7 53.5 55.5 56.2 45.0 29.6 41.8 33.2 28.4
2014-12-01 0%  45.1 33.1 36.8 31.6 27.8 26.1 24.9 19.2 21.3
2015-03-01 0%  32.1 41.2 37.0 36.0 214 35.7 25.6 30.7 35.0
2015-06-01 0%  19.1 26.2 21.3 20.5 14.6 18.0 15.6 17.4 18.8
Scenariod00 0%  31.0 34.7 29.7 35.6 27.2 36.3 28.0 62.8 43.9
2014-09-01 1% 254 271 24.5 36.9 22.5 25.2 26.2 38.3 45.2
2014-12-01 1%  84.5 77.9 45.5 72.3 54.8 34.5 42.6 110.1 112.5
2015-03-01 1%  36.4 55.9 34.6 36.2 25.4 45.7 24.6 48.6 32.9
2015-06-01 1%  38.3 59.5 47.2 42.0 37.1 64.3 37.8 59.7 68.8
Scenariod00 1%  66.5 53.9 72.8 62.4 81.3 49.7 43.2 47.0 74.5
2014-09-01 3%  83.5 76.6 57.5 55.9 64.9 75.8 79.6 128.5 102.8
2014-12-01 3% 106.8 41.0 86.5 88.9 61.2 63.1 69.9 92.9 134.9
2015-03-01 3% 674 79.4 57.8 64.3 66.8 66.7 66.7 64.8 110.8
2015-06-01 3%  57.8 42.9 75.5 35.0 33.0 40.4 38.6 170.1 156.4
Scenariod00 3%  103.8 99.9 102.8 105.0 105.7 117.1 149.5 132.8 114.1
2014-09-01 5%  92.7 63.5 80.8 68.9 62.0 76.7 49.1 139.0 81.5
2014-12-01 5% 129.9 134.5 93.7 84.6 85.6 77.2 118.4 131.7 159.6
2015-03-01 5%  54.6 77.2 64.8 44.1 56.7 54.1 42.9 71.1 62.3
2015-06-01 5%  56.7 100.6 86.6 72.9 84.4 87.7 128.2 127.4 137.0

Scenario400 5% 106.9 99.8 130.4 102.1 156.2 127.8 130.9 134.3  269.5
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Table 40: Computational results for FERC instances. Wall clock times are reported in seconds. When the 600 second time limit is reached,
the terminating optimality gap is reported in parentheses. Each instance is named by the date from which the beginning of the 48-hour load
profile was selected and whether it is low-wind (LW) (wind supply is 2% of energy demand for the year) or high-wind (HW) (wind supply is
scaled to be 30% of energy demand for the year). We replace the production cost formulation from T with those listed.

T CA [5] Wu [33) KOW [18]  CW [6] SOS2 SLL [31] Epi  HB [14]
Instance (43)(44)(45)  (42)(43)(44) prod. costs  (93)(94)(95) (89)(90)(91) (89)(90)(92)  (49) (50)
2015-01-01 LW 107.6 118.8 164.6 114.4 268.4 183.8 226.5 94.2 319.3
2015-02-01 LW 133.5 109.5 194.4 110.7 212.5 143.0 160.9 75.0 149.7
2015-03-01 LW 244.0 241.6 266.4 255.9 296.0 241.6 340.5 331.7 432.4
2015-04-01 LW 411.6 281.7 391.5 395.7 470.7 382.5 287.7 494.0 527.6
2015-05-01 LW 221.6 152.9 265.3 233.7 297.2 201.1 253.2 308.7 370.3
2015-06-01 LW 282.6 247.0 538.6 341.8 305.4 321.8 293.9 491.8 380.8
2015-07-01 LW 429.6 481.0 503.1 594.8 461.6 563.3 364.3 (0.040%) (0.025%)
2015-08-01 LW 281.5 243.6 393.4 416.0 363.5 306.0 334.7 387.9 487.2
2015-09-01 LW 541.8 328.1 (0.012%) 568.3 (0.013%) 463.1 551.1 (0.016%) (0.013%)
2015-10-01 LW 201.9 222.1 182.3 206.8 244.6 232.6 238.0 152.6 251.8
2015-11-02 LW 166.0 139.5 170.1 138.5 216.2 176.0 210.8 93.9 248.4
2015-12-01 LW 114.5 135.7 225.8 161.7 272.6 177.0 189.4 90.6 256.0
2015-01-01 HW 210.4 196.0 285.2 249.5 237.9 194.8 210.0 162.2 279.5
2015-02-01 HW 136.0 172.5 207.6 156.8 267.0 227.8 233.9 180.6 307.5
2015-03-01 HW 379.2 249.7 500.0 291.9 298.7 293.0 433.2 367.1 (0.020%)
2015-04-01 HW 244.6 276.9 330.4 284.6 217.8 180.4 207.9 293.7 237.2
2015-05-01 HW 244.4 164.8 216.7 251.7 232.0 211.3 266.6 226.3 251.5
2015-06-01 HW 351.2 332.2 354.2 458.7 338.2 387.0 364.4 487.2 343.6
2015-07-01 HW 548.1 371.6 570.6 521.7 514.2 527.3 527.2 (0.039%)  (0.042%)
2015-08-01 HW 361.7 290.1 487.1 398.9 407.8 388.5 370.7 (0.015%) 543.8
2015-09-01 HW  (0.018%) 464.6 317.6 370.2 563.5 474.5 (0.014%) (0.022%)  (0.022%)
2015-10-01 HW 351.6 293.2 364.4 349.2 338.4 391.2 325.5 309.6 417.4
2015-11-02 HW 321.1 208.6 481.0 353.5 351.7 259.4 388.0 158.2 259.6

2015-12-01 HW 287.3 230.4 386.1 272.1 293.3 251.6 362.8 365.5 313.5
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Table 41: Computational results for RTS-GMLC instances. Wall clock times are reported in seconds. When the 300 second time limit is
reached, the terminating optimality gap is reported in parentheses. Each instance is named by the date from which the beginning of the
48-hour load profile was selected and whether the system with considered with (NC) or without (CP) a network. We replace the start-up cost
formulation from T with those listed.

T MLR [22] KOW 3bin [19] A-K [2, 19] MLR proj
Instance (52)(53)(54) (96)(97) (102)(103)(106)  (52)(55)(56)

2020-01-27 CP 88.8 97.1 107.3 160.6 72.7
2020-02-09 CP 23.0 21.4 21.0 22.0 23.1
2020-03-05 CP 25.3 24.8 25.9 27.0 18.8
2020-04-03 CP 42.6 57.8 60.3 46.3 75.0
2020-05-05 CP 19.5 25.2 26.5 28.0 19.9
2020-06-09 CP 5.8 5.3 6.2 5.7 5.2
2020-07-06 CP 6.8 7.3 6.4 5.8 6.6
2020-08-12 CP 12.2 8.3 12.4 10.7 8.7
2020-09-20 CP 7.4 12.7 9.1 8.3 10.1
2020-10-27 CP 24.3 21.6 21.8 27.3 20.9
2020-11-25 CP 33.4 32.1 28.3 29.8 32.8
2020-12-23 CP 19.4 14.5 13.8 14.1 12.5
2020-01-27 NC ~ 157.6 101.8 111.9 90.4 79.8
2020-02-09 NC  212.6 229.3 286.2 224.8 218.2
2020-03-05 NC  (0.021%)  (0.012%) (0.014%) (0.019%) (0.021%)
2020-04-03 NC  (0.050%)  (0.049%) (0.055%) (0.050%) (0.051%)
2020-05-05 NC ~ 212.8 255.7 117.9 266.5 168.9
2020-06-09 NC 49.8 50.6 51.0 41.0 47.6
2020-07-06 NC 39.3 40.5 39.5 39.2 34.8
2020-08-12 NC 67.3 64.3 42.4 40.9 54.1
2020-09-20 NC 69.3 75.8 89.9 82.7 77.2
2020-10-27 NC  153.7 133.7 106.8 126.3 106.2
2020-11-25 NC  164.9 136.3 148.7 139.3 91.4

2020-12-23 NC 226.1 135.9 282.1 259.2 138.9
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Table 42: Computational results for CAISO instances. Wall clock times are reported in seconds. When the 300 second time limit is reached, the
terminating optimality gap is reported in parentheses. Each instance is named by the date or hypothetical scenario from which the beginning of
the 48-hour load profile was selected, followed by the reserve level, considered as a percentage of load. We replace the start-up cost formulation
from T with those listed.

T  MLR[22] KOW 3bin [19) AK[219]  MLR proj
Instance (52)(53)(54) (96)(97) (102)(103)(106)  (52)(55)(56)
2014-09-01 0%  51.7 47.5 60.2 24.9 18.5
2014-12-01 0%  45.1 41.0 57.6 38.6 40.6
2015-03-01 0%  32.1 40.4 53.9 23.2 40.3
2015-06-01 0%  19.1 31.9 50.1 19.1 39.6
Scenario400 0%  31.0 67.0 159.9 65.9 79.6
2014-09-01 1%  25.4 38.7 64.8 33.6 40.1
2014-12-01 1%  84.5 87.9 122.9 72.9 90.7
2015-03-01 1% 364 49.8 58.9 49.6 65.3
2015-06-01 1%  38.3 56.7 87.3 29.7 39.2
Scenario400 1%  66.5 71.9 270.5 66.1 132.8
2014-09-01 3%  83.5 71.9 120.7 51.6 111.5
2014-12-01 3% 106.8 92.7 129.2 108.5 96.2
2015-03-01 3% 674 73.5 65.1 53.9 66.3
2015-06-01 3%  57.8 54.3 46.8 43.8 31.2
Scenario400 3%  103.8 120.1 (0.015%) 2034 107.6
2014-09-01 5%  92.7 107.1 156.0 66.2 73.5
2014-12-01 5% 129.9 130.2 171.0 98.4 92.6
2015-03-01 5%  54.6 73.1 115.7 68.7 85.1
2015-06-01 5%  56.7 41.0 106.7 73.8 88.3

Scenario400 5% 106.9 177.3 (0.017%) 147.3 146.1
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Table 43: Computational results for FERC instances. Wall clock times are reported in seconds. When the 600 second time limit is reached,
the terminating optimality gap is reported in parentheses. Each instance is named by the date from which the beginning of the 48-hour load
profile was selected and whether it is low-wind (LW) (wind supply is 2% of energy demand for the year) or high-wind (HW) (wind supply is
scaled to be 30% of energy demand for the year). We replace the start-up cost formulation from T with those listed.

T MLR [22] KOW 3bin [19]  A-K [2, 19] MLR proj
Instance (52)(53)(54) (96)(97) (102)(103)(106)  (52)(55)(56)

2015-01-01 LW 107.6 221.1 254.5 185.6 203.3
2015-02-01 LW 1335 562.2 (0.015%) 519.6 4133
2015-03-01 LW 244.0 350.9 237.5 313.9 283.1
2015-04-01 LW 411.6 190.3 293.5 113.7 281.6
2015-05-01 LW 221.6 89.8 90.3 81.3 75.3
2015-06-01 LW 282.6 110.0 112.3 110.9 117.2
2015-07-01 LW 429.6 286.5 421.3 470.4 322.1
2015-08-01 LW 2815 215.2 298.2 251.3 260.5
2015-09-01 LW 541.8 530.6 (0.010%) 276.7 452.0
2015-10-01 LW 201.9 188.5 155.4 198.6 217.6
2015-11-02 LW 166.0 257.8 441.1 354.7 283.0
2015-12-01 LW 1145 212.1 163.1 177.3 210.2
2015-01-01 HW  210.4 (1.099%) (1.335%) (1.191%) (0.984%)
2015-02-01 HW  136.0 (0.057%) (0.218%) (0.058%) (0.048%)
2015-03-01 HW  379.2 389.7 533.8 447.0 492.0
2015-04-01 HW  244.6 342.7 4472 268.7 240.4
2015-05-01 HW  244.4 163.1 154.5 178.9 141.0
2015-06-01 HW  351.2 163.2 201.1 177.3 206.3
2015-07-01 HW  548.1 337.1 431.5 283.7 370.3
2015-08-01 HW 3617 382.9 427.7 338.4 356.6
2015-09-01 HW  (0.018%) 479.4 (0.051%) 466.2 428.7
2015-10-01 HW 3516 395.1 352.7 320.6 391.0
2015-11-02 HW  321.1 578.6 (0.091%) 383.3 560.3

2015-12-01 HW 287.3 293.5 389.4 412.6 264.0
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