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Abstract

We present a novel formulation for startup cost computation in the unit
commitment problem (UC). Both our proposed formulation and existing
formulations in the literature are placed in a formal, theoretical dominance
hierarchy based on their respective linear programming relaxations. Our
proposed formulation is tested empirically against existing formulations
on large-scale UC instances drawn from real-world data. While requiring
more variables than the current state-of-the-art formulation, our proposed
formulation requires fewer constraints, and is empirically demonstrated to
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be as tight as a perfect formulation for startup costs. This tightening can
reduce the computational burden in comparison to existing formulations,
especially for UC instances with large reserve margins and high penetra-
tion levels of renewables.

1 Nomenclature

1.1 Indices and Sets

geg

lely
5€8,

teT

Thermal generators

Piecewise production cost intervals for generator g: 1,..., Lg.
Startup categories for generator g, from hottest (1) to coldest (Sy).
Hourly time steps: 1,...,T.

1.2 Parameters

Cost coeflicient for piecewise segment [ for generator g (§/MWh).
Startup cost in category s for generator g ($).

Cost of generator g running and operating at minimum production
P, ($/h).

Load (demand) at time ¢ (MW).

Minimum down time for generator g (h).

Maximum power output for generator g (MW).

Maximum power for piecewise segment [ for generator g (MW).
Minimum power output for generator g (MW).

Spinning reserve at time ¢t (MW).

Ramp-down rate for generator g (MW /h).

Ramp-up rate for generator g (MW /h).

Shutdown rate for generator g (MW /h).

Startup rate for generator g (MW /h).

Time down after which generator g goes cold, i.e., enters state 5.
Time offline after which the startup category s is available (T ; =

DTy, TSs = TC,).

Time offline after which the startup category s is no longer available
(=I5, T = +o0).

Minimum up time for generator g (h).

Aggregate renewable generation available at time ¢t (MW).

1.3 Variables

Pg (t)
pw (t)
ph(t)

T4(t)

Power above minimum for generator g at time ¢ (MW), > 0.
Aggregate renewable generation used at time ¢ (MW), > 0.

Power from piecewise interval | for generator g at time ¢ (MW),
> 0.

Spinning reserves provided by generator g at time ¢t (MW), > 0.



) Commitment status of generator g at time ¢, € {0,1}.
vg(t) Startup status of generator g at time ¢, € {0,1}.

wy(t)  Shutdown status of generator g at time ¢, € {0, 1}.
¢ U(t)  Startup cost for generator g at time ¢ ($), > 0.
5(t) Startup in category s for generator g at time ¢, € {0, 1}.

8

¢(t,t') Indicator arc for shutdown at time ¢, startup at time ¢', uncommit-
ted for ¢ € [t,t'), for generator g, € {0,1}.

yg(t,t") Indicator arc for startup at time ¢, shutdown at time ¢, committed

for i € [t,t'), for generator g, € {0, 1}.

2 Introduction

The unit commitment problem (UC) concerns the scheduling of thermal gener-
ators to meet projected demand while minimizing system operations cost [34].
Here, we propose a new formulation for representing thermal generator startup
costs, which leads to a tightening of the linear programming (LP) relaxation
of the mixed-integer linear programming (MILP) UC problem. We then em-
pirically demonstrate that the tighter LP relaxation can translate into reduced
run-times to solve the MILP UC using commercial branch-and-cut solvers.

MILP formulations for UC have been of interest since Garver’s original for-
mulation [8]. These are extremely difficult problems to solve in practice, e.g.,
at the scale of the Midcontinent Independent System Operator in the United
States. Many practical problems involve hundreds to thousands of generators
and a time horizon of at least 48 hours. Further, solutions must be computed
in tens of minutes at most. As a consequence, system operators often have to
use substantially suboptimal solutions to comply with the time limit, i.e., with
optimality gaps that are sometimes tens of percents [3].

There are a few approaches for reducing run-times to an optimal UC solution.
One approach is via decomposition. The intuition is that loosely-connected parts
of the UC problem can be decomposed into easier subproblems, and a solution
to the original can be developed through an iterative process. One way to
decompose UC is by generators — splitting the generator set G into subsets (by
location or other criteria). Classical decomposition methods (such as ADMM)
can then be used to force convergence between subproblems [6,28]. Another
possible decomposition is on the time horizon — the principle here being that
after a sufficiently long period decisions made previously do not have much affect
on decisions made now. Such an approach is explored in [12].

An alternative approach for reducing run times is stronger formulations for
UC, and this research has found its way into practice. Most of this work has
focused on tightening the polyhedral description of a single generator’s dispatch.
In [16] an exponential convex hull description for minimum up and down times
in terms of a generator’s status variables is given; [27] uses the startup and shut-
down status variables to describe the same set using only a linear number of
inequalities. This result is extended in [10] to generators with startup and shut-
down power constraints. Inequalities to tighten the formulation of the ramping



process are considered in [5,13,21,23].

A formulation for time-dependent startup costs based on generator commit-
ment variables appears in [20]; [2] considers the same formulation in the context
of a MILP approach to UC. Startup cost categories together with associated
indicator variables are introduced in [19]. [17] improves on the indicator formu-
lation from [30] and demonstrates empirically that the use of startup category in-
dicators results in a tighter formulation than those described in [20] and [2]. [18]
uses this same approach to model generator start-up and shut-down energy pro-
duction. [1] shows that the epigraph for concave non-decreasing startup costs
modeled using generator status variables has an exponential number of facets.
However, [1] provides a linear-time separation algorithm for computing these
facets. Finally, a restrictive temperature-based model for startup cost is pre-
sented in [29].

In this paper we introduce a novel matching formulation for time-dependent
startup costs in UC. We theoretically analyze the strength of our formulation
relative to existing formulations in the literature, and introduce an additional
formulation as an intermediary to ease the comparison between existing formu-
lations. We then empirically analyze the impact of our new formulation, both in
an absolute sense and relative to other formulations, on the ability of commercial
branch-and-cut software packages to solve utility-scale UC problems.

The remainder of this paper is organized as follows. We begin in Section 3
with a discussion of the base UC formulation, without startup cost components.
Section 4 then details both existing and two novel startup cost formulations for
UC. In Section 5, we establish a provable dominance hierarchy concerning the
relative tightness of LP relaxations for the different startup cost formulations.
We empirically compare the performance of the various startup cost formula-
tions in Section 6, using large-scale UC instances based on industrial data. We
discuss the implications of our results in Section 7. Finally, we conclude with a
summary of our contributions in Section 8.

3 Unit Commitment Formulation

We present a MILP UC formulation based on [17] that we will use as the baseline
for our comparison between startup cost formulations. We assume that the
production cost is piecewise linear convex in p4(t), where Ly is the number of

piecewise intervals and ?g = P, is the start of the first interval. Let G I be the

subset of generators that have UTY = 1 and G>! be the subset of generators
with UTY > 1. We then formulate the UC problem as follows:

min ) Y| D (chp(t)+egug(t)+eg D) (1a)

gEGLeT \leL,
subject to:

Z(pg (t)+£gug (t))+pW (t)=D(t) vteT (1b)
g€y



> re(t)=R(1) ViteT (1c)
9eg
pg(t)+ry(t) < (?g _Bg)ug (t)

—(Py—SU,)v,(t) VteT Vgegt (1d)
pg(t)+ry(t)< (?g —~E Jug(t)

—(Py—SDg)w,(t+1) VteT Vgeg! (1e)
pg(t)+rg(t)< (?g =, Jug (1)

_(ﬁg_SUg)vg(t)

—(Py—SDy)w,y(t+1) VteT Vgeg™? (1f)
pg(t)+ry(t)—py(t—1)<RU, vteT Vgeg (1g)
py(t—1)—p,(t)<RD, VteT Vgeg (1h)
py(t)=">_p(t) VteT Vgeg (1i)

leLy

pL(6)<(Po=P) uy(t) VteT VL, Vgeg (1j)
Uy (8) —tug (t—1) =1, (t) —wy (t) VteT Vgeg (1K)

> (i) <ug(t) Vte[UT,,T)VgeG (11)
i=t—UTy+1

> we(i)<1-uy(t) Vte[DT,,T)¥geG (1m)
i=t—DTy+1
pw (1) <W () vteT (1n)
ph(t)ER, VteT VIeL, NgeG (10)
Pg(t),rq(t) R4 VteT Yge§ (1p)
pw(t)ERy vteT (1a)
ug(t),vg(t),wy(t)€{0,1} VteT Vgeg. (1r)

Constraints (1b — 1r) are standard in UC formulations without time-varying
startup costs [13,17].

We will take the formulation above as given, and for the remainder of the
paper we will focus on the formulation of the startup cost cg Ye).

4 Startup Cost Formulations

In this section, we introduce the formulations for startup cost cf Yt) examined
in this paper. For notational ease, since in all cases we are referencing a single
generator, we will drop the subscript g on all variables and parameters in this
section and in the following section.



4.1 Formulations from the Literature
4.1.1 One Binary Formulation (1-bin)

The typical formulation for startup costs using only the status variable u is [2,20]

T
Coakd b=t u(t)qu(tfi) VseS, VteT (2a)
i=1

AUt >0 vteT. (2b)

This formulation has the advantage of only needing as many constraints as
startup types, and no additional variables.

4.1.2 Strengthened One Binary Formulation (1-bin*)

As pointed out in [29], the 1-bin formulation above can be strengthened by
increasing the coefficients on the u(t—i) variables

DT
CSU(t) >c (u(t)_Zu(t—i))

s—1 Tk
e ECEE I R(=)) VseS, VteT (3a)
k=1 i=T*+1

SYUH) >0 vteT. (3b)

4.1.3 Startup Type Indicator Formulation (STI)

The formulation proposed in [17] introduces binary indicator variables for each
startup type. Specifically, for each startup type s, we have §°(t), Vt€ T, which
is 1 if the generator has a type s startup in time ¢ and 0 otherwise. The
corresponding constraints are

()<Y w(t—i) VseS\{S}, vteT (4a)
i=T*
S

v(t)=> 5°(t) vteT. (4b)

We can replace the objective function variables ¢Y(t) using the substitution

S
AU =D 6% () vteT. (4c)



4.1.4 Extended Formulation (EF)

The authors of [26] propose an extended formulation for startup and shutdown
sequences, which provides a perfect formulation for startup costs, in the space
of binary variables. We call a formulation perfect if the vertices of the polytope
described by the formulation are integer. Note that if other variables or con-
straints are added, a formulation may lose this property. Let y(t,t')=1 if there
is a startup in time ¢ and a shutdown in time ¢’ and 0 otherwise, for ¢’ >t+UT.
Similarly let z(¢,t')=1 if there is a shutdown in time ¢ and a startup in time ¢’
and 0 otherwise, for ' >t+DT. The constraints are

> ytt)=v(t) vteT (5a)
{tgt}y(t',t):w(t) Ve T (5b)
{tgt}x(t’,t)zv(t) vteT (5¢c)
{tgt}x(t,t/):w(t) vteT (5d)
s y(r7)=u(t) VteT. (5¢)

{rir! |[r<t<r'}

Note that with constraints (5a—5e), constraints (1k—1m) become redundant.
Hence, the u, v, and w variables may be eliminated along with (1k—1m) while
not losing validity or strength. The startup costs are calculated by placing the
appropriate coefficient on the x variables

S t—-1T°
SUH=D "l DD at) vteT, (5f)
s=1 t'=t—T"+1

where the inside summation is understood to be taken over valid t'.

From integer programming theory [33], we know this formulation to be inte-
gral because it is a network flow model, where the vertices are two partite sets,
one for startups and the other for shutdowns, and the arcs y connect startups
to feasible shutdowns and the arcs x connect shutdowns to feasible startups. By
putting a flow of one unit through the network, we arrive at a feasible genera-
tor schedule. Note integrality comes at the cost of needing O(|T]?) additional
variables to model startup costs.

4.2 Novel Formulations

Here we present two new formulations for startup costs. The first can be seen as
a relaxation of EF, and the second as 1-bin* with the inequalities strengthened
by using the startup/shutdown indicators v and w.



4.2.1 Matching Formulation (Match)

Similar to EF, for t€T let z(t',t)=1 if there is a shutdown in time ¢’ and
a startup in time ¢ and 0 otherwise, for ¢'€7 such that t—TC<t'<t—DT.
Note that this only requires (T'C—DT)|T| additional variables. The associated
constraints are

t—DT
>t p)<u() vteT (6a)
t'=t—TC+1
t+TC—1
> a(tt)<w(t) VieT (6b)

t'=t+DT

(where again the sums are understood to be taken over valid t'), and the objec-
tive function is

S—1 t—1T°
SUY=cTvt)+) (=) D x(t) vteT.  (6c)
s=1 t=t—T" +1

Note that if v(t) and w(t) are already determined, these equations serve to
match shutdowns with startups. That is, if v(¢)=1 and w(t')=1, then in any
optimal solution z(t',t)=1 since ¢*—c®<0. We arrive at this formulation by
eliminating the arcs y from EF and the arcs x(¢',t) such that t—¢'>TC.

4.2.2 Three Binary Formulation (3-bin)

This formulation is similar in spirit to the 1-bin* formulation, only instead of
using the status variables u, we use the startup/shutdown variables v and w to
keep track of the different types of startups, as follows:

=k

s—1 T —1

SU vt =Y | (=) D w(t—i) VseS, VteT (7a)
k=1 i=TFk

AUt >0 VteT. (7b)

Equation (7a) works analogously to equation (3a). That is, if we did not shut-
down in the last T time periods, (7a) ensures that we pay at least ¢® for a
startup in time t. Note that when s=1, the second term is an empty sum,
and hence is 0. Equation (7b) ensures that the startup cost is never nega-
tive. Note that relative to STI, this formulation needs the same number of
constraints and has fewer variables (only the additional |77| variables for ¢5Y(t),
which can be eliminated for STI, while not needing the indicator variables ¢).
This formulation is presented to ease the comparison between STI and the 1-bin
formulations.



5 Dominance Hierarchy of Startup Cost Formu-
lations

In this section we establish relationships between the six formulations presented
in Section 4. First, we consider the relationship between the tightness of each
formulation. Let zgp, Zpatehs 2STIs 23bins Z1bin*, and z1p;, be the linear pro-
gramming relaxation values for the respective formulations. (Recall we are al-
ways interested in a minimization problem.) A basic assumption we need is that
startup costs are non-decreasing, that is, for every g€g, cg Scé“, VseS \{S,}-
The formulations presented in Section 4 are invalid without some version of this
assumption, except for EF. In practice it is a safe assumption because the heat
required to restart a generator is an increasing function of time, and so the total
cost to restart a generator will also be increasing in time. We have the following:

Theorem 1. When startup costs are non-decreasing,

21bin < 21bin* < 23bin SZSTI S ZMatch <ZEF,

that is, EF is the tightest formulation, 1-bin is the weakest formulation, with
the relationship above amongst the others.

Proof. Since the EF formulation is the convex hull description, it is clear that
it is the tightest formulation, implying zaaten <zgpp. Furthermore, [29] shows
that 1bin* is a tighter formulation than 1bin, implying that z1pin <z1pins. As
a result, we only need to prove the inner three binary relationships. To prove
these relationships, i.e., that z4 <zp, it is sufficient to show: (1) there is a linear
mapping from the polytope associated with B onto the polytope associated with
A that preserves objective value, and (2) that through this linear mapping, every
constraint in formulation A is implied by constraints in formulation B. This is
sufficient to show that z4 <zp as it shows that all feasible solutions for B can
be mapped to solutions feasible for A with the same objective value.

ZSTI <ZMatch: We proceed by demonstrating that all the inequalities in STI
are implied by the inequalities in Match. First, consider the linear transforma-
tion from Match to STI

8(t)= _Z_ x(t' ) VseS\{S}, VteT ()
Sy=vt)- D a(t'p) vteT. (9)
t'=t—TC+1

The equality constraints (4b) follow directly from the sum of (8) and (9). To
see (4a), notice that by (6b),

(i,t) <w(i) vte{i+DT,...i+TC—1} VieT. (10)



By (8) and (10), we have

t-1* T°—1
FH< > wli)=> w(t—i) VseS\S, VteT, (11)
i=t—T" +1 1=T"

which is just (4a).
Z3bin <2ZsT1: This follows by eliminating the indicators § from the objective
function using (4a) and (4b). As ¢*>c¢® for all k€S such that k>s, we have

s
=30k
s
b chék —I—cSZék
k=1 k=s

s—1
= Zék(t =)ok (1)
k=1
s—1 —
>cu(t)— (=) > w(t—i) VseS, VteT, (12)
k=1 i=Tk

which is (7a). (7b) follows from the non-negativity of ¢ and §°(t).

Z1bin* <Zgbin: (3b) and (7b) are the same, so we need show that (7a) im-
plies (3a). Consider the inequality (7a), noting v(t)>u(t)—u(t—1) by (1k) and
—w(t)>—u(t—1) by (1k) and (11)

k

cSU(t)zcsv(t)—z (c*—c®) Z w(t—1)
k=1 i=Tk
s—1 T 1
>c® (u(t)—u(t—1))— ((cs—ck) > u(t—1-i)
k=1 i=Tk
s—1 Tk
> (u(t)—u(t—1))— ((cs—ck) > u(t—i)
k=1 i=T"+1
DT s—1 TP
zcs<u(t)—2u(t—z')>— (c*=c*) > u(t—i)| VseS, VteT,
i=1 k=1 i=Tk41
(13)
which is (3a). O O

We note that Theorem 1 does not establish strict dominance. We only guar-
antee that, for example, EF is no worse than Match in its linear programming
relaxation. Some of these relationships hold with equality under non-decreasing
startup costs.
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Table 1: Size of the Formulations

Formulation # variables # constraints
1-bin o(T)) O(S|IT1)
1-bin* o(|T)) O(|S]|T1)
3-bin o(|T)) O(|S]|T)
STI o(SIIT)) O(|S|IT1)
Match | O(TC—-DT)|T)|) Oo(|TI)
EF o(T) ()

Theorem 2. Suppose startup costs are non-decreasing in time. Then zspin=
zsT1 and ZMatch=ZEF -

We relegate the proof of Theorem 2 to the online supplement [14]. We
additionally show that in the space of binary variables, the Match formulation
is integer optimal when startup costs are non-decreasing. This makes Match
interesting from both a theoretical and practical perspective — under certain
restrictions on the objective function it returns an integer optimal solution, just
like the EF. But because Match exploits the objective structure, it is able to use
many fewer variables and constraints, which allows it to be practically useful. In
particular, Match only grows linearly in time (as compared to quadratic for the
EF), so for long time horizons it is much more computationally tractable, while
still preserving guarantees on integrality. As we will see in Section 6, Match
also preserves this edge over EF when embedded in a large UC problem.

Table 1 compares formulation size as a function of problem parameters for
each startup formulation. Note we only consider the variables needed in addition
to the baseline formulation (1).

6 Computational Experiments

The dominance hierarchy for the various startup cost formulations introduced
in Section 5 establishes their relative tightness. We quantify tightness as the
optimal objective function value for the LP relaxation of the UC problem with a
given startup cost formulation. In the context of a MILP, tighter LP relaxations
can lead to more efficient branch-and-cut search, due to increased fathoming
opportunities. However, the size and structure of the underlying LP varies
across startup cost formulations, and reductions in branch-and-cut search time
(measured in terms of number of tree nodes explored) may be offset by the cost
of solving the LP relaxations at each node. Further, formulation details interact
with heuristics and other features of MILP solvers, often in unpredictable ways.

In this context, we now experimentally compare the performance of the range
of startup cost formulations for UC, using two state-of-the-art commercial MILP
solvers. We consider two sets of problem instances. The first set of instances are
realistic instances derived from publicly available market and regulatory data
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obtained from the California Independent System Operator (CAISO) in the US.
The second set is the FERC generator set [15] (which itself is based on data from
the PJM Interconnection in the US), with demand, reserve, and wind scenarios
based on publicly available data obtained from PJM for 2015 [24, 25].

The “CAISO” instances have 610 thermal generators, of which 410 are
schedulable, i.e., not forced to run. Generators with quadratic cost curves were
approximated using L,=2. Five 48-hour demand scenarios were examined; de-
mands were taken directly from CAISO historical data. Four of the demand
scenarios are based on historical information, while “Scenario400” is a hypo-
thetical scenario where wind supply is on average 40% of demand; the wind
profile is constructed based on actual CAISO wind data, scaled appropriately.
For each instance the reserve level was varied from 0%, 1%, 3%, and 5% of
demand, resulting in a total of 20 test instances. We allow for the possibility of
curtailment of wind generation by (1b) and (1n). Each generator has only two
startup categories, i.e., S;=2.

The “FERC” instances are based on two generator sets publicly available
from the US Federal Energy Regulatory Commission (FERC): a “Summer” set
of generators and a “Winter” set of generators [15]. We use the Summer set of
generators for dates in April - September and the Winter set for the remaining
dates. After (i) excluding generators with missing or negative cost curves, (ii)
letting UT,=DT,=1 for generators g with missing up/down time data, and (iii)
eliminating generators marked as wind (we consider wind power separately), the
Summer and Winter sets respectively contain 978 and 934 generators. No data
on startup or shutdown power limits was provided by FERC, so we assume
SU,=SDy=P?. Similarly, FERC provided no data for cool-down times, so
we set T'Cy=2DT,. All generators had at most two startup types, i.e., S,<2,
and the piecewise production cost curves are based on market bids, such that
1<L,<10.

For the FERC instances, we consider twelve 48-hour demand, reserve, and
wind scenarios from 2015, one for each month. In 2015, wind generation ac-
counted for 2% of the electricity supplied in PJM, so we created twelve addi-
tional “high-wind” scenarios by multiplying the wind data for 2015 by a constant
factor of 15 to increase mean wind energy supply for the year to 30% of load. A
recent study conducted for PJM suggests that in less than a decade, renewables
could achieve 30% penetration rates in the interconnection [9]. Like the CAISO
instances, we allow for the curtailment of wind generation.

The two test instance sets represent vastly different systems. The CAISO
instances consist of mostly small, flexible generators. Of the 410 schedulable
generators, only 20 have irredundant ramping constraints (i.e., RU,> (Fg —P g)
and RDy>(Py—P,)). Therefore, for 390 of the generators (95% of the total),
EF, together with the equations from (1), is a convex hull description of each
generator’s dispatch. These flexible generators account for 75% of schedulable
capacity. For both the Summer and Winter FERC generator sets, such flex-
ible generators only account for 50% of the fleet, and approximately 30% of
schedulable capacity.

12



Table 2: Summary of computational experiments for CAISO instances using
Gurobi. For time (s) and number of branch-and-cut (B&C) nodes we report
the geometric mean across the 20 instances, including those which reach the
wall-clock limit of 600 seconds.

Formulation EF Match | STI | 3-bin | 1-bin* | 1-bin
Time (s) | 370.5 | 43.12 | 52.84 | 91.43 600 600

# of times best 0 11 8 1 0 0

# of times 2nd 0 8 11 1 0 0
Max. time (s) | 600 130 243 600 600 600
# of time outs 7 0 0 1 20 20

# B&C nodes | 1.510 | 13.50 | 20.22 | 39.09 | 5914 | 5827

Table 3: Summary of computational experiments for CAISO instances using
CPLEX. For time (s) and number of branch-and-cut (B&C) nodes we report
the geometric mean across the 20 instances, including those which hit the wall-
clock limit of 600 seconds.

Formulation | EF | Match | STI | 3-bin | 1-bin* | 1-bin
Time (s) | 261 48.0 | 40.8 | 62.9 600 600

# of times best 0 5 11 4 0 0

# of times 2nd 0 6 8 6 0 0
Max. time (s) | 600 110 223 423 600 600
# of time outs 2 0 0 0 20 20

# of B&C nodes | 3.60 | 2.83 | 4.75 | 32.6 | 15442 | 15210

Computational experiments were conducted on a Dell PowerEdge T620 with
two Intel Xeon E5-2670 processors, for a total of 16 cores and 32 threads,
and 256GB of RAM, running the Ubuntu 14.04.5 Linux operating system.
The Gurobi 7.0.1 MILP solver was used for the experiments labeled “Gurobi”,
while the CPLEX 12.7.1.0 MILP solver was used for the experiment labeled
“CPLEX”. Both solvers were allowed to use all 32 threads in each experimental
trial. Here we present summaries of the computational experiments; the full
results are available in the online supplement [14].

6.1 CAISO Instances

We first consider the experimental results for the CAISO instances. For both
Gurobi and CPLEX, we impose a wall-clock time limit of 600 seconds; all other
settings were left at their defaults. In Tables 2 and 3, we summarize the results
for these instances. For each UC formulation we report the geometric mean
time to an optimal solution (Time (s)), the number of instances for which that
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method did best (# of times best), the number of instances for which that
method did second best (# of times 2nd), the longest run time across the 20
instances (Max. time (s)), and the number of instances for which that method
hit the 600 second time limit (# of time outs). When a solver times out for
an instance, we substitute the time limit in the calculation for the geometric
mean, leading to an underestimation when an instance fails to solve for a given
UC formulation. In the last row, we report the shifted geometric mean number
of branch-and-cut tree nodes explored by the solver, substituting the number
of nodes explored when the solver hits the time limit. To compute the shifted
geometric mean, we add 1 to each node count, so as to avoid multiplying by 0
when the solver identifies a solution at the root node. A bold-faced entry in a
row denotes the startup cost variant that performed best for the given measure.

We immediately see that both of the 1-bin variants are not competitive, and
in no case identify an optimal solution within the time limit, even after exploring
a considerable number of branch-and-cut nodes. This is consistent with results
reported recently in the UC literature. Gurobi identifies optimal solutions to
the EF variant in approximately half the cases, and CPLEX identifies optimal
solutions in all but two cases. However, for both solvers, the EF variant exhibits
significantly larger run times — presumably due to the size of the LP formulation
— than those observed for the Match, STI, or 3-bin variants.

Overall, 3-bin variant is not competitive with the Match and STI variants,
and Gurobi times out for one instance. Using CPLEX, the 3-bin variant is often
the best or second-best, but when it performs poorly 3-bin often takes much
longer than the Match and STI variants.

Comparing the Match and STI variants, we can see that overall Gurobi
performs better using the Match variant while CPLEX performs better using
the STI variant. However, for both solvers, the Match variant has a significantly
(approximately 50%) lower maximum time across the CAISO test instances,
suggesting it may be a more robust UC formulation in practice. Additionally, for
both the Match and STT variants, solution times generally grow with increases
in reserve level; we refer to the detailed results in [14]. The latter observation
has significant potential impact on stochastic unit commitment solvers, as we
discuss further below in Section 7.

Turning to the number of branch-and-cut nodes explored, in the case of the
1-bin variants, the large number of nodes explored is consistent with the inabil-
ity of the solver to identify optimal solutions within the specified time limit.
Interestingly, Gurobi and CPLEX typically did not leave the root node process-
ing phase within the 600 second time limit when considering the EF variant.
Further, we note that the size of the EF formulation makes cut generation (and
heuristics) at the root node more difficult. In the case of the Match and STI
variants, both Gurobi and CPLEX identify an optimal solution at the root node
for instances with relatively low reserve levels, with CPLEX finding a root node
solution more often. However, as reserve levels increase, the number of nodes
explored increases. Finally, we observe that the relatively few number of tree
nodes explored with the tighter Match and STT variants indicates relatively few
opportunities for parallelism, at least in terms of accelerating the tree search
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Table 4: Computational results for CAISO instances: Relative Integrality Gap
(%), geometric mean across 20 instances.

Formulation EF Match | STI | 3-bin | 1-bin* | 1-bin
Gap (%) | 0.008 | 0.008 | 0.033 | 0.033 | 1.525 | 1.569

process.

Finally, in Table 4 we report the geometric mean relative integrality gap
for each startup cost formulation. For each instance, we compute the relative
integrality gap by taking the best integer solution objective value found across
all six formulations and both solvers, denoted zjp, and the objective value of
the LP relaxation for each instance (as computed by Gurobi after relaxing the
binary variables), denoted 2} p; we then report (2fp—27 p)/2}p as a percentage.
First, we observe that the results in Table 4 are consistent with and empirically
verify the correctness of Theorem 1. The 1-bin variants are significantly weaker
than the other variants, with the relative integrality gap typically exceeding 1%.
We also note that in all instances, the relative integrality gap (and hence LP
relaxation) for the EF and Match variants is identical; an analogous situation
is observed for the STI and 3-bin variants. Lastly, we note that the Match
formulation typically closes 50-90% of the integrality gap relative to STI (74% in
geometric mean), which explains its computational benefit despite the additional
variables required.

6.2 FERC Instances

Because the FERC instances are larger and therefore likely more difficult than
the CAISO instances, we increased the wall-clock time limit to 900 seconds.
Further, for Gurobi, we set the Method parameter to 3 so Gurobi would use the
non-deterministic concurrent optimizer to solve the root LP relaxations. The
non-deterministic concurrent optimizer solves LPs by running primal and dual
simplex on one thread each and a barrier plus crossover method on the remaining
14 threads, returning an optimal LP basis from whichever method returns first.
All other settings for Gurobi were left at their defaults. CPLEX settings were
preserved at their defaults. When describing the computational results below,
we separate the instances into two categories: the results considering the 2%
wind penetration levels observed in 2015 and hypothetical 30% wind penetration
levels based on the same data.

In Tables 5 and 6 we summarize the computational experiments for both
Gurobi and CPLEX for the FERC instances. Tables 5 and 6 report the same
statistics for the FERC instances as Tables 2 and 3 did for the CAISO instances.
First, we consider the 2% wind penetration instances, which are reported in
part (a) of both tables. We observe that the 1-bin variants and EF are not
competitive with the Match and STI variants. As was the case with the CAISO
instances, Match performs best with Gurobi, whereas STI performs better with
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Table 5: Summary of computational experiments for FERC instances using
Gurobi. For time (s) and number of branch-and-cut (B&C) nodes we report the
geometric mean across the 12 instances, including those which hit the wall-clock
limit of 900 seconds.

(a) 2% Wind Penetration

Formulation | EF | Match | STI | 3-bin | 1-bin* | 1-bin
Time (5) | 702 | 154 | 218 | 267 | 712 | 739

# of times best 0 6 4 2 0 0

# of times 2nd 0 6 5 1 0 0
Max. time (s) | 900 | 411 491 | 841 900 900
# of time outs 4 0 0 0 7 7

# of B&C nodes | 1.00 | 1.38 | 5.91 | 9.03 67.5 50.8

(b) 30% Wind Penetration

Formulation | EF | Match | STI | 3-bin | 1-bin* | 1-bin
Time (s) | 808 215 391 401 799 804

# of times best 0 8 2 2 0 0

# of times 2nd 2 1 6 3 0 0
Max. time (s) | 900 648 900 | 900 900 900
# of time outs 6 0 2 3 10 10

# of B&C nodes | 1.00 | 4.66 | 51.7 | 78.2 142 130

CPLEX. CPLEX does not find these instances difficult, solving all 12 problems
using the Match and STI variant at the root node. The 3-bin variant is occa-
sionally the fastest method for CPLEX for a given instance, but mirroring the
CAISO instances it has a significantly inferior worse-case solve time than either
Match or STI.

Now consider the FERC instances with 30% wind penetration levels. Here,
we see that only the Match variant able to solve all 12 instances within the time
limit on both solvers. Examining the geometric mean solve time, we observe
that the Match variant reduces the solve time relative to the STI variant by
45% for Gurobi, with a more moderate reduction for CPLEX. Overall, the 30%
wind penetration level instances are noticeably more difficult than the 2% wind
penetration instances. However, for Gurobi, the Match variant requires only
40% more computational time on average to solve the former, while the STI
variant requires more than 80% additional computational time. The situation
is similar for CPLEX, where the Match variant only needs 36% more computa-
tional time on average for 30% wind instances, whereas STI variant needs 85%
more computational time.

Next, we consider the number of branch-and-cut tree nodes explored when
solving each instance. Looking at Table 5, we observe that for the Match variant,
Gurobi typically locates an optimal solution at the root node, or at least very
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Table 6: Summary of computational experiments for FERC instances using
CPLEX. For time (s) and number of branch-and-cut (B&C) nodes we report
the geometric mean across the 12 instances, including those which hit the wall-
clock limit of 900 seconds.

(a) 2% Wind Penetration

Formulation | EF | Match | STI | 3-bin | 1-bin* | 1-bin
Time (s) | 478 136 114 162 499 538

# of times best 0 2 5 5 0 0

# of times 2nd 0 4 6 2 0 0
Max. time (s) | 900 222 150 | 737 900 900
# of time outs 1 0 0 0 4 5

# of B&C nodes | 1.23 | 1.00 | 1.00 | 7.52 356 414

(b) 30% Wind Penetration

Formulation | EF | Match | STI | 3-bin | 1-bin* | 1-bin
Time (s) | 604 185 211 298 784 798

# of times best 0 5 2 5 0 0

# of times 2nd 1 3 8 0 0 0
Max. time (s) | 900 269 900 | 900 900 900
# of time outs 2 0 1 3 10 10

# of B&C nodes | 1.95 | 1.94 | 591 | 25.3 1171 1153

early in the tree search process. Overall, the number of tree nodes explored
under the Match variant is significantly less than that under the STI variant; the
latter in turn dominates, as expected, the 3-bin and 1-bin variants. Mirroring
the results for CAISO instances, Gurobi does not exit root node processing on
the EF variant — in all cases the root relaxation is solved, but the time limit is
exhausted applying cuts and heuristics. For both 1-bin variants, Gurobi spends
a significant amount of time during root node processing generating cuts, which
is why for some instances a small number of nodes are explored before the time
limit expires. Consistent with the increase in relative instance difficulty, Gurobi
requires more nodes to identify an optimal solution in the case of 30% wind
instances, but the increase is much less pronounced than for the STI or 3-bin
variants.

Examining the node count summaries for CPLEX in Table 6, we observe
that using the Match and STI variants the 2% wind instances are easy, never
leaving the root node. Similar to the experience with Gurobi, for 30% wind
instances there is only a modest increase in node count for the Match variant
(only one instance does not solve at the root node), and larger but still modest
increases for STI and 3-bin variants. When it solves, the EF variant does so at
the root node, and the 1-bin variants need more enumeration, and usually hit
the time limit while still exploring the tree.
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Table 7: Computational results for FERC instances: Relative Integrality Gap
(%), geometric mean across each of the 12 instances.

(a) 2% Wind Penetration

Formulation EF Match | STI | 3-bin | 1-bin* | 1-bin
Gap (%) | 0.068 | 0.068 | 0.075 | 0.075 | 0.911 | 0.911

(b) 30% Wind Penetration

Formulation EF Match | STI | 3-bin | 1-bin* | 1-bin
Gap (%) | 0.206 | 0.206 | 0.314 | 0.314 | 3.003 | 3.003

Finally, we report the relative integrality gap for each combination of in-
stance and variant in Table 7, calculated in the same manner as those reported
in Table 4. Mirroring the results for the CAISO instances, we observe empirical
verification of Theorem 1. Further, the EF and Match variants have identical
integrality gaps, as do the STI and 3-bin variants. Unlike as was observed for
the CAISO instances, the 1-bin* variant is not significantly tighter than the
1-bin variant, and the Match variant typically only closes 0%-40% of the root
gap over STI. This result is partially explained by the fact that approximately
half of the generators are ramp-constrained — and even in the EF case, we are
not using an ideal formulation for ramp-constrained generators. However, for
the January and February 30% wind penetration level instances, the difference
is significant (Match closes 95% of the root gap for January and 67% of the root
gap for February over STI, see [14]). This is consistent with the result that only
the Match and EF variants were able to solve these instances within the time
limits on both solvers. For the 2% wind penetration instances the Match variant
only closes 8% of the relative integrality gap on average versus STI. Interest-
ingly, Table 5 shows the Match variant is still computationally competitive for
Gurobi, but STI is able to outperform Match using CPLEX because the extra
variables are not providing much in the way of additional tightness.

6.3 Statistical Analysis

A statistical analysis of the computational results was performed using the
Wilcoxon signed-rank test [32] for both Gurobi and CPLEX. On Gurobi, across
the entire test set (both CAISO and FERC), Match is superior to all the other
formulations examined at the a=0.01 level. On the other hand, using CPLEX,
though Match was faster than STT and 3-bin in mean solve time, these differ-
ences were not significant at the «=0.05 level. Further, on the “Low Wind”
instances (those being the 2% Wind Penetration instances from FERC and the
instances corresponding to historical dates from CAISO), the STI variant is
able to outperform Match at the a=0.01 level, though the difference in magni-
tude is only 16.8 seconds. Finally, we note that for the “High Wind” instances
(Scenario400 instances from CAISO and 30% Wind Penetration instances from
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FERC) Match is 60.4 seconds faster in mean solve time, but this difference was
not significant at the a=0.05 level. This is likely due to this test being under-
powered at n=16. The full results of the statistical analysis are available in the
online supplement [14].

7 Discussion

We now discuss the implications of the computational experiments described
above. First, we note that both the CAISO and FERC test instances have
Sy <2 for all generators g, due to the data available. In real-world instances, a
non-trivial number of generators may have S;>2. Our proposed Match formu-
lation of startup costs in UC can model more startup categories — up to T'Cy,
— by simply changing the objective coefficients. In contrast, with the exception
of EF, all other startup cost formulations require additional variables and/or
constraints.

As the experiments on the CAISO instances demonstrate, reserve require-
ments do have a significant impact on the difficulty of solving UC. For instances
with a 0% or 1% reserve requirement, Gurobi is able to solve all instances
using the Match formulation in under a minute. This is an interesting observa-
tion in the context of stochastic unit commitment [31], in which reserve levels
for individual scenarios are minimal, as the scenarios themselves are intended
to capture the range of uncertainties that may be encountered. Further, we
note that effective decomposition techniques for solving stochastic UC prob-
lems — including progressive hedging [4] — repeatedly solve individual (and thus
deterministic) scenario problems. Thus, we expect our Match formulation to
significantly accelerate the solution of stochastic UCs.

Our experiments also demonstrate that with a modern MILP solver, com-
modity workstation hardware, and tight formulations, we can quickly solve
utility-scale UC problems to very small (<0.01%) optimality gaps. In fact,
the results for the CAISO instances suggest they could be solved to even tighter
gaps than the Gurobi and CPLEX defaults, within the imposed time limit. Re-
duced optimality gaps are important to guarantee market fairness, i.e., to ensure
that a cheaper generator is scheduled in place of a more expensive one. The
ability to run to very small optimality gaps is also important in the context of
scenario-based decomposition approaches to stochastic UC. Deterministic UC
scenarios often have feasible solutions which are far away from optimal. Thus,
imposition of a tighter optimality gap can significantly improve convergence of
algorithms such as progressive hedging, by providing strong initial solutions of
individual scenarios — which are used to guide subsequent iterations of the al-
gorithm. Further, the ability of progressive hedging to generate high-quality
lower bounds for stochastic UC is dependent on how tightly the scenario UC
problems are solved [4,7].

In the context of stochastic UC — where renewable energy supply is the
main driver of uncertainty — it is interesting to note that for both systems the
high-wind scenarios (“Scenariod00” for CAISO and the 30% wind penetration
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instances for FERC) are significantly more difficult, independent of startup for-
mulation. However, these instances are also where our proposed Match formu-
lation shows the most improvement over STI. Across all 16 high-wind scenarios,
when using Gurobi the Match variant exhibited a >44% improvement in geomet-
ric mean solve time, with a more modest >15% improvement using CPLEX, and
a 57% improvement in geometric mean relative integrality gap. In comparison,
on the other 28 instances, when using Gurobi the Match variant only showed a
20% improvement in geometric mean solve time, with a 20% degradation using
CPLEX, and a 50% geometric mean relative integrality gap closure over STI.
This is not surprising, given that more variability in net-load implies there will
be more switches in generator status.

Finally, we comment on the “synthetic” UC instances from [2], which are
extended via replication in [21] and again in [17]. These originate from a now
dated genetic algorithm UC paper [11], which has no indication that these were
drawn from real-world data. Compared to the generator sets gathered from
CAISO and FERC, these instances have much less flexible capacity (less than
10% in all cases), which implies that the ramping process is a much bigger
factor in adjusting to changes in demand than generator switching. Additionally,
the replication of the same 8 or 10 generators induces artificial symmetry into
the problem, which can confound the branch-and-cut process. Though modern
commercial MILP solvers have sophisticated symmetry detection, they do not
capture all the symmetry in UC [22]. These factors together imply that the
synthetic instances are less likely to be impacted by improvements in startup
cost formulations. Based on the instances in [21], we created twenty 48-hour UC
instances, and tested the six startup cost formulations on the platform described
in Section 6 using Gurobi. After 1800 seconds of wall-clock time, the Match,
STI, and 3-bin variants were able to solve only 6 of the 20 instances, the EF
variant was able to solve 2 of the 20 instances, and the 1-bin variants only 1 of
the 20 instances. In geometric mean Match was only able to close 5% of the
relative integrality gap over STI. The confounding symmetry and inflexibility
in these instances makes it difficult to draw a distinction between the Match,
STI, and 3-bin variants, though they all out-perform the 1-bin, 1-bin*, and EF
variants.

8 Conclusions

We have presented a novel matching formulation for time-dependent startup
costs in UC, and an additional compact formulation for time-dependent startup
costs as an intermediary between the STI and the 1-bin formulations. We have
formally placed these two new formulations, in addition to existing alternatives,
in a formal dominance hierarchy based on the corresponding LP relaxations. We
examined the computational efficacy of the various alternative formulations for
time-dependent startup costs on large-scale unit commitment instances based
on real-world data from the PJM and CAISO independent system operators
in the US using two commercial MILP solvers. We find that the proposed
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matching formulation is computationally as effective on average than the cur-
rent state-of-the-art formulation, and is computationally more effective for high-
wind penetration scenarios. Additionally, we empirically demonstrated that the
proposed matching formulation is as tight as the ideal formulation while being
more compact.
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1 Proof of Theorem 2

1.1 STI and 3-bin have the same LP relaxation values (under non-decreasing

startup costs)

First, we’ll prove z3p;, = 2s77. Take g and ¢t as fixed for the proof, as the process can be repeated for each

g and t. We will assume throughout that startup costs are non-decreasing in time. Consider

v(t) = Z(SS
s
nz 2

T -1

8°(t) < w(t — 1) Vs e S\ {S}
T

() >0

SYt) >0

(1¢)

(1d)
(1e)

which is the epigraph of the startup-cost at time ¢ for the STI formulation. We will prove the theorem by

projecting out the §°(¢) variables using Fourier-Motzkin elimination and showing this gives exactly the 3-bin

formulation. First, consider §°(¢). This term is only in (1a), (1b), and (1d). Rearranging yields:

S—1
85(t) = v(t) — Z 85 (t)

55(t) >0
Equations (2a) and (2¢):
S—1
() = D 6°(t) >0,
s=1

equations (2a) and (2b) yield:

(3a)



and equations (2b) and (2c):
5-1

SY() =Y 5% (t) 2 0.

s=1

We can see that (3c) is redundant. This leaves the system:

v(t) > zés(t)

SY) > So(t) — Sz_:l(cs — )6 (t)

5°(t) < Tilw(t — ) Vs e S\ {S}
=T

5°(t) >0 Vse{l,...,5—1},

AUt >0

(3¢)

(4a)

(4b)

(4¢)

(4d)
(4e)

Notice that if S = 1, we are done. So suppose S > 1. We can rearrange (4) by 6°~!(t) (temporarily dropping

those terms in which it does not appear):

S—2
§ITHE) < w(t) = > 6°(t)

S—2
(¥ — 16571 (t) > Su(t) — (¥ —e)5%(t) — Y (1)
g -
FSTH < YD w(t—1i)
7)) >0

(5¢)

(5d)

Again we can eliminate. First notice that when startup costs are non-decreasing, ¢® — ¢S~ > 0. Equa-

tions (5a) and (5b) give:

SY) > S u(t) — 523*2(6371 — %)% (t).
s=1
Equations (5a) and (5d):
o) > 350,
s=1
and equations (5b) and (5¢) yields:
52 Tt

SY() > So(t) = Y (T —e)8(t) — (¥ =) DY w(t—i).

s=1 1‘,:15— 1

(6¢)



Equations (5¢) and (5d) just asserts the non-negativity of the w variables, thus eliminating 6°~1(). Again,

if S = 2 we are done, otherwise, we can take this as a base case and proceed by induction. Consider the

following Lemma.

Lemma 1. Suppose after eliminating the last K startup indicators we have

S—K
(t) > Y 8 (b) (7a)
s=1
S—K (S—k)—1 . Ti_q
AU 2 S Fut) = Y (TR =)o) - Y. (TR =) Y w(t—i) Vke{0,...,K -1} (Tb)
s=1 j=S—(K—1) i=T9
T° -1
8 < Y w(t—1i) Vse{l,...,8 - K} (7c)
i=T*
8%(t) >0 Vse{l,...,S— K} (7d)
AY(t) > 0. (7e)
Then after using Fourier-Motzkin to eliminate the 6°~ K (t) variable, we are left with the system
S—(K+1)
v(t) > > 8 (8a)
s=1
S—(K+1)
SV =Ry — DY (T -c)5 ()
s=1
(S—k)—1 T
= > (F =) Y w(t—1i) Vk € {0,...,K} (8b)
J=5—((K+1)-1) =T
T° -1
5t < Y w(t—i) Vse{l,...,S— (K +1)} (8c)
i=T*
() >0 Vse{l,...,S— (K +1)} (8d)
Y =0, (8e)

Proof. We will eliminate the §°~¥(¢) variable from (7). We can re-arrange and notice it appears in the



following terms:

S—(K+1)

R (D A ) (9a)

S—(K+1)
(CS—k _ CS—K)(sS—K > cS—kU(t) _ Z (CS—’C _ cs)és(t)
s=1

(S—k)—1 1
- Y (=)D wit-i)-cV(E)  Vke{o,...,K-1}  (9b)
j=S—(K—1) i=T7
TEE g
TR < Y w(t—1) (9¢)
TS—K
55K > 0. (9d)

We proceed with the Fourier-Motzkin elimination. Combining equations (9a) with (9b):

S—(K+1) (S—k)—1 T 1
SU) > SRty - Y (K- - DY (FTF-) D wt—i) Vke{o,...,K -1}
s=1 j=S—(K-1) i=T7

(10a)

As the terms in the second sum of (10a) are non-negative (as startup costs are non-decreasing), we see that
the inequality (10a) is strongest when this sum is empty, i.e., when k¥ = K — 1, and all the others can be

dropped, yielding:

S—(K+1)
AU = S Hu) - Y (ST —e)at () (10b)
s=1
Equations (9a) and (9d) give:
S—(K+1)
v(t) > > 5. (10c)
s=1
Equations (9b) with (9¢) yields:
S—(K41) (S—k)—1 T _1
AU > SRty = Y (5TF =)ot (t) - S > w(t—i) Vke{o,...,K—1}.
s=1 J=S—((K+1)-1) i=T

(10d)

As before, (9¢) and (9d) just assert the non-negativity of the w variables.



Having projected out §°~%(t), we are left with the system

S—(K+1)

v(t) > Y () (11a)

S—(K+1)
O = (O e S S L)

(S—k)—1 |
— > (F =) Y w(t—1i) vk € {0,...,K} (11b)
j=S—((K+1)-1) i=T7
T -1
5 < Y w(t—1i) Vse{l,....5— (K +1)} (11c)
i=T*
55(t) >0 Vse{l,...,S—(K+1)}  (11d)
AY(t) >0, (11e)

where (11a) is exactly (10c), and (11b) is (10b) when k£ = K and (10d) for all other k. Notice (11) is of the

form as (7) but with one fewer startup cost indicator, and is exactly (8). O

With Lemma 1, we see that if § = K + 1, this is exactly the 3-bin formulation, proving the theorem.

1.2 Match is integer optimal in the binary variables

For this section, we will just consider the space of variables for a single generator, and limit ourselves further

by not considering the continuous variables. Consider the uptime/dowtime polytope, and call it Iy p:

u(t) —u(t—1) = v(t) —w(t) VteT (12a)
zt: v(i) < wu(t) vVt e [UT,T) (12b)
i=t—UT+1
Xt: w(i) <1 — u(t) Vt € [DT, T (12¢)
i=t—DT+1
u(t),v(t), w(t) €10,1] vteT. (12d)



Consider also the uptime/downtime polytope with the Matching variables added on, and call it Iy py e

(12a), (12b), (12¢), (12d)

t—DT
Szt t) <v() Vie T (13a)
t'=t—TC+1
t+TC—-1
> att) <w(t) VieT (13b)
t'=t+DT
z(t,t") € [0,1] Vit with t + DT <t <t+TC — 1. (13c)

We will demonstrate that for any objective over IIyypy s with the property that the startup costs are non-

decreasing has an integer optimal solution (when minimizing). Specifically,

min ¢fu+ cfv+ Lw + Lz (14a)
s.t. w,v,w,x € Hypim (14b)
has integer optimal solutions when:
Assumption 1. ¢, € R_
Assumption 2. ¢, (t1,t2) < ¢, (8], t5) when ty —t1 <ty — .

The first condition ensures that the cold-start is the most expense start, as c,(t1,t2) = ¢® — ¢ when
to —t1 € [ZS,TS) ensures ¢, (t1,t3) < 0 (¢, can be adjusted accordingly). The second condition ensures
a warmer start is cheaper than a cooler start, and imposes time-consistency among the startup costs (i.e.,
the startup cost for a particular lag is not dependent on time). These simply encode “startup costs are

non-decreasing” into the problem (14). We have the following theorem.
Theorem 1. Under Assumptions 1 and 2, the optimal vertices of (14) are integer.

In [2, Theorem 7], we showed that optimal solutions to the Match formulation, when startup costs are
increasing (i.e., non-decreasing), have the integer decomposition property. Then to prove Theorem 1 we just

need to show that optimal solutions that are integer decomposable implies the optimal vertices are integer.

1.2.1 IDP w.r.t. a Set of Objective Vectors Implies Integer Optimal

To review, consider the rational polytope

P:={zeR"| Az < b}. (15)



We say that the polytope P has the integer decomposition property (IDP) if for every positive integer k and
for any integer x € kP N Z™, there exists integer y1,...,yx € PN Z™ such that x = y; + - -+ + yx. Baum
and Trotter [3] proved that if P has the IDP for every k € N, then P is an integer polytope. We show their
result holds under restriction to a certain set of objective vectors.

Consider a set of vectors C' C R™. We say that P has the IDP w.r.t. C if for every ¢ € C, every x* €
argmin{c’z | € kPNZ"} is integer decomposable with respect to P. That is, there exists i, ..., y; € PNZ"
such that z* = y7 + --- + y;. The following is then immediate.

Lemma 2. Suppose P has the IDP w.r.t. C C R™. Then for every c € C, every optimal extreme point of

min{cTz | x € P} is integer.

Proof. We follow the proof from [3, Theorem 2]. Let z* be an optimal extreme point for min{c’z | z € P},
for ¢ € C. As P is rational, we know x* is rational. Let k be the least common multiple of the components
of z*. Then kx* is integer. In particular, as 2* was optimal for min{c’z | € P}, kx* € argmin{c’z | v €
kPNZ"}. Since kz* is integer decomposable with respect to P, there exist yj +--- +y; € PNZ" such that
kx* = yf + ...+ y;. Hence 2* is a convex combination of the points y; for ¢ € {1,...,k}. Since z* is an

extreme point, it must be that z* = y; for i € {1,...,k}. Therefore 2* € Z". O

Lemma 2 shows that if P has the IDP w.r.t. C, then the simplex method will always return an integer
solution for min{c’x | z € P} for every ¢ € C. Put another way, the optimal vertices of min{c’z | z € P}
are integer for every c € C.

In the case of Theorem 1, C' = {cy, ¢y, Cu, ¢z € RITIHTC=DDITI | ¢ satisfies Assumptions 1 and 2}.



1.3 Match and EF have the same LP relaxation values when startup costs are

non-decreasing

With the result from Section 1.2, we can say a little more then specifically about the Match formulation

when other variables (e.g., those on power) are included. First, we need to specify the EF polytope, Hgp:

Syt t) =) Vte T (16a)
{t'|t' >t+UT}
Syt t) =w(t) Ve T (16b)
{t'|t'<t—-UT}
S at )=o) vte T (16¢)
{t'|t'<t—DT}
S att) =wt) vte T (16d)
{t'|t'>t+DT}
y(r,7') = u(t) VieT (16e)

{r,7/|r<t<7’ with 7/ >7+4+UT}

y(t,t'), z(t,t') € [0,1] vt t', (16f)

and call its vertices Vgpr. As a shortest path formulation, all the vertices Vg are integer [4].

Because the addition of the = variables cuts off no feasible solutions for (12), we know proj,, ,, ,, (Ilup+ar) =
Iy p. We also know from above that Iy p4 as has integer optimal vertices for vectors ¢ € C' := {c¢y, ¢y, Cw, €z €
R3ITIH(TC-DD)IT] | ¢, satisfies Assumptions 1 and 2}. Call these vertices the “optimal vertices w.r.t. C”,

and label them VUCD+M. Further, let Viyp be the vertices of IIyp. We have the following Lemma.
Lemma 3. For every vertex in Vyp, there is exactly one corresponding vertex in VUCD+M

Proof. Notice Vi§p, 5, has only integer vertices by Theorem 1, and C has no restrictions on the values of
Cus Cy, Cy. Take any vertex u,v,w € Vyp. The corresponding set of active constraints from Iy p is a cone
K, and selecting —c,, —c¢,, —¢y, in the polar of K and any c, satisfying Assumptions 1 and 2 yields a vertex
U, 0, W, T € VUCD+M (whose projection is @, ¥, w). Hence projum’w(VUCDJrM) =Vup.

To see the preimage for 4, ?,%w € Vyyp under the projection operator is unique, note that for this vertex
we can select the greedy solution for the corresponding &, that is, set &(t1,%2) = 1 if and only if there is a
shutdown at t; and the very next startup is at to, with t; + TC > t5. By Assumptions 1 and 2 this choice
is a minimizer for ¢ € C, so 4,0, w, 2 € VUCD_{_M.

To prove the uniqueness suppose we selected a &(t1,ta) = 1 with t; + TC > to, w(t1) = 1, 0(t2) = 1
and to is not the startup immediately following ¢;. Hence there is a sooner startup, at time t5, following
the shutdown at t;. There is another shutdown following it which proceeds 2, occurring at some time

t). Now setting #(t1,t2) = 0 and &(¢1,t5) = 1 and 2(¢},t2) = 1 results is a strictly better solution under



Assumptions 1 and 2. Hence no such & is in V¥, 5. O
Remark 1. There exists bijective f : Vpp — VL?D+M which preserves u, v, w.

Remark 1 follows by noting the greedy solution given above can be constructed into a full solution for
Ver by filling in the remaining arcs. This implies such a f is surjective. Because the vertices of Ilgp
and IIyp uniquely encode the same set of feasible solutions, we know |Vgr| = |Vuyp|. Then we have
Vup| = Ver| > VEpiml = [Vubl|, so f must be bijective.

Now we turn to how the work above plays into a full unit commitment formulation, such as (22). For a
given LP optimal solution to (22), for each generator consider just its u, v, w variables. The optimal solution
u*,v*,w* is in yp. Thus it must be a convex combination of (integer) vertices in Viyp. Each vertex in
Virp has a corresponding vertex in V,$p, 4ar- Because we have an optimal LP value, the z variables do not
appear in any other constraints in (22), and the objective coefficients satisfy Assumptions 1 and 2, z* must
be a convex combination of vertices in V,$p - (If not, we could pivot and select a different set of active
constraints corresponding to vertices in VUQD L > improve the objective, and not change the current solution
as proj, u. (Vi¥p4n) = Vup.) Finally, by Remark 1 each of these vertices from V;§},, ,, have corresponding
vertices in Vgp with identical objective value. Hence there exists x** with identical objective value which is
feasible for proj, , ,, .(IlEF).

Therefore EF and Match have the same LP relaxation values, when startup costs are non-decreasing.
Further, this proof shows that any 1-UC formulation including power which has integer optimal vertices
in u,v,w also has integer optimal vertices when using Match for non-decreasing startup costs, for example

those in [5, 6].
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2 Full Specification of the Tested Formulations

In this section we specify the unit commitment formulations tested in [1]. All six formulations share a

common set of constraints and variables on generator operation and system balance.

3 (po(t) + Pyug(t)) + pw (t) = D(t) VieT (17a)
geg
> 1) > R(t) Vie T (17b)
9€g

pg(t) +74(t) < (ﬁg — P, )ug(t)

~ (P, — SU,)uy(t) Vte T,Vge g (17¢)
Py(t) +1g(t) < (Pg — Py)uy(t)

— (Py — SDg)w,(t+1) VteT,Vgeg! (17d)
2g(t) + rg(t) < (Py— P, Yug(t)

— (P, — SU,)vy(t)

— (Py — SDy)w,(t +1) Vt e T,Vge gt (17¢)
pg(t) +74(t) — py(t — 1) < RU, VteT,Vgeg (17f)
pe(t — 1) — py(t) < RD, VteT,Vgeg (17g)
p(t) = ph(t) VteT,Vgeg (17h)

leL,

ph(t) < (B, =P, yuy(t) VteT,Vl€ L, Vgeg (171)
ug(t) — ug(t — 1) = vy(t) — wy(t) VteT,Vgeg (17j)
t
Yo ve(i) S uy(t) Vt € [UT,,T), ¥g € G (17K)
i=t—UTy+1
t
D wg(i) < 1—uy(t) Vt € [DT,,T),Vg € G (171)
i=t—DTy+1
pw(t) < W(t) vteT (17m)
ph(t) € Ry VteT,Vle L, VgeG (17n)
py(t), r4(t) € Ry VteT,Vgeg (170)
pw(t) € Ry Vte T (17p)
ug(t),vg(t), wy(t) € {0,1} VteT,Vgeg. (17q)
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2.1 One Binary Formulation (1-bin)

min ZZ (Z (¢ pg ) + cg ug(t) + SU(t))

geGteT \IeL

subject to:

Constraints (17a) — (17q)

cgU(t) > (ug(t) - iuﬂt - z))

ch(t)ZO Vgeg, VteT

Vse€S,y, Vge G, VteT

2.2 Strengthened One Binary Formulation (1-Bin*)

min ZZ (Z (c! pg )+l ug(t)—l—c;qU(t))

geGteT \leL

subject to:

Constraints (17a) — (17q)

DT,
fU(t) > Cz (ug(t) - Z ug(t — 1))
i=1
s—1 Tg
S l@-d 3 w9
k=1 i=Tk+1
Vse Sy, Vge G, VteT
Ut >0 Vge G, VteT

2.3 Three Binary Formulation (3-bin)

min Z Z (Z (c (t) ) + g ug(t) + cgU(t))

geGteT \leLl

12

(18a)

(18b)
(18c¢)

(19a)

(19b)
(19¢)

(20a)



subject to:

Constraints (17a) — (17q)

S s
cq U = Ccyug(t)

g—1 Tgfl
— (cqfc];) Z wy(t — 1)
k=1 i=Tk
Vs €Sy, VgeG, YEET
ch(t)ZO Yge g, VteT

2.4 Startup Type Indicator Formulation (STI)

s
min ZZ (Z c pg ) +cy ug(t —I—chés(t))

geGteT \IleL

subject to:

Constraints (17a) — (17q)

T,—1

55t < Y wglt—i) Vs € Sy\ {Sy}, Vg€G, VteT
i=T2

Ug(t)=Z5Z(t) Vgeg, VteT.

2.5 Matching Formulation (Match)

min ZZ(Z c pg )+ cg ug(t)

gegteT \leLl

Sg—1 t—T%
cmr S| T an) )

s=1 t'=t—T,+1
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(20b)
(20¢)

(21b)

(21c)

(22a)



subject to:

Constraints (17a) — (17q)
t— DTy
3wt t) < vy(h) Vge G, VteT (22b)
t=t—TCy+1
t+TCy—1

Szt 1) < wy(t) Ygeg, VteT, (22¢)

t'=t+DT,

2.6 Extended Formulation (EF)

win T3 (40 + 5l

geEGLET \leL,

Sy t—T°
+3 e S xy(t ) ) (23a)
s=1

t=t—T"41
subject to:
Constraints (17a) — (17q)
>yt t) =vy(t) Vgeg, VteT (23b)
{t'|t' >t}
>yt t) = wy(t) Vgeg, vteT (23¢)
{t'|t' <t}
> m(tt) = uy(t) Vgeg, VteT (23d)
{t'|t'<t}
> gt t) = wy(t) VgegG, vteT (23¢)
{t'|t' >t}
Do yenT) =uy(t) Vgeg, vteT. (23f)

{r,7'|r<t<7'}
3 Computational Results

In this section we present full tables for the computational results reported in [1]. The computational
platform used for all experiments is a Dell PowerEdge T620 with two Intel Xeon E5-2670 processors for a
total of 16 cores and 32 threads, 256GB of RAM, running the Ubuntu 14.04.5 operating system. The latest
major versions of Gurobi (7.0.1) and CPLEX (12.7.1.0) were used when the experiments were conducted.
When referring to a startup cost formulation, we use the same notation as in [1]. That is, “EF” is the
extended formulation from [4], “Match” is the matching formulation introduced in [1], “STT” is the startup

type indicator formulation introduced in [7], “3-bin” is the three-binary formulation also introduced in [1],

14



“1-bin*” is the strengthened one-binary formulation introduced in [8], and “1-bin” is the typical formulation
in the generator’s status variables from [9,10].
We use the same base unit commitment model to benchmark the different startup cost formulations, the

full specification of which can be found in the appendix of [1].

3.1 CAISO Instances

We report the computational experiments based on the “CAISO” generators, which are based on real-world
market data from the California Independent System Operator. This test set has 610 generators. Four 48-
hour demand scenrios are based on historical data corresponding to the date listed (2014-09-01, 2014-12-01,
2015-03-01, 2015-06-01), and one hypothetical high-wind scenario where wind supply is on average 40% of
energy demanded (Scenario400).

For each scenario we considered four reserve levels: 0%, 1%, 3%, and 5%. In Tables 1 - 5 for each instance
we report the demand /wind scenario followed by the reserve level. A 600 second time limit was imposed for

these instances for both solvers.

3.1.1 Gurobi 7.0.1

All Gurobi settings besides the time limit were left at defaults. In Table 1 we report the wall-clock time
reported by Gurobi at termination, or if Gurobi hit the 600 second time-limit, we report in parentheses the
terminating optimality gap. In the last row we report the geometric mean solve time across the 20 instances
for each formulation, inserting 600 seconds into the calculation in the event the solver times out.

As we can see, the EF, 1-bin* and 1-bin variants are uncompetitive. The EF variant is large in comparison
to the others, which significantly slows down the initial LP solve as well as root node processing (i.e., heuristics
and cut-generation). Conversely, the 1-bin and 1-bin* variants are more compact than Match or STI, but
the overall weakness of the formulations (see Table 5) prevents Gurobi from finding and certifying an optimal
solution (with < 0.01% optimality gap) within the time limit. The 3-bin variant is as compact as the 1-bin
variants, and while it is more competitive than the latter, for nearly all of these instances it comes in 3rd
place behind Match and STI, and fails to solve in one case. The Match and STI variants have broadly
similar performance, with Match pulling ahead given its advantage in the hypothetical Scenario400. Based
on computational time these instances are “easy” for both Match and STI, in the sense that all 20 instances
solve to optimality in under 5 minutes.

In Table 2 we report the number of branch-and-cut nodes explored by Gurobi at termination, indicating
with a * when the solver terminated because of the 600 second time limit. In the last row we report the
shifted geometric mean node count across all twenty instances (this value is calculated by adding 1 to all

node counts and then computing the geometric mean, so as to avoid multiplication by 0).
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Table 1: Gurobi Computational Results for CAISO Instances: Wall Clock Time. When instances are solved
to optimality, reported quantities are seconds to solution. Otherwise, reported quantities in parentheses are
the optimality gap after 600 seconds.

Instance EF Match STI 3-bin 1-bin* 1-bin
2014-09-01 0% 357.21 30.24 46.80 53.55 (0.028%) | (0.041%)
2014-12-01 0% 169.30 23.89 23.06 65.81 (0.073%) | (0.068%)
2015-03-01 0% 166.04 24.68 41.76 16.46 (0.042%) | (0.053%)
2015-06-01 0% 163.38 12.64 18.76 24.74 (0.017%) | (0.020%)
Scenario400 0% 335.67 26.60 65.02 173.37 (0.403%) | (0.383%)
2014-09-01 1% 462.78 20.39 22.44 31.83 (0.055%) | (0.045%)
2014-12-01 1% 381.80 36.43 28.90 85.78 (0.072%) | (0.069%)
2015-03-01 1% 178.40 20.41 35.08 67.20 (0.079%) | (0.090%)
2015-06-01 1% 274.25 41.60 39.03 70.83 (0.020%) | (0.028%)
Scenariod00 1% | (0.012%) | 46.08 | 83.29 182.19 | (0.376%) | (0.446%)
2014-09-01 3% 598.73 75.69 63.26 87.48 (0.043%) | (0.036%)
2014-12-01 3% | (0.011%) 63.64 54.88 93.39 (0.083%) | (0.087%)
2015-03-01 3% 217.10 48.91 73.06 99.57 (0.112%) (0. 110%)
2015-06-01 3% 329.79 84.66 38.13 83.26 (0.024%) (0. 022%)
Scenariod00 3% | (0.013%) | 129.50 | 243.01 356.10 (0.495%) | (0.538%)
2014-09-01 5% 412.24 46.80 44.92 119.49 (0.037%) | (0.037%)
2014-12-01 5% | (0.012%) | 86.41 | 107.14 | 113.69 | (0.104%) | (0.082%)
2015-03-01 5% | (0.010%) | 83.49 87.22 94.95 (0.115%) | (0.105%)
2015-06-01 5% | (0.010%) | 28.28 66.97 151.47 (0.031%) | (0.031%)
Scenariod00 5% | (0.014%) | 115.02 | 107.02 | (0.014%) | (0.514%) | (0.570%)
Geometric Mean: >370.3 43.12 52.84 >91.43 >600 >600

As remarked above, because the EF variant is so large, Gurobi only leaves the root node for the EF
variant in one instance, and in all other cases Gurobi either finds an optimal solution at the root note or hits
the wall-clock limit before beginning to branch. On average Gurobi uses slightly fewer nodes for the Match
variant over the STI, and similarly 3-bin, when it solves, only uses a few more nodes on average than STI.
Turning to the 1-bin variants, we can see Gurobi processed several thousand nodes in each instance before

hitting the time limit, which was not enough to overcome the weakness of these formulations.

3.1.2 CPLEX 12.7.1.0

In Table 3 we report the wall-clock time required by CPLEX to reach an optimal solution, or if the solver
hit the time limit, we report the optimality gap at termination in parentheses.

Overall CPLEX performs better on these instances than Gurobi, but we still see the EF and 1-bin
variants are uncompetitive. CPLEX is able to solve all the instances using Match, STI, and 3-bin within
the time limit, but it is obvious that 3-bin is the inferior of these three: in the worst case (Scenariod00 5%)
it needs 423 seconds, whereas STI in the worst case needs 223 seconds and Match only needs 110 seconds

in the worst case. Though STI outperforms Match in mean solve time, this highlights that Match has
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Table 2: Gurobi Computational Results for CAISO Instances: Nodes Explored. Cells report the number of
tree nodes explored during branch-and-cut search. Entries with a terminating “*” report the number of tree
nodes explored when the 600 second time limit is hit. Otherwise, the entries represent the number of tree
nodes required to identify an optimal solution.

Instance EF Match | STI 3-bin 1-bin* 1-bin
2014-09-01 0% 0 0 110 0 11895* | 9285*
2014-12-01 0% 0 0 0 3 5904* | 4067*
2015-03-01 0% 0 0 0 0 2565* 4419*
2015-06-01 0% 0 0 0 0 7247* | 15893*

Scenario400 0% 0 0 0 2373 5604* 5801*
2014-09-01 1% 0 0 0 0 7164* 10934*
2014-12-01 1% 0 95 0 160 4072%* 7144*
2015-03-01 1% 0 0 0 0 2415* 2684*
2015-06-01 1% 0 47 47 0 11853* | 5499*

Scenario400 1% 0* 0 47 1854 7210* 6542*
2014-09-01 3% 0 7 31 31 14071* | 12852%*
2014-12-01 3% 0* 1292 366 144 3900* | 6024*
2015-03-01 3% 0 0 58 1 2476* 2124%*
2015-06-01 3% 0 0 0 0 8362* | 5153*

Scenario400 3% 0* 2055 | 2874 2309 6518* | 6657*
2014-09-01 5% 0 95 147 2497 7763* | 9316*
2014-12-01 5% 0* 1203 40 138 4497* 3681*
2015-03-01 5% | 3783* 923 2971 758 2264* | 2263*
2015-06-01 5% 0* 0 100 1125 3894* | 5783*

Scenario400 5% 0* 3867 140 3848* 6684* | 6907*

Shifted Geo. Mean: | >1.510 | 13.50 | 20.22 | >39.09 | >5914 | >5827

flatter performance profile than STT on this instances. In a similar fashion, we see that 3-bin is sometimes
the fastest, but for all the high-wind Scenario400 instances it performs significantly worse than Match or
STI. 3-bin underperformed on these instances for Gurobi as well. This is in spite of the fact that STI
and 3-bin exhibit the same optimality gap on all these instances (see Table 5). One possible explanation
of this phenomenon is the extra indicator variables d;(¢) make it easier for both Gurobi and CPLEX to
generate strong cutting planes. Another possibility is that branching on these indicator variables is often
advantageous.

In Table 4 we report the number of branch-and-cut nodes CPLEX explored during search, with a *
indicating that the solver terminated because it reached the 600 second wall-clock limit. In the last row
we report the shifted geometric mean across the 20 instances, which is calculated the same way it was in
Table 2.

We see that for the tighter formulations (EF, Match, STI, and 3-bin), CPLEX often finds and proves
an optimal solution at the root node or only a few nodes into the tree. For the 1-bin variants, CPLEX

often explores more than 10000 nodes before hitting the wall-clock time limit. Additionally, considering
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Table 3: CPLEX Computational Results for CAISO Instances: Wall Clock Time. When instances are solved
to optimality, reported quantities are seconds to solution. Otherwise, reported quantities in parentheses are
the optimality gap after 600 seconds.

Instance EF Match STI 3-bin 1-bin* 1-bin
2014-09-01 0% 277.51 47.36 32.54 | 38.42 | (0.060%) | (0.080%)
2014-12-01 0% 176.86 25.03 30.41 45.46 | (0.103%) | (0.118%)
2015-03-01 0% 167.34 22.82 19.78 | 20.76 | (0.082%) | (0.111%)
2015-06-01 0% 141.00 19.68 19.97 | 19.01 | (0.023%) | (0.056%)
Scenario400 0% 189.98 39.40 52.17 | 218.87 | (0.801%) | (0.956%)
2014-09-01 1% 245.80 46.41 19.75 | 24.74 | (0.068%) | (0.097%)
2014-12-01 1% 189.27 41.73 | 36.97 66.30 | (0.111%) | (0.146%)
2015-03-01 1% 172.37 37.36 36.69 41.24 | (0.059%) | (0.102%)
2015-06-01 1% 188.68 34.94 30.25 | 19.89 | (0.026%) | (0.064%)
Scenariod00 1% | 288.39 | 63.93 | 53.29 | 319.76 | (0.818%) | (0.874%)
2014-09-01 3% 415.29 62.67 40.45 | 37.27 | (0.067%) | (0.108%)
2014-12-01 3% | 292.17 | 72.06 | 52.07 | 101.31 | (0.120%) | (0.135%)
2015-03-01 3% 346.39 58.97 43.02 | 55.51 | (0.129%) | (0.102%)
2015-06-01 3% 180.42 38.56 20.41 19.97 | (0.066%) | (0.073%)
Scenariod00 3% | (0.012%) | 110.20 | 140.43 | 420.13 | (0.678%) | (0.774%)
2014-09-01 5% 272.24 60.57 29.44 | 53.30 | (0.065%) | (0.091%)
2014-12-01 5% 381.81 75.47 62.67 | 102.32 | (0.134%) | (0.164%)
2015-03-01 5% 273.29 35.96 44.08 58.95 | (0.135%) | (0.161%)
2015-06-01 5% | 291.17 | 71.24 | 38.51 | 59.93 | (0.039%) | (0.095%)
Scenariod00 5% | (0.012%) | 94.47 | 222.68 | 422.80 | (0.766%) | (1.384%)
Geometric Mean: >261.1 48.02 40.75 62.87 >600 >600

instances Scenario400 3% and Scenario400 5%, we observe that Match was able to out-perform STI on these
instances because it required less enumeration. Similarly, 3-bin requires more than 5000 nodes on each of

the Scenario400 instances, explaining its relative weakness on these high-wind instances.

3.1.3 Relative Integrality Gap

In Table 5 we report the relative integrality gap for each instance and formulation. This is calculated by
solving the LP relaxation for each problem and instance, which has value 2} p, and comparing that to the
best integer solution found across all twelve runs for each instance, zjp. The corresponding integrality gap
can be then calculated by appealing to the formula

ZIp — 2Lp .

relative integrality gap = (24)

Zip
The values in Table 5 report this ratio as a percentage.

Examining Table 5, we see that EF and Match, as well as STI and 3-bin, always have identical gaps.
One way of viewing the observed equivalence of EF and Match is that although Match is not a perfect
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Table 4: CPLEX Computational Results for CAISO Instances: Nodes Explored. Cells report the number
of tree nodes explored during branch-and-cut search. Entries with a terminating “*” report the number of
tree nodes explored when the 600 second time limit is hit. Otherwise, the entries represent the number of
tree nodes required to identify an optimal solution.

Instance EF Match | STI | 3-bin | 1-bin* 1-bin
2014-09-01 0% 0 0 0 0 33839*% | 31955*
2014-12-01 0% 0 0 0 0 15956* | 17895*
2015-03-01 0% 0 0 0 0 18359* | 17284*
2015-06-01 0% 0 0 0 0 26114* | 23025*

Scenario400 0% 0 0 0 5701 8586* 6955*
2014-09-01 1% 0 0 0 0 35138* 28739*
2014-12-01 1% 0 0 0 263 16691* | 15893*
2015-03-01 1% 0 0 0 0 25618* | 23716*
2015-06-01 1% 0 0 0 0 24161* | 20693*

Scenario400 1% 0 0 0 5748 8766* 7822*
2014-09-01 3% 45 41 126 0 24013* | 26919*
2014-12-01 3% 2 0 21 1531 | 13099* | 14593*
2015-03-01 3% 5 0 2 137 16259* | 20094*
2015-06-01 3% 0 0 0 0 10014* | 18983*

Scenario400 3% | 803* 508 5662 | 5833 6445* 6008*
2014-09-01 5% 0 3 0 38 23902* 23423*
2014-12-01 5% 43 34 2 2700 Te52* 10689*
2015-03-01 5% 0 0 36 40 14412* 10718%*
2015-06-01 5% 3 4 0 6 16081* | 11000%*

Scenario400 5% | 1166* 62 6378 | 5815 5922* 5944*

Shifted Geo. Mean: | >3.60 | 2.83 | 4.75 | >32.6 | >15442 | >15210

formulation for startup costs like EF is, the only vertices that are fractional in Match are sub-optimal — at
least for reasonable (i.e., non-decreasing) startup costs. We suspect a similar situation is playing itself out
in the comparison between STI and 3-bin. Turning to the 1-bin variants, we see the optimality gap for these
is quite large relative to the other formulations tested, which helps to explain their weak computational
performance. Additionally, across these instances Match is able to close 40-90% of the integrality gap over

STI, which helps explain its performance despite requiring more integer variables.

3.2 FERC Instances

We report the computational experiments based on the “FERC” generators, which are drawn from the RTO
Unit Commitment Test System provided by the Federal Energy Regulatory Commission [11], which itself is
based on market data gathered from the PJM Interconnection. The FERC set of generators consists of a
“Winter” set and a “Summer” set, and each test set has approximately 900 generators. Demand, reserve,
and wind scenarios for 2015 were constructed based on market data available on the PJM website [12,13].

Twelve days were selected from 2015, one from each month, to create a variety of scenarios. We used the

19



Table 5: Computational Results for CAISO Instances: Relative Integrality Gap (%).

Instance EF Match STI 3-bin | 1-bin* | 1-bin
2014-09-01 0% | 0.0097 | 0.0097 | 0.0229 | 0.0229 | 0.9878 | 1.0506
2014-12-01 0% | 0.0058 | 0.0058 | 0.0190 | 0.0190 | 1.0813 | 1.1370
2015-03-01 0% | 0.0020 | 0.0020 | 0.0270 | 0.0270 | 1.5774 | 1.5774
2015-06-01 0% | 0.0012 | 0.0012 | 0.0102 | 0.0102 | 0.8885 | 0.8915
Scenario400 0% | 0.0113 | 0.0113 | 0.1288 | 0.1288 | 4.6156 | 4.6972
2014-09-01 1% | 0.0106 | 0.0106 | 0.0239 | 0.0239 | 1.0058 | 1.0682
2014-12-01 1% | 0.0059 | 0.0059 | 0.0198 | 0.0198 | 1.0906 | 1.1509
2015-03-01 1% | 0.0037 | 0.0037 | 0.0326 | 0.0326 | 1.6411 | 1.6411
2015-06-01 1% | 0.0044 | 0.0044 | 0.0134 | 0.0134 | 0.9105 | 0.9105
Scenario400 1% | 0.0128 | 0.0128 | 0.1302 | 0.1302 | 4.6721 | 4.7553
2014-09-01 3% | 0.0149 | 0.0149 | 0.0283 | 0.0283 | 1.0452 | 1.1093
2014-12-01 3% | 0.0089 | 0.0089 | 0.0245 | 0.0245 | 1.1165 | 1.1803
2015-03-01 3% | 0.0119 | 0.0119 | 0.0428 | 0.0428 | 1.7416 | 1.7446
2015-06-01 3% | 0.0087 | 0.0087 | 0.0180 | 0.0180 | 0.9373 | 0.9451
Scenario400 3% | 0.0201 | 0.0201 | 0.1372 | 0.1372 | 4.7249 | 4.8072
2014-09-01 5% | 0.0081 | 0.0081 | 0.0217 | 0.0217 | 1.0657 | 1.1348
2014-12-01 5% | 0.0107 | 0.0107 | 0.0265 | 0.0265 | 1.1415 | 1.2094
2015-03-01 5% | 0.0091 | 0.0091 | 0.0459 | 0.0459 | 1.7700 | 1.7798
2015-06-01 5% | 0.0084 | 0.0084 | 0.0181 | 0.0181 | 0.9474 | 0.9559
Scenario400 5% | 0.0237 | 0.0237 | 0.1400 | 0.1400 | 4.7721 | 4.8568
Geometric Mean: | 0.0079 | 0.0079 | 0.0328 | 0.0328 | 1.5251 | 1.5688

Summer generators for the months April — September and the Winter generators for the remaining months.

Using the data collected, we determined wind power was 2% of load, on average, in 2015. We created then
for each day selected two scenarios, one with the actual wind data from 2015 (2% Wind Penetration), and
another where the wind data from 2015 was multiplied by a constant factor of 15 (30% Wind Penetration).
Hence the 2% wind scenarios correspond to the problem facing system operators today, whereas the 30%
wind scenarios correspond to problems that system operators may face in the future under high renewables
penetration.

For all solvers a time limit of 900 seconds was imposed for these computational experiments.

3.2.1 Gurobi 7.0.1

Because this test set is larger than CAISO, Gurobi often selects the deterministic concurrent optimizer to
solve the root LP (this solves the root node using one core for primal simplex, one core for dual simplex,
and the remaining cores for parallel barrier). Preliminary experiments showed that this choice resulted in
a random, and often large (i.e. greater than 30 seconds), “concurrent spin time,” which is the time spend
ensuring this concurrent LP solver is deterministic. Gurobi recommended setting the Method parameter to

3 to eliminate this lag, which selects the non-deterministic concurrent optimizer. This is the same LP solver
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Table 6: Gurobi Computational Results for FERC Instances: Wall Clock Time. When instances are solved
to optimality, reported quantities are seconds to solution. Otherwise, reported quantities in parentheses are
the optimality gap after 900 seconds.

(a) 2% Wind Penetration

Instance EF Match STI 3-bin 1-bin* 1-bin
2015-01-01 | 511.91 | 111.34 | 193.07 | 241.63 | (0.017%) | (0.046%)
2015-02-01 586.95 85.12 314.07 | 463.66 | (0.143%) | (0.172%)
2015-03-01 807.3 152.24 | 177.44 245.77 649.54 596.24
2015-04-01 | (0.012%) | 190.62 321.6 177.27 675.45 660.92
2015-05-01 512.55 177.51 | 191.29 186.68 334.17 416.03
2015-06-01 619.8 142.57 | 139.16 | 211.92 406.68 575.42
2015-07-01 | (0.017%) | 411.00 | 491.22 | 260.41 | (0.014%) 901.87
2015-08-01 808.34 113.13 | 350.52 | 449.67 | (0.11%) | (0.165%)
2015-09-01 | (0.016%) | 313.79 | 284.31 | 840.5 (0.101%) | (0.113%)
2015-10-01 605.11 132.95 | 113.69 | 133.48 582.63 582.58
2015-11-02 573.13 109.88 | 200.83 | 209.22 | (0.073%) | (0.136%)
2015-12-01 | (0.013%) | 116.25 | 114.15 | 242.18 | (0.055%) | (0.105%)

Geometric Mean: >701.4 153.60 | 218.36 266.53 >710.7 >T738.6

(b) 30% Wind Penetration

Instance EF Match STI 3-bin 1-bin* 1-bin
2015-01-01 712.53 127.22 | (0.902%) | (1.334%) | (4.083%) | (3.808%)
2015-02-01 | 612.38 | 114.78 | (0.043%) | (0.158%) | (0.952%) | (0.959%)

(
(

2015-03-01 895.97 647.78 480.77 496.35 0.386%) | (0.460%)
2015-04-01 | (0.024%) | 140.82 236.23 425.71 0.276%) | (1.054%)
2015-05-01 | (0.016%) | 104.62 119.06 110.24 312.33 337.55
2015-06-01 698.12 222.54 141.18 110.06 | (0.408%) | (0.101%)
2015-07-01 | (0.015%) | 126.98 346.18 230.15 (0.222%) | (0.105%)
2015-08-01 | (0.019%) | 395.87 379.42 227.92 | (0.768%) | (0.870%)
2015-09-01 | (0.012%) | 245.73 780.9 (0.035%) | (0.254%) | (0.256%)
2015-10-01 | (0.036%) | 439.03 352.54 533.72 617.14 607.19
2015-11-02 789.73 182.40 618.73 782.18 (0.803%) | (1.065%)
2015-12-01 674.84 312.67 361.35 421.08 (0.035%) | (0.035%)
Geometric Mean: >807.9 214.70 >390.3 >400.9 >798.5 >802.6

without the logic to ensure determinism. Hence we set the Method parameter to 3 for the FERC experiments
on Gurobi. As the solver almost always solved the root LPs in this case using parallel barrier, a practitioner
wanting to ensure determinism could set the Method parameter to 2 without losing performance.

In Table 6 we report the wall-clock time for the FERC instances, inserting in parentheses the terminating
optimality gap when the solver hits the time limit of 900 seconds. (In the 2% wind penetration case, for the
1-bin formulation, instance 2015-07-01, Gurobi found an optimal solution before the solver terminated, so
we report the time.)

For the 2% wind instances we observe the 1-bin variants perform better than the CASIO instances, but

they are still uncompetitive with Match, STI, and 3-bin variants. The EF is similarly uncompetitive. We
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see that 3-bin is significantly worse than Match or STI, and for one instance (2015-09-01) takes over 800
seconds to find an optimal solution, whereas STI in the worst case needs only 491 seconds (2015-07-01), and
Match in the worst case needs only 411 seconds (2015-07-01). Overall Match outperforms the other variants
on these instances using Gurobi.

Turning to the 30% wind instances, we first note that Match is the only variant that solves all 12
instances, and also dominants the other variants in geometric mean solve time. It is interesting to note,
turning to a moment to Table 10, that for the 2015-01-01 and 2015-02-01 instances, Match is able to close
95% and 67% of the integrality gap, respectively, over STI. This explains why only Match and EF were able
to solve these instances within the time limit. Here again we find again that the EF and 1-bin variants are
uncompetitive, and while 3-bin is sometimes the fastest to a solution (e.g. 2015-08-01), it exhibits more
performance variability than either STI or Match.

In Table 7 we report the number of branch-and-cut nodes explored at termination; instances when Gurobi
terminated because the time limit of 900 seconds was reached are denoted with a *. In the last row we report
the shifted geometric mean across the twelve runs of each wind type, which is calculated the same way it
was for Table 5.

Across both wind levels it is interesting to note that Gurobi often spends the majority of the time at
the root node, first solving the LP and then in cut generation and root-node heuristics. For the largest
formulation, EF, Gurobi either finds the optimal at the root node or terminates without having branched.
Additionally, the low node count observed in most of the instances for the 1-bin variants reflect this fact as
well; Gurobi spends most of the time at the root node attempting to tighten this formulations with cuts.
Using the Match variant Gurobi solves nearly all the 2% wind instances at the root node, and only has to

explore a significant portion of the tree for a few of the 30% wind instances.

3.2.2 CPLEX 12.7.1.0

For this experiment all CPLEX settings were preserved at default, save setting the 900 second wall-clock
time limit.

In Table 8 we report the wall-clock time using CPLEX for the FERC instances, replacing the time with
the terminating optimality gap in parentheses when the solver reaches the 900 second time limit without
certifying an optimal solution.

Similar to the experience with the CAISO instances, CPLEX overall performs better on this test set than
Gurobi. Examining the solver output suggests that one potential reason for this is CPLEX’s dual simplex
method was usually successful at finding the optimal LP solution in a reasonable amount of time, at least
when compared to Gurobi.

Considering the 2% wind instances, we see that Match, STI, and 3-bin variants solve every instance,
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Table 7: Gurobi Computational Results for FERC Instances: Nodes Explored. Cells report the number of
tree nodes explored during branch-and-cut search. Entries with a terminating “*” report the number of tree
nodes explored when the 900 second time limit is hit.

(a) 2% Wind Penetration

Instance EF Match | STI | 3-bin | 1-bin* | 1-bin
2015-01-01 0 0 0 0 1443* | 101*
2015-02-01 0 0 47 976 | 3864* | 3964*
2015-03-01 0 0 0 0 1537 1487
2015-04-01 0* 0 0 0 0 0
2015-05-01 0 0 0 0 0 0
2015-06-01 0 0 0 0 0 0
2015-07-01 0* 0 123 47 281* 505
2015-08-01 0 0 720 | 1756 | 1194* 420*
2015-09-01 0* 46 425 | 3543 | 4087* | 4613*
2015-10-01 0 0 0 0 0 0
2015-11-02 0 0 0 0 5% 15*
2015-12-01 0* 0 0 0 46* 30%*

Shifted Geo. Mean: | >1.00 1.38 591 | 9.03 | >67.5 | >50.8

(b) 30% Wind Penetration

Instance EF Match | STI 3-bin | 1-bin* | 1-bin
2015-01-01 0 0 4440* | 7761* | 147* | 1592*
2015-02-01 0 0 2067* | 2079*% | 3791* | 3387*
2015-03-01 0 47 550 47 31* AT*
2015-04-01 0* 0 0 47 1858* 79*
2015-05-01 0* 0 0 0 0 0
2015-06-01 0 0 0 0 31* 15%
2015-07-01 0* 0 0 0 15% AT
2015-08-01 0* 879 60 0 15* 31%*
2015-09-01 0* 0 2573 | 4180* | 5759* | 4241%*
2015-10-01 0* 2501 1775 2199 2100 1161
2015-11-02 0 0 256 390 1% 15%
2015-12-01 0 0 0 387 655* 603*

Shifted Geo. Mean: | >1.00 | 4.66 | >51.7 | >78.2 | >142 | >130

with STI exhibiting the best performance overall. Similar to before, the EF, 1-bin*, and 1-bin variants
are not competitive. Looking at just Match, STI, and 3-bin, the 3-bin variant exhibits severe performance
variability: it solves five of the twelve instances the fastest, but it has the worst-case longest run time of
these three — 738 seconds vs. 222 seconds for Match and 150 seconds for STI.

Turning to the 30% wind instances, we note that Match is the only variant able to solve all twelve
instances in the time limit required, and is the fastest in geometric mean. Interestingly CPLEX was able
to solve the instance 2015-02-01 using STI in a reasonable time. Comparing the terminating optimality
gaps, we see that for instance 2015-01-01, Gurobi terminated with a gap of 0.902% for STI, whereas CPLEX
terminated with a gap of only 0.078%. This suggests CPLEX may be better than Gurobi at tightening the
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Table 8: CPLEX Computational Results for FERC Instances: Wall Clock Time. When instances are solved
to optimality, reported quantities are seconds to solution. Otherwise, reported quantities in parentheses are
the optimality gap after 900 seconds.

(a) 2% Wind Penetration

Instance EF Match STI 3-bin 1-bin* 1-bin
2015-01-01 340.32 127.12 116.39 | 103.33 | (0.017%) | (0.016%)
2015-02-01 382.86 123.08 | 144.91 | 737.72 | (0.264%) | (0.261%)
2015-03-01 624.50 127.39 | 100.59 | 172.34 498.82 578.84
2015-04-01 602.51 115.71 | 144.15 134.50 292.09 297.05
2015-05-01 323.48 83.25 73.91 108.68 206.31 153.57
2015-06-01 353.67 119.69 94.44 79.89 256.10 339.02
2015-07-01 868.58 221.59 93.79 87.97 352.34 516.29
2015-08-01 344.70 131.51 92.35 193.95 | (0.135%) | (0.130%)
2015-09-01 | (0.011%) 143.91 | 127.92 | 527.99 | (0.144%) | (0.148%)
2015-10-01 445.44 164.97 150.02 | 143.53 355.31 393.93
2015-11-02 475.37 175.06 134.81 | 129.18 867.88 (0.017%)
2015-12-01 440.35 138.84 | 122.01 | 131.57 427.34 523.87

Geometric Mean: >477.6 135.60 | 113.70 | 162.42 >498.3 >536.1

(b) 30% Wind Penetration

Instance EF Match STI 3-bin 1-bin* 1-bin
2015-01-01 455.13 155.13 | (0.078%) | (1.252%) | (4.206%) | (4.163%)
2015-02-01 | 489.58 | 165.69 | 310.78 | (0.152%) | (1.975%) | (1.740%)
2015-03-01 618.62 179.55 214.57 242.20 (0.112%) | (0.114%)
2015-04-01 | 857.72 | 247.31 | 258.42 | 210.11 | (0.753%) | (0.774%)
2015-05-01 414.45 128.01 101.18 82.64 262.59 240.91
2015-06-01 460.15 166.51 109.42 100.83 | (0.035%) | (0.040%)
2015-07-01 506.11 182.80 131.57 121.17 | (0.037%) | (0.041%)
2015-08-01 | (0.019%) | 196.02 161.15 140.66 | (0.198%) | (0.162%)
2015-09-01 896.64 178.61 173.09 736.56 (0.949%) | (0.607%)
2015-10-01 | (0.012%) | 269.18 277.81 559.67 514.99 738.49
2015-11-02 447.73 189.60 248.55 (0.022%) | (0.480%) | (0.260%)
2015-12-01 636.79 202.57 176.64 215.01 (0.104%) | (0.096%)
Geometric Mean: >604.1 185.02 >210.8 >296.8 >775.3 >793.2

STI formulation either through cuts or presolve, which may explain the difference in performance between
the two solvers. For the other variants these instances are largely similar to those preceding: 3-bin exhibits
performance variability and is inferior to both Match and STI, and the EF, 1-bin*, and 1-bin variants are
uncompetitive.

In Table 9 we report the number of nodes explored at termination, denoting with a * when the solver
terminated because it reached the 900 second wall-clock time limit.

Taking both wind levels together, observe for the Match variant CPLEX solves all but one instance at
the root node, and for the STI variant it solves all but three of the 24 instances at the root note. In a similar

fashion, when the EF variant solves it is often at the root node. The 3-bin variant also solves most of the

24



Table 9: CPLEX Computational Results for FERC Instances: Nodes Explored. Cells report the number of

tree nodes explored during branch-and-cut search. Entries with a terminating

nodes explored when the 900 second time limit is hit.

(a) 2% Wind Penetration

Wk

report the number of tree

Instance EF Match | STT | 3-bin | 1-bin* 1-bin
2015-01-01 0 0 0 0 5704* | 5696*
2015-02-01 0 0 0 5688 | 3434* | 3825*
2015-03-01 11 0 0 0 2274 3868
2015-04-01 0 0 0 0 84 88
2015-05-01 0 0 0 0 73 0
2015-06-01 0 0 0 0 0 0
2015-07-01 0 0 0 0 722 1943
2015-08-01 0 0 0 1045 | 5672* | 5694*
2015-09-01 0* 0 0 5507 | 5658* | 5826*
2015-10-01 0 0 0 0 0 27
2015-11-02 0 0 0 0 3768 2871*
2015-12-01 0 0 0 0 165 647

Shifted Geo. Mean: | >1.23 1.00 1.00 | 7.52 | >355.5 | >413.8
(b) 30% Wind Penetration

Instance EF | Match | STI 3-bin | 1-bin* | 1-bin
2015-01-01 0 0 2576% | 3790*% | 1094* | 1384*
2015-02-01 0 0 259 5530*% | 2145* | 2370*
2015-03-01 0 0 0 0 3005% | 2748*
2015-04-01 0 0 0 0 1856* | 1762*
2015-05-01 0 0 0 0 0 0
2015-06-01 0 0 0 0 2335% | 2366*
2015-07-01 0 0 0 0 3207* | 2901*
2015-08-01 0* 0 0 0 1570% | 1284*
2015-09-01 0 0 0 5593 | 3468* | 2497*
2015-10-01 | 3196* | 2849 2723 144 4438 5830
2015-11-02 0 0 0 3990* | 1288* | 1608*
2015-12-01 0 0 0 0 2164* | 1669*

Shifted Geo. Mean: | >1.95 1.94 >5.91 | >25.3 | >1171 | >1153

instances at the root node as well. For the 1-bin variants, CPLEX often explores more nodes than Gurobi,

but only explores a few thousand before the wall-clock time limit is reached.

3.2.3 Relative Integrality Gap

In Table 10 we report the relative integrality gap for the FERC instances, calculated in the exact same

fashion as the CAISO relative integrality gap results reported in Table 5.

First, we observe the same pattern as we did for CAISO: the integrality gaps for EF and Match are

always the same, as are those for STI and 3-bin. Otherwise, the results here are significantly different than

those for CAISO. We note 1-bin* is no tighter than 1-bin for the FERC instances. Turning to the 2% wind
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Table 10: Computational Results for FERC Instances: Relative Integrality Gap (%)

(a) 2% Wind Penetration

Instance EF Match STI 3-bin | 1-bin* | 1-bin
2015-01-01 | 0.0284 | 0.0284 | 0.0362 | 0.0362 | 0.5500 | 0.5500
2015-02-01 | 0.0423 | 0.0423 | 0.0717 | 0.0717 | 0.9187 | 0.9187
2015-03-01 | 0.0327 | 0.0327 | 0.0334 | 0.0334 | 0.3727 | 0.3727
2015-04-01 | 0.0540 | 0.0540 | 0.0540 | 0.0540 | 0.5788 | 0.5788
2015-05-01 | 0.0456 | 0.0456 | 0.0456 | 0.0456 | 0.4131 | 0.4131
2015-06-01 | 0.0375 | 0.0375 | 0.0375 | 0.0375 | 1.0321 | 1.0321
2015-07-01 | 0.0796 | 0.0796 | 0.0796 | 0.0796 | 1.3827 | 1.3827
2015-08-01 | 0.1233 | 0.1233 | 0.1422 | 0.1422 | 1.5661 | 1.5661
2015-09-01 | 0.5283 | 0.5283 | 0.5542 | 0.5542 | 1.9062 | 1.9063
2015-10-01 | 0.1140 | 0.1140 | 0.1141 | 0.1141 | 1.0522 | 1.0522
2015-11-02 | 0.0760 | 0.0760 | 0.0797 | 0.0797 | 1.4377 | 1.4377
2015-12-01 | 0.0629 | 0.0629 | 0.0654 | 0.0654 | 1.1305 | 1.1305

Geometric Mean: | 0.0683 | 0.0683 | 0.0746 | 0.0746 | 0.9113 | 0.9113

(b) 30% Wind Penetration

Instance EF Match STI 3-bin | 1-bin* | 1-bin
2015-01-01 | 0.0924 | 0.0924 | 1.7525 | 1.7525 | 7.4916 | 7.4916
2015-02-01 | 0.1703 | 0.1703 | 0.5119 | 0.5119 | 3.7359 | 3.7359
2015-03-01 | 0.0995 | 0.0995 | 0.1140 | 0.1140 | 1.9207 | 1.9207
2015-04-01 | 0.8124 | 0.8124 | 0.8476 | 0.8476 | 6.8377 | 6.8377
2015-05-01 | 0.0729 | 0.0729 | 0.0729 | 0.0729 | 1.5792 | 1.5792
2015-06-01 | 0.0807 | 0.0807 | 0.0859 | 0.0859 | 2.5388 | 2.5388
2015-07-01 | 0.1383 | 0.1383 | 0.1412 | 0.1412 | 2.5278 | 2.5278
2015-08-01 | 0.3701 | 0.3701 | 0.3904 | 0.3904 | 4.1100 | 4.1100
2015-09-01 | 0.2884 | 0.2884 | 0.3747 | 0.3747 | 3.2275 | 3.2275
2015-10-01 | 1.1342 | 1.1342 | 1.1446 | 1.1446 | 2.9962 | 2.9962
2015-11-02 | 0.1825 | 0.1825 | 0.2626 | 0.2626 | 2.8615 | 2.8615
2015-12-01 | 0.2558 | 0.2558 | 0.2738 | 0.2738 | 1.2704 | 1.2704

Geometric Mean: | 0.2060 | 0.2060 | 0.3141 | 0.3141 | 3.0031 | 3.0031

instances, we see that EF and Match often are not tighter than STI and 3-bin, or are only marginally so.
This explains STT’s performance dominance on the 2% instances in CPLEX — the extra variables from Match
are not, in these instances, buying much (or any) additional tightness over STI. Match and EF only close 8%
of the optimally gap in geometric mean over STI, which is significantly less than the 75% geometric mean
gap closure observed for CAISO.

Considering now the 30% wind instances, we see in particular that Match closes a large portion of the
optimality gap over STT in the 2015-01-01 and 2015-02-01 instances, with modest reductions in every instance
except 2015-05-01. We also observe that in general, the high-wind instances, both here and in Table 5,
have larger integrality gaps than low-wind instances across all formulations. This should be expected as

large amounts of renewables generation imply large net-load swings, which should result in more generator
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switching and generator ramping.

4 Statistical Analysis

In this section we report the results of a statical analysis of the computational results above, using the
Wilcoxon signed-rank test [14]. To separate out the potential contributions to performance variability, we
considered five sets of instances for each solver: (i) “All” (n = 44) — which consists of the entire test suite,
(if) “CAISO” (n = 20) — which is the CAISO set of instances, (iii) “FERC” (n = 24) — which is the FERC
set of instances, (iv) “High Wind” (n = 16) — which consists of the Scenariod00 instances from CAISO and
the 30% Wind Penetration instances from FERC, and (v) “Low Wind” (n = 28) — which is all the other

instances not in High Wind. We note that for n 5 20 this statistical test starts to become underpowered.

4.1 Gurobi 7.0.1

In Table 11 we report the mean differences in solve times and the results of the Wilcoxon signed-rank
test across the five sets described above on the Gurobi computational experiments. In each cell we report
the column mean solve time minus the row mean solve time; hence a negative number implies the column
was faster than the row, whereas a positive number implies the row was faster than the column. Because
the Wilcoxon test is for difference in arithmetic mean, the results in these tables report the difference in
arithmetic mean solve time, whereas the summary results in Section 3 report the geometric mean solve time.
Looking at the entire test set we can see that the Match formulation outperforms the others at the a = 0.01
using Gurobi. Match also outperforms STI in the breakdowns at the a = 0.05 level, except for the CAISO
test set. STI in turn outperforms 3-bin overall and in several of the breakout sets. These statistics also bear
out the larger observation that the EF, 1-bin, and 1-bin* variants are uncompetitive with any of Match,

STI, and 3-bin.

4.2 CPLEX 12.7.1.0

In Table 12 we report the mean differences in solve time and the results of the Wilcoxon signed-rank test
for the CPLEX computational experiments. As with Table 11, In each cell we report the column mean solve
time minus the row mean solve time; so a negative number implies the column was faster than the row,
and a positive number implies the row was faster than the column. While Match still has the best mean
overall, the Wilcoxon test is not able to differentiate it from STI and 3-bin. Interestingly STI is better than
3-bin at the a = 0.01 level. We also note that on the Low Wind instances STI is able to out-perform Match
using CPLEX at the o = 0.01, which bears out the observations from the computational results above. The

magnitude of the difference is not large, however. Turning to the High Wind instances, we see Match is able
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Table 11: Results of the Wilcoxon signed-rank test for Gurobi computational experiments. Each cell reports
the column mean solve time minus the row mean solve time. A “*” indicates the difference is significant at
the oo = 0.05 level; a “**” indicates the difference is significant at the e = 0.01 level.

(a) All (n = 44)

Formulation EF Match STI 3bin 1bin* 1bin
EF -466.0%* | -383.3** | -327.1%F | 96.5** | 101.3**
Match 466.0%* 82.7+* 138.9%* | 562.5%* | 567.3**
STI 383.3%* | -82.7F* 56.2%* | 479.8%* | 484.6**
3bin 327.1%*% | -138.9%* | -56.2%* 423.6%*% | 428.4%*
1bin* -96.5%* | -562.5%*F | -479.8*%* | -423.6** 4.8
1bin -101.3%* | -B67.3%* | -484.6%* | -428.4** -4.8

(b) CAISO (n = 20)

Formulation EF Match STI 3bin 1bin* 1bin
EF -360.3%* | -348.1*%*% | -284.0*%* | 188.0** | 188.5**
Match | 360.3%* 12.2 76.3%*% | 548.3%F | 548.8%*
STI | 348.1%* -12.2 64.1** | 536.0** | 536.5%*
3bin | 284.0%* | -76.3%* -64.1%* 472.0%* | 472.5%*
1bin* | -188.0%* | -548.3** | -536.0** | -472.0** 0.5

1bin | -188.5%* | -548.8%* | -536.5%* | -472.5%* -0.5

(c) FERC (n = 24)

Formulation EF Match STI 3bin 1bin* 1bin
EF -554.1%* | -412.7** | -363.0%* 20.3 28.6
Match | 554.1%* 141.5%* 191.1*% | 574.4%* | 582.8**
STT | 412.7** | -141.5%* 49.7 432.9%* | 441.3%*
3bin | 363.0%* | -191.1* -49.7 383.3%*% | 391.7**
1bin* -20.3 -574.4%% | -432.9%* | -383.3** 8.4
1bin -28.6 -582.8%* | _441.3%* | -391.7** -8.4

(d) High Wind (n = 16)

Formulation EF Match STI 3bin 1bin* 1bin
EF -534.2*%* | _362.9** | -285.8*%* 26.0 27.4
Match | 534.2%* 171.3* 248.5* 560.2%*% | 561.6%*
STI | 362.9%* | -171.3* 77.1 388.9%* | 390.3**
3bin | 285.8** | -248.5* -77.1 311.7%% | 313.1%*
1bin* -26.0 -560.2*%* | -388.9** | -311.7** 1.4
1bin -27.4 -561.6*%* | -390.3** | -313.1** -1.4

(e) Low Wind (n = 28)

Formulation EF Match STI 3bin 1bin* 1bin
EF -427.1%% | -395.0%* | -350.7** | 136.8** | 143.5%*
Match | 427.1%* 32.1% 76.3%* 563.8%* | 570.6**
STI | 395.0%* =32.1%* 44.3*%* 531.8%* | 538.5%*
3bin | 350.7** -76.3%* -44 .3%* 487.5%* | 494.9*%*
1bin* | -136.8** | -563.8%* | -531.8** | -487.5** 6.7
1bin | -143.5%* | -570.6** | -538.5%* | -494.2** -6.7
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Table 12: Results of the Wilcoxon signed-rank test for CPLEX computational experiments. Each cell reports
the column mean solve time minus the row mean solve time. A “*” indicates the difference is significant at
the oo = 0.05 level; a “**” indicates the difference is significant at the e = 0.01 level.

(a) All (n = 44)

Formulation EF Match STI 3bin 1bin* 1bin
EF -328.3%* | _317.1%* | -218.3%*% | 212.8%* | 227.1%*
Match | 328.3** 11.3 110.0 541.2*%* | 555.4%*
STI | 317.1%* -11.3 98.8%* | 529.9%* | 544 1**
3bin | 218.3** -110.0 -08.8** 431.1%% | 445.4%*
1bin* | -212.8%% | -541.2*%* | -529.9*%* | -431.1** 14.2
1bin | -227.1%% | -555.4%* | -544.1%*% | -445.4** -14.2

(b) CAISO (n = 20)

Formulation EF Match STI 3bin 1bin* 1bin
EF -234.5%% | -236.2%* | -180.1%* | 314.7** | 314.7**
Match | 234.5%* -1.7 54.4 549.2%* | 549.2%*
STI | 236.2%* 1.7 56.0** | 550.8** | 550.8%*
3bin | 180.1** -54.4 -56.0%* 494.8%* | 494.8%*
1bin* | -314.7** | -549.2*%* | -550.8** | -494.8** 0.0

1bin | -314.7%*% | -549.2%*% | -550.8%* | -494.8** 0.0

(c) FERC (n = 24)

Formulation EF Match STI 3bin 1bin* 1bin
EF -406.5%* | -384.5** | -250.1* 128.0 154.1%*
Match | 406.5%* 22.0 156.4 534.5*%*% | 560.6**
STI | 384.5** -22.0 134.4 512.5%* | 538.6**
3bin | 250.1% -156.4 -134.4 378.1*%* | 404.2%*
1bin* | -128.0 | -534.5** | -512.5%* | -378.1** 26.1
1bin | -154.1% | -560.6%* | -538.6** | -404.2** -26.1

(d) High Wind (n = 16)

Formulation EF Match STI 3bin 1bin* 1bin
EF 429 9%* [ _3G7 g¥* -175.4 186.1* 195.3*
Match | 422.2%* 60.4 246.8%* 608.3*%*% | 617.5**
STI | 361.8%* -60.4 186.4* 547.9%*% | 557.1%*
3bin 175.4 -246.8* -186.4* 361.5%*% | 370.7**
1bin* | -186.1*% | -608.3** | -547.9** | -361.5** 9.2
1bin | -195.3*% | -617.5%* | -557.1%* | -370.7** -9.2

(e) Low Wind (n = 28)

Formulation EF Match STI 3bin 1bin* 1bin
EF S2T4.TFF | —201.5%F | _242.8%F | 228.1** | 245.2**
Match | 274.7** -16.8%* 31.9 502.8%* | 519.9%*
STI | 291.5%* 16.8** 48.7%* 519.6** | 536.7**
3bin | 242.8*%* -31.9 -48.7%* 470.9%* | 488.0*%*
1bin* | -228.1*%* | -502.8** | -519.6** | -470.9** 17.1%
1bin | -245.2%* | -519.9%* | -536.7** | -488.0** | -17.1*
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to out-perform the other formulations save STT at the a = 0.05 level; it is likely the low power of the test at
n = 16 makes it difficult to distinguish Match and STI statistically. Finally we observe that overall the EF,

1-bin, and 1-bin* variants are significantly worse than the Match, STI, and 3-bin variants.

5 Summary

Considering Tables 1 and 6 together, it is unambiguous that Match performs better than the other variants
on Gurobi, followed by STI and then 3-bin. This is born out in the statical analysis of these results in
Table 11. Given that Match is as tight as EF in all instances while needing many fewer variables, but not
too many additional variables over STI, this result is not surprising.

Conversely, the computational results using CPLEX reported in Tables 3 and 8 are a bit more ambiguous,
and this is reflected in Table 12. While using CPLEX Match is often slower in the average case than STI,
using the Match formulation CPLEX solved every of the 44 instances considered in under 5 minutes, and

hence it exhibited the better worst-case performance.
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