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Abstract. The repetitive rapid solidification that occurs in metal additive

manufacturing (AM) processes creates microstructures distinctly different from

wrought materials. Local variability in AM microstructures (either by design or

unintentional) raises questions as to how AM structures should be modeled at the
part-scale to minimize modeling error. The key goal of this work is to demonstrate

a posteriori error estimation applied to an AM part. It is assumed that the

actual microstructure is unknown and an approximate, spatially uniform material

model is used. Error bounds are calculated for many reference models based on

AM microstructures with elongated grain morphology and localized or global fiber

textures during a post-processing step. The current findings promote confidence that

a posteriori model form error estimation could be used effectively in mechanical

performance simulations of AM parts to quickly obtain quantitative error metrics

between an approximate model result and many microstructure-based reference

models. The a posteriori error estimation introduces significant time savings compared

to computing the full reference model solutions. Tight bounds on model form error

are obtained when texture variations in the reference models occur on large length

scales. For materials with property variation at small length scales, multi-scale error

estimation techniques are needed to properly account for the many interfaces present

between areas with different properties.
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1. Introduction

Recent advances in additive manufacturing (AM) technologies, in which parts are

created from the layer by layer addition of material, are creating new possibilities in
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achievable part geometries and tailored material properties. Ultimately, mechanical

performance is governed by the part's microstructural features and material properties,

presence of defects, and residual stresses resulting from its complex thermal history

[1]. In metal AM, the repetitive rapid solidification that occurs as each material

layer is deposited creates unique microstructures with features distinctly different from

traditionally processed materials. This aspect of AM renders the material properties

throughout the part inseparable from the process parameters used to build it. As such,

performance predictions and ultimately part qualification for metallic AM parts remains

an active area of research [2, 3].

The microstructure within an AM part is highly dependent on the feedstock

material, process parameters, part geometry, and geometric feature orientation with

respect to the build direction. The evolving grain morphology and crystallographic

orientation strongly depend on solidification dynamics in the melt pool and local

temperature gradients [4, 5, 6, 7]. These in turn are affected by laser power [8], scan

pattern [4, 6, 9, 10], scan velocity [11], part feature size and geometry [12, 13], and

the number and spacing of parts on a build plate [5]. Various works in the literature

identify microstructures that have strong fiber texture in the (1 0 0) crystal direction

[14, 4, 15, 8, 12, 6, 9, 11, 16]. It has also been shown that certain scan patterns [4],

dimensions of the part being built (small vs. bulk) [12], and different thermal gradients in

different regions of a part [5, 13] can all result in texture variations within the part. This

variability in local texture contributes to overall variability in mechanical performance.

It has been shown by [17] that coupling of elongated grain morphology and texture can

significantly affect mechanical behavior. While such variability may be undesirable, we

also note that process-controlled microstructure to produce tailored local properties is a

goal of AM efforts. Recent works have shown that local texture and grain morphologies

can be modified by using different process parameters in different regions of a part

[18, 19].

Variability in AM microstructures (either unintentional or by design) raises

questions as to how AM structures should be modeled at the part-scale. Macroscopic

material models used in part-scale simulations typically contain only a few internal

state variables that represent the mean response of the material. Greater fidelity can be

achieved from fine-scale models that account for various aspects of the microstructure,

but these may be difficult to calibrate and/or prohibitively expensive to use in part-

scale simulations. Additionally, the entire processing history of a part may not be

known, and its microstructure may not be characterized. Thus, an approach where

the primary simulation is conducted with a simple material model and supplemented

with uncertainty quantification (UQ) or modeling error assessments becomes attractive.

Uncertainty quantification of AM processes and parts is still new and largely focused

on uncertainty in processing parameters [20, 21].

In this work, we draw from the body of literature on a-posteriori error-estimation

techniques for solid mechanics [22, 23, 24] to quantify the error induced when using

a simple, but approximate part-scale material model. In these methods, the errors
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resulting from use of an approximate material model in a mechanical performance

simulation are assessed with respect to a more accurate, but presumably more complex,

reference model during a post-processing step. Recent work by Brown and Bishop

explored such methods applied to welds with textured microstructure [25]. A modelling

approach in which an approximate material model can be used with adaptive material

properties to minimize model form error has also been proposed [26]. The complexity

of AM microstructures, however, requires special attention be paid to the reference

model(s) used.

The goals of this work are to (1) develop a suite of reference models based on

AM microstructures with local texture, and (2) demonstrate the application of a

posteriori error estimation techniques to an AM part where it is assumed that the actual

microstructure is uncertain. This paper is organized as follows. Section 2 presents a

brief review of texture variations in AM parts and a discussion of scale separation.

Section 3 presents a review of the theory for a posteriori model form error estimation.

An example AM structure and finite element analysis details are given in Section 4. The

approximate material model and the various microstructure-based reference models are

introduced in Section 5. The resulting model predictions and error bounds are discussed

in Section 6, and key conclusions are given in Section 7.

2. Texture variations and scale separation in metallic AM parts

In this section, we highlight several examples of AM parts with locally varying texture

(Section 2.1). A brief discussion on scale separation for AM structures is also presented

(Section 2.2). Many other features of the microstructure, such as cellular sub-grain

structure, fine features at the melt pool overlap zones, compositional differences, and

porosity can also affect the mechanical response. Incorporation of these mechanisms is

beyond the scope of this paper and is not discussed here.

2.1. Texture variations in AM parts

In many AM builds, a microstructure with elongated columnar grains and a (1 0 0) fiber

texture has been observed [8, 15, 12, 6, 9, 11, 16]. This texture typically occurs in cubic

materials, where the (1 0 0) crystal direction is the preferred growth direction [27, 28].

Structural features of the part and the cyclic thermal history that occurs as the scan

pattern is repeated during multi-layer builds also affects the microstructure. This can

result in differently textured regions within a single AM part. Several examples are

discussed here, to highlight that a uniform material property may not be representative

of the material everywhere in the part.

For example, Thijs et al studied several different scan patterns and found repeated

localized bands of elongated grains with (1 0 0) crystal orientations with spacing on the

order of the melt pool widths even when a global texture was not present [4]. Niendorf

et al [12] studied the effect of lattice strut dimensions on microstructures within a 316L
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stainless steel lattice structure manufactured by the Selective Laser Melting (SLM)

process. Small-diameter lattice struts showed a highly anisotropic microstructure with

strong (1 0 0) fiber texture, whereas larger struts processed under the same conditions

showed a microstructure with little texture [12].
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Figure 1. Additively manufactured 304L stainless steel tube. (a) side view of the

as-built tube structure, (b) longitudinal EBSD scan along the height of the tube wall.

(Adapted with permission from Springer Nature: Springer Nature, Comp. Mech.,

Johnson, Rodgers et al , 2017 ([13]).)

Johnson et al [13] recently studied a 304L stainless steel tube structure printed

with a direct energy deposition (DED) process. Figure 1 shows the tube structure and

EBSD scans along the entire length of the tube. The microstructure evolves from small

equiaxed grains near the base into a transition region of nearly all (1 0 0) grains [13].

Further up the tube build, the interior of the tube shows mostly (1 0 1) and (1 1 1) grains

with a concentric ring of (1 0 0) grains around the tube exterior wall [13].

A long-term goal of AM efforts is to achieve process-controlled local properties

within an AM structure by producing different microstructures at specific locations.

Notable works by Dehoff et al [19] and Popovich et al [18] demonstrate feasibility of

this concept on a laboratory scale. Popovich et al recently manufactured functionally

graded tensile bars from Inconel 718 and achieved sharp transitions between a fine-

grained microstructure with no texture and a coarse-grained microstructure with strong

(1 0 0) fiber texture by varying the laser power [18]. Corresponding transitions in elastic

properties were also demonstrated [18].
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2.2. Scale separation

The AM microstructures discussed in Section 2.1 present a challenge for mechancial

performance modelling. Locally varying microstructure may violate the assumptions

of scale separation, statistical homogeneity, and isotropy often used in part-scale

simulations. The scale-separation approximation is crucial to macroscale solid-

mechanics modeling since it provides a clear separation between the material and the

response of the macroscale part modeled using continuum mechanics [29].

The actual length scales relevant to achieve scale separation are dependent on the

particular part geometry and material microstructure. One heuristic definition is that

the length scale of the macroscopic geometric features should be much larger than the

average grain size. Additionally, if the part exhibits local regions with crystallographic

texture that correspond to distinct mechanical properties (such as in [18]), then the

length scale associated with changes in local texture must also be considered.

Microstructure 1:

Strong fiber texture

300

Microstructure 2:
Weak texture

300 il'un

A
lgrain << llocal

llocal lgeom

grain

Figure 2. Schematic of variable microstructure regions in an AM structure. Regions

with local texture may be on a comparable length scale to structural features. EBSD

images adapted with permission from Springer Nature: Springer Nature, Met. Mat.

Trans. B, Niendorf, Leuders, et al , 2013 QC

Figure 2 shows a schematic illustration of relevant length scales in an AM structure

with local regions of distinctly different texture. These include the grain-scale (lgrain)
length scale associated with an area of localized texture (liocai), and the part geometric

features (lgeom). For cases where scale separation between the grain-scale and the

structural features is violated, direct numerical simulation (DNS) of the microstructure

can be used to model the grain-scale physics (for example, crystal plasticity). DNS

provides arguably a more accurate representation of the material microstructure than
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macroscale models but can be prohibitively expensive when applied to engineering-

scale structures. For example, DNS of a tube structure with embedded microstructure

by Bishop et al [29] required approximately 30 million finite elements to resolve

approximately 50,000 grains in the tube microstructure.

For engineering simulations, it is more likely that a single spatially uniform material

property would be used to represent the entire structure. This modeling approach is

computationally efficient, but assumes scale separation between the structural features

and the length scale on which microstructure changes occur. This assumption may not

be appropriate in many AM parts and could result in significant model form error for

engineering quantities of interest.

3. Model Form error estimation

In this section, the theory of a posteriori error estimation is briefly reviewed and applied

to an AM part. Section 3.1 gives a summary of the method used to bound errors

arising from the use of an approximate material model with respect to a more accurate

reference model [22, 23]. A discussion of the workflow that considers multiple reference

models to represent the uncertainty of an unknown microstructure is given in Section 3.2.

Ultimately, we are interested in multiscale model-form error estimation in engineering

quantities of interest. However, this work focuses on single scale error assessments in

the energy norm to highlight the unique challenges associated with developing reference

models for AM structures. Additionally, we focus here on linear elasticity as a first step

towards the more general nonlinear case.

3.1. Error Estimation Theory

Consider the general boundary value problem of a body B with surface F subjected to

the boundary conditions of applied surface tractions and/or surface displacements. For

conditions of static equilibrium and the absence of body forces, the motion of this body

is governed by

V • a = o (1)

with boundary conditions u = U Oil ru and a • n = t on Ft. Here a is the Cauchy

stress, u is the displacement field inside the body, ft is the applied displacement, n is

the surface normal, and t is the applied traction. The displacement field u is obtained

via the solution of (1) together with the equations of strain-displacement compatibility

and the material constitutive law relating stress to strain.

For linear elastic materials, the relationship between stress and strain is given by

a = Cc, (2)

where a is the stress tensor, C is the fourth-order elasticity tensor, and E is the linear

strain tensor. The compliance tensor S is defined as the inverse of C, so that S = C-1.

The general form of C can be fully anisotropic and spatially varying throughout the body
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as C(x). We let this general form of C be the reference material model, and assume

that it is the closest representation of the AM structure's local elastic properties. We

also introduce an approximate material model with an approximate elasticity tensor,

Co, which contains known simplifications from C. For the present example, we restrict

Co to be isotropic and spatially uniform.

We assume that it is difficult to use the reference material model in part-scale

finite element simulations due to constraints such as computational expense. Instead,

the simulation is performed using the approximate material model to obtain an

approximate displacement solution u°,h, where h denotes a measure of mesh size. The

associated stress and strain fields obtained from this approximate solution are e and cr°

respectively. While computational expense may be small for the linear elastic models

studied here, the general methodology demonstrated through this example could be

extended to much more complex models where expense is a limiting factor.

The error e between the approximate displacement field and the true displacement

field u that would be obtained with the reference model is defined as

e=u — u°,h (3)
For the following analysis, the energy norm of the displacement field for a domain S-2 is

defined as
1/2

11U(x)11E (f c(x) : C(x)E(x)dc2) . (4)
Q

Using the triangle inequality property of norms, the error may be bounded in the energy

norm as

II ell E C Hu — ILO 11 E + Hu 
0 — u0,h11. E.

(5)

The first term Ilu — u°11E is the norm of error due to material model form. The second

term Ilu°— u°'1111E is the norm of the error due to discretization methods used to obtain

the solution. Here we assume that the discretization error is much smaller than the

model form error such that discretization error may be ignored.

Zohdi et al [22] obtained the following upper bound on the energy norm of the

model form error

II It — It0 112E = L(E13 — E) : C (€0 — c)c/C2 < LW) - ) : (6- — cr°)c/C2 (6)

where E and 6- are calculated from the approximate stress or strain fields and the

reference material properties as erCE° and E,cr°. The bound on the right hand side

of (6) is obtained entirely from known quantities and is calculated as a post-processing

step once the approximate solution is obtained. The total bound on the right hand side

of (6) is represented as the quantity Z2, so that

z2 • f (co Sao) : (Cco 0.0)da

Q
(7)
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(8)
The local error indicator (2 can be written in a strain form or a stress form (see for

example, Bishop and Brown [26]). Here, we use the strain form, written as

(2 (€0 woe)) 
• 
 (Cc° (Coe)). 

(9)

Note that the local error indicator, (2, is not a strict bound on the true local error.

It only identifies errors due to local differences in the approximate material properties,

C°, and the reference material properties, C. It cannot account for pollution errors

introduced from non-local effects in other regions of the structure [30]. For example, if

C° = C locally, the value of (2 would be zero while the true error may be non-zero due

to pollution errors introduced from other regions where C° C. However, the total

error bound Z2 remains a strict bound for the energy norm of error in the entire part.

In the case of finite element analysis, the total bound Z2 can be written as the sum

of local contributions from each element as
N

Z2 = E ((M v 2 
M  
)

V (10)
M=1

where a, and VM are the local error indicator and volume of each finite element,
respectively, and N is the total number of elements.

3.2. Workflow with multiple reference models

For AM structures, the exact microstructure may be unknown and could possibly

be variable throughout different regions of the structure. In such cases, choosing a

single, deterministic, reference model is challenging and may require complex process-

structure-property simulations to ensure that the reference model truly represents the

AM material. This could be time consuming and expensive. As an alternate approach,

we develop a suite of multiple reference models based on idealized versions of possible

microstructures, and use these to generate a range of error bounds. This provides a way

to assess the accuracy of predictions made by the approximate model that incorporates

the epistemic uncertainty introduced by not knowing the true microstructure. With

careful design of the reference models, the error bound with respect to the true

microstructure is assumed to be within the range of bounds generated.

A schematic of this workflow is shown in Figure 3. The primary simulation is

performed once with the approximate material model. A range of error bounds is then

generated with respect to multiple reference models a posteriori to the main simulation

with a special post-processing code. This moves assessment of material variability and

uncertainty to the postprocessing step, which is much less computationally expensive

than conducting a forward simulation with each reference model.
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Figure 3. Workflow for a posteriori error estimation with many microstructurally

based reference models.

4. Example AM part and boundary value problem

For an example of the error estimation workflow, we consider an AM plate with a center

hole loaded in uniaxial tension. The geometry and plate dimensions are shown in Figure

(a)

5 mm 

O. mm

10 mm

Y

Build

1

(b)

t

1 MPa

Figure 4. Plate structure with center hole. (a) Plate geometry and dimensions

with layer thickness shown. The AM build and scan directions are indicated. (b)

Coarse finite element mesh (9,342 elements) and applied traction boundary condition.

Simulations were performed on this mesh with one level of hierarchical refinement

(74,736 elements).

4a. The build direction, scan direction, and the structural coordinate system X, Y, Z

are indicated. The plate is composed of 20 individual layers 0.5 mm high with a total

height of lOmm. This layer thickness of 0.5 mm is typical of the upper range seen in

direct energy deposition processes [5].
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Table 1. Homogenized elastic properties used for the material models: Young's
modulus, E, Poisson's ratio, v, and Shear Modulus, G. Values of Young's moduli

and shear moduli, G, are given in GPa.

Et 1 E22 E33 1123 v13 v12 G23 G13 G12

Isotropic 200 200 200 0.3 0.3 0.3 75 75 75

Pure Fiber Texture 143 143 91.8 0.610 0.610 0.115 126 126 64

The applied traction boundary conditions and finite element mesh are shown in

Figure 4b. The meshing software Cubit [31] was used to create both the geometry

and mesh of the plate. The plate was first meshed with 9,342 hexahedral elements

to produce the mesh shown in Figure 4b. The simulations were performed on a mesh

with one level of hierarchical refinement (74,736 elements). Unit normal tractions of 1

MPa were applied to the upper and lower surfaces of the plate (Figure 4b) to explore

the small-strain behavior. The finite element simulations were performed using the

Sierra/SM finite element software [32].

5. Approximate and reference material models

We introduce the approximate material model and the suite of reference models

developed as idealized versions of possible AM microstructures. The material considered

here is AISI 304L stainless steel. This material is expected to have a primarily austenitic

microstructure (-y-Fe) in AM structures, similar to AM 316 stainless steels [5, 16]. The

austenite crystal structure is face-centered cubic (FCC) and has three independent

elastic constants: C11 = 205 GPa, C12 = 138 GPa, and C44 = 126 GPa [33]. The

anisotropy ratio A2C44/(C11 — C12) = 3.8 for this crystal. For an isotropic crystal,

A = 1. The relatively large anisotropy ratio for austenite suggests that the homogenized

material properties of highly textured microstructures will be anisotropic [34].

5.1. Approximate material model

For the approximate material model, we assume that the material properties are

spatially uniform throughout the structure. We use isotropic elasticity with nominal

values for stainless steel of Young's modulus E = 200 GPa and Poisson's ratio v = 0.3.

This approach is attractive for its simplicity, but may not be representative of textured

AM microstructures and would not account for microstructure variations.

5.2. Reference material models

The set of reference models is based on the highly textured microstructures with

elongated grains seen in many AM structures (see Section 2). A pure (1 0 0) fiber

texture is used to represent the limiting case when a strong texture is present. The

structure is modeled entirely at the macroscale with homogenized material properties.
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This approach assumes that scale separation is valid between the individual grain length

scale and the length scale associated with localized texture variations. In this case,

homogenized properties can then be used to represent a local region with distinct

(1 0 0) fiber texutre. Scale separation is not implied, however, between the macroscale

geometric features and individual regions with local texture. As such, we allow the

orientation of the homogenized material properties to vary spatially throughout the

part, such that localized regions with different properties can be resolved.

5.2.1. Homogenized properties of pure fiber texture We use a representative volume

element (RVE) approach to obtain homogenized elastic properties of 304L stainless

steel with a pure (1 0 0) fiber texture.

(a) (b) 
M1

E 1 1

M3

E33

M2

E22 = El 1

Figure 5. (a) The representative volume element (RVE) used to obtain homogenized
material properties for the reference material model. Colors represent unique grains.
(b) Material point with homogenized macroscale properties and material directions.

A material coordinate system, M1, M2 , and M3 represents the homogenized

material's principal directions. Each grain's crystallographic orientation is aligned

such that the (1 0 0) direction coincides with the material direction M3 . The crystal

orientations in the M1 - M2 plane are uniformly random, such that a pure (1 0 0)

fiber texture is obtained. Grain morphologies in the M1 - M2 plane were generated by

classical Voronoi tessellation techniques, such that each Voronoi cell is used to represent

a unique grain. The grains were then elongated in the M3 direction by a ratio of 4:1 to

approximate the elongated grain structure that can be present in AM materials. The

RVE and associated effective material directions, M1 , M2 , and M3 are shown in Figure

5 with color representing unique grains.

The macroscale effective elastic constants are obtained from computational

homogenization of the RVE [35]. Further details on the RVE generation and

homogenization process are available in [26]. The resulting homogenized material is

transversely isotropic and has 5 independent elastic constants that are oriented with



12

respect to the material coordinate system. Elastic constants for both the isotropic and

pure fiber textured material are given in Table 1.

(a) Model 1

M3

(h) Model 2

17,

(c) Model 3 AM3

= f(Y)

Figure 6. Reference models with spatially varying material orientation. (a) Model

1 with constant material orientation, (b) Model 2 with material orientation that

alternates per layer, (c) Model 3 with material orientation that linearly varies as a

function of Y.

5.2.2. Spatially varying material orientations Using standard coordinate transforma-

tion techniques for tensors, the homogenized transversely isotropic properties and mate-

rial coordinate system are transformed to the global coordinate system for each reference

model. Figure 6 shows the three different spatial distributions of properties considered.

These are designed to be idealized versions of several microstructures reported in the lit-

erature. The angles 0, 01, and 02 represent the angle between the material M3 direction,
in which the (1 0 0) grains are oriented, and the global X direction which corresponds

to the scanning direction. We designate these as Models 1-3 to differentiate between

each case in the following discussion.

Model 1 (Figure 6a) is an idealization that the as-deposited AM material develops

a fiber texture that stays oriented at a constant angle 0 with respect to the scanning

plane throughout the entire structure. This is based on microstructures produced by

long vector unidirectional scan patterns and high laser powers, such as in [8]. Model 2

(Figure 6b) is idealized such that the fiber texture alternates direction between angles 01

and 02 with each successive layer. This type of microstructure has been observed with

bi-directional, long vector scan strategies, as in [6]. Model 3 (Figure 6c) has a linearly

varying orientation gradient from angle 01 at the bottom of the structure to angle 02

at the top of the structure. This type of orientation gradient has been correlated with
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different scan velocities [11] and changing build surface normals with respect to the laser

incidence angle [14].

6. Results and discussion

As a case study, we present error estimation results considering the reference Models 1-3

with fixed material orientation angles. We then present ranges of error bounds obtained

from these reference models with multiple combinations of material orientations.

6.1. Case study with fixed material orientation angles

The material orientation angles for the three reference models were chosen based on

additively manufactured structures reported in the literature. For Model 1, 0 = 60° as

has been reported for long vector, unidirectional scans [6, 9]. For Model 2, 01 = 45°

and 02 = 90° which is idealized from microstructures reported for 316 stainless steel

manufactured by DED processes [5]. The Model 3 structure has material orientation

that linearly varies between 01 = 0° at the bottom and 02 = 90° at the top. This is

explored as a limiting case where the material orientation shifts from being parallel to

the scan direction in the initial few layers to being parallel to the build direction near

the top of the build.

(a) Approximate (b) Model 1: (c) Model 2: (d) Model 3:
61 = 60° B1= 45°, 612 = 90° al = 0°, 82 = 90°Isotropic

•
wstrain

25.0 i
18.8
12.5
6.2
0.0

Figure 7. Results from finite element simulations showing axial strain fields (eyy) for:

(a) approximate model (isotropic, uniform properties), (b) Model 1 with 0 = 60°, (c)
Model 2 with 01 = 45° and 02 = 90°, and (d) Model 3 with 01 = 0° and 02 = 90°

6.1.1. Stress and strain response The axial strain fields (eyy) and the von Mises

stress fields for each model are shown in Figure 7 and Figure 8, respectively. For the

approximate model (Figures 7a, 8a), both fields are smooth and symmetric about the

hole as expected for a structure consisting of a spatially uniform, isotropic material.
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3.75
2.50
1.25
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Figure 8. Results from finite element simulations showing von Mises stress fields for:

(a) approximate model (isotropic, uniform properties), (b) Model 1 with 0 = 60°, (c)
Model 2 with 01 = 45° and 02 = 90°, and (d) Model 3 with 01 = 0° and 02 = 90°

The hole acts as a stress concentrator, with the largest stresses and strains occurring at

the left and right edges of its mid-plane.

The fully computed response of the three reference structure models is also

presented for comparison to the approximate model response. For Model 1 (Figures

7b, 8b), the maximum strain occurs at the left and right edges of the hole, but the

area with higher stresses and strains is rotated with respect to the structure centerlines.

This results as the material axes in Model 1 are not aligned with the loading axis. Since

the structure for Model 1 has a spatially uniform material orientation, the fields remain

smooth without noticeable discontinuities at layer interfaces.

The response of Model 2 (Figures 7c, 8c) shows significant effects of the alternating

material orientations for each layer. The highest strain and stress are at the mid-plane of

the hole, but sharp discontinuities in both stress and strain are evident at the interfaces

between each layer. Different behavior is seen in the 01 = 45° and 02 = 90° layers. The

01 = 45° layers have the material M3 axis aligned at 45° with respect to the applied

load along the structural Y axis. The 02 = 90° layers have the M3 axis aligned directly

parallel to the applied load. Since the material M3 direction has a Young's modulus

value E33 that is much lower than the other two material directions, it follows that layers

with the 92 = 90° material orientation have higher strains compared with the layers

that have the 01 = 45° material orientation. Such layer interfaces with sharp change in

properties have been produced by AM processes, as demonstrated by Popovich et al [18]

who produced functionally graded Inconel 718 by AM that exhibited distinct regions

with different textures. Mechanical testing of this material showed a 50% reduction in

Young's modulus for strong fiber textured (1 0 0) regions oriented with the load axis

compared to fine grained equiaxed regions, and DIC revealed sharp gradients in strain

at the region interfaces [18]. Hitzler et al [36] have also shown that Young's modulus of
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AM parts can vary significantly depending on the orientation of the building direction

with respect to the loading direction.

The response of Model 3 (Figures 7d, 8d) also exhibits effects of the local material

orientation of each layer changing with respect to the applied load direction. In this

case, the entire region of the plate above the hole has larger strain compared to the other

models. This is due to the upper layers of the plate having material M3 orientations

that are approaching 90°, which aligns the least stiff material direction with the applied

load. The layer interfaces are seen faintly here, but show a much less pronounced effect

than Model 2. This is because the material orientation angle changes between any two

layers are much more gradual in Model 3.

These results show that structural features tend to govern the global part response,

while material variations generally contribute more to the local response. Similar

observations were made by Bishop et al [29, 34] who compared direct numerical

simulation (DNS) of parts including embedded microstructure with the macroscale

solution using homogenized material properties. In these works, the mean stress and

strain fields obtained by DNS were reasonably similar to the homogenized macroscale

solution, but large fluctuations in the local stress and strain fields were also present due

to the embedded microstructure [29, 34]. Such local variations would be particularly

important to capture when predicting fatigue and fracture initiation. The current study

of several idealized AM microstructures shows that if the material variations occur on

a length scale that is small compared to the structure (Model 2), the effect may be

local stress magnification or introduction of large local strain gradients. If the material

variation occurs across a large length scale, (Model 3), the entire structure response

may be altered. These impacts of material variability are especially relevant for AM

parts and reinforce the need for computationally efficient ways to evaluate different

microstructure-based models to supplement part performance analysis.

6.1.2. Error Estimation Figure 9 shows the local error indicator contours, (2, for

reference Models 1-3 with fixed orientation angles. The error indicators in Figure 9 are

computed during the post processing step (see (8)), and do not require finite element

computations with the reference models. To verify that these local error indicators

provide accurate spatial representation of the true error, the local exact error between

the finite element solutions of each reference model and the approximate model is shown

in Figure 10. We define the local exact error, w2, as the quantity inside the integrand

on the lefthand side of (6):

w2 f(60 - €) : C(60 - e)dc2 (11)
1-2

Comparing the local exact errors in Figure 10 with the local error indicators

in Figure 9, the spatial distributions are qualitatively very similar. Additionally,

regions with high local error indicator (Figure 9) correspond to regions that show the

most differences in the stress and strain fields between the approximate model and

the reference models (Figures 7 - 8). The effect of layers with alternating material
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Figure 9. Contours of local error indicator (2 between the isotropic approximate

model and each reference model: (a) Model 1 with 0 = 60°, (b) Model 2 with 01 = 45°

and 02 = 90°, and (c) Model 3 with 01 = 0° and 02 = 90°.
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Figure 10. Local exact error C.J2 between the isotropic approximate model and each

reference model: (a) Model 1 with 0 = 60°, (b) Model 2 with 01 = 45° and 02 = 90°,

and (c) Model 3 with 01 = 0° and 02 = 90°.

orientations is clearly seen in Figure9b. The error indicator is higher in the layers

oriented with 92 = 90° and exhibits sharp discontinuities at the layer interfaces. In

Figure 9c, the local error indicator has the highest values in the top half of the structure

due to the gradient of reference material orientation along the Y direction. This shows

that the error indicators, which are calculated a posteriori, provide a good indication
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Table 2. Comparison of the error bound, Z, and exact error computed between the
approximate model and each reference model.

01 02 Layer Orientation Z IIIP—ILIIE • Z
IIILOIIE Ilu'llE 71- 1110—ullE

Model 1 60 Constant 0.6255 0.6095 1.0263
Model 2 45 90 Alternating 0.6591 0.5239 1.2579

Model 3 0 90 Gradient f (Y) 0.5449 0.5307 1.0268

Table 3. Exact errors in quantities of interest (strain energy, stress, strain, stretch)

between the approximate model and each reference model.

01 02 Layer Orientation lw°-wl 11,7° -0-11 11E° -ell IA(u.)° -Au.Iwo 110'11 11011 ,a,(ii,)0

Model 1 60 Constant 0.3017 0.1187 0.8555 0.3028
Model 2 45 90 Alternating 0.3480 0.4057 0.7098 0.3519
Model 3 0 90 Gradient f (Y) 0.2047 0.1039 0.7224 0.2066

of where the approximate solution is most different from solutions obtained with each

reference model.

Table 2 provides a comparison of the energy norm of the exact error Ilu° — ullE
and the error bound Z. The error metrics presented in Table 2 are normalized by the

energy norm of the approximate displacement field, l I u° E. This II normalization quantity,, „ 
does not vary for each reference model. We also define an effectivity index for the error

bound as 71   An effectivity index of 1 indicates that the error bound matches' 11/P zitIIE .
the true error exactly. Values larger than 1 indicate that the error bound is larger than

the true error. Table 3 provides a comparison of the exact errors calculated for other

quantities of interest including strain energy, W, the global L2 norms of the stress and

strain fields, and the exact error in the global stretch of the plate Au2. We use the

Frobenius norm extended to represent the norm of a second-order tensor field Q(x) as
\(1/2)

11(7(4 (I cr(x) : °'(x)d9 . (12)

S2

From Table 2, it is clear that the global error bound Z provides a rigorous upper

bound of 1 1 u° — ullE in all cases. The largest total error occurs with respect to Model

1 as the reference model. This occurs because its material orientation of 60° aligns

the material direction M3 consistently closer to the direction of applied loading than

the other two reference models. The exact errors calculated directly for other quantities

(Table 3) provide additional insight into the errors with respect to each reference model.

Generally, the exact error in the L2 norms of the strain fields are much larger than in the

stress fields and the total strain energy. This results from the applied traction boundary

conditions and would be expected to reverse for displacement boundary conditions.

The error metrics are also affected by the length scale of large material orientation

changes in the reference models. The lowest errors in the strain field norm occur with

respect to Model 2, which has layers that alternate material orientation between 45
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and 90° at each layer interface. However, the stress field norm and the strain energy

have the highest errors with respect to this reference model. This occurs as the stiffer

45° layers dispersed throughout the Model 2 structure constrain deformation in the 90°

layers. The result is high local stresses in the 45° layers, but less global strain across

the entire structure (see Figures 7 - 8). In Model 3, the material orientations vary from

0° to 90° across the length scale of the entire structure, which results in much more

gradual changes in the local stress and strain fields. Thus, the norm of the stress field

and the strain energy errors with respect to Model 3 are comparable to those seen with

respect to Model 1, which has a uniform material orientation.

The error metrics in Tables 2 - 3 show that the error bound Z identifies the relative

severity of errors with respect to the various reference models as long as the length scale

of material variations is not too small. However, the global bound alone does not show

if the largest differences are in the stress or the strain fields. This motivates extension

to goal-orientated error estimation as has been done for random heterogeneous elastic

composites [37]. This could be particularly important for AM metals where the length

scale of material variations can be small resulting in high local stresses (Model 2).

6.2. Error estimation for variable material orientation angles

We now explore use of the a posteriori error estimation framework to provide a range of

error bounds based on large sets of reference models. We keep the basic form of Models

1 - 3 and vary the material orientations across a range of arbitrary angles.
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Figure 11. (a) Normalized error bound Z and (b) effectivity index 77, for Model 1

with variable orientation angle O.

Figure 11 shows the normalized error bound, normalized exact total error, and

effectivity with respect to reference Model 1 with material orientation angles ranging

from B= 0° to B= 180°. A new reference model was generated at intervals of 5° for a

total of 36 different models of the Model 1 type. Figure 12 shows the error metrics with
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Figure 12. (a) Normalized error bound Z and (b) effectivity index for Model 2

with variable misorientation angles )3 between layers. 0 = 61 - 02. In all cases, 01 is
held fixed at 45°.
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Figure 13. (a) Normalized error bound Z and (b) effectivity index 77, for Model 3
with variable bottom layer angle 01. The top layer angle is fixed at 02 = 90° such

that increasing 01 tends toward smaller misorientation between the bottom and the
top layers.

respect to Model 2 with various misorientation angles 0) between the alternating layer

material orientations. The orientation of M3 for the first layer is held fixed at 01 = 45°,

and in the next layer M3 is rotated counterclockwise by the misorientation angle such

that 02 = 611 +13. This pattern continues throughout the remaining layers which continue

to alternate between 01 and 192 . Figure 13 shows error metrics with respect to Model

3 with the orientation of the bottom layer varied between 01 = 0° and 01 = 90°. The

top layer is held constant at an orientation of 02 = 90°. Thus, the global material

orientation gradient covers a smaller range of angles from bottom to top as 01 increases.
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The case of 01 = 90° represents a uniform orientation of all layers at 90°. In all cases,

the total error bound and the total exact error are normalized by the energy norm of the

approximate displacement field, 11u°11E, which is independent of the reference models.

This facilitates comparison of the many reference models and ensures that changes in

the error metrics are the only quantities that drive changes in the presented results.

6.2.1. Computational time savings Computing the a posteriori error bounds for each

reference model was much faster than computing the full reference model solutions.

For the study shown in Figure 11, we computed both the error bounds and the exact

errors for 36 reference models with different material orientations. Calculating the exact

errors required computation of the full finite element solution for each reference model,

while the error bound was calculated through the postprocessing approach discussed

in Sections 3.1 - 3.2. The error estimation workflow shown in Figure 3 was completed

on a single processor and took 2.85 minutes to obtain the approximate model solution

followed by 5.4 minutes to compute the error bounds for all 36 reference models. By

contrast, it took 2.8 hours to obtain the full finite element solutions for all of the same

reference models. This shows that even for elastic analyses, which are considered to be

computationally inexpensive, the a posteriori error estimation can provide substantial

time savings when evaluating many different reference models.

We do note that this time savings is independent of the time required to develop

and/or calibrate appropriate reference models. In general, the reference model(s) chosen

need not be obtained directly from microstructural information as we have done in this

example. Reference model(s) only need to provide a higher fidelity representation of

material behavior than the approximate model. For AM metals, however, development

of high-fidelity material models is still an active area of research. In some cases, the

cost associated with a meso-scale representation of the material microstructure may

be necessary for accurate representation of the material behavior. Particularly for such

cases, the proposed framework provides a way to quantify model-form errors with respect

to microstructure-based models with less computational expense than computing many

high-fidelity solutions (such as DNS with embedded microstructures).

6.2.2. Effectiveness of error bounds As seen from Figures 11 - 13 (a), Z provides a

strict upper bound of the exact error in the energy norm for all of the reference model

variations considered. This promotes confidence that it could be used effectively in

an analysis workflow for AM structures as a metric to quickly assess the error in the

approximate model result compared to many microstructure-based reference models.

Cases with high error bounds could then be further investigated by computing the full

solution with these reference models if more details were needed.

Careful design of the reference models and understanding the mechanics of the

boundary value problem is still needed to interpret the results of such error estimation

sweeps, however. Some knowledge of what features are expected in the microstructure

(e.g., macroscale texture vs. local textures vs. no texture) is needed to make sure the
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reference models are relevant representations of possible material behavior. Additionally,

we note that error bounds and associated trends observed over large suites of reference

models would vary for different loading conditions, especially since the reference models

considered here are not isotropic. For the current example, the maximum error occurs

with respect to reference Model 1 with a uniform material orientation of 0 = 90° (Figure

11). For this reference model, the entire structure has the material M3 direction aligned

with the applied load. This material direction has the greatest difference in modulus

from the isotropic material model and subsequently results in a large model form error.

(a) 2 Layers (b) 5 Layers (c) 10 Layers

0.8 0.8

z N -Exact Error - Exact Error
0.7

ut ..... •• • Error Bound
0.7

... •• • Error Bound

0.6 0.6

2 0.5 I I u° .........
0.5

I u° ull E ..........
0.4 0.4 I 101 IE

3 0.37 0.3

Cs 0.2 0.2

0.1 0.1

0.00
0.0020 40 60 80 100 120 140 160 180 20 40 60 80 100 120 140 160 180

(a)

2.0

X

1.5
c

1.0

0.5

Misorientation Angle On Misorientation Angle p (°)

0.8

Z - Exact Error

0.7 •• • Error Bound

...................
ullE0.4

110011E
0.3

0.2

0.1

0.00
20 40 60 80 100 120 140 160 180

Misorientation Angle )3 (°)

Figure 14. Global error metrics for Model 2 vs. misorientation angle 0 between layers

(0 = 81 - 82) for different number of layers, (a) 2 layers, (b) 5 layers, (c) 10 layers.
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Figure 15. Effectivity of the error bound for Model 2 vs. misorientation angle 0
between layers (0 = 81 - 612) for different number of layers, (a) 2 layers, (b) 5 layers,

(c) 10 layers.

A second feature of the sweeps over many reference models is that while Z always

bounds the exact error, this bound is not always tight. This is particularly true

for the sweep over misorientation angles between the alternating layers in Model 2.

Large discrepancies can be seen between the error indicator and the exact error for

misorintation angles between 20 - 80° and between 100 - 160° (Figure 12a), resulting in a

high effectivity index up to 2.0 for these particular reference models (Figure 12b). A high

effectivity index is generally undesirable, as this metric roughly indicates the percentage
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by which the true error is overestimated. For the reference models explored here, the

only cases where the effectivity index is high are the specific instances mentioned above

for Model 2. By contrast, the effectivity index is much closer to 1.0 for both the Model

1 sweep (Figure 11b) and also the Model 3 sweep (Figure 13b). This indicates that the

sharp contrast in material properties at the interface between layers in Model 2 is the

likely source of this behavior. Model 3 also has different material orientations in each

layer, but the misorientation between layers is much more gradual and the corresponding

error bound has a much lower effectivity index (Figure 13b).

Figures 14 - 15 present the error metrics for the various misorientation angles with 2,

5 and 10 layers in the Model 2 reference models. Comparing Figures 14 -15 and Figure

12 shows that the error bound becomes less tight as the number of layers increases,

and the effectivity index begins to show peaks much greater than 1. This indicates

that the sharp gradient in material properties present at the layer interfaces introduces

additional complexity in the local stress and strain fields that the single-scale error

indicator formulation is unable to capture. If the number of such interfaces is low, the

interface effects are small compared with the overall material response and the error

bound remains tight. With larger numbers of interfaces, however, the interface effects

accumulate and the error bound noticeably deviates from the exact error. Additionally,

as more layers are modeled and the individual layers with distinct properties become

smaller, the assumption of scale separation between local material variations and

areas that can be represented with macroscale properties becomes questionable. This

ultimately illustrates the need for multi-scale error estimation techniques, in which the

reference models could be DNS of the individual grain responses rather than a set of

homogenized macroscale properties. Such multi-scale error estimation techniques have

been developed for fiber composite materials (for example, [37]), but have yet to be

explored for AM structures. Multi-scale error estimation would be particularly necessary

for structures manufactured by powder bed processes, in which the layer thickness is on

the order of 30-50 ium and local material variability could occur on a much smaller scale

than the reference models studied here.

Lastly, we note that complex part geometries and loading conditions not explored

here may also affect the error bound tightness. However, we expect these factors to

be secondary drivers compared with the effect of material property interfaces discussed

above. The error bound Z is calculated from the approximate solution strain field, the

spatial distribution of the approximate stiffness tensor, and the spatial distribution of

the reference stiffness tensor (see (9) - (10)). The effects of part geometry and loading

would be captured within the approximate model strain fields. Thus, these factors would

be incorporated in both the error bound calculation and the reference model solutions.

Preliminary studies on more complex part geometries support that reference models

with disparate material property interfaces are a stronger contributor to non-tight error

bounds.
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7. Conclusions

Several methods were explored to model the mechanical response of additively

manufactured metal structures with various representations of local and global textures.

A 304L stainless steel AM structure with 20 distinct layers was modeled under uniaxial

tension loading conditions as an example. A posteriori model form error estimation

techniques were used to calculate a range of error bounds for a simulation performed with

a single approximate material model. The approximate model solution was compared

to a set of reference models, with each representing a possible as-built microstructure.

The example presented here considers isotropic, spatially uniform properties as

the approximate model and various configurations of material with a pure (1 0 0) fiber

texture as the reference material. Computational homogenization was used to obtain a

higher fidelity representation of AM materials with this textured microstructure. The

effective Young's moduli are predicted to be transversely isotropic and differ by a factor

of 1.5 between the (1 0 0) direction and the other two orthogonal material directions.

Over 100 different reference models were generated with the transversely isotropic

properties by allowing material orientation to vary throughout the structure. For AM

structures where the exact microstructure may be unknown or variable throughout

different regions of the structure, this provides a methodology to assess the impact

of material variability on the simulation quality.

The a posteriori error estimation computations resulted in significant time savings

compared to computing the full reference model solutions. Global error bounds on the

strain energy norm of the displacement error remained a tight bound on the exact error

when the length scale of spatial material changes in the reference models was large.

However, material variations over small length scales resulted in pollution errors at

layer interfaces, and the global bound noticeably overestimated the exact error. The

current findings promote confidence that a posteriori model form error estimation could

be used effectively in an analysis workflow for AM structures as a metric to quickly

obtain quantitative error metrics between an approximate model result and several

microstructure-based reference models. For materials with property variation at small

length scales, multi-scale error estimation techniques are needed to properly account

for the many interfaces present between areas with different properties. Additional

development of more accurate reference models for AM structures is also needed in

addition to more detailed studies of the assumption of scale separation for these

materials.
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