
10/26/2017

1

Electromagnetic Roots for Radar

Armin Doerry
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Outline (more‐or‐less)

• Maxwell’s Equations 

• Wave Propagation Equation

• Plane‐Wave Propagation

• Plane‐Wave Reflection

• Radar Range/Delay

• Dielectrics

• Point Sources and Reflections

• Complicated Scattering

• Born Approximation

• Antenna Basics
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Maxwell’s Equations
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(1)  Gauss’ Law

(2)  Gauss’ Law for magnetism

(3)  Faraday’s Law

(4)  Ampere‐Maxwell Law
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E = Electric Field
H = Magnetic Field
 = charge density 
J = current density
 = permittivity
 = permeability 

Maxwell’s equations relate electric fields and magnetic fields.  
They underpin all electrical, optical, and radio technologies.

 Electric Displacement field

Magnetic Induction field

Everything starts here.

Let there be light.

Vector Calculus Identities/Formulae
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Stokes theorem

Divergence theorem

Free‐Space Propagation
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In free‐space there are no currents or charges, 
and no losses.

Maxwell’s equations can be manipulated to
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and in turn, using some identities, to
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Similarly, for the magnetic field
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In Cartesian coordinates, each component of the 
vectors E and H satisfy a scalar wave equation.

Note that these are second‐order 
differential equations, with 
solutions that are sinusoids. 
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In free‐space
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We further identify

Propagation velocity

Characteristic 
wave impedance

Free‐Space Propagation
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Taking the Inverse Fourier Transform of both 
sides yields the Helmholtz equations
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Temporal frequency in Hz (cycles/sec.)

Wavenumber in radians/meter

Wavelength in meters

where we also define

Poynting’s theorem shows that the 
direction and magnitude of energy 
flow is

 P E H

As seen in the next few slides, 
Maxwell’s equations reveal that E and 
H are perpendicular to each other, 
and both are also perpendicular to the 
direction of travel.

The orientation of E defines the 
“polarization” of the plane‐wave. 

Angular frequency in radians/sec.
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We further define

Solutions have phase that is a 
function of both time and space.

These ‘waves’ travel, with a free‐
space velocity of propagation
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Sinusoidal Plane‐Wave Propagation
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A propagating wave with a planar 
wave‐front is a plane‐wave.  

The electric field of a linearly polarized 
plane wave is given by
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Direction of propagation

Polarization vector 

Field observation point

ˆ k E = H

E and H fields are related as

The Poynting vector is in the 
direction of  k̂

Sinusoidal Plane‐Wave Propagation
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If traveling in the direction of the z‐axis, 
with an electric field oriented parallel to 
the x‐axis, our field reduces to simply
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Forward/right travelling

Backward/left travelling   2, cosxE t z e t kx  

and another solution
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and the field equation reduces to 
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Propagation in a Dielectric
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In a dielectric
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relative permittivity 

relative permeability 

These relative quantities are typically 
greater than one.

Complex values denote propagation is lossy.

Frequency‐dependence implies a 
“dispersive” media, where the echo may 
‘not’ be a faithful reproduction of the 
incident signal.

In a lossless dielectric, it remains true, but 
with different numerical values, that
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with E and H fields still related as

ˆ  z E H

with comparable electric field solutions
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Note additionally that k and  are affected.

Fields in a Perfect Conductor
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In a conductor, we observe electric fields 
causing charge motion, i.e. a current, 
with density calculated by Ohm’s law

J = E

where  = conductivity.

Free charges placed within a conductor 
will disperse towards the conductor 
surface, instantaneously, leaving none in 
the interior, until the total electric field 
inside the conductor is zero.  

In a perfect conductor

 

Bottom line:  the surface of a perfect 
conductor cannot support tangential 
electric fields, or normal magnetic fields.

Applications of Stokes’ theorem to a perfect 
conductor boundary shows that tangential electric 
field must be zero at the boundary. 

Application of Gauss’ law for magnetic fields yields 
that the normal electric field may exist, but must do 
so with a corresponding surface charge density.

Applications of Stokes’ theorem to a perfect 
conductor boundary also shows that a tangential 
magnetic field may exist, but must do so with a 
corresponding surface current density.

Application of Gauss’ law for magnetic fields yields 
that the normal component is zero.

Actually a part of Maxwell’s 
original set of equations

At the conductor boundary:

(Time‐varying fields)

Plane‐Wave Reflection from Perfect Conductor
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E

HLet the forward‐travelling 
field encounter a perfectly 
conducting planar surface 
at normal incidence after 
distance z0.

Recall that at the conductor surface, the tangential 
electric field must be zero, and the normal magnetic 
field must also be zero.

For these boundary conditions to be 
met, we must also have generated at 
the surface a backward travelling wave 
such that
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Consequently, the backward travelling 
field is related to the forward‐travelling 
field by

Radar Echo

0 0z z

Plane‐Wave Reflection from Perfect Conductor
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A fundamental tenet of monostatic 
radar is that any generated/transmitted 
field in free‐space that encounters a 
reflecting boundary will echo a faithful 
reproduction (in shape) of the incident 
signal, to arrive at its origin with a 
round‐trip time delay of
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We observe that the incident and 
reflected fields are

Note that the ratio of the magnitudes of 
these fields is constant (unity), and 
independent of frequency

Furthermore, the field equation is linear, 
meaning that any signal that can be 
written as the sum of sinusoids will 
exhibit the same reflection characteristics,

which means pretty much any signal we 
can realistically create.

True for all frequencies.

These observations combine to yield 
the following:
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Plane‐Wave Reflection from Dielectric Boundary
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The boundary conditions are that the 
tangential components of E and H must 
be continuous at the dielectric interface.
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We define
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and for a perfect conductor

1 0 

With respect to power, we observe
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Relative reflected power
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Plane‐Wave Reflection from Dielectric Boundary
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For oblique angles, and lossy dielectrics, 
reflections and transmission properties 
are readily calculated.

Furthermore, familiar optical properties 
of reflection, refraction, and Snell’s law 
apply.

Similarly, for interfaces other than a 
plane, diffraction applies.

The “index of refraction” is still 
defined as
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Spherical Wavefronts
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Consider a radiating field in a lossless 
dielectric driven by a forcing function; 
a “ping” in both time and space, 
namely
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This has a solution

This field is travelling in a radial direction, 
with diminishing field strength.

Furthermore, recall that fields are 
perpendicular to direction of travel.

Observations:

• Recall that fields are perpendicular to 
the direction of travel

• A small finite‐dimension area becomes 
more planar as r increases

• Power/Energy density diminishes as 1/r2

• Total power/energy crossing the 
sphere’s surface remains constant; 
independent of sphere size.

E

H

Mythical Point Target
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More complicated targets are often 
presumed to be merely collections 
(clouds) of point reflectors.

Consider a reflecting object that
• Occupies a point in space
• Intercepts a portion of a radiated 

field, and
• Emanates a reflected field from 

that point towards a receiver with 
finite total power

Consider the point reflector intercepting a 
propagating field with power density  W/m2.

Let the point reflector reradiate a field with a 
power density as seen by a receiver of 

The point then has a “Radar Cross Section” of

 24 r 

2R C S m



 

Furthermore, that point reflects all 
frequencies equally, and instantaneously, 
without generating a delay more than its 
range from the wave emitter and receiver.

These assumptions allow tractable 
processing algorithms to be developed.

Using real targets that 
approximate point 
target reflectors is an 
indispensable tool for 
radar performance 
evaluation.

Courtesy NASA

Mythical Point Target
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For real radar‐hardware testing and 
evaluation, we like to use targets that 
mimic a point reflector to some extent.

These targets are typically large with 
respect to wavelength, so geometrical 
optics principles apply.

The RCS of these “canonical” targets can 
be calculated with relatively high 
accuracy and precision… with some 
caveats.

Trihedral 
“corner” 
reflector

Tophat reflector

Sphere

Complicated Scattering
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We now presume that some incident 
electric field results in a scattered, or 
reflected, electric field, with
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The total field is the sum of both, namely
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Incident field

scattered/reflected field

Scattering occurs from dielectric changes, 
which causes changes in propagation 
velocity.  For convenience we acknowledge 
this with the model
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The wave equations can be manipulated to 
the Lippmann‐Schwinger integral equation
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Since the total field also contains the 
scattered field, this becomes an equation that 
needs to be solved, which is not tractable 
except for the simplest of geometries.

problem
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Born Approximation
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To make the problem tractable, we ignore the 
scattered field on the right side of the equation 
and approximate the problem as
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E E

Born Approximation

This is the equivalent to assuming that the 
scattered/reflected field is generally 
small/weak compared to the incident field.

While this makes the problem tractable, it leads to some errors 
in rendering radar data, often called multipath ‘artifacts.’

Incident field only

See development by Cheney & 
Borden, and Cheney & Borden.

Born Approximation ‐ Artifacts

20

Jet engine inlets often 
exhibit characteristic 
multipath effects.

Far range

Near range

Side of monument

Ground

Ray trace

Direct return,
Single bounce

Double bounce

Triple bounce

This image of a tank seems to 
suggest 3 cannon barrels.  However 
careful analysis shows that along 
with the direct return, we have 
multipath effects of double and 
triple bounces involving the ground.

Antenna Basics – Hertzian Dipole
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The task of creating propagating E and M
fields from signal voltages/currents is the 
function of an antenna.

Typical antenna design/analysis begins 
with establishing a current density J as a 
forcing function to generate the fields.

Consider a short linear current element 
of length h and current strength I0

h I0

r



Spherical field components, 
using phasor notation, are
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In the far‐field, where r is large, 
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 Field components are 
perpendicular to each other, 
and to the direction of travel

Hertzian
dipole

h 

See development in Ramo, 
Whinnery, & Van Duzer

Antenna Basics – Hertzian Dipole
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For our Hertzian dipole

Power density

Total radiated power

The power density related to that of an 
isotropic antenna is calculated as

  23
sin

2
p r

The power radiated in some directions has 
been enhanced at the expense of other 
directions

 Antenna Gain

More complicated antennas can be 
analyzed by treating them as collections 
of infinitesimal Hertzian dipoles, and 
superposing the results.

As a practical matter, at large distances, 
we may assume the following

1. Differences in the radius vectors to the 
elemental dipoles are unimportant in 
their effect on magnitudes.

2. All field components decreasing faster 
than 1/r are negligible.

3. Differences in the radius vectors to the 
elemental dipoles ‘are’ important for 
their phase, but may be approximated.

Antenna Basics – Linear Aperture
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Consider a line‐antenna that is long 
compared to a wavelength, but with 
constant‐strength current

r h  

h
I0

r



  sinc cosjkr
peak

h
E e E 


   
 

r

The field pattern can be calculated as an 
integral of a line of infinitesimal Hertzian
dipoles, resulting in the form

The main lobe of this response has a 
nominal angular beamwidth of

bw h

 

The power density within this main beam 
has been enhanced with respect to an 
isotropic antenna by

 
2

2 2

bw

h
p   

 r

Longer antenna, shorter wavelength, 
mean more/higher gain.

   sin
sinc







Wave‐fronts are still spherical, but 
strength varies with direction.where

Antenna Basics – Far‐Field Pattern
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Note that the current density with shape

 
1 1 2

rect 1 2 1 2

0 1 2

l h
l

x l l h
h

l h

 
    

   
has far‐field pattern shape

cos cos
sincX h h

 
 

      
   

These constitute a Fourier Transform pair

  cos
x l X




   
 

It is generally true that the far‐field 
antenna pattern shape is the 
Fourier Transform of the current 
distribution on the radiator.

and can be shaped accordingly
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Antenna Basics – Area Aperture
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r h  

h

J0 r




In two dimensions

r w  

w

  sinc cos sinc cosjkr
peak

h w
E e E  

 
       
   

r

The main lobe of this response has 
nominal angular beamwidths of

bw h

 

bw w

 

The power density within this main beam 
has been enhanced with respect to an 
isotropic antenna by

  2 2 2
2

4 4 4

bw bw

hw
p A 

 

  
   




  r

Larger‐area antenna, shorter wavelength, 
mean more/higher gain, narrower beamShape is 2D Fourier Transform of 

current density 

Actual aperture area

Antenna Basics – Gain and Effective Area
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Real antennas radiate only a fraction of the 
power with which they are supplied.

The ratio of total radiated‐power to supplied‐
power is the antenna efficiency.

The antenna power gain in the center of its 
main beam is approximated as

2

4 4
A

bw bw
G A

  
  

 

efficiency

Just as current densities can cause 
radiated fields, so too can radiated fields 
cause current densities.  This is the 
duality nature of antennas.

The sensitivity of a receiving antenna 
versus direction is the same as the field 
shape for field generation.

The power generated by an antenna, 
useable to subsequent processing, is 
based on the power density incident. 
Specifically, received power is the 
incident power density multiplied by

2

4e AA G

A






 



Antenna effective area

Bigger antennas are more sensitive

Antenna Basics – System Parameters
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From a systems standpoint, the important 
parameters of an antenna are

• Frequency of operation
• Bandwidth

• Gain versus angles
• Mainlobe beamwidths
• Pattern shape in all dimensions

• Sidelobes
• Efficiency

• Phase center

Where on the physical 
structure is the center of 
the spherical wavefront? Answers the question 

“range from where?”

Antenna – Examples
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Various internet sources

Section Summary

• Maxwell’s equations are the root of all radar behavior 
and operation

• Radar is about how radiated fields interact with, and 
reflect from, dielectric boundaries

• A “point target” is a useful fiction, and can be physically 
approximated for radar analysis

• The Born approximation makes radar analysis tractable, 
but comes at a price of artifacts in the data rendering

• Antennas are the transducer between signal 
voltages/currents and EM fields

• The far‐field pattern is related to aperture current 
distribution by Fourier transform
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Notes
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