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Abstract—Neuromorphic computing refers to a variety of
brain-inspired computers, devices, and models inspired by the
interconnectivity, performance, and energy efficiency of the
human brain. Unlike the ubiquitous von Neumann computer
architectures with complex processor cores and sequential com-
putation, biological neurons and synapses operate by storing and
processing information simultaneously with the capacity of flexi-
ble adaptation resulting in massive computational capability with
much less power consumption. The search for a synaptic material
which can closely imitate bio-synapse has led to an alamethicin-
doped, synthetic biomembrane which can emulate key synaptic
functions due to generic memristive property enabling learning
and computation. This two-terminal, biomolecular memristor, in
contrast to its solid-state counterparts, features similar structure,
switching mechanism, and ionic transport modality as biological
synapses while consuming considerably lower power. In this pa-
per, we outline a methodology for using this biomolecular synapse
to build neural networks capable of solving real-world problems.
The physical mechanism underlying its volatile memristance is
explored followed by the development of a model of this device
for circuit simulation. We outline a circuit design technique
to integrate this synapse with solid-state neuron circuit for
hardware implementation. Based on these results, we develop a
high level simulation framework and use a training scheme called
Evolutionary Optimization for Neuromorphic System (EONS) to
generate networks for solving two problems, namely iris dataset
classification and EEG classification task. The small network size
and comparable to state-of-the-art accuracy of these preliminary
networks show its potential to enhance synaptic functionality in
next generation neuromorphic hardware.

I. INTRODUCTION

The impending end of Moore’s Law, the breakdown of
Dennard Scaling, the low bandwidth between CPU and mem-
ory known as the von Neumann bottleneck coupled with
ever increasing computing demands is driving researchers to
explore alternative computing paradigm [1]. Neuromorphic
computing has emerged in recent years as a complemen-
tary architecture to von Neumann systems. Compared to
traditional architecture, neuromorphic computers comprising
artificial neurons and synapses provide a better platform for a
more efficient implementation of neural network algorithms.
However, even after significant advances in very-large-scale-
integration (VLSI) circuits [2], neuromorphic networks are still
far from achieving the complexity, neuronal density and power

efficiency of the human brain. The brain uses sophisticated
molecular mechanisms to continually reconfigure connectivity
between neurons and the resulting synaptic plasticity [3]
enables the brain to remember patterns and adapt to incoming
information, as well as perform massive amounts of parallel
operations with significantly low power consumption [4]. In
contrast, VLSI networks emulate synaptic activities using
transistors, bearing little resemblance to bio-counterparts at the
mechanism level, and require significantly large, power-hungry
complementary metal-oxide-semiconductor (CMOS) circuitry.

Most state-of-the-art solid state emerging devices used for
neuromorphic circuits have been developed with the primary
target of high integration density and computational power-
efficiency, and for the most part, have disregarded biological
realism on both structural and functional levels. A possible
alternative approach is to design more biologically faith-
ful systems that are energy-efficient, soft, stochastic, fault-
tolerant, and preferably biological. To this end, a biomolec-
ular memristor(memory resistor) with composition, structure,
switching mechanism, and ionic transport similar to bio-
synapses has been recently reported by Najem et al. [5]. This
device can emulate key synaptic functions including paired-
pulse facilitation and depression due to a generic memristive
property, enabling learning and computation while consuming
considerably lower power. Moreover, the synapse-like dynamic
properties of the device enables simplified learning circuit
implementations. In this paper, we outline a methodology for
using this bio-synapse to build neural networks for solving
real-world problems. The small network size and comparable
to state-of-the-art accuracy of these preliminary networks
show its potential to enhance synaptic functionality in next
generation neuromorphic hardware.

The remainder of the paper is organized as follows: In
Section II, we explore the physical mechanism resulting in
volatile memristance. The device model and SPICE imple-
mentation for circuit level simulation is described in Section
II. In Section IV, we outline a circuit design technique
to integrate this synapse with solid-state neuron circuit for
hardware implementation. Based on these results, a high
level simulation framework is developed in Section V where



we use a training scheme called Evolutionary Optimization
for Neuromorphic System (EONS) to generate networks for
solving two classification problems, namely the IRIS dataset
classification task and EEG classification task. Finally, we
discuss our results and conclude the paper in Section VI.

II. BIOMIMETIC SYNAPTIC DEVICE

Biological neurons and synapses operate by storing and
processing information simultaneously, while maintaining the
capacity to adapt. These attributes, co-location of computing
and memory, as well as plasticity are unique to the brain,
allowing it to perform massive computational operations while
consuming as little as 20 watts [4]. Neuromorphic circuits
based on traditional silicon-based circuitry fail to mimic
basic transport properties of biological synapses and neural
networks, and, as a result, require far more complex neural net-
works and power to achieve similar computational capability.
Meaningful insight into how the brain processes and acts on
information in complex environments requires developing eas-
ily configurable devices that emulate nature’s biological neural
design and the complex biomolecular processes responsible for
brain memory and computing. To this end, a soft, two-terminal
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Fig. 1: Biomolecular memristors with alamethicin ion channels
for voltage-controlled signal transmission

biomolecular memristor device that mimics the physical struc-
ture, switching mechanism, and ion transport of bio-synapses
has been recently demonstrated [5]. This device consists of an
alamethicin-doped synthetic biomembrane that is 3-5 nm in
thickness (Fig. 1). In brief, the highly insulating (~10 G€2)
lipid membrane self assembles at the interface of two in-
contact, lipid-encased aqueous droplets placed in hexadecane
oil. In the presence of alm peptides and sufficient transmem-
brane voltage, conductive and memristive ionic pathways are
created through volatile, voltage-driven insertion of alame-
thicin peptides (alm) into the insulating lipid membrane (Fig.
1). At low voltages, where alm peptides are surface-bound, the
device is considered to be in the resting state. However, the
device abruptly switches into a voltage-dependent conductive

state at voltages exceeding a certain potential, Vip,eshotd- This
response closely resembles the voltage-modulated variable
conductance in biosynapses. Current-voltage relationship of
the device in response to harmonic voltage input exhibits
pinched hysteresis which demonstrates the memrisitive nature
of the two-terminal system.

Experiments and simulation illustrated voltage-dependent
threshold switching and volatile memristive behavior governed
by two voltage-dependent state variables: the areal density of
alamethicin channels, and the increase in membrane area due
to electrowetting, which in turn dictate the total number of ion
channels, and, thus, the net conductance of the device. As a
result, the two-terminal device exhibited switching dynamics
that are comparable to depolarizing pulses in actual nerve
cells, with short- and long-term plasticity such as paired-pulse
facilitation (PPF), paired-pulse depression (PPD), and, when
paired with a non-volatile memristor, spike timing dependent
plasticity (STDP) [5]. Compared to prior memristive devices,
this biomolecular memristor consumes significantly less power
(0.1-10 nW) and is easier to fabricate.

III. DEVICE MODEL AND SPICE IMPLEMENTATION

The current-voltage relationship of a generic voltage-
controlled memristor can be written as

I=G=x)V (D
dx
s f(z; V) 2

Here, G is the nominal memory conductance and x rep-
resents one or more voltage-controlled state variables that
control the conductance. The conductance of our biomolecular
memristor is determined by the total number of alm pores
creating ion-channels across the insulating membrane, which
in turn depends on the areal density of alm pores and the
nominal size of the bilayer. Both these factors are controlled
by voltage giving the device its voltage-controlled memristive
nature. By choosing the number of open alm pores per unit
area, IV,, and the fractional increase in bilayer area, A,,, as
two state variables, Eq. 1 can be rewritten as,

I =G(Ng, Ap)V 3)

For an applied voltage V, the state equations for N, and
A,,,, as derived in [5], are
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Fig. 2: Model Validation, (a) Current response over time and
(b) Pinced hysteresis loop for 0.17 Hz 160 mV triangular wave
input.

Here, V. , Ny, V., and 7 are the voltage required to cause an
e-fold increase in the number of alm pore, a proportionality
constant that represents the number of alm pores at zero
volts, the voltage required to induce an e-fold increase in
7, and the time constant for pore closure at zero volts,
respectively. a and 7., are voltage-sensitivity constant, and
characteristic time constant describing electrowetting process,
respectively. Combining these results, the overall conductance
can be written as,

G(t) = GuN, () Ag(1 + A, (1)) (6)

where Ay and G, are bilayer area at zero volts and average
unit conductance of a single alm pore determined by both the
structure of the alm pore and the conductivity of the electrolyte
solution within the droplets. 7.,, and o were determined by
fitting numerical solutions of Eq. 5 to the measured change in
membrane area during voltage sweeps and these, along with
measured relaxation time constants (7p), were used in another
fitting routine to estimate the parameters for alm insertion by
fitting numerical solutions of Eq. 4 to measured I-V responses.
The current response over time and I-V hysteresis curve of
DPhPC memristor for 0.17 Hz triangular wave of amplitude
160 mV is shown in Fig. 2. As seen in this figure, the model
fits reasonably well with the experimental results. More details
on the analytical modeling for pulse and sinusoidal inputs can
be found in [6].
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Fig. 3: SPICE Implementation

A subcircuit, shown in Fig. 3, was developed to implement
the model in SPICE. Here, p and n represent the positive
and negative terminals which are arbitrary since this is a
bidirectional symmetric device where the terminals can always
be interchanged.The node voltage v, and vy are not physical
voltages. They represent N, and A,,, respectively. The key
underlying idea is to reformulate equation 1 and 2 in terms of
RC circuit. For a series RC circuit driven by a voltage source
Vin, the equation describing the voltage across the capacitor

is
dve o Vin Uc
dt RC RC
If we replace R, C' and Vj, with exp(v%), To and
Noexp(%), we get back Eq. 4 (top left in Fig. 3) and if
we replace those with 1, 7., and aV? we get back Eq. 5
(top right in Fig. 3). We use voltage controlled voltage source
for V;,, and behavioral current source to implement voltage
dependent resistance. Finally, we combine Eq. 6 and Eq. 3
using a behavioral current source to get the current through
the device.
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IV. NEUROMORPHIC HARDWARE IMPLEMENTATION
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Fig. 4: Block Diagram of Hardware Components for Synapses
to Neuron

Neuron

The hardware design for this spiking neural network archi-
tecture takes advantage of the unique characteristics of the
synaptic device. The neuromorphic architecture uses a leaky
integrate and fire neuron model that is emulated with solid
state electronics. The synaptic connections in the system are
given signed weights and delays and connect neurons to build
neural networks to solve tasks. A high level simulation uses the
hardware characteristics for each component to train networks



built from the components. The circuits for these networks can
then be physically built and tested. With consistency across
network simulation and the internal components, these circuits
verify the effects of a soft material synapse as an online
learning feature for spiking neural networks.

The networks seen in Section V, emulate two basic build-
ing blocks for spiking neural networks, the neuron and the
synapse. There are four components used in each synapse, the
delay block, the synapse driver, the synapse, and the output
amplifier. Fig. 4 represents all the synapses connected to a
single neuron. The inputs into each synapse are generated from
neurons. The depicted neuron’s output feeds into synapses
connected to subsequent neurons. The delay block takes the
output of a neuron as input and recreates that output with
a specified time delay. There are many realizations for the
delay block including a simple inverter chain. The biomolec-
ular memristor is activated by a synaptic driver circuit. The
synaptic driver circuit takes the output of a neuron and converts
it to the appropriate voltage level for the input spike(Vsp) for
the biomolecular memristor, 160 mV in Fig. 5. Careful consid-
eration must go into the circuitry surrounding the biomolecular
memristor because a voltage drop across the biomolecular
memristor greater than a few hundred millivolts can destroy
the device. The synaptic weight is defined by the impedance
of the biomolecular memristor. The impedance changes of the
memristor, as described in Section II, give the system short
term online learning capabilities. The biomolecular memristor
output is buffered before entering its connected neuron. The
output buffer has a controllable gain factor, G;. The output
node is held at a virtual ground by the output buffer giving a
weighted output current from the biomolecular memristor.

N
Ineuron(t) = Z GL . IBM{, (t) (8)

=1

The input current into a neuron, I, eyron, can be written as
Eq. 8. The current is the sum of the output current of all the
connected synapses, Ipnr,. This is multiplied by the gain, G,
of the output buffer. In Fig. 5 V is the output current from the
biomolecular memristor times the gain G;. The neuron stores
the summed current and discharges a spike when crossing its
threshold. The circuit implementation used for an integrate and
fire neuron consists of two stages, first an integrator followed
by a comparator. The neuron takes the summed current,
INeuron, from the output buffers of every connected synapse
and integrates it on the capacitor in the integrator, Cpse.,. For
every synaptic event, the voltage, Vasen,, is the integration
of the input current, as seen in Eq. 9. The capacitance of
the feedback network of the integrating operational amplifier
determines the accumulation rate of the neuron. The voltage on
the output of this op-amp, Vasem, is compared to the threshold
voltage, Vrpreshola by @ comparator. A threshold of -2.5V is
used in simulations seen in Fig. 5. When the accumulated
voltage drops below the threshold voltage the output of the
second op-amp goes from negative to positive rail creating an
output spike, Vpire in Fig. 5. The output spike width matches
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Fig. 5: Simulation result of the neuromorphic circuit with 160
mV pulse train input of 20 ms pulse width for two different
off times; (a) off time= 5 ms, (b) off time = 1 ms.

the input spike width. At the end of a spike Vje,, resets
and begins accumulating inputs shortly after. The time taken
between resetting Visen, and integrating input current is the
neuron’s refractory period.

tspike

! Lneuron(t)dt ©)

Vmem (t) = CM

Network design parameters such as spike width, voltage,
and refractory period must be adjusted according to the device
parameters to maximize short term effects. Fig. 5 illustrates
how the PPF capability of the synapse results in more output
spikes as we reduce the off time. Spike width, voltage and
quantity of spikes needed to solve a given task determine the
time and power efficiency of the network. Optimizing these
parameters can improve the energy efficiency for solving a
particular task. This circuit implementation has all the neces-
sary components to implement the neural network architecture
and has been experimentally verified [7].

V. TRAINING: EVOLUTIONARY OPTIMIZATION

It is not immediately clear how to utilize the unique char-
acteristics that this device will offer, nor is it clear how to
hand-construct networks of these components that are capable
of performing real-world tasks. There are multiple charac-
teristics of the device that make it unsuitable for traditional
training approaches such as back-propagation. For example,



the device’s short-term plasticity updates the synaptic weights
based on activity in the network and returns the weights to
an equilibrium state if no activity is present. This prevents
the use of a traditional training algorithm that relies on being
able to customize weights. However, it adds a more complex
functionality that can be leveraged in real applications.

In this work, we utilize an existing neuromorphic train-
ing scheme based on evolutionary optimization or genetic
algorithms called Evolutionary Optimization for Neuromor-
phic System (EONS) [8]. Unlike other neuromorphic training
algorithms, EONS will attempt to optimize within the char-
acteristics and constraints of the system. It determines the
number of neurons and synapses required, as well as how
those components are connected together. In the case of these
networks, EONS also determines just a few parameters of
each synapse: the delay value on each synapse and whether
the synapse should be excitatory or inhibitory. In order to
utilize the EONS framework, we have implemented a high-
level simulation of the full neuromorphic circuit, simulating
the biomolecular synapses based on the model described in
Section III.

A. Training Results

We used EONS to build the appropriate network for this
neuromorphic implementation for two tasks: the iris dataset
classification task [9] and an EEG classification task [10]. In
the iris task, there are four inputs (petal length and width and
sepal length and width) and three outputs, which correspond
to the three classes of iris flowers. Since the iris task is a
static classification task (i.e., there is no temporal component
to the data), we encode the input values temporally, by using
multiple pulses per input over time to encode the input values.
In particular, we normalize the data inputs to be integer values
between 0 and 10; then, the normalized value is used to de-
termine how many input pulses to apply to the corresponding
input neuron. For example, if the normalized value is 2, then
2 pulses are applied to the associated input neuron.

For the EEG task, there is one input, which is the EEG
signal over time, and two outputs, which correspond to the
two output classes (healthy and epileptic). Because the EEG
task is temporal in nature and there is a single input signal,
we encode the signal over ten input neurons (one for 0-0.1,
one for 0.1-0.2, and so on). During each time step, the input
neuron stimulated depends on the magnitude of the signal. We
frame the EEG task as a classification (healthy vs. epileptic)
rather than on-set detection (detecting when a seizure is about
to occur). For both iris and EEG, we count the number of
output spikes on each of the output neurons, and whichever
output neuron fires the most corresponds to the assigned class.

Since the goal is to demonstrate that these devices are
capable of performing tasks in a neuromorphic system, we
used EONS to construct several networks for each task and
illustrate the best performing networks in this work. The best
performing network for the iris task is shown in Fig. 6a. This
network achieves 96 percent accuracy on the training set and
97.33 percent accuracy on the testing set, which is comparable

with other neuromorphic implementation results in [8]. Fig. 6b
shows the resulting network for the EEG task. Though there
are ten total input neurons for this task, we do not show six
of them, as they are not connected to other input or output
neurons. This network achieves 98.25 percent accuracy on
both the training and the testing set, which is comparable with
other results on the classification version of this task [11].
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Fig. 6: Biomolecular memristive synapse based network built
using EONS for two classification tasks, (a)iris, (b)EEG.

For both of these networks, there are no hidden neurons
required to get satisfactory results. Moreover, the number of
synapses required to solve this task is much smaller than we
would expect to see from other neuromorphic implementa-
tions, especially for the EEG task. We expect that this can
be attributed to the more complex behavior enabled by the
biomolecular synapses (e.g., PPF and PPD), though we plan
to explore this in more detail in future work.

VI. DISCUSSION AND CONCLUSION

Neuromorphic computing architectures attempt to emulate
the energy efficiency and adaptability of the human brain.
To achieve similar power dissipation and adaptability, we
use a biomimetic soft-material for synaptic connections. The
synaptic device has memristive properties that directly emulate
biological synaptic plasticity. We built a model for the device
that captures the dynamic characteristics and used it in circuit
simulation. We surrounded the device with the necessary



circuitry for implementing our spiking neural network archi-
tecture. From these simulations, we know the device works
as a synapse, and we see the impact of the device on the
spike rates of synapses to neurons. The architecture can be
improved by building devices and the circuitry for energy
efficiency that does not degrade computational performance.
It has been shown that using a software tool called EONS
(based on evolutionary optimization), and a simulation of the
biomimetic soft-material synapses and solid-state neurons, we
were able to construct networks of those components that
can solve problems. In particular, we have shown networks
for iris and EEG classification tasks, that are composed of
biomimetic soft-material synapses and solid-state neurons and
have achieved comparable to state-of-the-art results. We plan
to continue using EONS to build networks for other applica-
tions and to use what we learn from those networks to drive the
co-design of a programmable device using these components.

ACKNOWLEDGMENT

This material is based in part upon research sponsored by
the National Science Foundation under Grant No. NCS-FO-
1631472. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding
any copyright notation thereon.

REFERENCES

[1] C.Li, M. Hu, Y. Li, H. Jiang, N. Ge, E. Montgomery, J. Zhang, W. Song,
N. Davila, C. E. Graves et al., “Analogue signal and image processing
with large memristor crossbars,” Nature Electronics, vol. 1, no. 1, p. 52,
2018.

[2] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,
F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura et al., “A
million spiking-neuron integrated circuit with a scalable communication
network and interface,” Science, vol. 345, no. 6197, pp. 668-673, 2014.

[3] M. Mayford, S. A. Siegelbaum, and E. R. Kandel, “Synapses and
memory storage,” Cold Spring Harbor perspectives in biology, vol. 4,
no. 6, p. a005751, 2012.

[4] M. P. van den Heuvel, C. J. Stam, R. S. Kahn, and H. E. H. Pol,
“Efficiency of functional brain networks and intellectual performance,”
Journal of Neuroscience, vol. 29, no. 23, pp. 7619-7624, 2009.

[5] J. S. Najem, G. J. Taylor, R. J. Weiss, M. S. Hasan, G. Rose, C. D.
Schuman, A. Belianinov, C. P. Collier, and S. A. Sarles, “Memristive
ion channel-doped biomembranes as synaptic mimics,” ACS nano.

[6] M. S. Hasan, J. S. Najem, R. J. Weiss, C. D. Schuman, A. Belianinov,
C. P. Collier, S. A. Sarles, and G. Rose, “Response of a memristive
biomembrane and demonstration of potential use in online learning,”
in 2018 IEEE Nanotechnology Materials and Devices Conference
(NMDC), Portland, OR, 2018.

[71 R. Weiss, J. S. Najem, M. S. Hasan, C. D. Schuman, A. Belianinov,
C. P. Collier, S. A. Sarles, and G. S. Rose, “A soft-matter biomolecular
memristor synapse for neuromorphic systems,” in 2018 IEEE Biomedical
Circuits and Systems Conference (BioCAS), Cleveland, OH, 2018.

[8] C. D. Schuman, J. S. Plank, A. Disney, and J. Reynolds, “An evolu-
tionary optimization framework for neural networks and neuromorphic
architectures,” in Neural Networks (IJCNN), 2016 International Joint
Conference on. 1EEE, 2016, pp. 145-154.

[9] D. Dheeru and E. Karra Taniskidou, “UCI machine learning repository,”
2017. [Online]. Available: http://archive.ics.uci.edu/ml

[10] R.G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David, and C. E.
Elger, “Indications of nonlinear deterministic and finite-dimensional
structures in time series of brain electrical activity: Dependence on
recording region and brain state,” Physical Review E, vol. 64, no. 6,
p. 061907, 2001.

[11] J.J. M. Reynolds, J. S. Plank, C. D. Schuman, G. Bruer, A. W. Disney,
M. Dean, and G. S. Rose, “A comparison of neuromorphic classifica-
tion tasks,” in International Conference on Neuromorphic Computing
Systems. Knoxville, TN: ACM, July 2018.





