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1 Executive Summary 
 
Storage systems are a foundational component of computational, experimental, and 
observational science today. The success of U.S. Department of Energy (DOE) 
activities in these areas is inextricably tied to the usability, performance, and 
reliability of storage systems and input/output (SSIO) technologies. 
 
SSIO technologies use the organization and placement of data to enhance 
computation and discovery. Functionally, these tools focus on storing, moving, and 
accessing data in ways that allow researchers to maintain their conceptual 
representations of scientific data, while simultaneously optimizing for performance 
and productivity across a variety of platforms.  
 
Fundamentally new challenges for effective SSIO architectures arise from 
architectural changes in future high-performance computing (HPC) platforms, 
applications that generate extreme-scale data, and use cases that require 
simultaneous analysis of data from a variety of sources, often in real time. In order to 
make effective use of diverse but finite resources, SSIO technologies will need to 
integrate more data management functions such as data reduction, determinations 
about data retention times and access needs, and even value judgments informed by 
downstream analysis needs. To cope with this complexity, a large variety of memory 
and storage devices are deployable in the SSIO context, but this creates its own 
challenges in terms of leveraging these resources without overburdening the 
application researchers.  
 
Attendees recognized that change is being driven in two ways. First, new approaches 
to scientific discovery and activities in new science domains are driving the rapid 
growth of scientific dataset sizes, increasing the importance of support for streaming 
data, and resulting in a greater emphasis on learning applications. Second, new 
storage, computing, and sensor technologies require a rethinking of traditional 
software models to better leverage these technologies or adapt to new scientific 
methods enabled by them. 
 
In September, 2018, the Department of Energy, Office of Science, Advanced Scientific 
Computing Research Program convened a workshop to identify key challenges and 
define research directions that will advance the field of storage systems and I/O over 
the next 5–7 years.  The workshop concluded that addressing these combined 
challenges and opportunities requires tools and techniques that greatly extend 
traditional approaches and require new research directions. Key research 
opportunities emerging from this workshop include: 
 

• Enabling science understandability and reproducibility through rich data 
formats, metadata, and provenance (Section 4.2)  

• Accelerating scientific discovery through support of in situ and streaming data 
analysis (Sections 4.3 and 4.6)  
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• Enhancing SSIO usability, performance, and resilience through monitoring, 
prediction, and automation (Section 4.5)  

• Improving efficiency and integrity of data movement and storage through 
architecture of systems and services (Sections 4.1 and 4.4) 
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2 Introduction 
 
Computation and simulation advance knowledge in science, energy, and national 
security. The United States has been a leader in high-performance computing (HPC) 
for decades, and U.S. researchers greatly benefit from open access to advanced 
computing facilities, software, and programming tools. As HPC systems become more 
capable, computational scientists are now turning their attention to new challenges, 
including the certification of complex engineered systems such as new reactor 
designs and the analysis of climate mitigation alternatives such as carbon 
sequestration approaches. Problems of this type demonstrate a need for computing 
power 1,000 times greater than we have today; and the solution is exascale 
computing, the next milestone in HPC capability. 
 
At the same time, high-performance computing is playing an increasingly critical role 
in understanding experimental and observational data (EOD) from platforms such as 
the Large Hadron Collider, which is a key tool in better understanding fundamental 
questions in physics, and the upcoming Large Synoptic Survey Telescope, which, 
when deployed, will provide greater insight into the structure of the universe. 
Learning applications, too, are beginning to employ high-performance computing. 
Achieving the power efficiency, reliability, and programmability goals for exascale 
HPC, EOD, and learning applications will have dramatic impacts on computing at all 
scales, from personal computers (PCs) to mid-range computing and beyond; the 
broader application of exascale computing can provide tremendous advantages for 
fundamental science and industrial competitiveness. 
 
Storage systems and input/output (SSIO) research and development is a cornerstone 
of data-intensive computing tasks of all types, including simulations at scale, 
experimental/observational science, and learning applications. SSIO technologies 
include a range of hardware and software, from the low-level parallel file system 
(e.g., Lustre, general parallel file system [GPFS]) and archival storage (e.g., high-
performance storage system [HPSS]) up to libraries that serve as the interfaces to 
applications and provide format interoperability, as well as software that monitors 
and reports on the utilization of the storage system. Advances in SSIO improve the 
capability, scalability, and robustness of storage solutions, enabling larger volumes of 
data to be stored and accessed and their integrity to be maintained. Improvements to 
SSIO software systems improve the productivity of U.S. Department of Energy (DOE) 
scientists by facilitating the discovery of and access to their data, and such 
improvements reduce the cost to operate storage systems by increasing our 
understanding of storage system behavior and enabling adaptation in these systems. 
 
Technological improvements are occurring at a rapid pace in the areas of memory, 
storage, and input/output (I/O). New, nonvolatile memory technologies 
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(e.g., 3D XPoint®1 and Intel Optane®2 dual in-line memory modules [DIMMs]), drive 
technologies (e.g., shingled disks, nonvolatile memory express [NVMe]), and changes 
in system architectures, such as the proliferation of cores on node and shifts to more 
cost-effective networks, all necessitate research to understand how these 
technologies are best adapted for use in service of DOE science. At the same time, an 
explosion of new types of DOE science are appearing on DOE systems — machine 
learning (ML) applications and the analysis of experimental and observational data 
being two examples. These new applications break many of the assumptions made in 
the past by developers of SSIO system software, and in many cases, new designs are 
needed to account for these new behaviors. This combination of rapid technological 
change and a dramatic influx of new application classes drive the prioritization of 
essential new research activities in the SSIO area. 
 
To address the changing landscape and requirements for storage systems and I/O, 
The Department of Energy, Office of Science, Advanced Scientific Computing Program 
Office (ASCR) convened a workshop in September, 2018 with the following charge: 
    
As HPC architecture becomes more complex, the lines between what operating and 
runtime systems experts call memory and the emerging off-system storage hierarchy 
that includes solid state devices blur. These changes result in increased complexity for 
application developers and increased difficulty in managing the entire process for input 
and output. A combination of rapid change in memory and storage technology and 
meeting the related requirements for the range of application classes using high 
performance computing (HPC) must drive the prioritization of essential new research 
activities in the SSIO area. 
 
The goal of this two day workshop is to identify key challenges and define research 
directions that will advance the field over the next 5–7 years. 
 
This workshop report captures the outcomes of the 2018 Storage Systems and I/O 
Workshop3. This document includes a summary of mission drivers, assesses the state 
of the art and challenges in key SSIO research areas, summarizes the workshop 
discussion related to six key topic areas, and identifies research directions in each of 
these areas. The research opportunities listed above are a high-level summary of the 
research directions identified throughout this report.  

2.1 Workshop Panels and Presentations 
 
The workshop brought together a number of experts in related fields to present their 
views on requirements and the impact of new technologies on SSIO going forward. 
These presentations and panels spanned the two days of the workshop, with the first 
morning session focusing on how application trends are creating new requirements 
                                                 
1 3D XPoint is a trademark of Intel Corporation. 
2 Optane is a registered trademark of Intel Corporation. 
3 https://www.orau.gov/ssioworkshop2018/  

https://www.orau.gov/ssioworkshop2018/
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for SSIO, or application pull. Highlights from this morning session follow in 
Section 2.1.1. 

2.1.1 Background: Application Pull 
 
Wes Bethel of Lawrence Berkeley National Laboratory (LBNL) presented his take on 
this trend from the perspective of the DOE Office of Advanced Scientific Computing 
Research’s (ASCR’s) 2015 Experimental and Observational Data (EOD) Workshop 
[Bethel2015], reminding the attendees of the key findings from this workshop and 
mapping these into possible gaps in current SSIO capabilities. He noted that both 
experimental and observational science are increasingly impeded by data lifecycle 
challenges: massive volumes of data being produced at unprecedented rates and, in 
some cases, with real-time constraints on analysis; the lack of adequate provenance 
and other metadata to assist in interpretation and reusability; and issues related to 
how to make this data available to a broad audience over potentially long timelines 
(e.g., years or decades). He further noted the close connection between data 
management and workflow in this context and a need for better coordination 
between these systems, and he suggested that supervised learning and multi-modal 
data analysis will play increasingly important roles in these science endeavors. 
 
Graham Heyes of the Thomas Jefferson National Accelerator Facility presented a view 
of current and future streaming data science, expanding upon the information from 
the prior presentation. He provided a summary of the current state-of-the-art 
workflows in these fields and summarized some shortcomings related to SSIO: the 
current methodology operates with close synchronization, missing opportunities for 
overlap and performing poorly in the face of work imbalance; the use of files as an 
intermediate form — and the batch processing of these files — forces inefficiencies in 
the analysis phase; and a lack of indexing and subsetting leads analysis codes to 
examine more data than necessary. The end result is that these workflows can take 
years to complete. Moving to a streaming data model is compelling in that it could 
allow for more flexible design of the analysis workflow, dramatically improve the 
parallelism of analysis, and decouple relative rates of detectors and analysis. 
However, in order to realize this vision, new SSIO capabilities are required. First, the 
storage infrastructure needs to support a more stream-based model: the rapid ingest 
of small records, strictly ordered, and easily referenced; guarantees on rates of ingest 
that ensure that data are not lost; and an ability to remove records over time and thus 
avoid performance degradation resulting from fragmentation. In addition, research 
into multidimensional data stores, streaming data stores with strong performance 
guarantees, and methods to closely connect with high-performance transports are all 
important for the success of streaming data science going forward. 
 
Next, Tom Peterka of Argonne National Laboratory (Argonne) presented a summary 
of the Workshop on the Future of Scientific Workflows [Deelman2015], reminding 
the audience of nomenclature and a number of canonical workflow use cases from a 
variety of science fields. Summarizing the workshop’s findings as they relate to SSIO, 
he noted that (1) lagging I/O bandwidth is motivating an increased use of in situ 
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workflows; (2) new storage technology and heterogeneity are seen as driving new 
SSIO work in the same way they drive new workflow advances; (3) the provisioning 
of storage resources and services needs revisiting; (4) research is needed on how 
storage relates to communication in data flow, or is used in that role; 
(5) enhancements are needed in our ability to store and retrieve provenance, 
including performance data; and (6) performance models for prediction are needed 
to assist in workflow scheduling. 
 
Jack Wells of the Oak Ridge Leadership Computing Facility (OLCF) presented a 
summary of data-intensive science requirements at the leadership computing 
facilities, with an OLCF focus. He first noted that there has been a shift since 2013 in 
the priorities of their users away from floating-point operations per second (FLOP/S) 
and toward memory bandwidth, marking an increased attention on data. Data 
sharing, archival capacity, and disk bandwidth were also on the radar for users, and 
the facilities are adjusting their systems in response. He summarized the capabilities 
of OLCF’s new Summit system and noted successful applications in the simulation, 
data analysis, and artificial intelligence (AI) areas. He noted that data is emerging as 
a common theme across many DOE offices, and that a capable storage system and 
scalable I/O are fundamental to success in many fields. He recognized that, while 
modeling and simulation are still a significant driver for storage system deployments, 
applications with read-heavy workloads, small writes, and heavy metadata use are a 
more significant portion of the portfolio than in the past. These changes drive a need 
for new solutions that perform better in read-optimized and random access modes, 
which are not the strengths of current solutions. Furthermore, continued work is 
needed to retain the model of a center-wide storage resource and to develop solutions 
that can provide a coherent view of SSIO resources even across facilities. 
 
Kevin Harms of the Argonne Leadership Computing Facility (ALCF) presented a 
summary of drivers for storage from the ALCF perspective. ALCF is similarly 
supporting a broad base of applications employing simulation, data, and learning 
approaches. New services such as Jupyter Lab and Petrel data sharing are indicative 
of changing requirements from applications. These tools are facilitating new methods 
of interfacing to the system and allowing new methods of data sharing outside the 
facility. ALCF is also moving in the direction of a global storage system to hold data 
for extended periods, and one emphasis in design of this system is strong support for 
legacy interfaces (e.g., portable operating system interface [POSIX]). This support 
would be coupled with dedicated storage for specific platforms that is performance 
focused. ALCF is attentive to advances in the object storage model as well, and is 
collaborating with Intel on the distributed application object service (DAOS) activity, 
one candidate solution for dedicated storage in future systems. 
 
Following these presentations, a panel discussed these and other topics. Participants 
included the speakers as well as Evan Felix (Pacific Northwest National Laboratory 
[PNNL]) and Kristy Kallback-Rose (National Energy Research Scientific Computing 
Center [NERSC]). Some important points that emerged from this discussion were the 
desire for alternatives to the file model including search, a recognition of the difficulty 
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in presenting a deep storage hierarchy in a usable manner, a request for more 
capabilities in the area of data lifecycle management, and an admission that we are 
no longer primarily supporting checkpoint/restart as our primary workload at some 
sites. 

2.1.2 Background: Technology Push 
 
The second morning focused on how technology developments are driving research 
into new directions (technology push). 
 
Lucy Nowell of DOE’s ASCR summarized the outcomes of the 2018 ASCR Extreme 
Heterogeneity Workshop. This workshop was designed to identify the new 
algorithms and software tools needed from basic research to enable facilities to 
support work on the SC program’s grand challenge problems. Extreme heterogeneity 
is defined to capture massively increasing parallelism, the heterogeneity of data 
movement and increasing levels of hierarchy, the heterogeneity of performance, the 
increasing diversity of memory and storage technologies, and the increasing diversity 
of applications and user requirements. In this context, the participants recognized 
(1) that mapping workflows onto complex hardware/software storage resources will 
be a challenge, (2) that a greater degree of autonomous operation will be needed to 
make best use of storage and I/O resources in the face of rapidly changing workloads 
and operating conditions, and (3) that new data organizations are called for in order 
to meet the needs of future analytic workflows, including streaming workflows. 
 
Gary Grider of Los Alamos National Laboratory surveyed storage and data trends 
likely to drive changes in SSIO solutions. He emphasized the role that economics plays 
in the architecture of storage systems, influencing the technologies that are used to 
provide bandwidth, capacity, and resilience in what today are typically hybrid 
solutions. He noted the shrinking gap between solid-state and hard disk storage and 
considered whether this trend would lead to another high-level shift in architectural 
models. He further noted that the shift in emphasis from being primarily simulation 
focused to being inclusive of experimental and observational data (EOD) may lead us 
to architectural adjustments as well, for example in response to rapid reprocessing 
workloads. He also suggested a need to revisit the problem of resilience, and noted 
that traditional single-tier approaches may not provide the guarantees needed in a 
multitier context, but that solutions are being developed both inside and outside of 
our community. As methods to address the growing volume and multitier nature of 
our storage systems, Gary suggested another look at name spaces, search, and access 
methods. Finally, he noted that the NVMe push is one of the fastest growing sectors 
that we have seen, and that push is bringing with it new interconnect-storage 
capabilities, performant user-space access methods, tight coupling to compute, and 
other changes that provide opportunities for the success of approaches that have not 
been viable in the landscape to date. 
 
Dan Ernst of Cray, Inc., looked at the blurring lines between storage and memory in 
current and future systems, bringing a memory/node architecture perspective to the 
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meeting. He discussed a number of memory technologies and considered viable 
configurations using multiple technologies for a simulation-focused platform, 
recognizing that power, bandwidth, and access density all have a significant impact 
on the viability of specific point solutions. He also emphasized the increasing 
importance of global visibility of data (across the platform) in our current era of 
diverse applications and coupled workflows, and noted that this naturally draws the 
interconnect into the picture as well, both in terms of the ability to directly access 
particular technologies but also the rates at which the network must communicate in 
specific configurations. This model leads to a possible future where new global 
storage resources supplant the traditional role of the parallel file system as the next 
layer of storage beyond application memory. 
 
Following these presentations, a panel consisting of Gary Grider (Los Alamos National 
Laboratory [LANL]), Kevin Harms (ALCF), Eric Pouyoul (ESnet), Dan Ernst (Cray), 
and Lance Evans (Cray) discussed the implications of technological change in greater 
depth. Alternatives to block-based storage were of great interest to the panelists and 
audience, with no obvious consensus on whether to replace block or what to replace 
it with — this appeared to be an area ripe for new ideas. The topic of offloading 
functionality into the network interface card (NIC) was also discussed as a reflection 
of hardware specialization that could benefit SSIO. 

2.2 Report Organization 
 
The remainder of the report is organized as follows. Section 3 summarizes the DOE 
mission requirements for SSIO. Section 4 includes in-depth discussion of the state of 
the art and challenges to be addressed to advance SSIO technologies in support of 
DOE missions. Section 5 addresses some supporting activities that were identified as 
helpful in enabling successful research and development (R&D) in the SSIO area. 
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3 Mission Drivers 
 
For the 2014 SSIO workshop series, the workshop organizers invited input from a 
group of distinguished scientists developing application codes for next-generation 
and future exascale DOE platforms. These scientists are involved in a wide range of 
DOE Office of Science (SC) and National Nuclear Security Administration (NNSA) 
mission-critical applications. The scientists reported on anticipated scientific 
challenges and how SSIO capabilities might enable them to meet these challenges. 
Many of the discussions were based on work from the NNSA Advanced Simulation 
and Computing (ASC) code teams, as well as the Scientific Discovery through 
Advanced Computing (SciDAC) co-design centers [CoDesign2016] that were charged 
to ensure that future architectures are well suited for DOE target applications. 
 
Since then, numerous workshops and requirements reviews have considered 
technology changes and storage and I/O requirements for DOE-SC science teams 
using large-scale computing resources, including: 
 

• The 2015 Workshop on Management, Analysis, and Visualization of 
Experimental and Observational Data [Bethel2015]. 

• The 2015 Workshop on Integrated Simulations for Magnetic Fusion Energy 
Sciences [Bonoli2015]. 

• The 2016 Streaming Requirements, Experience, Applications and Middleware 
Workshop (STREAM2016) [Fox2016]. 

• The 2015–2016 Exascale Requirements Reviews for High-Energy Physics 
(HEP) [Habib2015], Basic Energy Sciences (BES) [Windus2015], Fusion 
Energy Sciences (FES) [Chang2016], Biological and Environmental Research 
(BER) [Arkin2016], Nuclear Physics (NP) [Carlson2016], and ASCR 
[Vetter2016], which are summarized in the 2017 Crosscut Report [Hack2017]. 

 
These workshops and requirements reviews contain the combined expertise of 
vendors, hardware architects, system software developers, domain scientists, 
computer scientists, and applied mathematicians who are at the forefront of 
anticipating features and trade-offs in exascale hardware, software, and underlying 
algorithms. 
 
This section builds on the material from the 2014 workshop series, augments that 
material with findings from these subsequent events, and also incorporates extensive 
knowledge from the organizing committee on numerous applications from fusion 
energy, materials science, climate science, accelerator physics, and other domains. 
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3.1 Overview 
 
Historically, the DOE-SC computing facilities have served science teams employing 
simulation codes to better understand phenomena of interest to the U.S. Department 
of Energy. However, more recently, teams have begun to investigate the efficacy of 
using these resources for new computational tasks, including analysis of large 
datasets from scientific instruments and the training for machine and deep learning 
(Figure 3.1). In fact, all of these computational tasks can be considered “big data” 
science relevant to DOE missions, in that they have significant data requirements in 
addition to significant computational needs. In the subsequent discussion, we refer to 
this as data-intensive science. In this section, we give a quick rundown of their 
characteristics in terms of the common nomenclature of the five Vs: volume, velocity, 
variety, veracity, and value. 
 
Volume. Much of the total volume from HPC applications comes from checkpoint 
files. Most of this information is written once, and almost never read in. With the 
inclusion of “burst buffers” in modern systems, simulation applications are 
demonstrating an ability to write large volumes of checkpoint data efficiently. 
However, many scientists are expressing a growing need to understand more of the 
“physics” in their simulations; simple data reduction techniques are becoming 
insufficient for proper analysis. Users of codes such as the XGC1 [Ku2006] simulation, 
one of largest users of leadership-class facilities (over 300 million hours at Argonne, 
NERSC, and Oak Ridge National Laboratory [ORNL] in 2015), have launched a series 
of simulations that need to write out 100 petabytes (PB) of data in order to capture 
all of the turbulence data for runs on the Titan system [ORNL2015], the prior OLCF 
platform. Limitations in available space and off-system bandwidth can cause 
scientists to miss important artifacts and opportunities for discovery. Large Hadron 
Collider (LHC) data output is expected to grow from approximately 10 PB/year to 
150 PB/year by 2025, with an additional 600 PB/year of derived data produced by 
the community [Habib2015]. 
 

 
 

Figure 3.1: The DOE-SC computing portfolio has diversified in recent years, beyond 
the traditional simulation focus to include significant numbers of activities employing 
big data analysis and machine and deep learning techniques to accomplish mission 
goals. Image credit: B. Helland (ASCR). 
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Velocity. Higher velocities (i.e., rates of data generation) will be seen from many 
leading applications because of the nature of compute accelerators and nodes with 
high core counts on certain next-generation systems. Simulations such as the QMC 
code [QMCPACK2015], which use quantum Monte Carlo techniques to understand 
material properties are already investing in in situ data reduction and analysis given 
that they are generating more than 2 terabytes (TB) of data from their simulations 
every 10 seconds (s). Similarly, next-generation experiments such as ITER 
[Lister2003] will begin to generate data at over 2 PB/day. More recently, the FES 
community has identified near-real-time data analysis as a key enabler of decision-
making; this approach depends both on effective management of high-velocity data 
and also on the training of machine learning models on large scientific datasets 
[Bonoli2015]. Similar requirements are expected in EOD-based science. For example, 
the Large Synoptic Survey Telescope (LSST) is slated to come online in 2019, 
eventually generating 3.2 Gpixel images on a 20-second cadence, with a requirement 
to provide initial analysis of these images within a minute of image capture 
[LSST2009]. 
 
Variety. Simulations are producing a wide range of variables in their output that they 
later need to correlate and understand together. We see this situation from climate 
simulations, among other leading-edge simulations. Generally, on each process each 
variable is “small,” but there are often hundreds of variables, which create many new 
challenges when they are generated from high levels of concurrency. One implication 
for the SSIO community is that metadata will continue to increase as the variety of 
data increases, and the management of large amounts of small data will become 
increasingly important, including the ability to organize or find and quickly access 
this large variety of data. 
 
Veracity. Data integrity has become a critical part of the simulation workflow, and 
many application teams are focusing on some aspect of uncertainty quantification 
(UQ) [Carey2014, Najm2003, Reagana2003]. These simulations are using either 
intrusive UQ techniques (e.g., in combustion) that could potentially generate 
zettabytes of data, or they are employing non-intrusive techniques (used in many of 
the NNSA applications) and creating new I/O and storage use-cases (described in 
Section 3.2). Data need to be moved and processed with this integrity information in 
hand for subsequent analysis. In the case of stockpile modernization efforts, 
quantification of uncertainty in simulations is essential as experimental verification 
and validation are no longer available. 
 
Value. As we reach the age where simulations cannot output as much data as they 
would like (e.g., the XGC1 simulation, see “Volume”), many choices must be made to 
understand which data products will have later value. Among other characteristics, 
the value of the data is also affected by how much it can be reduced for fast post-
processing. Historically, one of the common themes voiced by application scientists 
is that once data go to archival storage, they are rarely read again because of the time 
required to access those data. However, this is not universally true, and new storage 
tiers, such as object-based tiers [Inman2017], have the potential to keep more data 
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readily available, while new research is investigating how to retain the provenance of 
the data and understand what the different variables may contain. 

3.2 Scientific Workflows 
 
In Flynn’s taxonomy for classifying computer programming paradigms [Flynn2011], 
traditional monolithic simulation codes are known as single instruction, multiple data 
(SIMD) programs. The common alternative to SIMD is the multiple instruction, 
multiple data (MIMD) paradigm, where a number of different tasks are executed at 
the same time in a large parallel job. These tasks may be expressed as separate 
executables and may each be handling a different aspect of a complex model, such as 
chemistry and fluid dynamics in a turbulent combustion model. Alternatively, the 
different tasks may form a simulation program plus a number of different in situ 
analysis programs, simulations coupled with analysis routines that compare the 
outputs from the simulations, or simulations being compared with experimental 
observations. In the context of EOD analysis and in learning applications, these tasks 
may be different phases of data triage and training or analysis. Another way to 
describe these MIMD applications is as a scientific workflow, also described as an 
in situ workflow [Deelman2018]. A high-level view of these is provided here, and 
more detail is included in Section 4.3. 
 
In many of these cases, there is a stringent demand on communicating a large amount 
of data from one task to another, often accomplished via the storage and I/O system 
[APEX2015]. Some of these tasks produce a large amount of data to be stored 
persistently. In addition, some workflows may also read a large amount of input data, 
such as the initial condition required at the start of a simulation, the boundary 
conditions needed at every step of the simulation, a large corpus of training data, EOD 
for comparison against simulation results, or for other purposes. Application 
scientists identify a number of characteristics of these scientific workflows; we briefly 
highlight three: 
 

• Homogeneous tasks. An important class of scientific workflow is one made 
up primarily of a large number of homogeneous tasks. One example is a set of 
independent tasks in a UQ run, where each task is using the same executable 
but with different input parameters. Another common example is an ensemble 
run of climate models where each instance of the ensemble uses a different 
model. Of course, and alternatively, UQ jobs and climate modeling runs could 
easily be composed of different executables that each perform a different set 
of operations. 

• Long-running services. Certain tasks in a scientific workflow may need to be 
run as persistent services. For example, a number of simulation programs 
involve complex materials, and the large number of chemical reactions and 
information about these chemistry processes could best be captured in an 
equation-of-state service, or more generally in a computation caching service 
(e.g., [Jenkins2017]). Other workflows may benefit from data services such as 
multidimensional or key-value data stores (e.g., [Greenberg2015], 
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[Zhang2017]). However, existing large-scale systems typically execute in 
batch mode, where all executables are terminated when the batch job 
terminates, and persistent services need to last beyond the end of any single 
batch job. Consequently, supporting long-running service tasks will require 
supercomputer centers to change the prevailing mode of operations. Such a 
change would also benefit long-running data analysis services. 

• Composition. The approach of connecting different tasks into a larger 
structure is used extensively for large-scale distributed data analysis and 
learning applications, and is beginning to be employed in parallel simulations. 
Considerable work will be needed to develop and refine workflow 
composition, scheduling, and execution tools for use on future HPC platforms. 
A large workflow is likely to produce and consume data in a variety of ways. It 
may also utilize the I/O system to carry information among the workflow 
components and therefore impose strong performance requirements on the 
SSIO systems. These workflows will almost certainly have a new type of I/O 
where different nodes write large amounts of data from one component often 
at the same time as other components, which can increase the I/O variability. 

3.2.1 Simulation Example: Adjoint-based Sensitivity Analysis 
 
To examine the I/O operations in more detail, we next consider a UQ workflow, a 
combustion simulation program from the Center for Exascale Simulation of 
Combustion in Turbulence (ExaCT), one of the SciDAC co-design centers. It employs 
a UQ approach known as adjoint-based sensitivity analysis, an optimal approach for 
the direct numerical simulation in combustion [Carey2014]. A key challenge of the 
adjoint workflow for time-dependent applications is the storage and I/O 
requirements for saving the application state. During the time-reversal portion of the 
workflow, the forward state is required in last-in-first-out order. To avoid storing all 
the states, the co-design team developed an approach of regenerating the states from 
checkpoints. 
 
This approach dramatically reduces the total volume of stored data, allows the 
caching of state in the regeneration window in memory and on local solid state disks 
(SSDs), may accelerate the application execution by reducing output frequency, and 
reduces the power overhead from I/O. For example, a number of checkpoints that are 
hundreds of time steps apart may be stored on disk. During the time-reversal phase, 
the application uses the checkpoints on disk to restart the computations, generates 
the intermediate states, and stores those intermediate states on local SSDs. Because 
the intermediate time steps are not written back to global storage, this approach 
reduces the I/O time. Because it does not recompute all the time steps, this approach 
also reduces the amount of computation. The researchers in this project are 
particularly concerned with the cost of data recomputation as compared with the cost 
of storage (e.g., write the data, and then read the data a little later because of the 
limited memory on the system). This is a specific example of the more general trade-
off between storing code and recomputing (where possible) versus storing data; and 
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as FLOPs become cheaper, this ratio of cost of recomputation vs. write/read will 
change. 
 
In this use case, the application scientists are also using two techniques to reduce 
space requirements, and these techniques also affect the I/O operations. The first 
technique is to replace the simple uniform mesh used in earlier simulations with an 
AMR (adaptive mesh refinement) mesh [Berger1989]. The AMR mesh is dynamically 
adjusted to place more mesh points in regions in the simulation domain where the 
quantities of interest are varying quickly. This approach allows more mesh points to 
be used in regions that need a higher resolution and can reduce the overall number 
of mesh points used in the simulation. However, the simulated quantities are stored 
in more complex structures as compared with the original uniform mesh. The second 
technique used by application scientists is to concentrate on “regions of influence” for 
sensitivity analysis instead of computing on the entire simulation domain. This 
strategy again reduces the amount of computation performed during sensitivity 
analysis; however, because the regions of influence can be of arbitrary shape, 
additional data structures are needed in order to keep track of the domain of 
sensitivity analysis computations. Both techniques have implications for how SSIO 
technologies can best support science data storage. 

3.2.2 EOD Example: The Compact Muon Solenoid (CMS) Experiment 
 
The CMS experiment [CMS n.d.] at the Large Hadron Collider [CERN2019a] is an 
international collaboration focusing on the Higgs boson and new physics beyond the 
standard model. The CMS detector is a general purpose particle detector that 
captures particle collisions within the LHC at a rate of up to 40 million raw detector 
readouts per second; these initial readouts are filtered at the detector down to a 
stream at 600 Hz. The design of the detector enables scientists to reconstruct the 
paths of particles passing through the detector with great precision. 
 
Storage and I/O requirements for CMS are detailed in [Bockelman2018]. The detector 
has generated 90 PB of raw data to date; however, simulations and analysis of these 
data have resulted in a volume of additional derived datasets that is twice as large as 
the raw data. Simulations are used to understand properties of the detector and also 
to assess the quality of reconstruction algorithms: in the latter case, synthetic events 
are generated and the output of the detector simulated, then the reconstruction 
algorithm is employed: output of the reconstruction algorithm is then compared to 
the known “truth” generated by simulation. In the case of detector analysis, a simpler 
multiphase workflow reconstructs “tracks” (i.e., paths of particles) from detector data 
and aggregates results from many such reconstructions, and later workflows fit 
models to the aggregated data. 
 
The first dataset required by most workflows is the physics software itself: this is a 
complex software package often deployed using FUSE-based technologies 
(i.e., CVMFS [Blomer2015]) and can be as large as 10 Gigabytes for a release. Raw 
detector data and derived data products are typically managed using the ROOT 
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software package [Brun1997]. ROOT files store a sparse tabular structure of events, 
each with a set of associated objects. An event is typically described with a few 
hundred objects, each with a few thousand attributes. Additional information on the 
run, statistics, and provenance is also typically included to allow for reconstruction of 
the analysis steps. This complex structure has proven very useful in providing the 
flexibility necessary for scientists to perform a wide variety of tasks using the same 
underlying data model. ROOT files are typically stored directly on a file system (e.g., a 
parallel file system in the HPC context), and many such files might be independently 
analyzed as part of a large analysis workflow. For performance reasons, output files 
are often merged in memory before writing. Due to the size of the data managed as 
part of CMS activities, compression is critical to make the best use of hardware 
investments: this is further facilitated by merging. 
 
It is estimated that the High Luminosity LHC (HL-LHC) [CERN2019b] upgrade, to 
begin taking data in 2026, will generate between 5 and 30 times more data than has 
been currently produced, and it will take significantly more time to run 
reconstruction of events [Bockelman2018, Albrecht2017]. 

3.2.3 Learning Example: Low-Level Whole-Detector Data Analysis at the LHC 
 
Researchers are also exploring the application of learning approaches to data analysis 
for the LHC. In [Bhimji2017], researchers apply deep neural networks directly to 
detector data with the goal of identifying new massive supersymmetric (‘RPV-Susy’) 
particles in multi-jet final states. Prior analysis methodology and results are 
described in [ATLAS2017]. In this work, the researchers use the Pythia event 
generator [Sjostrand2008] and Delphes detector simulator [DeFavereau2014] to 
generate event data for training, using a training sample of approximately 
400,000 events and finding the approach compares favorably to traditional 
approaches. 
 
The availability of tools such as Pythia and Delphes allow for the generation of 
sufficient training data, and commodity learning packages and libraries facilitate 
rapid development of classifiers. In this case, Tensorflow [Abadi2016] was employed 
on the Cori system [NERSC2015a] for training. While just one example of the 
application of learning algorithms to DOE mission science, it is indicative of a growing 
interest in using large-scale computing systems in conjunction with learning 
algorithms as a tool for understanding complex datasets. 

3.2.4 Code Coupling Example: Fusion Whole Device Modeling 
 
Tokamak physics is an important area in fusion plasmas which attempts to model 
across many orders of magnitude in space and time. In this scenario, a code that 
models core transport in tokamak cores is coupled with a code that models wall 
physics and edge plasma–wall interactions. The coupling of core and edge simulations 
is necessary for more accurate whole device modeling. As Figure 3.2 shows, this 
scenario illustrates the new and growing practice of integrating, executing, and 
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instrumenting a variety of tasks in a workflow for on-line analysis and coupling. In 
addition to exchanging data through code-coupling software, each simulation code is 
coupled to a variety of analysis, visualization, and data reduction codes. The feature 
extraction and visualization codes are used to detect and monitor simulation output. 
Because these simulations can require a long time to execute, the coupling with 
analysis and visualization codes step needs to be performed dynamically. That is, 
scientists should be able to dynamically start running a group of analysis and 
visualization codes and attach them to output from the simulations. 
 

 
 
Figure 3.2: The schematic illustrates a complex set of processes to couple two fusion 
codes on an LCF, along with reducing, analyzing, and visualizing the results. 
 
 
The amount of data generated by these simulations on extreme-scale machines often 
exceeds the amount of space allocated to a scientific campaign. Moreover, analyzing 
all of the data at the highest resolution can require significant computational power 
and render near-real-time or interactive rates infeasible. Hence, data exchanged 
between simulations and analysis codes as well as output directed to the storage 
system may be coupled to reduction methods to reduce data volumes. 
 
This type of online coupling also illustrates the need to monitor performance to make 
adaptive changes in resource allocation and data management strategy when running 
a complex workflow. As these simulations are executed over long periods of time, the 
computational workload of individual simulations may change over time. In addition, 
dynamic coupling and decoupling of analysis codes and visualizations introduce 
variations in the workload. 
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3.3 Input/Output Characteristics 
 
To summarize the I/O characteristics of the representative applications, we first 
consider common use cases involving file systems. We then describe the more 
advanced uses involving deep memory hierarchies, in situ data exchanges, and 
selective access to data. 

3.3.1 Simulations 
 
Most of these applications require a modest amount of input data at the beginning of 
a simulation run, along with data that may be read in when they continue from a 
previous run. The input data typically contain parameters defining the simulation’s 
initial conditions to be used in the differential equations that represent the evolution 
of the variables being simulated. In such cases, this input data may be shared among 
the processors. Having immutable storage specifically for such input files could 
reduce the I/O operation overhead and improve the overall application’s 
performance. In addition, as many simulations begin to validate their solutions 
against experimental or observational results, data must be read in from the different 
experiments in order to ensure that the simulation is “realistic” for the given 
conditions. For example, in many fusion experiments, data from the many diagnostics 
on fusion devices are ingested at the beginning of a simulation. As time progresses, 
the fusion reactors continue to grow in size and more diagnostic instruments are built 
into the reactors, where each instrument is capable of collecting data more quickly 
than before. Together, the data collected from the experiments increases, and the data 
passed to the simulations will also grow. 
 
Simulations produce many different types of output data. We generally categorize 
them into two types: defensive output for error recovery and productive output for 
scientific objectives. A typical defensive output is a global checkpoint file (or set of 
files), where a globally consistent state of the simulation is written to persistent 
storage to assist in restarting the application should it terminate before completion. 
A productive output can be just the output of the current state from a fusion 
experiment, which is derived from the magnetic field vector from the simulation. In 
many cases, the defensive output files are also used as productive output, because all 
of the data (e.g., in a combustion simulation such as S3D) are necessary for full data 
analytics. 
 
Because checkpoint files contain all the information necessary to regenerate the 
entire state of the simulation, whereas the productive analysis output needs only to 
summarize key features of the simulation, defensive output is generally larger than 
productive output. For example, many fusion scientists using particle-in-cell (PIC) 
techniques [Dawson1983] might write out the cell data frequently in order to 
understand the “fluid” effects of the physics. The kinetic (particle) information is 
much larger and is often written infrequently because of the size of the data. 
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In applications that use checkpoint files for analysis, current codes can generate 
petabytes from a single run, and future runs may produce a large number of such files, 
cumulatively totaling exabytes in size. For those whose checkpoint data are 
productive as well as defensive, application users often adjust the frequency of 
checkpointing based on the expected analysis needs, rather than based on error 
recovery needs. They frequently produce more checkpoint files than the “optimal” 
rate recommended for error recovery [Daly2006]. Application scientists also adjust 
the frequency of checkpointing to limit the I/O time to a relatively small fraction of 
the total execution time. Most existing simulation codes perform their checkpointing 
operations by directly writing data to files instead of using a checkpointing library.  
 
As parallel computers grow in size, there is considerable interest in moving away 
from writing checkpoints to a global, parallel file system (Figure 3.3). Hybrid 
checkpointing schemes, such as the Scalable Checkpoint/Restart (SCR) library 
[Moody2010] and the Fault Tolerant Interface (FTI) [Bautista-Gomez2011], are 
gaining acceptance among application scientists. 
 

 
 
So far, the discussion on I/O operation has touched only on bulk data operations. 
Alongside these operations are common operations involving metadata, such as 
provenance retrieval. In most cases, such metadata operations involve a relatively 
small volume of data and do not take a significant amount of time. However, a complex 
simulation may generate a large amount of metadata, especially when the simulation 
consists of a large ensemble of relatively small tasks. Metadata are discussed further 
in Section 4.2. 

3.3.2 Data, Learning, and Hybrid Applications 
 
DOE also supports a number of important applications that exhibit different data 
access patterns from the more traditional pattern described above. For example, 
earth system models frequently assimilate observational data into their simulations, 
and high-energy physics collision simulations often incorporate calibration data of 

Figure 3.3: While 
traditionally, we have 
expected HPC storage 
systems to be dominated 
by checkpointing writes, 
some centers project that 
they will have a more 
balanced workload. Data 
from Cori supercomputer 
at NERSC, both for the 
Lustre filesystem (top) 
and the DataWarp burst 
buffer (bottom) 
[Lockwood2018]. 
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accelerators. In a number of other use cases, data analysis operations fuse simulation 
data and experimental observations, and this data analysis also requires reading a 
large amount of experimental data while the simulation is progressing. Data and 
learning applications are often very read-intensive, in many cases operating on 
datasets consisting of many modest-sized files. The topic of streaming data is further 
discussed in Section 4.6. 

3.3.3 Initial Impact of Nonvolatile Storage 
 
Modern machines have nonvolatile random access memory (NVRAM) that can be 
used for storing checkpoint files and frequently used input data (e.g., through systems 
like DataWarp [Henseler2016]). NVRAM allows the checkpoint data to be written 
more quickly. When the checkpoint data can be discarded, this approach clearly 
reduces the traffic to the relatively slow disk storage systems and significantly 
improves the I/O time. 
 
When multiple tasks in a parallel job share data, the data transfer may be conducted 
through in-memory mechanisms instead of through the parallel file systems. One 
realization of this is through in situ data analysis systems, which will be discussed in 
more detail in Section 3.4. Another common issue is that the analysis may require 
only a portion of the data instead of the whole dataset—for example, only those data 
records in the region of influence mentioned in Section 3.2.1. These selective data 
accesses could be made more efficient through techniques such as indexing. However, 
most existing checkpoint files or checkpointing libraries do not yet support indexing. 
The topic of nonvolatile storage is further discussed in Section 4.4.2. 

3.4 Implications of In Situ Analysis on the SSIO Community 
 
Many large-scale scientific simulations routinely write out immense amounts of data 
on today’s HPC systems, such as in the case of XGC1 writing 100 PB of data per run on 
the Titan platform. Such “big data” impose steadily increasing pressure on the SSIO 
systems. In fact, I/O is now widely recognized as a severe performance bottleneck for 
both simulation and data analysis, and this bottleneck is expected to worsen with an 
order of magnitude increase in the disparity between computation and I/O capacity 
on future exascale machines. 
 
In order to mitigate the I/O bottleneck, leadership scientific applications (e.g., XGC1, 
QMCPACK, S3D, hardware/hybrid accelerated cosmology code [HACC]) have begun 
to use in situ data analytics, in which analytics are deployed on the same platform 
where the simulation runs, with simulation output data processed online while they 
are being generated. Compared with conventional post-processing methods that first 
write data to storage and then read it back for analysis, in situ analytics can reduce 
on-machine data movement and disk I/O volume and can deliver faster insights from 
raw data [Klasky2011, Ovsyannikov2016]. 
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Incorporating in situ analysis and visualization poses many challenges for 
applications. Arguably, however, essentially all application scientists already use 
their home-grown in situ analysis in codes. Scientists routinely create derived 
variables from a combination of their fundamental variables and then perform 
different analyses (Fourier, feature finding routines, addition of Lagrangian particles 
to understand flows in simulations, etc.). The question that is generally posed to 
scientists—“What will you do when you can’t write as much as you want, because of 
architectural changes?”—has existed since the advent of supercomputing. The 
fundamental change that applications are now seeing is not the inclusion of in situ 
analysis but rather the inclusion of “computer science codes” developed outside the 
application team for use during in situ analysis. Scientists are wary of including other 
code in their simulations for good reasons.  
 
Today, several in situ visualization and analysis services are being used in 
applications. The Adaptable I/O System (ADIOS) [Lofstead2008] is an I/O framework 
that allows applications to use I/O staging (on-node, off-node, off-machine) and run 
different executables. GLEAN [Vishwanath2011] uses a similar methodology in order 
to execute analysis pipelines. Catalyst allows users to embed analysis routines into 
their simulations, which then call VTK/Paraview [Henderson2004] code, which is 
similar to LibSim [Whitlock2011]. Each of these frameworks has trade-offs, and more 
research is necessary to understand how to best provide needed data services in 
support of exascale science.  

3.5 Data Organization and Archiving 
 
Many application programs running on the current generation of supercomputers 
still write data in custom formats. However, many data files being shared by large 
scientific projects are using popular file formats such as ADIOS BP [Lofstead2008], 
Hierarchical Data Format 5 (HDF5) [Folk1999], and netCDF [Rew1990] (Figure 3.4). 
Some applications teams use popular file formats because of their convenience and 
portability, while others use a custom data format for performance reasons or to 
minimize code dependencies. Other data organizations, such as databases and key-
value stores, are being investigated in response to different scientific models and use 
cases (e.g., [Docan2012, Greenberg2015]). 
 
This diversity of data organizations and needs creates challenges for our community 
that must be addressed for future architectures. One of the biggest challenges is how 
to integrate new solutions into many of the leading DOE applications. In particular, 
how do we take current I/O solutions and improve the performance for common I/O 
tasks, without having to customize them for each application? Alternatively, how can 
we streamline the process of service customization? 
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The application teams commonly argue for application-specific forms of compression 
as part of the I/O routines. Asynchronous in situ techniques are being explored to 
decouple the I/O application performance from the storage system. I/O variability is 
also an important phenomenon that greatly affects the applications’ ability to write 
effectively, deterministically, to the file system. 
 
Using a well-supported, high-level I/O library facilitates the sharing of data among a 
large community of scientists. Professional software development efforts could be 
directed to build high-quality data analysis tools using such I/O libraries. For 
example, the climate community is using a large set of data analysis tools on petabytes 
of netCDF files [Williams1997]; the high-energy physics community is using a highly 
effective data analysis environment based on ROOT files [Brun1997]; and many 
researchers in the fusion community have used ADIOS-BP to exchange many 
petabytes of simulation data [Lofstead2008]. These shared I/O libraries are also 
making it easier for applications to read and write a large amount of data in parallel. 
Challenges exist to ensure that the “schemas” from different communities remain 
standard, so that data can be easily converted among the common file formats. Such 
standardization will reduce the need to develop customized data readers for data 
analysis and visualization. 
 
Because high-quality, efficient I/O libraries reduce the amount of programming effort 
needed to handle I/O operations and facilitate exchanges of data in large user 
communities, they will be an essential component of any exascale software stack, and 
three exascale software activities are targeting this challenge [ADIOS n.d., DataLib 
n.d., ExaHDF5 n.d.]. For these libraries to be adopted effectively in upcoming high-
performance computers, the following issues must be considered: 
 

Figure 3.4: Self-describing file formats, such as the netCDF format shown here, 
capture not only array data but also structural information such as names, units, 
types, and dimensions. 
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• Performance. The I/O system must be highly efficient in a wide variety of use 
cases: uniform, semi-structured, and unstructured meshes; particles; and 
events. These records could be organized in a variety of ways (e.g., arrays, 
trees, networks). Furthermore, the system must have efficient read and write 
operations for all of these use cases, not just one.  

• Scalability. A successful I/O library for exascale computers must be efficient 
at supporting different job sizes, ranging from a few nodes on the machine to 
the whole machine. The library needs to make efficient use of the different 
architectural variations available within the federated machine. These 
different architectures either place more resources (e.g., memory, 
computational power, NVRAM) on each node (scale-up) or utilize more nodes 
with fewer resources on each node (scale-out). Each option has its own SSIO 
challenges.  

• Resilience. Given that persistent data files are the key results of many 
important activities, the integrity of these data files must be unimpeachable. 
This requirement plays an important role in the adoption of new file formats. 
As the data sizes increase, files must still be readable even when a portion of 
the data is not reliable. Having methods to ensure that data stored in these 
formats can withstand failures is critical for future adoption, to the degree that 
file systems fall short in providing this guarantee. This protective stance is the 
strategy taken by many Monte Carlo simulations, such as QMCPACK and in 
some PIC simulations. 

• Compression. Some forms of compression are already supported by the 
current generation of I/O libraries and can be effective in reducing the output 
size as well as reducing the I/O time. Both lossless and lossy compression 
methods could be used to reduce the I/O cost. When lossy compression is used, 
it is highly desirable to provide ways to quantify the loss introduced by the 
compression. However, because the impact of compression typically depends 
on the analysis operations to be performed, it is challenging to be able to 
quantify the impact without knowing the analysis to be performed after the 
data files are produced. Compression techniques must also be very fast in 
order to keep up with the high data velocities being presented. For example, 
in the QMCPack application, 2 TB of data are produced on 8K nodes every 10 
seconds, which means that 256 megabytes (MB)/node must be compressed 
and written to the storage system every 10 seconds. Because generally the 
data at this scale may overflow the performance tier storage devices, 
compression must be very fast in order to greatly reduce the I/O overhead, 
and it must be significant in cost savings (e.g., 10 times less data) in order for 
it to be relevant to application science. Data reduction can also be achieved by 
selectively reducing the spatial, temporal, and numerical resolution of the data 
saved for later analysis, often without compromising the value of the data. 

• Function shipping. As more analysis operations are added to a simulation, 
some analysis tasks may need to be deferred or sent to another computer. In 
such cases, the I/O systems may need to record the analysis operations and 
execute these operations at a later time or place. In addition, the storage 
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system may need to present a notion of locality, so that other software can co-
locate analysis with data. 

 
Outside of demands on I/O libraries themselves, many of the large scientific projects 
keep only relatively recent data on disk, while keeping older data records on tertiary 
storage systems such as HPSS [Watson1995]. Data stored on disk are often 
considered to be online because the disks can be accessed with common I/O libraries, 
whereas data in tertiary storage are considered offline because an extensive data 
transfer process must be undertaken before the data are usable by a data analysis 
program. Typically, online data are available in milliseconds, whereas offline data 
may require hours to become available. Such a gap is a tremendous barrier for user 
access to data in tertiary storage and thus a challenge to analyzing data stored in this 
way.  
 
A number of application scientists have expressed the desire for a near-line storage 
system with latencies much lower than their expectations for the offline storage. Such 
a system would increase scientific productivity by allowing the scientists to access a 
larger amount of data for a longer period of time even though the access might be 
somewhat slower than true online storage. Early examples of systems such as this are 
deployed today (e.g., MarFS [Inman2017]). This feature might be particularly useful 
for large scientific experiments with highly valuable data and large user communities. 
The challenge for the SSIO community is to understand how best to organize data 
across the many tiers of storage.  

3.6 Metadata and Provenance 
 
Metadata is commonly divided into two broad categories: structural metadata, which 
concerns the design and specification of the data structure, and descriptive metadata, 
which comprises all other associated information such as creator, meaning, intended 
uses, provenance, associations, and context. Historically, such metadata was captured 
in handwritten entries in laboratory notebooks. Many attempts have been made to 
capture metadata automatically. So far, the most well-known success stories in HPC 
are the self-describing file formats used to capture the bulk of scientific data. These 
contain not only the arrays of raw data but also the structural information about the 
arrays, such as their names, data types, and array dimensions. Because of the diversity 
of descriptive metadata, however, attempts to capture this information automatically 
have not produced widely adopted tools. 
 
Agencies have begun to require the data displayed in research publications, such as 
data used to create a graph, to be accessible in order to support validation of results 
[SC2016]. This policy has been translated into a number of efforts to automatically 
capture provenance information, which describes the origin and history of a data 
object or a dataset. Provenance information could also make the validation of results 
more likely. However, certain important details of the data generation process, such 
as compiler optimization flags used to generate the executables or floating-point 
rounding properties, are frequently omitted from the provenance information, thus 
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frustrating potential replication efforts. In certain highly regulated computing 
environments, it may be possible to require that all such information be documented 
precisely and all executables run under the same workflow management system; 
however, in general, it is not possible to force all users to develop and run their 
programs in the same programming environment. Automatic capturing of 
provenance information about a MIMD program and its runtime environment 
remains an open research topic. 
 
Because metadata can grow to be extremely large, we must understand what needs 
to be captured and what can be discarded, so that resource constraints can still be 
met (Figure 3.5). For example, scientists might wish to capture the different types of 
algorithms used for analysis to help them understand accuracy vs. power trade-offs, 
leading to huge amounts of performance information captured on each process. In the 
combustion UQ use case, capturing the regions of interest that then help identify 
regions of influence is critical for a complete understanding for the final behavior of 
the system [Carey2014]. Metadata also grows when hundreds of variables are 
involved, as in the XGC1 case, and researchers prefer to keep information at the 
granularity of message passing interface (MPI) processes. 
 

 
 
Scientists generally want full control over their data, and this desire also extends to 
metadata. As a result, many applications scientists have developed their own ways of 
capturing and encoding their metadata. However, the pressure to produce verifiable 
provenance information may lead many more of these application scientists to use 
automated tools. In order for such a tool to be adopted by scientists, it must be easy 
to use and allow sufficient flexibility for users to specify exactly what information to 
capture and store. In addition, the following features are strongly desired: 

Figure 3.5: Distribution of file sizes and metadata operation counts on NERSC 
Edison file systems from June 2016 to June 2017. The presence of a massive 
number of modest-sized files drives an increased focus on metadata operations 
and performance [Lockwood2017b]. 
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• The provenance capturing system needs a durable way of associating the 
metadata with the data. Under current data management systems, when data 
files are moved, the associated metadata is often lost. 

• The system should accurately capture information about the programming 
environment and the runtime environment. 

• The information captured must be easily searchable or otherwise accessible. 
• The system must provide useful feedback about errors and faults. 

Furthermore, such feedback should be instructive in helping users recover 
from the errors. 

3.7 Summary 
 
Mission scientists see the SSIO community as facing a number of exciting challenges, 
summarized here in terms of the five Vs presented at the outset of this chapter in 
Section 3.1:  
 
1. Fast data access is essential to large data-intensive applications. High-level, self-

describing data formats are critical to allowing concerted efforts to improve the 
SSIO system and to best use burst-buffer technologies and deeper I/O hierarchies 
(volume, velocity, and variety). 

2. Effective metadata management is critical in allowing vast amount of high-
velocity data from different sources to be used effectively together to generate 
meaningful science results (variety, velocity, and volume). 

3. Provenance capture is essential. As application workflows grow in complexity and 
variety, capturing provenance becomes critical for future understanding of what 
occurred throughout all phases of data generation and analysis (veracity and 
value). 

4. Workflow services/frameworks are needed that can co-locate in situ tasks (on 
node, off-node, and on external resources) and can be specialized for specific 
applications (velocity, volume, variety, and value). 
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4 Computer Science Challenges 
 
A number of contributors to the overarching challenge of providing high-bandwidth, 
low-latency, storage access across multiple tiers are discussed. Together, the sub-
sections below are intended to capture the breadth of the problem, with each 
detailing the specifics and magnitude of particular, classified regions. Each subsection 
begins with materials provided to the attendees that were intended to seed the 
discussion during the workshop. At the end of each subsection the workshop 
discussion themes are captured and a set of research directions are distilled. 

4.1 Storage System Architectures 
 
Architectural changes in exascale and post-exascale HPC platforms raise new 
challenges for effective SSIO architectures. The generation, analysis, and management 
of multiple extreme-scale datasets will place increasing stress on the storage 
capabilities of existing HPC software, platforms, and facilities. Increases in working 
set sizes, simultaneous analysis of simulated and experimental data, and an increased 
understanding of data retention times are enough to motivate a need for improved 
hardware and software architectures for storing and accessing scientific data. When 
combined with the emergence of new storage and networking technologies, it is clear 
that fundamental changes in HPC storage architectures offer the opportunity to 
significantly reduce time to scientific insight. 
 
The successful deployment of NAND Flash storage media within HPC platforms and 
the resulting performance improvements in common scientific workflow elements 
such as checkpoint/restart demonstrate how focused community research efforts can 
affect broad swaths of the simulation science community. Several years of research 
efforts [Bent2012, Liu2012a, Barton2014] led to the successful deployment of Flash 
media into HPC platforms at multiple DOE facilities [NERSC2015a, LANL2015, 
LLNL2017, ORNL2018]. Further transformational opportunities likely exist in 
leveraging emerging media types within new and existing scientific workflows and 
re-architecting storage subsystems and interfaces to better match existing media 
characteristics.  
 
In order to better understand the challenges and opportunities that exist within 
hardware and storage architecture we have divided the research and development 
space into six coarse but essential areas: storage media and interfaces, network 
technologies, accelerators and active storage, resilience, advanced systems 
management, and security. Crosscutting research across these areas may be required 
for some projects. For example, emerging types of storage media exhibit different 
resilience characteristics in the forms of wear rates, bit error rates (BER), and data 
retention times. This organization is provided to systematically explore areas within 
software and hardware architectures and describe emerging opportunities and 
challenges. 
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4.1.1 Storage Media and Interfaces 
 
New storage media typically present new performance levels, new performance 
asymmetries (e.g., the difference between random access and sequential access) and 
new economies of scale that accelerate time to scientific insight when deployed 
effectively into HPC platforms and facilities. New storage interfaces instead require 
the revisiting of past assumptions about how best to access storage devices and 
ensure that each layer’s assumptions correctly match the characteristics of the 
underlying media. The combination of both techniques presents opportunities to 
transform HPC storage systems and greatly accelerate time to scientific insight. 
 
State of the Art 
The use of emerging storage media technologies throughout the data center is an area 
of immediate interest. Evolutionary changes include the changing asymmetry 
between read and write track widths in some modern hard disk drives 
[Feldman2013, Aghayev2015], the emergence of energy-assisted magnetic recording 
(EAMR), the increasing densities of 3D NAND Flash, new Flash architectures 
[Samsung2017b], and the use of volatile memory as the backing store for reliable 
storage systems. Specialized file systems targeting hard disk head-size asymmetries 
[Kadekodi2015, Manzanares2016, Aghayev2017], flash read/write/erase 
asymmetries [Gal05], and distributed in-memory stores [Rumble2014, Rambus2018] 
have demonstrated that significant performance improvements can be achieved by 
leveraging the underlying device characteristics carefully. Changing economies of 
scale also motivate the use of Flash media in long-term storage tiers [Gupta2014]. 
 
Disruptive changes in the storage media landscape include the availability of fast, 
non-volatile memory devices such as 3D XPoint® and the availability of ultra-dense, 
deoxyribonucleic acid (DNA)-based storage solutions. Byte-addressable persistent 
storage, such as 3D XPoint® [Optane2018, QuantX2018] and Resistive RAM 
[Lu2016], has been an area of recent research interest and specialized file systems 
[Xu2016, Wu2011]; and data structures [Coburn2011, Venkataraman2011, 
Zhang2016] have been developed to exploit performance that greatly exceeds 
existing solid-state storage media. DNA storage, while further from 
commercialization, offers transformative opportunities in archival storage with low-
cost media, thousands of years of data durability, and nearly free data duplication 
[Bornholt2016, Organick2018, Milenkovic2018]. Similarly, advances in light-based 
media offer promise as a dense storage media replacement for traditional spinning 
disks [Anderson2018]. 
 
Previous efforts to improve storage media interfaces resulted in development of the 
object storage paradigm, notable for demonstrating the fundamental performance 
improvements achievable by allowing storage devices to make device-aware space 
allocation/deallocation decisions [Mesnier2003] and used in multiple HPC storage 
systems [Braam2004, Nagle2004]. Block-based interfaces such as SCSI Block 
Commands [SCSI2018], NVM Express (NVMe) [NVME2018a], and the current Linux 
DAX implementation [DAX2018] continue to be the dominant mechanisms for 
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reading and writing data to and from storage media. Emerging storage interfaces that 
take advantage of byte-addressable media characteristics such as the SNIA NVM 
Programming Model [SNIA2017, PMDK2018] or the translation and logging logic 
within Flash devices [Samsung2017a] are becoming more commonplace.  
 
Seeding Workshop Discussion 
Rapid changes in storage media and interfaces result in several challenges in creating 
scalable storage systems for both high-performance systems and archives: 
 

• Challenges exist with incorporating byte-addressable media into distributed 
HPC storage systems given that network-based interfaces to persistent 
memories may not be able to leverage the byte-addressability advantages 
effectively. 

• The extent of the read and write asymmetries for emerging media such as 3D 
XPoint® and DNA stores are not widely understood, and techniques to exploit 
those asymmetries are not well studied. 

• New media types introduce new economic models for HPC platforms and 
facilities that present challenges and opportunities in designing HPC storage 
tiering and design. 

• New media interfaces provide opportunities to eliminate the inefficiencies of 
accessing block interfaces at sub-block sizes or non-block alignments, but 
leveraging new interfaces may require revisiting assumptions throughout the 
storage stack. 

4.1.2 Networking Technologies 
 
HPC networks continue to improve dramatically in performance and pose significant 
challenges for systems designers attempting to provide storage performance capable 
of saturating local network interfaces. The ability to aggregate tens of GB/s of 
network bandwidth into a single storage node requires a matching amount of storage 
bandwidth to produce an economically efficient storage system. In addition, storage 
systems typically require network abstraction layers that allow remote access across 
a variety of platform interconnection networks and dedicated storage networks. 
Multiple approaches to leveraging the capabilities in modern interconnection 
networks and providing broad network compatibility exist within HPC research 
efforts.  
 
State of the Art 
Modern HPC interconnects currently provide approximate 1μs latencies and 
throughputs of 100–200 Gbps [Alverson2012, BXI2017, HDR2018, OPA2018], with 
most technologies planned to double performance in the next several years. 
Commodity Ethernet provides similar bandwidths and similar throughput 
improvement plans but with moderately worse multi-hop latencies. HPC topologies 
are typically dominated by efficient topologies such as Dragonfly [Kim2008] and 
high-radix tori/Clos [Scott2006], although I/O backbone networks that connect 
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parallel file systems to multiple HPC platforms are more commonly implemented 
with fat tree topologies (possibly oversubscribed). 
 
One area of recent innovation has been the low-level networking libraries used to 
leverage network devices from user-space [MacArthur2017, Shamis2015, 
Goodell2015, GenZ2018]. These libraries are typically used below a network 
abstraction layer provided by MPI or by other high-level networking libraries 
[Soumagne2013]. While HPC interconnects typically provide fewer management 
capabilities as compared to modern Ethernet infrastructure, these libraries are able 
to leverage common HPC networking features of potential benefit to SSIO, such as 
support for remote memory access (RMA), atomic remote memory operations (AMO), 
asynchronous progress engines (APEs), virtual lanes, and quality-of-service (QoS) 
mechanisms. New storage-specific network operations to accelerate data caching 
[Jin2017] and key-value storage [Li2017] have also been explored recently.  
 
Finally, networked storage protocols including SRP [SCSI2018], iSER [Kim2003], and 
nonvolatile memory express over fabric (NVMEoF) [NVME2018b] have been used 
within HPC facilities to provide redundant copies of important datasets 
(e.g., mirroring PFS metadata) and export block interfaces from existing and 
emerging storage enclosures. 
 
Seeding Workshop Discussion 
Future HPC systems will incorporate multiple levels of storage distributed across one 
or more networks with potentially complex topologies and thousands of storage 
end points. Networks on these systems will likely present significant new capabilities 
including the following:  
 

• QoS via throttling, performance isolation, and co-scheduling with preemption; 
• Advances in RMA and AMO operations, potentially end-to-end from compute 

memory to the storage device;  
• Support for asynchronous operations and independent progress of 

communication;  
• Collective communication support and the ability to embed computation for 

data reduction or reorganization within networking end points and the 
switching hierarchy; and 

• Leveraging direct access to storage devices efficiently and effectively within 
HPC platforms.  

 
Although many of these capabilities will be researched outside the context of SSIO, 
the SSIO community should be ready to incorporate or leverage these advances 
where appropriate. SSIO-specific R&D should be encouraged, allowing co-design of 
network and storage technologies as appropriate.  
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4.1.3 Active Storage and Storage Accelerators 
 
As local and distributed storage systems have been augmented with advanced 
features such as compression, distributed erasure codes, and checksums, the limited 
spare compute and memory resources available on compute and storage nodes 
indicate that accelerators may be essential in achieving high levels of storage 
performance. Interest in executing additional user-specified tasks near the data (data 
reductions, statistical summaries, etc.) continues to motivate research into active 
storage. 
 
State of the Art 
Active storage aims to expose computation elements within the storage 
infrastructure for general-purpose computation on data. Active storage has been 
motivated by the increasing computational capabilities within storage devices and 
the ability to reduce data movement (filtering) and storage requirements (ephemeral 
views) by embedding computations in the storage device. Active storage research has 
been pursued for more than a decade [Riedel1997, Amiri2000, Son2010]. The current 
state of the art includes the extension of active storage concepts to the device level 
(T10 OSD [object-based storage]) [Mesnier2003] and HPC parallel file systems 
[Felix2006, Piernas2007]. Programming models include streaming [Acharya1998, 
Felix2006, Qin2006, Piernas2007], remote procedure calls [Riedel1997], and object-
oriented models. While general-purpose computation has been explored in active 
storage, more limited forms of computation have also been investigated, including 
ephemeral views [Ma2003] and filtering [Riedel1997]. More recent work has 
examined mechanisms enabling the user to run predefined computations [Felix2006] 
that are of a more general-purpose nature but with well-known computational 
characteristics similar to stored procedures in databases, as well as extending the 
MPI-IO interface for analytics shipping [Son2010]. Still other research has proposed 
applying active concepts in the context of Flash devices [Boboila2012, 
Samsung2018]. 
 
Seeding Workshop Discussion 
A number of significant challenges exist in active storage, particularly as it relates to 
HPC environments: 
 

• Embedding computation within an HPC storage infrastructure brings about 
challenges in data and programming models for these environments, including 
security issues (e.g., how to control access of embedded computation) and 
resource management challenges (e.g., how to balance service between active 
and passive operations). 

• Changes in central processing unit (CPU) capabilities, networking, and storage 
device speeds may fundamentally alter the types of computation that can be 
effectively amortized while processing a data stream (e.g., fundamental 
operations may be effectively offloaded into storage while more complicated 
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analysis tasks may only be appropriate for a single active storage 
architecture). 

• Methods to expose acceleration and active storage capabilities with flexible 
programming interfaces that integrate well with existing HPC I/O middleware 
are poorly understood. 

• The use of storage and networking devices that include acceleration 
technologies is one promising technique for providing scalable, generally 
useful active storage capabilities — however, the efficacy of this approach is 
still not well researched at scale.  

4.1.4 Resilience 
 
The differentiation of data retention times for the phases of scientific workflows has 
demonstrated the need for multiple resiliency models within HPC storage 
infrastructure [APEX2015]. Temporary and intermediate datasets may leverage 
different protection schemes than those utilized by the highly processed output data 
used for scientific visualization. Similarly, storage systems maintaining data for days 
or weeks typically use different data protection schemes than storage systems 
maintaining data for months or years. 
 
State of the Art 
Resiliency in SSIO has been an active area of research, spanning techniques to provide 
resilience to individual component failures [Patterson1989, Rizzo1997] up to the 
application [Zhao2004, Chang2008] of generalized algorithms [Birman2007, 
Lamport2001, Elnozahy2002] for fault detection and recovery. Numerous strategies 
have also been employed for data availability, including network redundant array of 
independent disks (RAID)/erasure encoding, consensus/quorum protocols 
[Ongaro2014], and multiple forms of data replication [Cidon2013]. While significant 
work has focused on resiliency of the underlying storage server infrastructure, some 
efforts have also focused on end-to-end data integrity [Zhang2010], although only 
limited work has been done in this area specifically for HPC environments. Above the 
storage system level, some work has explored fault-tolerant runtimes and 
application-level resiliency strategies [Hargrove2006, Sankaran2005], but the 
scalability of such techniques remains in question. Fault-tolerant programming 
models, such as MapReduce [Dean2008] and Legion [Bauer2012], and the application 
of the consistency, availability, and partition tolerance (CAP) theorem and peer-to-
peer systems principles are also gaining momentum and adoption within the 
scientific HPC community.  
 
New stacked dynamic random access memory (DRAM) technologies provide 
extremely high levels of memory bandwidth and have the opportunity to provide 
high-performance buffer operations in HPC storage systems; they also come with new 
reliability models that require new data corruption protection schemes [Jian2016, 
Gupta2018]. For example, the HDF5 middleware library provides checksums for files 
[HDF2018], but not the end-to-end data protection that may be necessary for these 
new memory technologies.  
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Seeding Workshop Discussion 
Next-generation HPC systems will raise significant resiliency challenges for the SSIO 
community. While some resiliency challenges will crosscut with the broader resource 
management, networking, application, and parallel programming environment 
communities, SSIO-specific resiliency challenges will remain.  
 

• New storage media, tiered storage organizations, increasing storage 
capacities, and tighter margins in component designs (silent data corruption) 
will necessitate significant R&D in SSIO resiliency to account for device and 
data properties. 

• Another challenge is to leverage new memory technologies inside of storage 
systems without memory protection strategies like ChipKill. 

• Another is to provide appropriate levels of performance and resiliency for 
persistent data within the storage hierarchy. 

4.1.5 Advanced Storage Systems Management 
 
Bursty I/O requirements and bulk-synchronous, write-dominant HPC workloads 
have traditionally motivated a research interest in advanced storage management 
infrastructure for HPC platforms. Efficient purging toolsets, statistical summaries, 
and data layout tuning are some examples of the advanced management 
infrastructure common within HPC facilities. The increasing popularity of machine 
learning as a tool within the systems community introduces new possibilities in the 
application of statistical models to storage systems management. Autonomous 
storage systems capable of responding to cyclic workload demands, policy-driven 
toolsets capable of managing resource sharing, dashboards for monitoring the 
intersection of scientific workflows and storage systems, and new capabilities for 
enabling rapid data reorganization could all contribute to more effective use of 
current and emerging storage hardware.  
 
State of the Art 
Autonomics refers to the ability of a system to adapt to a changing environment, such 
as tuning for higher performance in response to a change in workload or 
redistributing work in response to a faulty component. In SSIO, autonomic 
approaches are potentially useful for management, monitoring, and optimization in 
response to user behavior. Multiple efforts have identified models that provide 
forward predictions for storage layout decisions [Behzad2014a, Behzad2015, 
Liu2017]. There have also been efforts to build storage policy engines that enable 
dynamic policy switching based on model predictions [Sevilla2015]. Low-level 
storage management and monitoring protocols, such as SMART [Allen2004] and 
Swordfish [SNIA2018], are integrated and leveraged at many HPC facilities but are 
not widely used for policy management. 
 
Significant efforts exist within storage systems management to accelerate common 
scientific workflow tasks. Parallel data movers exist for both wide area networks 
[Hanushevsky2002, Allcock2005, Settlemyer2011] and data movement within data 
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centers’ storage tiers [LaFon2012, Wang2016, Pftool2018]. Similarly, several 
external indexing and policy engines exist for implementing common HPC policies, 
such as storage accounting and purging [Declerck2014, Bonnie2018]. 
 
Finally, systems for providing quality-of-service policies for networking and storage 
have been an area of frequent research interest. Efforts for quality-of-service 
guarantees for both storage devices [Wachs2009] and distributed storage systems 
[Gu2011] have been proposed but not widely adopted by HPC facilities. Modern 
software-defined networking controllers [ONF2018a, ONF2018b] provide a 
substantial set of user-programmable, quality-of-service guarantees for Ethernet-
switched networks and are beginning to see deployment in HPC facilities. 
 
Seeding Workshop Discussion 
The increasing complexity of SSIO systems introduces multiple challenges in the 
space of possible configurations and complicated interactions created by diverse sets 
of scientific workflows: 
 

• Although toolsets for implementing policies and managing data are well-
suited for the systems and problems for which they were defined, they are 
typically not modular or composable in ways that address complex tasks. 

• Interactions between storage system components and tiers within storage 
systems are subtle, complex, and often lead to unexpected behaviors. 

• Policy engines, autonomic or otherwise, are needed that are able to explore 
the system configuration space and measurably improve reliability, 
performance, and/or TCO for storage systems. 

4.1.6 Security 
 
Security continues to be a pressing concern within HPC platforms and facilities. As 
security monitoring techniques have trended toward deep packet inspection and 
continuous security audits, the lack of end-to-end security within HPC storage 
systems continues to be an apparent shortcoming. Although HPC facilities have 
traditionally addressed the issues of balancing authentication, secure access control, 
secure data transmission, and efficient performance, research into this area is still 
needed. 
 
State of the Art 
Security for storage systems in HPC is typically implemented by using traditional 
UNIX users or groups and access control lists. Specifically, this security is 
implemented via trusted software running in the kernel on storage clients in 
conjunction with one or more trusted servers. Data are not typically encrypted at rest 
or over the wire. 
 
Numerous, more advanced security approaches have been investigated in the context 
of HPC but not productized. These include a technique for fine-grained encryption of 
large datasets [Li2013] and methods for aggregating security operations 
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[Leung2007]: authorizing multiple client-file pairs in a single operation and allowing 
a representative client to act on behalf of a large group (e.g., the processes in a parallel 
application). Scalable methods for security in large-scale HPC storage systems were 
also investigated as part of the light-weight file system (LWFS) project 
[Oldfield2007]. Security partitioning for secure and efficient search using Bloom 
filters has been explored [Parker-Wood2010], as well as using a keyed hash tree 
[Li2013] and scalable authorization mechanisms [Leung2007]. 
 
Seeding Workshop Discussion 
Emerging storage system architectures create a number of challenges in applying the 
current state-of-the-art security strategies:  
 

• Additional layers in the storage hierarchy (i.e., nonvolatile storage layers, 
“campaign” or “data lake” storage layers between the parallel file system and 
archive) mean that the security system will need to control access to multiple 
tiers potentially provided by multiple vendors. 

• The dependence on node operating system (OS) or network hardware for 
enforcement of security needs to be relaxed: there must be ways of preventing 
information leakage from nonvolatile storage located within the compute 
fabric or between jobs running in the system without reliance on the kernel 
for enforcement, given that the kernel itself is outside application control yet 
increasingly subject to compromise. 

• Security must be supported at a range of granularities that may leverage 
knowledge of file layout (e.g., HDF5 or netCDF). 

• New security solutions must be decentralized and allow fast paths for common 
operations; security needs to be as performance-transparent as possible. 

• Security solutions should integrate with resource management to deter denial 
of service (e.g., consumption of available storage space or bandwidth). 

4.1.7 Discussion Themes 
 
A number of themes emerged during workshop discussion, summarized below. 
 
Storage Media and Interfaces: Attendees noted that changes in both storage media 
types and interfaces to storage media present new challenges in developing HPC-
centric system software. The participants identified challenges in determining classes 
of interfaces that belong in hardware versus software, in particular with respect to 
emerging key-value devices and media with highly asymmetric access characteristics, 
such as shingled disks. The participants agreed that economic factors will largely 
govern the hardware interfaces presented, but that research into leveraging these 
interfaces offers opportunities to greatly improve storage software efficiency. The 
discussion then moved to the challenges in improving SSIO software efficiency to 
leverage fast storage devices. The discussion concluded that storage software 
efficiencies and load-balancing strategies need to be radically improved to match the 
performance of the storage devices aggregated into modern storage servers. 
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Networks: Networking speeds are continuing to advance rapidly, and the discussion 
focused on topics for leveraging new networking technologies inside of SSIO software 
stacks. Challenges related to leveraging networks efficiently in software were 
discussed, and challenges associated with fabric-attached storage were a frequent 
topic of discussion. Discussions included the description of open research questions 
surrounding: how do users perform connection management for fabric-attached 
storage devices, device management at scale, and flow control at scale? Further, are 
existing consistency models appropriate for new high-bandwidth, low-latency 
networks providing NVMEoF access to storage devices? Finally, several participants 
noted the difficulties associated with building high-performance SSIO software for 
HPC platforms using lightweight cores.  
 
Active Storage and Storage Accelerators: The workshop attendees discussed the 
challenges with developing more capable storage software stacks including both 
active storage and the offload of storage systems software onto accelerators. The 
initial discussion focused on the challenges related to understanding the structure of 
data at all levels of the storage hierarchy. Solving this problem is a key factor in 
offloading advanced data analysis capabilities into the storage system. After 
discussing multiple possible applications for acceleration, including machine 
learning, attendees agreed that the primary challenges appeared to be in co-designing 
approaches to active storage and active networks such that domain-specific offloads 
can be developed and deployed. 
 
Resilience: During the resilience discussion, participants noted that resilience in 
science workflows is multifaceted, and the trade-off space is not well-supported by 
existing modeling efforts. The trade-offs related to the rates of data loss, performance, 
and response time are not straightforward for scientific workflows, where some 
percentage of the output data can also be recreated at a later time. The need for better 
models and metrics for understanding these trade-offs was mentioned multiple 
times. The participants further noted that improved models may incorporate 
emerging media types or may carefully fit complex scientific workflows, and that both 
types of efforts could improve the understanding of resiliency for SSIO software 
architectures. 
 
Advanced Storage Management: The workshop participants discussed the many 
crosscutting concerns related to advanced storage management. Challenges exist in 
managing data as they move through hierarchies of storage, in particular in allowing 
scientists to express goals and in SSIO management software achieving those goals 
efficiently. Many participants felt that automated approaches to storage management, 
including autonomics and system self-regulation, are important research areas that 
merit additional study — in particular with advances in the ML for systems 
communities. The participants identified opportunities for greatly improved system 
efficiencies if heterogeneous systems could be extended beyond traditional 
hierarchies and include heterogeneity within storage tiers. Systems approaches for 
coping with extremely diverse media types (including different drive models and 
network technologies within a single storage tier) present extreme usability 
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challenges but also opportunities for radically improving the economics and value 
proposition of future storage systems. 
 
Security: During the security discussion, the participants focused on two separate 
challenge areas within the security domain. First, what threat model exists for data 
stored and accessed from HPC storage systems? Second, how do SSIO software 
systems provide both efficient access to data and adequate protection against 
threats? With respect to the threat model, participants emphasized the need for a 
rigorous, formalized threat model that addresses provenance tampering, metadata 
tampering, and data tampering. In addition, difficulties in developing a threat model 
include the long data retention life times and the parallel access to data. With respect 
to developing efficient techniques for accessing data, the participants noted that 
recent security vulnerabilities such as Spectre and Meltdown reduce I/O system 
performance by 10 to 50%. The participants concluded that this area is changing 
rapidly, and the scope of both problems and solutions are not well understood today. 
 
Composability: In this new topic emphasized by the workshop participants, the 
discussion focused on how to deliver new software and hardware storage 
technologies to scientists. In particular, the discussion centered on the difficulties that 
science teams experience when trying to leverage disparate storage system software 
effectively within their domain science codebases and workflows. The community 
noted the difficulties that exist in composing domain-specific storage services, 
including the following questions: how does the SSIO community guide 
multidisciplinary teams to create efficient, effective data services; how are these 
services deployed across multiple facilities; and how can new storage services 
effectively adapt for deployment into a new environment? The difficulties associated 
with composing new storage services is such that the design space may require a 
relatively thorough exploration to identify new composition techniques. Finally, the 
difficulties in composing systems dovetails with difficulties in understanding SSIO 
software systems, and the combination of techniques described in Section 4.5 may be 
required to guide the composition of storage services. 

4.1.8 Research Directions 
 
Participants concluded that new software architectures are needed to improve access 
to scientific data and ensure the proper level of durability for scientific datasets. The 
following priorities emerged from the discussion. 
 
Improving storage system efficiency and capabilities. 
 

• Leverage emerging storage media, networks, and accelerators; and 
• Create efficient storage systems components to address the disparity between 

user-level performance and hardware capabilities. 
 
Emerging storage hardware continues to improve the performance, capacity, and 
durability of the media available for new software architectures. High-performance 
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storage class memories provide a faster, byte-addressable alternative to existing solid 
state storage; and emerging molecular information storage offers promise in 
addressing limitations in capacity and data retention time for existing magnetic 
media. When combined with fast networks and accelerators capable of improving 
storage system efficiency, future storage architectures will have a multitude of 
underlying technologies to integrate to accomplish scientific data management tasks. 
These future storage systems must improve the performance delivered to actual 
scientific applications. While current storage systems typically provide excellent 
performance in benchmarking conditions, real scientific applications continue to see 
a disparity between the potential performance and the actual performance 
experienced by users.  
 
Composing advanced storage services. 
 

• Improve capabilities for the composition of domain-specific storage systems; 
and 

• Enable autonomics and the orchestration of science data management tasks 
across multiple, simultaneous storage systems. 

 
As scientific workflows grow more complex and incorporate simulation and 
experimental datasets simultaneously, it becomes more important to rapidly 
construct storage services capable of efficiently supporting domain-specific data 
management tasks. Orchestrating activities across a variety of storage systems is 
time-consuming for users and requires robust storage systems and toolsets for 
executing tasks efficiently. New software building blocks are required to enable 
complex data management tasks at scale. 

4.2 Metadata, Name Spaces, and Provenance 
 
As the complexity and scale of systems, applications, and data continue to grow, there 
is an increasing need to develop robust capabilities that enable both systems and 
users to extract, search, and track lineage for the massive volumes of data generated 
for scientific purposes. While some of these capabilities exist today, they are typically 
deployed through a set of ad hoc tools that are not designed for the scale or 
complexity anticipated for large scientific datasets (e.g., scripts that use UNIX grep, 
find, and awk). In general, managing large datasets on existing HPC systems requires 
a level of discipline and organization by users that is extremely time consuming, if 
done well, and error prone if not. In addition, requirements for repeatability, 
application workflow management, and data curation (among others) are driving the 
need for robust and integrated tools for provenance capture and management. These 
provenance capabilities must allow exploration of the provenance information for 
debugging, anomaly detection, visualization, and other purposes. 
 
As of October 1, 2015, the DOE policy [DOE2018] on data reproducibility requires 
that all funded research have an associated data management plan (DMP). Those 
DMPs must “describe whether and how data generated in the course of the proposed 
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research will be shared and preserved,” and DOE offices must assess the long-term 
needs for data sharing “about three years after this policy goes into effect.” We are 
now (as of early 2019) in that timeframe, and the SSIO community should be an active 
participant in ensuring that long-term science data sharing is possible in a way that 
enables the greatest value to science communities. The solutions to the metadata, 
namespace, and provenance challenges described below should support those goals, 
as well as the needs of the scientists producing the original data. 

4.2.1 Metadata 
 
Metadata, in this context, refers generally to the information about data. It may 
include traditional user-visible file system metadata (e.g., file names, permissions, 
and access times), internal storage system constructs (e.g., data layout information), 
and extended metadata in support of features such as provenance or user-defined 
attributes. Metadata access is often characterized by small, latency-bound operations 
that present a significant challenge for SSIO systems that are optimized for large, 
bandwidth-intensive transfers. Other challenging aspects of metadata management 
are the interdependencies among metadata items, consistency requirements of the 
information about the data, and volume and diversity of metadata workloads. 
 
State of the Art 
Scalability of metadata services has seen significant attention in the context of file and 
and object storage systems. Distributed metadata servers with strong consistency 
semantics, such as Ceph’s MetaData Server (MDS) [Weil2004, Weil2007] and GIGA+ 
[Patil2011], are either focusing on ease of load balancing using hashing (GIGA+) or 
aiming for improved locality by dynamic subtree partitioning (Ceph’s MDS). More 
recent object-storage systems scale metadata management across a large set of 
storage devices [Aviles-Gonzalez2014]. Others manage parts of the metadata in the 
clients to achieve scalability [Zheng2014, Weil2006, Ren2014] but rely on relaxed 
consistency semantics to achieve performance. 
 
While most HPC file systems support some notion of extended attributes for files 
[Braam2002, Welch2008, Weil2006], this type of support is insufficient to capture 
the desired requirements to establish relationships between distributed datasets, 
files, and databases; attribute additional complex metadata based on provenance 
information; and support the mining and analysis of data. Some research systems 
provide explicit support for searching the file system name space based on attributes 
[Aviles-Gonzalez2014, Leung2009], but most of these systems rely on effective 
indexing, which has its own scalability and data-consistency challenges [Chou2011]. 
 
Investigations have been made into the use of integrated databases for metadata 
storage [Johnson2014], but this technique has not been applied in an HPC storage 
system. Metadata-rich science formats such as HDF5, netCDF, ROOT, and ADIOS have 
been integrated into science data servers, such as SciServer [SciServer2018] and 
science community “web-portals” [ESS-DIVE2018, DES2018] that may provide 
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higher-level semantic metadata that enables science communities to publish, search, 
and share datasets more productively. 
 
Frameworks for harvesting metadata from science data have been produced in 
academia [Gupta2010, Parker-Wood2013, Devarakonda2010] but have not been 
adopted by broad science communities. Machine learning techniques are beginning 
to be applied to large science archives [Orphus2018] but are still in their infancy. 
Techniques such as these may enable DOE DMP goals to be achieved in an automated 
and scalable fashion and with minimal effort by scientists. 
 
Seeding Workshop Discussion 
A number of nontraditional use cases for the metadata management system have 
emerged as key to DOE missions. These include multiple views of the metadata to 
support, for example, different views at different levels of the name space hierarchy 
and different views for different users’ purposes; user-defined metadata; provenance 
of the metadata; and the ability to define relationships between metadata from 
different experiments (e.g., to support the provenance use case). 
 
As the collection of metadata expands, it is important to ensure that all metadata 
associated with a dataset remains with the data. Metadata storage at different storage 
tiers, storage and recovery of metadata from archive, and the transfer of datasets to 
different storage systems are all important use cases to consider. 
 
Hashing a namespace balances the load but does not account for locality. Fixed 
namespace partitioning accounts for locality but creates a load imbalance. 
Approaches are needed that provide the best of both of these known techniques. 
Further, these approaches must scale across exascale-sized metadata services that 
maximize caching, wear- or power-leveling, and other key properties. 
 
Currently, the end user explicitly enters a large portion of metadata. As workflows 
grow in size and metadata becomes more complex, it is highly desirable to automate 
the capture of most metadata about the workflow and provenance. A number of 
attempts have been made at the fairly coarse level [Schissel2014]; however, as 
parallel jobs on a supercomputer become MIMD (multiple instruction multiple data) 
or composite workflows, there is a need to capture the complex dependencies within 
a single parallel job. Because a job on an exascale machine may have million-way 
concurrency, the metadata associated with a simple parallel write of a checkpoint file 
could be large and complex, not to mention the dependencies and interactions among 
the different components of a million interrelated parallel tasks. The volume and 
velocity of the metadata associated with such a fine-grained metadata could present 
a serious challenge to manage. 

4.2.2 Namespaces 
 
A namespace is a view or perception of data to the user. The subject includes a broad 
range of topics, including discussion of data-model specific namespaces, time-
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oriented naming schemes, consistency of naming across systems and storage 
hierarchies, and search and discovery in large namespaces. 
 
State of the Art 
Previous work has focused on improving the scalability of access to traditional, 
POSIX-based namespace hierarchies [Weil2004, Weil2006, Patil2011, Moore2011]. 
More recent efforts have investigated how to manage scientific data in the context of 
object-oriented namespaces [Barton2013, Goodell2012]. The grid computing 
community has also made significant practical contributions to the problem of 
federating namespaces across facilities [Baru1998]. 
 
Composing data dynamically into “views” has been performed by traditional 
databases for decades and is being explored for large science data as well 
[Kryza2015]. Approaches that index metadata for datasets and present a scalable 
search mechanism to return results (see earlier science data servers/web-portal 
citations in Section 4.2.1, i.e., ESS-DIVE2018, DES2018) are also promising. 
 
Seeding Workshop Discussion 
The existing work generally is hierarchical and focused on file systems. A number of 
researchers, however, have argued that such hierarchical namespaces impose 
inherent limitations on concurrency and usability. Eliminating these limitations with 
object storage systems or higher-level systems could be the fundamental 
breakthrough needed to scale namespaces to million-way concurrency and to enable 
new and more productive interaction modalities. 

4.2.3 Provenance 
 
Provenance is broadly defined as metadata that describes the lineage of data. In 
simple terms, provenance contains details on how a particular file was generated; 
these details can be used to reproduce scientific results. For large-scale 
computational problems, the information can include the origin of data (sometimes 
experimental data); algorithms, libraries, and associated parameters and versions of 
software used for processing and transforming the data; details of the systems used 
for these transformations such as memory requirements, number of resources, and 
system software; and perhaps even ownership or user attribution for the various 
steps performed.  
 
State of the Art 
Most of today’s scientific datasets have little to no provenance information at all. 
Provenance information that does exist is collected and managed in an ad hoc way 
through custom-developed scripting tools (e.g., Perl or Python) with no direct 
support for managing this data in the storage system. In these cases, the quality of the 
provenance data is directly related to the discipline and management skills of the data 
owner. 
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An important aspect of provenance information is how it relates to application 
workflows. Work on automatic extraction, management, or analysis of provenance 
data has begun in isolated research groups [Schissel2014, Davidson2008, 
Muniswamy-Reddy2006] and is available in many workflow automation tools such 
as Kepler/Komadu [Indiana2014], VisTrails [Callahan2006], and Pegasus 
[Mandal2007]; however, such tools are not in wide use and are often not deployed on 
HPC systems. Most of these tools rely on third-party databases and custom-designed 
tools [Davidson2008]. While this approach is effective for managing workflows in a 
single environment, the ability to encapsulate entire datasets and associated 
provenance for archival purposes is problematic. In addition, no effective way exists 
to integrate provenance information for workflows that span multiple systems. 
 
High-performance computing facilities are also using tools such as an automatic 
library tracking database (ALTD) [Fahey2010] to collect provenance information for 
more traditional applications as well. As is the case in workflow systems, however, 
these tools are not integrated with the SSIO storage ecosystem. 
 
Preliminary work has investigated the use of graph data structures [Ames2011, 
Dai2014] for provenance storage, but these concepts have not been fully realized at 
scale. 
 
Although further opinions have been published [Hills2015, Mikdadi2017] 
emphasizing the importance of provenance tracking for science data and bemoaning 
how much effort goes into cleaning up previously published data [Delgado2016], very 
little effort appears to have been made in this area during the last few years. 
 
Seeding Workshop Discussion 
Existing workflow tools manage all provenance data internally. There is no storage-
system support that enables the association of provenance-related metadata with 
scientific datasets. As datasets increase in size and complexity, the ability for tools to 
manage the files, databases, and other storage by-products will become a significant 
challenge without implicit storage-system and operating-system/library support. 
 
The size and complexity of mining and analyzing provenance data could become an 
extreme-scale computing problem itself. Use cases for mining and analysis include 
debugging, anomaly detection, and visualization. One challenge is the need to identify 
all datasets derived from an application that used a particular version of a (known-
buggy) library so they could be removed from the archive and rerun. 
 
Workflows that span multiple systems also merit attention. For example, consider a 
workflow consisting of preprocessing a large collection of data from a scientific 
device. The results are consumed by a large HPC simulation, and the results of the 
simulation get transformed into a graph and analyzed on a graph-analytics system. 
The provenance information should include the complete description of these steps; 
but there is no formal way to construct, capture, and manage this type of data in an 
interoperable manner.   
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A complete description of steps may not suffice to reproduce a simulation. The setup 
of a simulation depends on the particular environment, which continually changes, 
often irreversibly (e.g., after the application of security patches). Capturing and 
understanding the impact of changes to the computing environment are important 
aspects of using provenance data for reproducibility. 

4.2.4 Discussion Themes 
 
Workshop attendees expressed concern over the willingness and ability of both 
system developers and scientists to understand and embrace many aspects of this 
topic area. Metadata, provenance, and namespaces cover an extremely broad range 
of semantic scope and are a rich area for both novel research and standardization. 
 
Metadata: Workshop attendees discussed the need for research into lightweight 
methods to gather metadata from science teams, in order to improve the quantity and 
quality of the metadata stored with science data. However, attendees also noted that 
science domains have important domain-specific information that may be difficult to 
gather in an automated way. Research into methods to gather, express, and store both 
general and domain-specific information was considered valuable by attendees. 
 
Attendees noted that the generally small and heterogeneous nature of metadata was 
a poor fit for most parallel file systems but could be a good match for database 
systems, if they could scale to the volume and performance needed. Alternatively, 
attendees noted, parallel file systems could broaden their scope to encompass 
efficient, scalable metadata storage for applications. Attendees speculated that 
decoupling file system development from metadata storage may be valuable to this 
direction of inquiry and allow metadata storage and file systems to advance 
independently of one another. 
 
Namespaces: Attendees found that namespaces encompass a broad range in scope, 
from data structures in applications down to bytes in a file. The need for namespaces 
that are hierarchical, extensible, inheritable, and abstractable — while being 
accessible to both domain scientists (either directly or programmatically) and to 
algorithmic consumption — extended throughout the discussion. Attendees 
reiterated that current HPC namespaces are too large, and methods to search them 
and dynamically display more focused subsets of information would greatly benefit 
scientific analysis and discovery. Attendees brought up the need for domain-specific 
namespace views that reflect the “scientists’ view of the data” and could incorporate 
information within structured files such as HDF5/netCDF/ADIOS, as well as across 
many files. 
 
Provenance: The most discussed use case for provenance information was to 
support re-use of data for validation of published results, since the Office of Science 
Statement on Digital Data Management now requires projects to provide access to 
data for this purpose, but the group also discussed numerous other use cases such as 
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understanding of performance, system, and software variance; certification of 
results; and forensic analysis useful for debugging, auditing, and security. 
 
Attendees mentioned that tracking provenance is a well-explored aspect of many 
other fields (art history, digital library science, etc.) and that effort should be made to 
apply the best practices from those fields to our challenges, rather than reinventing 
them. Attendees extensively discussed the high value of provenance in science 
reproducibility, error detection and correction in stored data, software fault 
detection, and I/O performance improvement of current and future systems. 
 
Attendees also discussed the need for research into how much provenance 
information to store, for how long, in what level of detail, and how to ensure that the 
provenance information was immutable and trustworthy. The value of using 
provenance beyond strictly validating science data itself was brought up; attendees 
pointed out that provenance information can be used to train new staff as well as help 
to retain and propagate institutional knowledge of data gathering processes and 
procedures. 

4.2.5 Research Directions 
 
Workshop attendees reached consensus about several research directions to pursue: 
 
Storing science metadata in a scalable manner. 
 

• Develop methods to store science metadata in a scalable manner, and in a 
standardized and productive way. Of particular note, mechanisms to decouple 
metadata storage from the underlying file system, so that they may evolve 
independently, were desired by workshop participants. 

 
Enhancing the process of arriving at science insights by improving namespace 
query and display capabilities. 
 

• Enhance the process of arriving at science insights by improving namespace 
query and display capabilities to be more dynamic, programmable, and 
extensible. Methods that support data lifecycle management capabilities and 
incorporate views across and within science data are highly desired. 

 
Enhancing provenance information. 
 

• Enhance provenance information stored for science data to ensure that data 
reproducibility is guaranteed over a very long time period, but in a way that is 
easily accessible to domain scientists and their workflows. Generalizing the 
use of provenance information beyond science reproducibility and validation 
are also valuable. 
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A crosscutting theme in this area was the need to enable and exploit domain-
specificity across all of these research areas, allowing scientists to “speak their own 
language” while exploiting as much semantic commonality as possible. 

4.3 Integrating with and Supporting Science Workflows 
 
In the exascale era, there has been a significant growth of applications that 
incorporate some form of workflow technology in their daily routine of running a 
scientific campaign. Scientists need to be methodical about how they design their 
computational experiments when running their large-scale experiments as they are 
limited by the amount of time they can compute and are then left to make choices 
about how they spend their time computing. Typically, they make choices about the 
potential cost of I/O to storage, and which analysis and visualization routines they 
integrate into their code for in situ analysis and visualization. 
 
In this present age of computing, computational science is coupled with 
experiments/observations to validate computational models and predict and control 
scientific experiments. This intricate process of “validation” consists of a mixture of 
interrelated online analysis workflows along with offline post-simulation processing 
workflows. These online and offline workflows are coupled together in a scientific 
campaign. An illustrated example is shown in Figure 3.2. 
 
Research and development in SSIO is critical to enabling scientists to (1) express their 
online and offline workflows (composition) and allow the workflows to be captured 
and saved (provenance) with their scientific campaign (Programming Model 
Integration); (2) integrate and execute sub-routines for coupling their main 
computational code with their other codes, such as visualization software and data 
analytics codes implemented in a mixture of languages, all in a resilient and 
predictable way; (3) orchestrate their workflows in a dynamic, resilient, and 
predictable fashion; and (4) describe and place the generated data for later post-
processing during the data’s lifetime in the scientific campaign, across the multiple 
tiers of storage and memory hierarchies. 

4.3.1 Workflow Composition 
 
The capacity and associated bandwidth of today’s file systems can be strained by the 
ephemeral intermediate data in workflows, since applications such as 
SPECFEM_3D_GLOBE [Komatitsch2015] have been writing more than 1.5 PB on 
small-scale runs, and starting to produce more than 15 PB in six hours. The ongoing 
integration of SSD devices into compute infrastructures, both as burst buffers and as 
extended memory, offers opportunities to enhance science workflow productivity. 
Interfaces to enable the creation and orchestration of workflows over complex SSIO 
protocols require new tools, whether as programmatic interfaces, new libraries, 
schedulers, or other approaches. In addition, interfaces to extended memory 
hierarchies will be required that allow for the discovery of system characteristics and 
the integration of data from multiple storage and compute systems in a workflow.   
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State of the Art 
While significant research has been performed in the area of programming models 
for HPC [Draper1999, Chamberlain2007, Charles2005], relatively little research 
outside of MPI IO [MPI2019], POSIX extensions [Vilayannur2008], and UPC IO 
[UPCIO2004] has focused on providing better programming model support for HPC 
SSIO and on imparting more information from the programming model to lower-level 
storage system interfaces. Other communities outside HPC that have conducted R&D 
(e.g., MapReduce [Dean2008]) to better integrate storage within programming 
models have seen widespread success. Further studies have sought to better 
understand these programming models and their connections to HPC and MPI 
[e.g., Plimpton2011, Hoefler2009, Ekanayake2008], including research to better 
understand their relationship to parallel file systems [Tantisiriroj2011]. Additional 
work has looked at how to map scientific data into non-POSIX storage [Goodell2012, 
Lofstead2016]. 
 
Some research has been performed on extending the programming model to 
incorporate processing capabilities within the storage system. Active Disks 
[Acharya1998, Riedel2001] investigated programming models, interfaces, and 
runtime support for pushing computations near disks. As discussed in Section 4.1.3, 
active storage has been investigated in the context of HPC applications [Son2010] and 
more generally in the context of object-based storage [Qin2006]. Recently, this 
concept was taken further [Jin2013] when looking at methods for passing 
information from applications to the runtime (via the programming model) so that 
trade-offs in the performance, power, and resilience space can be effectively 
evaluated and decisions made. 
 
Researchers also have been investigating the applicability of task-based 
programming models such as Legion [Bauer2012] for use in HPC systems and have 
begun exploring how to manage a deepening memory hierarchy, including 
understanding how to incorporate support for SSIO [Watkins2015]. 
 
Scientific workflow tools exist for desktop (Kepler [Altintas2004]) and grid 
scheduling systems (Pegasus [Deelman2002]). Some workflow engines are built 
closely with schedulers such as DAGMan and HTCondor. They have also been 
branching out into collaborative efforts such as MyExperiment.org [DeRoure2008] 
powered by workflow engines such as Taverna [Wolstencroft2013]. These systems 
are very high level and are designed to abstract concepts of computation and data 
movement into nodes in a graph for specific scientific applications. 
 
Some efforts have been made to extend work on scientific workflows to the storage 
layer [Bugra2008]. For example, Swift [Wozniak2014] is a popular big data workflow 
engine gaining some traction in HPC-related areas. Python-based engines such as 
Dispel4Py [Filguiera2014] and FireWorks [FireWorks2013] are becoming 
predominant because of the ease they enable for doing data-type discovery. 
Workflow performance optimization also requires information about the status and 
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availability of resources, at near-real time, in order to optimize execution of 
workflows [Wieczorek2009]. 
 
Seeding Workshop Discussion 
Future HPC systems will incorporate multiple levels of memory and storage, 
including high-bandwidth designs, NVRAM, DRAM, disk, and tape. This structure will 
provide opportunities for speeding up data-intensive workflows significantly but will 
introduce a more complex storage system. Programming models and interfaces that 
do not expose any information about the storage hierarchy to the programmer and 
rely solely on the OS and hardware to transparently manage the hierarchy will lead 
to sub-optimal performance gains from such hierarchical storage configurations. 
Programming model support is needed that would provide programming interfaces 
and abstractions that allow for query of the characteristics, state, and workload of a 
storage level and placement of data at a specific level and potentially on a specific 
storage unit within a level. Such interfaces and abstractions would help better 
coordinate activities across the storage hierarchy, rather than forcing programmers 
to decode the behavior of the local memory and storage hierarchy and the layout of 
global storage resources. 
 
In order to achieve this functionality, a successful programming model and its 
underlying infrastructure need to consider the execution of user functions at a variety 
of locations within the system, including within the storage system, to support their 
execution near data. Further support also is required to provide complex data 
mappings across the various levels of the storage hierarchy. A key challenge will be 
to find a right balance of how much storage detail and complexity are exposed 
through abstractions so that the application programmer is not overburdened yet is 
able to take advantage of the storage and performance characteristics of different 
storage layers. Successful programming models will likely have a layered approach to 
interfaces and abstractions that will enable implementation by experienced 
developers and the community of domain and data type-specific storage 
optimizations, will integrate such optimizations in the programming model through 
lower-level interfaces, and will allow for application developers to take advantage of 
such optimizations through higher-level abstractions and interfaces. Via appropriate 
layers of abstraction, the potentially complex mappings of computation and data 
performed by the programming model may be hidden from the user, simplifying 
development. 
 
In any discussion of future HPC systems, the issue of fault tolerance arises. The 
current model of data resilience in HPC systems is simplistic, and the level of 
protection provided by the system is not visible to the user. Richer capabilities to 
express an application’s persistence requirements for resilience are needed. 
 
In addition to opportunities in workflow-aware storage (e.g., [Vairavanathan2012]), 
there remain gaps between high-level scientific workflow tools and the 
heterogeneous storage environment in HPC centers. Identifying middleware 
(e.g., [Lofstead2008]) and messaging [Subramoni2008] layers that appropriately 
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abstract the storage hierarchy and perform reasonably well is the first step to 
enabling scientific workflow tool users to best leverage HPC systems with burst 
buffers or other emerging storage architectures. Significant challenges exist in the 
area of wide-area data transfers in support of site-spanning and data-streaming 
workflows.  

4.3.2 Workflows (Engine) - Provision and Placement 
 
Workflow systems are an increasingly relevant software system to be considered in 
conjunction with scalable storage and I/O for HPC. 
 
In the context of HPC, the Swift [Zhao2007] activity has shown the potential for high-
throughput workflow on HPC systems and, in conjunction with the Hercules store 
[Duro2014], has shown the potential for exploiting data locality in task placement 
[Duro2014]. Similarly, the ADIOS [Lofstead2008, Liu2014] activity is taking 
advantage of the DataSpaces [Docan2012] in-memory store to optimize task coupling 
in HPC systems. Research enabling the MapReduce programming model in HPC 
systems (see previous section) is also relevant to this area. However, no general 
production capability for supporting workflows in HPC systems, nor a methodology 
for exposing locality from HPC storage to workflow systems, is available at this time. 
 
The combination of workflow engines and Linux containers is an area of interest for 
many simulation code teams and HPC facilities. Multiple HPC containerization efforts 
[Canon2016, Kurtzer2017, Priedhorsky2017] are improving the ease of deploying 
scientific software and running complex software stacks on HPC platforms. Scientific 
container orchestration, similar to the service orchestration provided by Kubernetes 
[Brewer2015], is currently in a nascent state, but may come to dominate how 
scientific code is executed on future HPC platforms. 
 
Seeding Workshop Discussion 
A production workflow capability clearly is needed for use on future HPC systems. 
Specific to SSIO, effective workflow execution on future platforms will require 
efficient communication of data between tasks. Research on reducing data exchange 
overheads between tasks in a workflow has generally focused on memory to memory 
communications of running tasks, homogeneous systems, and wide area networks. 
Dynamically configured workflows cannot be realized until complex storage 
hierarchies can be fully exploited and stronger linkages to resource management 
systems are defined that enable more dynamic allocation of resources. While some 
research has been done on partitioning tasks into in situ and in-transit components 
[Bennett2012], substantial work remains before these hybrid workflows are 
developed. Success will require co-design with programming models. 
 
In addition, workflows capture a great deal of relevant provenance information. This 
information is important for validation of results, but no mature method for passing 
this information to the SSIO system is available at this time. Solutions are needed that 
link with workflow and resource management systems. Containerized scientific 
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applications may simplify some provenance collection tasks but also generate 
significant difficulties in efficiently launching large (multi-Gigabyte) binary images 
across thousands of processes simultaneously, as well as challenges in providing 
secure and efficient I/O within containers. 

4.3.3 I/O Middleware and Libraries (Connectivity) - both online and offline 
 
The trend in I/O middleware is increasingly toward software that provides flexible 
data management capabilities addressing both data-at-rest and data-in-motion 
states. These libraries must support a wide array of connectivity between 
components (services) running on-node, off-node, or between physically separated 
hardware across the wide-area network, as well as handling more traditional I/O 
needs across local storage hierarchies. These libraries must also facilitate the use of a 
wide range of hardware components including different network fabrics, and 
heterogeneous storage components. Such middleware must gracefully manage 
failures in individual components by allowing connected components to survive such 
failures and offering control plane mechanisms to allow restarted components to 
reconnect with existing workflows. These control mechanisms must also allow 
runtime adjustment of resource allocation to allow workflow optimization in 
response to human controls, changing needs of an application, or performance 
impacts from other applications running on shared platforms. For many applications, 
the ability of middleware to provide QOS guarantees for data movement costs is 
essential. 
 
State of the Art 
A variety of middleware libraries are addressing these needs to various degrees. 
ADIOS [Liu2014] and associated data-staging mechanisms sustainable staging 
transport (SST), SST-2, Dataspaces [Docan2012], and Flexpath [Dayal2014] 
represent rapidly maturing set of middleware tools in use in HPC applications. Other 
libraries aimed at this space include Conduit, Damaris [Dorier2012], Intel’s 
Distributed Asynchronous Object Storage (DAOS), and Decaf. 
 
The libraries are primarily linked into application codes and perform data 
transformation and optimization on the nodes on which the computation is running. 
Other codes, such as analysis and visualization routines, can also be linked with 
middleware libraries to accomplish memory-to-memory data sharing, avoiding the 
expense of file system I/O. 
 
Seeding Workshop Discussion 
One significant challenge will be incorporating more runtime flexibility into 
middleware libraries. Current approaches for connecting application components 
lack resilience, with single failures often breaking other components. Furthermore, it 
is often not possible to dynamically reconfigure connections made by current 
libraries. It will be necessary to extend current approaches to support these sorts of 
runtime flexibility. 
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Another challenge involves the need to make I/O middleware work well across a wide 
range of different platforms. Middleware frameworks have to be designed to be 
extensible and carefully modularized so that support and optimizations for a 
constantly changing set of hardware can easily be integrated to keep middleware up-
to-date and working efficiently. This includes changes in remote direct memory 
access (RDMA) mechanisms and network fabrics as well as a range of accelerator 
technologies, which may have separate memory and interconnect concerns. State-of-
the-art network abstractions (Section 4.1.2) help address networking portability but 
not accelerator portability. 
 
Data access patterns will also provide a challenge for these libraries. Many are tuned 
for particular classes of application and the data access patterns associated with those 
classes. Existing software has not been optimized to address some increasingly 
relevant data access patterns. Ensemble applications, for example, represent 
scenarios in which multiple relevant applications are executed to optimize 
performance and/or accuracy of application output. A high-fidelity simulation, for 
instance, can feed data into multiple instances of lower-fidelity simulations that can 
run faster so that longer time periods can be simulated. Output from these lower-
fidelity simulations is then merged and returned to the higher-fidelity simulation to 
correct for errors and simulate shorter time periods at much higher accuracy. Other 
application scenarios include deep learning methods, in which large training datasets 
are read multiple times in the training phase, and task-based, high-throughput 
applications, such as applications that analyze large collections of sensor readings. 
Efficiently handlings these types of situations will require additional effort. 

4.3.4 Data Abstractions and Representation  
 
Within multideveloper, monolithic code bases, it is not unusual to have policy-
enforced standards for the layouts of particular data structures. However, as users 
move toward assembling scientific workflows from both bespoke and generic 
component elements, the need for self-describing and/or semantic data management 
approaches becomes more apparent. The techniques may exploit a common data 
mark-up approach, a shared third-party data representation, or an I/O library with 
hierarchical attributes.  
 
State of the Art 
As mentioned in the I/O middleware section, the dominant data model supported by 
HPC I/O storage software (beyond simple POSIX) is dense, multidimensional arrays. 
Although some libraries support more complex data structures, such as geodesic grid 
data structures for climate [Palmer2011] and particle data [Adelmann2005], these 
are typically implemented atop a dense, multidimensional array model. A second 
model that is supported in systems such as DataSpaces [Docan2012] and Hercules 
[Duro2014] is a tuple representation. Tuple representations provide a flexible 
method for users to define their own organizations. The Damsel project 
[Northwestern2014] investigated methods for storing unstructured arrays, but did 
not produce a final product.  
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Compression of floating-point data has been studied as a method for concise 
representation of scientific data [Lindstrom2006], including methods that represent 
data as a function and capture error [Lakshminarasimhan2011]. 
 
Various methods of indexing scientific data have also been investigated. For example, 
the FastBit project [Wu2009] produced an indexing tool that has been used in a 
number of scientific activities, and hybrid compressing/indexing of data along the 
data path has been researched as well [Jenkins2012]. 
 
Numerous approaches for organizing data in storage have been investigated, and 
some implemented. For example, chunking approaches to data storage have been 
studied as part of the work in the HDF5 project [Folk1999] and in the Panda project 
[Seamons1994]. The use of algorithmic distributions of data is common in parallel file 
systems such as PanFS [Welch2008], Lustre [Braam2004], and the parallel virtual file 
system (PVFS) [Carns2000], with PVFS and Lustre providing mechanisms for the 
definition of new layouts and application of these on a per-file basis. The Scientific 
Data Services framework [Dong2013] manages partial replicas of frequently used 
data in locality-friendly organizations. 
 
Log-based approaches to storage of scientific data have been investigated in the 
parallel log-structured file system (PLFS) [Bent2009] and ADIOS [Lofstead2008] 
projects, both available on systems today, and as a method of writing data through 
the MPI-IO interface [Kimpe2007]. 
 
Storage of adaptive, multidimensional data structures has received some attention as 
well, for example, in the Chombo project [Colella2000] and in the FLASH astrophysics 
project [Ross2001]. However, packages specifically targeting storage of 
multiresolution data have not emerged. 
 
Seeding Workshop Discussion 
The complex data structures used by scientific codes to organize their data are not 
well supported by current SSIO products. Methods for specializing general data 
abstractions to support specific activities would improve the productivity of 
application teams, as well as new abstractions optimized to support data models 
present in HPC codes and analysis tools. Furthermore, these abstractions should 
efficiently map to, and enable the use of, emerging architectural solutions such as 
burst buffers. 
 
In the context of expected deep memory hierarchies, many orders of magnitude of 
variance can be present in the time to access data on the basis of its location. 
Expectations of cost of data access would be helpful in order for workflow systems, 
programming models, and users to effectively schedule operations. Similarly, passing 
additional information on the future use of data to the storage system could allow for 
optimizations that are otherwise not possible or effective. 
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Initial work has explored abstractions and runtime mechanisms for application-
driven data management across deep memory hierarchies [Jin2015], and associated 
energy/performance trade-offs have been explored [Gamell2013]; however, this 
work only serves to highlight the potential of further work in this area. 
 
Relationships between data are not represented well in current SSIO approaches. In 
models such as HDF, although data can be grouped and organized in a hierarchy 
within a file, relationships across files are not readily captured. Overall, a richer 
method for expressing relationships between data items would be an important 
building block for provenance solutions and help in understanding data as a whole. 
 
Another challenge is to better understand how indexing techniques and different 
organization approaches can further facilitate analysis and to develop new 
techniques that target specific HPC and EOD concerns. Early work in indexing and 
reorganization in transit has shown promise for this approach.  

4.3.5 Data Refactoring and Compression 
 
The compression of scientific data is becoming an increasingly important aspect of 
working with scientific data because of the difficulty of transmitting, storing, 
analyzing, and understanding the drastically increasing quantity of data being 
produced. Though compression is typically separated from analysis as a distinct step 
of the scientific workflow, the two share a common goal: to extract from a mass of 
raw data the essential structure and key features of the phenomenon under study 
while ignoring or discarding the noise and simulation errors that have little or no 
impact on the quantities of interest. So that the compression does not compromise 
the results of the analysis, it is important to understand how compression methods 
affect the specific quantities of interest used in the analysis.  
 
State of the Art 
There are two major classes of data reduction techniques being researched and 
developed in the community: lossless and lossy. Both of these areas provide 
important tools that allow scientific workflows to reduce the volumes of data being 
moved and processed. Compression is a class of reduction techniques that can reduce 
the total amount of data that needs to be transferred and stored; alas, the challenge 
of speed has quite often remained. Luckily, new algorithms along with faster 
processors have helped the community move forward in this direction. 
 
Lossless compression has a challenge to achieve both good compression rates, and 
good compression and decompression speeds. Blosc [Alted2010] is a high-
performance compressor optimized for binary data. It has been designed to transmit 
data to the processor cache faster than traditional, uncompressed, direct memory 
fetch. FPC [Burtscher2009] is a fast lossless compression algorithm for linear streams 
of 64-bit floating-point data. FPC works well on hard-to-compress scientific datasets 
and meets the throughput demands of high-performance systems. 
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Lossy compression, such as JPEG [Wallace1992], is widely used in the computer 
graphics and digital image community, leveraging the fact that the human eye’s 
perception falls well below machine precision. Moreover, excessive lossiness in such 
applications generally has few, if any, serious consequences. In stark contrast, the 
consequences of excessive lossiness in scientific applications are often severe and 
may even render the value of the reduced data meaningless. This has led users to be 
leery of lossy compression algorithms for scientific data. Nevertheless, it is widely 
accepted that lossy compression is inevitable if one is to attain the compression rates 
needed to handle data produced from future HPC applications. Scientific data are 
primarily composed of high dimensional floating point values for which a number of 
data compression procedures have begun to emerge, including ISABELA 
[Lakshminarasimhan2011], ZFP [Lindstrom2006], SZ [Di2016], MGARD 
[Ainsworth2017], and tensor-based procedures [Sears2009]. 
 
A key feature required of a lossy compression procedure is that the user be provided 
with a reliable estimate on the level of lossiness. Without a reliable estimate, the user 
will generally err on the side of caution — meaning that the level of lossiness in the 
data is much less than what would be needed in order to maintain scientific integrity, 
resulting in a much lower level of compression being achieved. An equally important 
feature, though less widely appreciated, is that the user should be able to prescribe 
the norm or metric in which the loss is measured. Typically, lossy compression 
procedures will measure the loss pointwise or in a least square sense via the peak 
signal to noise ratio (PSNR). Although such measures are widely used, it is often the 
case that neither is appropriate for a given application: pointwise loss control is often 
too stringent (resulting in sub-optimal compression), whereas PSNR control can 
often result in smearing or even complete loss of local features. 
 
Some existing lossy compression procedures (e.g., MGARD [Ainsworth2017]) are able 
to provide this kind of functionality; nevertheless, many open questions remain, and 
there is considerable scope for further development. One aspect which should not be 
underestimated is the need to bring these developments to the attention of the wider 
community and raise awareness of how these techniques can be leveraged by 
applications. 
 
Seeding Workshop Discussion 
Although lossy reduction offers the most potential to mitigate the growing storage 
and I/O cost, there is a lack of understanding of how to effectively employ lossy 
compression from a user perspective, for example, which compressor should be used 
for a particular dataset and what level of reduction ratio should be expected. The 
community also needs to address questions regarding: what data features are 
indicative of compressibility? How does the error bound influence the compression 
ratio? Which compressor (or technique) can benefit the most from relaxing the error 
bound? How does the compression implementation influence compression 
throughput? What is the relationship between the compression ratio and 
throughput? What is the impact of lossy compression on data fidelity and complex 
scientific data analytics? How can data features be extracted and used to accurately 
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predict the compression ratios of various compressors? By answering these 
questions, the community can gain the ability to help HPC end users better 
understand what to expect from lossy compressors.  

4.3.6 Storage Hierarchy for Campaign Knowledge Management of Scientific 
Workflows 

 
Scientific data analysis has become an increasingly complex process involving large 
volumes and numbers of datasets and large numbers of data analysis workflows. In 
most cases, a scientific study goes through multiple phases: (1) pre-
experiment/simulation phase; (2) experiment/simulation phase; and (3) post-
experiment/post-simulation phase. These phases can be executed multiple times in 
an iterative process of designing new experiments/simulations (phase 1), monitoring 
and online analysis of data as they are generated (phase 2) and analyzing data from 
experiments/simulations to refine experiments/simulations and publish results 
(phase 3). A large number of derived datasets may be generated in these iterations 
during a large scientific workflow. In some cases these datasets are stored in files that 
may reach hundreds of terabytes in size, as well as large numbers of very small files. 
Moreover, data access requirements and patterns will vary across these phases and 
may change dynamically and rapidly within a phase. In phase 1, for example, the 
science team may carry out exploratory analyses on a broad set of datasets to design 
simulations/experiments. Phase 2 involves analysis that require near-real-time or 
interactive response rates. In phase 3, the science team performs deeper analyses on 
select sets of data from phase 2 to refine an experiment or a numerical model and 
collect results for publication. 
 
One of the major challenges is that users not only have to take care of when to write 
the data, but also where to place the data and how to move the data among different 
storage levels in an efficient manner. In the current HPC storage hierarchies, parallel 
file systems are used for temporary storage most of the time. Scientists need to 
explicitly move their data from the parallel file system to a longer-term storage level 
before their datasets are deleted. This challenge becomes significant when a study 
involves multiple workflows, large volumes of data, and large numbers of data files. 
 
State of the Art 
Several research projects and tools have investigated mechanisms for aggregating 
state information across diverse resources [Czajkowski2001, Ripeanu2002] in 
distributed environments. The Integrated Rule-Oriented Data System (iRODS) 
[Rajasekar2010] provides a unified virtual collection model across heterogeneous 
data resources. There is also work on rule-based data management frameworks and 
rule languages [Paschke2005, Horrocks2004]. More research is needed to integrate 
rule-based mechanisms in SSIO systems so that (1) storage and retention policies for 
each storage level can be described, (2) users can express their data usage intentions 
with respect to storage and retention policies, and (3) system components can 
efficiently stage and place datasets across the storage hierarchy to meet policy 
requirements and users’ data intentions while enabling fast access to data subsets. 
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Seeding Workshop Discussion 
Scientists are in need of tools to manage and track data that are produced and 
consumed throughout the data lifecycle of a scientific study. This capability should 
take into account different data access patterns and data processing intentions so that 
desired data subsets in a phase can be located and accessed efficiently. Management 
of datasets and resources will require that SSIO systems be aware of the intentions of 
resource consumers and producers. Data can be viewed as both a resource and a 
consumer of other resources (e.g., storage, network, computation). 
 
Interfaces and software services are needed so that scientists can express their data 
usage intentions for specific datasets and the underlying SSIO middleware could 
move and track datasets based on these intentions while complying with the storage 
and retention policies of different storage levels. For example, scientists should be 
able to specify that “datasets of type A will be repeatedly accessed in the next three 
months” or “dataset X can be archived after it has been analyzed and feature set F has 
been computed.” Expression and execution of such data lifecycle intentions might be 
enabled via rule-based systems and integration of rule-based decision-making 
capabilities in SSIO systems. 

4.3.7 Discussion Themes 
 
A number of themes emerged during workshop discussion, summarized below. 
 
Workflows Composition and Provenance Capture: Attendees agreed that a new 
programming model that can do the following — incorporate user intentions, take 
advantage of multitiered storage systems, and enable workflows to move the most 
important information first — is important for the composition of scientific 
workflows. In addition, building serializable, reproducible, and containerized 
scientific workflows is interesting. Workshop attendees noted that there might be 
concepts in orchestration systems used in several DOE facilities (e.g., Jefferson Lab, 
SLAC) that could be adapted. Attendees also discussed the challenges of optimizing 
the workflow by leveraging some domain knowledge possessed by application 
developers. For example, it might be difficult to share information across some 
workflow boundaries.  
 
There was also discussion about the need to capture provenance to allow the science 
performed at scale to be reproducible. They agreed that detailed and useful metadata 
of every workflow step should be captured, which requires new tools for 
indexing/querying. This step becomes essential when workflows start to capture 
information across entire scientific campaigns, as well as being of use for repurposing 
data captured from the experiment/simulation and using it in another context. 
Several discussions covered the possible growth of metadata coming from 
provenance capture and resulting challenges in the SSIO layer. In particular, there 
was discussion about what to capture, but it was understood that much of the 
provenance needs to be retained for very long periods of time given that the data can 
be reused; and without sufficient capturing of this information, much of the 
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knowledge within the original data can remain hidden. There was also discussion 
about separating metadata storage from the bulk storage because much of this access 
can be random, facilitating the possible need for different types of storage media for 
this class of data. 
 
Resilient and Predictable Code Coupling: Attendees agreed that building resilient 
scientific workflows is an unsolved problem, and code coupling makes it even harder. 
One of the major challenges mentioned by attendees is how to make scientific 
workflows adapt not only to the diversifying hardware and increasing concurrency, 
but also the different data generation and access patterns. Based on the discussion, 
several important pieces are needed: (1) modularity of support for workflow 
composition, orchestration, and control; (2) semantic modeling that can assist the 
workflow composition; (3) tools for annotating and tracing scientific workflows; 
(4) tools for indexing/cataloging/querying the workflow data; and (5) an automated 
way to reproduce workflows and verify the results. Research directions discussed 
included human-in-the-loop during the workflows and the ability to support 
synchronous and asynchronous coupling, along with the ability to dynamically 
change workflows and provide methods that help ensure that failures in one part of 
the workflow do not kill the entire workflow. Another topic discussed by the 
participants is the total quantity of data that needs to be captured during the 
workflow. As pointed out in the audience, code coupling has often been carried out in 
the storage layers. With the increase of new memory technologies, there is renewed 
interest in using these new storage layers to improve on the capabilities of code 
coupling. The issue discussed in particular was that the total amount of data that can 
be generated by even one single application can be very large. Although data 
reduction and data compression were discussed as possible methods to reduce the 
load, there was also discussion of whether scientists would actually use lossy data 
compression methods. Some discussion centered around the idea that scientists 
always reduce the data by way of time decimation, and data reduction must be 
brought into the SSIO layer not only to reduce the total payload brought to the storage 
system but also to help prioritize which parts of the datasets get to be placed in the 
higher storage tiers of the storage hierarchy.  
 
Dynamic Workflow Management: Attendees pointed out that the dynamisms of 
scientific workflows come from both the resource and workflow levels, and that 
semantic modeling directly addresses these dynamisms by leveraging the metadata. 
Attendees also pointed out that leveraging data reduction techniques in a dynamic 
workflow is important and the data reduction has to balance the needed fidelity and 
cost for each workflow step. Especially on multitiered storage systems, where 
different storage tiers have different performance/capacity trade-offs, the data 
reduction strategies should vary. Attendees also discussed the support that job 
schedulers can provide for managing the dynamic workflow, such as I/O-aware 
scheduling. There was a short discussion of the possibility for the workflow 
scheduling to work with the batch job schedulers to allow many concurrent 
workflows to schedule around each other; this idea was further explored in the 
storage hierarchy session (see Section 4.4).  
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Campaign Data and Metadata Management: Attendees agreed that naming and 
locating data, which are critical for coupling workflows, continue to be challenging. 
Furthermore, fundamental research is needed to support data reproducibility 
through better metadata management and access. Attendees also pointed out that the 
lifetime of scientific data is critical for determining data management strategies for 
scientific campaigns. There was also discussion about placing more important 
information in the higher storage tiers, and having users express their intents 
somewhere during the workflows so that that information can be accessed in a timely 
fashion. 

4.3.8 Research Directions 
 
Through the workshop discussion, three research directions emerged. In all cases, 
these directions involved the ability for scientists to include more “science-based 
intentions” to their workflows/data that would allow the storage system and I/O 
system to more effectively manage their data. One example of a science-based 
intention is the ability for the scientist to describe how long they will use certain large 
subsets of their data, so intelligent data migration policies can automatically move 
parts of data to tertiary storage when data becomes less valuable over time. 
 
The most promising research direction concerned enhancing the community’s ability 
to reduce the total amount of data and even to identify which parts of the data are 
more important. It was discussed that metadata is critical for the overall datasets, so 
that the data can not only be found in the storage layers, but it can also be understood 
by having enough provenance. 
 
Improving scientific exploration by exposing intent. 
 

• Utilize abstractions that express the scientific intentions of the data. For 
example, users could express which variables need to stay in fast storage for 
the most rapid access. 

• Employ machine learning algorithms that account for scientific intent to 
facilitate location and movement across storage tiers. 

 
Composing, capturing, moving and querying provenance from scientific 
workflows to the storage system. 
 

• Route provenance data so that it flows from workflows to the storage system, 
and “link” provenance data to the scientific data for validation, verification, 
and accelerating scientific knowledge discovery. 

 



Storage Systems and Input/Output 2018 Workshop Report 58 

Refactoring, or reducing scientific data through advanced infrastructures and 
algorithms. 
 

• Develop reduction and compression algorithms that enable the user to specify 
quantities of interest in the data that should be preserved by the compression 
procedure (e.g., conservation of mass). 

• Develop adaptive, scalable methods to refactor data in flight, using domain-
specific content, machine load, or predicted system resources. 

• Develop cost models that include scientific intentions, performance/accuracy 
trade-offs, and compute load and resources in order to understand how to 
optimize access, bandwidth, and throughput. 

• Develop reduction and compression algorithms that can provide near-optimal 
compression while providing quantitative control of the loss to a user-
prescribed tolerance. 

• Develop new compression algorithms that are capable of dealing with 
unstructured data (e.g., arising from AMR simulations) and particle data 
(e.g., arising from fusion simulations), as well as typical unstructured datasets 
from many large-scale engineering codes. 

4.4 Deepening Storage Hierarchies 
 
SSIO systems are becoming increasingly complex and hierarchical. Much like on-node 
memory hierarchies containing registers, multiple levels of cache, main memory, and 
swap space, storage systems now consist of multiple levels including node-local 
storage, storage on I/O nodes, parallel file systems, campaign storage, and archival 
storage. The storage levels differ in capacity, access speed (latency and bandwidth), 
and data lifetimes (both with respect to resilience and expected duration of allowed 
data persistence) with node-local storage delivering the fastest access speed, smallest 
capacity, and shortest lifespan; and archival storage providing the slowest access 
speed, largest capacity, and nearly infinite lifetimes for data. To further complicate 
matters, there is a growing need to understand how to incorporate storage-class 
memory devices into the storage hierarchy. Up until recently, users explicitly 
managed placement and movement of their data across the storage devices in the 
hierarchy. However, given increasing complexity, this practice is no longer a viable, 
long-term solution. 
 
To address this problem, there is a need for SSIO infrastructure that facilitates 
appropriate movement of users’ data in the storage hierarchy. This infrastructure 
needs to include not only data movement within a single compute cluster, but also 
across storage systems in a center. There is a need for application and tool interfaces 
to allow SSIO systems to work with resource managers and schedulers, monitoring 
systems, and workflow systems. The interfaces need to provide a mechanism for the 
tool or the user to inform the system of the needs of its data (e.g., lifetime 
requirements and use by other application components), as well as to query the 
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devices in the storage hierarchy for their characteristics (e.g., capacity and 
bandwidth). 

4.4.1 Storage Hierarchy Levels 
 
As discussed in the introduction to this section, SSIO hierarchies are becoming 
increasingly complex. The storage levels in the hierarchy differ in capacity, access 
speed, and data lifetime (see Figure 4.1). 
 
At the very top of the hierarchy are the storage devices that exist on compute nodes 
themselves, typically NVRAM such as SSD; in the near future, however, these are 
expected to include storage-class memory (SCM) devices such as 3D XPoint® 
memory or Z-NAND flash memory. Node-local storage devices offer the fastest access 
times, with SCM devices being several times faster than SSD but also having only the 
smallest capacities and shortest data lifetimes, typically a job lifetime. At the next 
level of the hierarchy is I/O node storage (e.g., Cray DataWarp). Here, the storage 
devices are located on specialized nodes in the compute cluster for faster access than 
when retrieving from the parallel file system, typically with capacities large enough 
for most HPC jobs’ input and output and data lifetimes equal to that of the job, 
although persistent stores may be allocated. The next level of the hierarchy is the 
familiar parallel file system, with an order of magnitude or more capacity than the 
previous tier and data lifetimes on the order of months. Another level in the storage 
hierarchy is campaign storage designed to support long-running application 
campaigns that can last months or longer. While slower than the parallel file system, 
campaign storage data lifetimes last the length of the application campaign. At the 
bottom of the storage hierarchy is archival storage, with relatively infinite capacity 
and data lifetimes but requiring extremely long lead times to secure access.  
 

  

Figure 4.1: The storage hierarchy on HPC systems is growing more complex. An 
important consideration is how to best integrate on-node, storage-class memory 
devices into the traditional storage infrastructure. 
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State of the Art 
Until recently, when storage hierarchies mainly consisted of the parallel file system 
and archival storage and possibly node-local NVRAM as SSD, users of HPC systems 
managed data movement explicitly either in their code or job scripts. However, client-
side caching and extensions to remote compute and ION caching have been widely 
explored [Thakur1999, Liao2007, Isaila2011, Lofstead2008, Abbasi2010, Qin2009]. 
With the advent of burst buffer devices on systems, vendors are providing application 
programming interfaces (APIs) for transferring data to/from burst buffers and 
parallel file systems (e.g., Cray DataWarp API [Cray DataWarp n.d.] and IBM BBAPI 
[IBM CAST n.d.]). With these APIs, users can manage data movement asynchronously 
with asynchronous transfer or stage in/out commands. A number of research efforts 
[Ni2012, Rajachandrasekar2013, Barton2014] have begun exploring the use node-
local burst buffers within HPC systems. In addition, DDN IME [DDN IME n.d.] provides 
a single namespace for applications across NVRAM and other storage levels in 
the system. 
 
The current state of the art for hierarchical storage management (HSM) in HPC is a 
set of tools, APIs, and I/O libraries that help users manage the storage hierarchy. A 
few researchers [Barton2014, Goodell2012, Brinkmann2014, Jones2017] have 
investigated how best to manage and expose this deepening storage hierarchy in the 
general case. Other researchers have focused on specific use cases. SCR [Moody2010], 
FTI [Bautista-Gomez2011], and VeloC [UChicago2018] are checkpoint/restart 
libraries that capitalize on the short lifetimes of checkpoint files, which are needed 
only until a more recent replacement checkpoint is written. These libraries optimize 
checkpointing time by transparently utilizing node-local storage to cache checkpoint 
data and move selected checkpoints to the parallel file system. Recently, SCR added 
an API to handle automated movement of general output files in addition to 
checkpoints. I/O libraries that support automated movement of files in the storage 
hierarchy include HIO [HIO n.d.], HDF5 with Data Elevator [Dong2016], and PDC 
[Tang2018]. 
 
Seeding Workshop Discussion 
Significant challenges in this area exist, given the deepening of the storage hierarchy 
and performance characteristics of next-generation storage technologies. A better 
understanding is needed of how data and programming models expose and interact 
with this deep hierarchy, how resource management can be coordinated across this 
diverse set of devices, and what capabilities are needed from interfaces in order to 
support science needs. In addition, facility teams need tools to inform procurement 
decisions to match the overall hierarchy to their projected workloads when they 
develop specifications for a new system or an upgrade. 
 
An additional difficulty in designing application support for future hierarchical 
storage is understanding the workload requirements of exascale applications. For 
example, will bulk synchrony at the application level survive? If so, the entire storage 
stack may not need radical changes. However, if applications become increasingly 
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asynchronous, they may require new mechanisms in order to manage consistent 
views of distributed data in the hierarchy. 

4.4.2 The Role of Nonvolatile Memory in SSIO 
 
Nonvolatile RAM or NVRAM currently exists in HPC systems as simple node-local SSD 
storage or as a burst buffer with system software support (Figure 4.2). In the near 
future, HPC systems are additionally expected to include storage-class memory (SCM) 
devices [Freitas2008], such as 3D XPoint® memory or Z-NAND flash memory. Next-
generation systems devices such as phase change memory or memristor may play a 
role as well (see Section 4.1.1 for more discussion of emerging storage hardware). 
While the addition of NVRAM devices in systems has and is expected to continue to 
improve I/O performance, their presence increases complexity in the storage 
hierarchy.  
 

 
 

Figure 4.2: Nonvolatile memory (NVM) is an important component of today’s and 
future SSIO architectures. Placement of NVM in the system influences the utility of 
the NVM for specific use cases, and additional research is needed to best 
understand where and how to integrate this technology to provide the greatest 
value. 
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State of the Art 
Next-generation NVRAM technologies such as 3D XPoint® [Optane2018, 
QuantX2018], Z-NAND, and phase change memory will present yet another layer 
within the hierarchy with semantics akin to traditional DRAM in some cases. Research 
has begun in this area to assess their impact on file system design [Miller2001, 
Wang2002, Condit2009, Jung2010, Wu2011, Xu2016] and their use as caches 
[Liu2012b, Kannan2011a, VanEssen2012, TXu2016] or for staging and checkpointing 
[Kannan2011b, Kannan2013]; and current systems employ SSD-based NVRAM into 
their design (e.g., Cori and Trinity with DataWarp, and Summit and Sierra with node-
local burst buffers).  
 
Seeding Workshop Discussion 
The addition of NVRAM in HPC storage systems increases complexity, arising not only 
from determining the best placement of NVRAM in the system, ranging from compute 
node to I/O node to the parallel file system (see Figure 4.2), but also from 
understanding its role in the storage hierarchy from an application viewpoint. 
NVRAM devices add to storage system costs, and so there is a need to evaluate the 
cost/performance trade-offs for placement of NVRAM in different locations in the 
storage hierarchy. In addition, for NVRAM placed on compute nodes, understanding 
whether the devices are best employed as extensions of memory or as fast storage 
devices in the hierarchy will be important. Considerations for this choice include 
application I/O workload, as well as read and write asymmetries and wear 
characteristics of the device. 

4.4.3 Scheduling and Resource Management 
 
Integration of I/O needs with scheduling and resource managers is becoming 
increasingly important to effectively use and manage hierarchical storage systems 
that can include NVRAM, burst buffer, parallel file system, campaign storage, and 
archival storage. Better coordination between the storage system and the scheduler 
can help ensure that less contention occurs at the storage system, which can result in 
improved job runtimes.  
 
State of the Art 
Batch scheduling has been used for supercomputers for some time, and current 
systems have integrated burst buffer devices into scheduling and resource 
management decisions. For example, with Cray DataWarp, users can request 
DataWarp allocations in their job request; with IBM burst buffers on Sierra and 
Summit, users can stage data in and out of the node-local burst buffers via their job 
script. Work involving multi-resource scheduling, including moving data and 
scheduling jobs, has been performed for grid computing [Schopf2002]. Several efforts 
have shown ways to map jobs onto compute nodes [Mubarak2017] and to integrate 
storage with an HPC batch scheduler [Bent2004, Gainaru2015, Herbein2016] to 
reduce I/O contention and improve application throughput. Other projects have 
investigated predicting storage system performance for applications [Xie2017], 
identifying the root causes of I/O interference [Yildiz2016], and scheduling 
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application I/O phases to avoid contention and for power management 
[Thapaliya2016, Savoie2016]. 
 
Seeding Workshop Discussion 
There are major challenges associated with scheduling storage resources and I/O 
activities on HPC systems. For example, pre-staging data onto compute node-local 
burst buffer devices can prevent efficient backfilling of jobs when unexpected 
resources are available (e.g., when a job crashes and the allocation is terminated 
early). Here, the choice must be made to either continue or abandon the pre-staging 
progress that has been made on the original allocation, potentially increasing the 
waiting time of the user in the job queue. In addition, dynamic and multi-resource 
scheduling (as opposed to static scheduling simply for compute nodes) adds 
significant complexity to scheduling algorithms, potentially leading to less than 
optimally scheduled queues. 
 
Another challenge is scheduling I/O activities of running jobs to reduce contention. 
While many HPC applications tend to have regular behavior and thus relatively 
regular I/O patterns, it is a complex problem to accurately predict I/O phases of 
regular applications in the presence of other active jobs that may interfere with or 
change the performance of the predicted application pattern. In addition, the 
emergence of I/O workloads from experimental/observational data sources and 
learning applications complicates I/O pattern prediction. To reduce inter-job I/O 
contention, the community will need a wealth of information on historical and 
running application I/O characteristics, storage system load, and the ability to feed 
these data back to tools and job schedulers. 
 
Workflow management systems present a multidimensional resource provisioning 
challenge for the SSIO system. As suggested in Section 4.3.8, workflow systems could, 
however, become part of the solution, in that they can provide a priori and runtime 
information about the workflow components to schedulers and resource managers 
or can adapt their execution to work within the available resources. The scheduler 
will need to coordinate workflow or job capacity and bandwidth needs with the burst 
buffer and factor in stages and drains to the disk and/or archival subsystem. This 
effort will require elastic provisioning of storage and bandwidth across storage tiers 
in order to satisfy dynamic workflow needs. 

4.4.4 Campaign and Archival Storage 
 
Campaign and archival storage represent the slowest tiers in the storage hierarchy, 
but provide storage space for long-lived data. Campaign storage supports long-
running application campaigns that consist of many jobs (e.g., to explore the 
application parameter space) that can last for months or longer. Archival storage has 
long been synonymous with tape storage, with relatively infinite capacity and data 
lifetimes, but extremely slow access times. Archival storage is intended for storing 
data that may need to be retrieved years or decades later. 
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State of the Art 
Campaign storage, sometimes implemented as a center-wide file system, has recently 
been named as a tier in the storage hierarchy (e.g., on Trinity at LANL). Its purpose is 
to provide relatively fast access compared to archival storage to colder application 
data via a POSIX or near-POSIX file system interface [Braam2017]. Previous 
implementations of campaign storage used disk-based object stores that sit between 
the parallel file system and archival storage [Bent2016]. More recent versions are 
built on tiered-parity systems (e.g., 10+2 distributed erasure across 17+3 RAID 
groups) using chunk servers that will provide data protection even in severe device 
failure scenarios [Inman2017]. 
 
Facilities have been using tape for archives for some time. Hierarchical storage 
management systems such as HPSS [Watson1995] use a disk front-end to speed the 
time to first byte (TTFB) for small and recently accessed files. Work has been 
performed to connect namespaces across file systems and archives [Lustre2010, 
Degremont2013] and to understand how archives are currently used in HPC 
[Adams2012]. Archives today are predominantly centralized, stand-alone services 
that are used as a long-term storage where read access is often slow. Recent research 
has investigated the viability of replacing tape with disk drives in archival storage 
[Inman2014]. 
 
Seeding Workshop Discussion 
For campaign storage, there is a need for scalable mechanisms for handling extremely 
large datasets with good performance. Aspects of this need include: investigation into 
the POSIX/near-POSIX requirements for this tier of storage, efficient metadata 
handling, dataset semantics for efficient grouping, management, and movement of 
large sets of application output. 
 
We anticipate a real need for both the campaign and archive tiers to integrate with 
the higher levels in the storage hierarchy. Given that we expect a larger fraction of 
jobs to employ burst buffers as in-transit storage or for data analysis, we need to 
devise scalable, explicit, and automated HSM approaches for moving data between 
the tiers. We expect that the architecture and design of archival storage will need to 
be able to adapt to changes in the storage hierarchy and provide access mechanisms 
to support active-archive processing, cross-site data movement, and rich metadata 
services. This adaptation may necessitate the use of alternative archive technologies 
beyond tape, such as power-managed disk or optical storage. 
 
Challenges of particular concern for archival storage are (1) effective verification of 
the integrity of archive files over time and continuous technology migration, (2) the 
cost and practicality of retrieving and searching data that reside on slow TTFB 
devices, and (3) investigation of new storage media for archive, 
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4.4.5 Discussion Themes 
 
Discussion at the workshop largely followed the structure of the pre-workshop 
document. 
 
Hierarchy and Data Management 
The attendees first discussed the issue of the number of levels needed in a storage 
hierarchy, because establishing more levels increases complexity for users as well as 
for storage system software. From the discussion, there was agreement that there is 
a need for system designers to have tools to explore the trade-offs of different devices 
in the layers of the storage hierarchy. The designers need to be able to understand 
where money is best spent, for example, whether on the fastest, most expensive tiers 
or on more robust intermediate tiers and a fast network between tiers. 
 
Determining best practices for data placement and management in the storage 
hierarchy is a challenge. The attendees noted that to address this challenge, research 
is needed on communication mechanisms, such as APIs or domain-specific language 
support, for applications and workflows to indicate their I/O needs either to 
middleware (e.g., an I/O library) or to the system (e.g., the scheduler). The 
communication mechanisms need to address the full requirements of current and 
expected workflows, as well as to support the requirements of I/O middleware that 
assists the workflow components. Examples of these requirements could include 
quality of service, performance, data lifetime, and resilience. Another approach to 
data management discussed by attendees was the possibility of utilizing machine 
learning approaches to learn and predict application I/O patterns to inform data 
management software. The attendees noted that for this approach to be successful, a 
large amount of data for training will be needed that does not yet exist. 
 
The attendees agreed that the added complexity in storage hierarchies presents 
challenges for locating users’ data. A primary reason is that the community does not 
yet have efficient mechanisms for representing and querying the metadata of users’ 
data in a storage hierarchy. Given the bottlenecks that already exist in metadata 
operations for simple parallel file systems, there is a strong research need to explore 
how to efficiently support metadata in hierarchical storage systems. A promising 
direction of research could be to allow users to tag and name their data to facilitate 
locating the data in the future. The appropriate tagging and naming schemes need 
investigation and could include information about the data contents to facilitate 
locating particular datasets, as well as to communicate I/O requirements for the data 
(e.g., data lifetime or resilience). 
 
Overall, facility representatives noted seeking to provide the best experience for 
users of the storage hierarchy in terms of ease of use and performance. On the one 
hand, providing a single namespace across the storage hierarchy is easiest for users; 
on the other hand, however, it might not provide the best performance. To provide a 
simple and efficient I/O abstraction, the attendees agreed that research to explore the 
needs of applications and middleware, as well as the performance implications of 
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proposed approaches, must be pursued. In addition, the community needs to explore 
the possibilities and performance implications associated with presenting a single 
namespace for applications across the entire storage hierarchy in contrast to explicit 
namespaces for each level of the hierarchy. 
 
The Role of Nonvolatile Memory in Storage Systems 
Attendees agreed that storage-class memory represents a challenge because it can 
potentially be accessed as a memory device (load/store of variables) or a storage 
device (read/write operations). Much discussion was devoted to how SCM might be 
used, after which it was agreed that we need to understand the potential use cases for 
applications and their benefits if SCM is used as extended memory instead of storage, 
given that it adds complexity to the hierarchy. Here, research in the area of 
programming models is a promising avenue to provide abstractions to applications 
that are independent of the access mode of the underlying storage device.  
 
The attendees also noted that we expect SCM to have different persistence 
characteristics than traditional storage devices (e.g., it may or may not be persistent 
across power loss). We need to develop an understanding of the intersection of SCM 
use cases, performance, and resilience characteristics to determine whether SCM is 
best implemented as persistent through power loss (i.e., understand the use cases for 
the nonvolatility of SCM). 
 
Scheduling and Resource Management 
The attendees agreed that scheduling for HPC systems is already challenging and that 
adding the constraints of storage resources and I/O activities further exacerbates the 
challenge. To address this topic, attendees decided that we need research into 
efficient multi-resource and hierarchical scheduling for workflows. The scheduling 
research will need to account for mitigating or avoiding I/O contention between 
competing co-scheduled applications and will need to determine optimal cost models 
for encouraging “good” behavior by users with respect to their I/O activities and 
storage needs. Scheduling decisions will require detailed I/O behavior information 
from applications and systems, and machine learning approaches may be of benefit 
for predicting application behavior to avoid contention.  
 
Another aspect noted by the attendees was that the resource manager may also have 
a role in determining optimal data placement and movement policies through the 
storage hierarchy. For example, the resource manager can determine whether a 
particular storage resource is overutilized and then redirect I/O activity to another 
resource, or it may determine that the network is under heavy utilization from 
messaging traffic and pause or lower the priority of I/O activity. Giving the resource 
manager this capability will require research in system monitoring and adaptive I/O 
scheduling.  
 
The discussion led to the idea that integration with workflow managers will be 
important because workflow managers have knowledge of the data needs of the 
workflow components. In an HPC workflow, it is typical for one component in the 
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workflow to produce data that will be used by another component in the workflow. 
By integrating workflow managers into the allocation and scheduling activities of HPC 
systems, we can optimize data movement (e.g., have data moved close to the compute 
storage resources in advance of job start) and decide when data can safely be moved 
to archival storage if it will not be needed again in the near future. 
 
Campaign and Archival Storage 
The discussion by the attendees concluded that we need to explore best practices for 
placing and moving data between hierarchy layers, especially between the faster 
storage tiers and archival stores because retrieval from archival stores can take very 
long times (e.g., hours and more). They noted that automated movement of data is a 
promising approach because it would free up valuable space on the faster tiers. 
However, it is unclear whether the movement to slower tiers of storage should be 
user-directed (e.g., through an API or by tagging the data with movement 
instructions) or automated. For automated movement, we need models, possibly 
developed via machine learning, to help us understand the trade-offs of moving the 
data to find the most optimal approaches. We also need mechanisms for keeping track 
of data versions to keep globally consistent snapshots in the event that we need to 
roll back to a previous version of data (e.g., if a transfer is corrupted or fails). 
 
Attendees noted that as a further layer in the storage hierarchy, some storage 
locations are geographically disjointed (i.e., external to the HPC center), so we need 
to understand how to best move data between distributed storage locations. For 
example, would it be better to drive a truck full of disks between locations or is the 
network able to handle the request in a reasonable amount of time? We also need to 
explore the significant challenges that geographically distributed storage presents for 
metadata. 

4.4.6 Research Directions 
 
A number of themes emerged during workshop discussion, summarized below. 
 
Allocating and scheduling resources and I/O activity for better center-wide 
performance. 
 

• Optimize resource usage and data movement across jobs and realize HPC 
workflow integration.  

• Pursue multi-resource and hierarchical scheduling, contention avoidance, cost 
models for I/O, and storage allocation and scheduling 

 
The primary goal associated with this challenge is to optimize the overall utilization 
of HPC systems. To achieve this goal, we need to understand how best to schedule and 
allocate the storage resources in the hierarchy and to move data across the storage 
levels. We need to investigate integration of workflow managers with storage system 
software to optimize data movement. We also need robust support from schedulers 
and resource managers for I/O activities.  



Storage Systems and Input/Output 2018 Workshop Report 68 

Placing, moving, and locating data in the storage hierarchy to meet application 
I/O workload needs. 
 

• Develop mechanisms for applications to communicate needs to middleware 
and/or systems; system support for middleware management of data; 
efficient metadata management for hierarchical storage. 

• Pursue ease of use for application developers/users; single namespace vs. 
explicit hierarchical namespace. 

 
The complexity of the storage hierarchy makes decisions regarding placement and 
movement of data very challenging for both the users of systems and the system 
software and I/O middleware. In addition, because data can hypothetically be stored 
anywhere in the hierarchy, locating data is a challenge for users. We need research 
into methods for applications and workflows to communicate I/O needs to storage 
system software. We also need to investigate metadata support for storage 
hierarchies. 
 
Capitalizing on diverse media characteristics to design efficient storage 
hierarchies. 
 

• Understand storage hierarchy layers and interactions, automated movement 
between fast storage and archive, data models for campaign and archive, and 
version management. 

• Manage the exposing of tiers in the storage hierarchy and the blurring of lines 
between memory devices accessed via variable references (load/store) and 
storage devices typically accessed by software function calls (read/write). 

• Address geographically distributed storage and tools for understanding 
storage system design trade-offs. 

 
The different characteristics of devices at each level of the hierarchy add complexity 
to decisions related to designing efficient storage systems. We need to explore best 
practices for moving data between hierarchy layers, especially between the faster 
storage tiers and the archival stores, where retrieval from archival stores can require 
very long waiting times. We need to explore the potential benefits and best uses for 
SCM in the storage hierarchy. In addition, because some storage locations are external 
to the HPC center, we need to understand how best to move data between 
geographically distributed storage locations. 

4.5 Understanding Storage Systems and I/O 
 
Measurement, modeling, and understanding of SSIO systems play critical roles in a 
wide variety of data-intensive scientific computing activities. Unfortunately, while 
there are numerous user-facing performance tools available for CPU and accelerator 
resources, I/O performance analysis remains underdeveloped. In addition, storage 
systems themselves are complex and prone to performance degradation as a result of 
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subtle interactions between system components and application workloads. Both 
challenges are exacerbated by the proliferation of extraordinary concurrency, 
heterogeneity, and complexity as SSIO systems strive to meet the needs of DOE 
science. These challenges call for additional research into instrumentation and 
monitoring tools, workload modeling techniques, system modeling techniques, 
and methods for interpreting and applying the knowledge gleaned from those 
tools and techniques. By increasing our understanding of SSIO systems, we will not 
only be able to improve the productivity of today’s applications but also provide 
crucial intelligence for effective design, development, and procurement of 
tomorrow’s applications, systems, and system software. 

4.5.1 Instrumentation and Monitoring 
 
As increasingly sophisticated SSIO systems are deployed, it will become more and 
more important to extract information about application behavior, the state of 
constituent devices, and the aggregate condition of the system. These three aspects 
of system state can be collected via instrumentation or monitoring and combined to 
produce an end-to-end view of data movement and storage. End-to-end 
instrumentation and monitoring data forms the foundation of any effort to 
understand a storage system, whether the purpose is to optimize an application, 
validate a predictive model, maximize utilization, or find the root cause of a problem. 
 
Scalable and low-overhead collection of performance, fault, power, and usage data 
will allow timely or even online analytics for system managers, users, and 
researchers. The ability to align the captured parameters in time and space, as well as 
correlate these with system component characteristics, will be critical, not only to 
gain a correct assessment of the system state, but also to provide predictive 
capabilities. Performance metrics will need to be collected at every level, ranging 
from the application to the burst buffers to the storage system and then to the 
archives, and must be propagated throughout the system. Standardization of the 
format of the information being collected will enable rich analytics of the collected 
performance data and serve as the basis for research efforts in performance tuning, 
scheduling, and reliability. 
 
State of the Art 
On the application side, tools such as Darshan [Carns2011] are capable of producing 
lightweight instrumentation. Darshan has a notable breadth of impact because of its 
ability to instrument production applications without perturbing performance 
(Figure 4.3). Higher-fidelity tools such as TAU [Shende2006], IPM [Skinner2005], and 
Score-P [Knüpfer2011] are employed as needed for more in-depth analysis. Score-P 
serves as the common underlying instrumentation method for multiple performance 
analysis tools. Broader system-wide monitoring efforts have long benefitted from 
techniques developed in the data center, grid, and cloud computing community 
[Sigelman2010], but more recent efforts such as the lightweight distributed metric 
service (LDMS) [Agelastos2014] have created frameworks that are more directly 
tailored to HPC environments. LDMS covers a wide range of system metrics in 



Storage Systems and Input/Output 2018 Workshop Report 70 

addition to I/O metrics. Hardware device (such as disk arrays) monitoring 
[DDN2018] and commercial software (such as parallel file system) monitoring 
[Cray2018] are most often instrumented by proprietary vendor tools or proprietary 
vendor tools in conjunction with facility frameworks. For example, [Kim2015] 
demonstrated how telemetry from storage arrays can be mined to understand 
facility-wide storage workloads. 
 

Seeding Workshop Discussion 
The first challenge in instrumentation and monitoring research is dealing with the 
onslaught of rapidly evolving HPC technology. This onslaught includes new 
application models such as machine learning frameworks [Abadi2016], new 
hardware devices such as storage class memory [Spelman2018], and new data 
services such as Intel’s DAOS storage system [Lofstead2016], none of which are 
adequately represented by today’s HPC instrumentation and monitoring tools. 
Although tools such as Darshan, Score-P, and SIOX have made initial steps toward 
addressing this problem by modularizing their software architecture [Snyder2016] 
to permit future expansion, more work is needed. 
 
Second, data integration and alignment are ongoing challenges, particularly as 
systems become more heterogeneous and diverse. This diversification is reflected in 
a lack of standardized formats for storage telemetry that make data sharing and 
common analysis difficult. It is also reflected in the limited ability to tag and trace 
storage events from end to end in modern systems. Ideally, it would be possible to 
correlate a specific line of source code in an application all the way to the level of an 
individual storage device access. Although early work such as [Muelder2011] has 
demonstrated preliminary capability, such techniques have not been widely adopted 
in the field. 
 
Finally, the tension between instrumentation fidelity and runtime overhead has 
always been a factor in computer science, but a coherent solution to this problem in 
SSIO systems remains elusive. Inroads have been made in this direction with the 
ability to adapt polling frequencies and instrumentation methods at runtime; 

Figure 4.3: Darshan data can be used to 
understand the behavior of applications 
running on production systems. This 
graph shows the relationship between 
number of bytes transferred and 
effective I/O throughput for applications 
on the Mira Blue Gene/Q platform 
[Luu2015]. 
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however, it is largely the responsibility of administrators and individual users to 
make ad hoc decisions to address this trade-off. 

4.5.2 Interpretation and Application 
 
Instrumentation and monitoring data are only as useful as their application in the 
service of computer science research or scientific productivity. This usefulness can be 
arrived at in a number of ways, such as by combining data products and models to 
produce outcomes greater than the sum of their parts, integrating models into 
runtime systems for autonomous feedback, developing analysis tools or expert 
systems that turn data into actionable feedback, or incorporating data into the 
broader context of understanding HPC systems or collections of HPC systems. 
 
State of the Art 
The first task in interpreting and applying instrumentation and instrumentation data 
is to simply manage the large volume of data. Previous work such as 
[Vijayakumar2009] have explored trace compression mechanisms, and there are a 
number of activities underway to archive and index performance metrics in 
specialized databases for data mining purposes [Vazhkudai2017, Prometheus2018]. 
 
Most systems are monitored by gathering a large set of data about the system and 
then having a storage expert sift through the data [Gainaru2011]. Many open-source 
tools and vendor tools for gathering and monitoring this operational data already 
exist, and many of these tools are combined by using custom scripts [Miller2010]. 
Recent projects have made progress in creating frameworks to combine SSIO 
instrumentation and monitoring data sources for holistic analysis purposes 
[Betke2017, Lockwood2018, Frings2007]. Example studies from the TOKIO project 
illustrate how this type of data integration and synthesis can reveal system properties 
and correlations that are not otherwise visible from individual component 
instrumentation [Lockwood2018].  
 
Studies have also shown how real-time data capture can be integrated into runtime 
systems to improve performance. Examples include runtime probing to select 
optimal storage resources [Son2017]. 
 
Both vendors [Vincent2018] and facilities [NERSC2015b] have pursued methods for 
providing actionable feedback to users, either in the form of I/O parameter 
optimization or visual dashboards that provide rapid performance feedback. 
Specialized vendors [Ellexus2018, I/ODoctors2018] have also brought to market I/O 
analysis tools with an increased focus on the end-user perspective. 
 
Seeding Workshop Discussion 
I/O performance data integration will remain a persistent, ongoing challenge without 
buy-in from vendors to aid in data alignment and normalization across components. 
The scope (and potential benefit) of data integration continues to grow as well, as 
understanding I/O increasingly requires not only awareness of HPC system 
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components but also awareness of experimental and observational data sources, 
wide area transfers, big data and cloud computing, and other resources that will 
constitute future scientific campaigns. 
 
Despite the many advancements in I/O instrumentation and monitoring, 
interpretation of the data remains, by and large, an expert facility administrator 
activity. Only advanced application developers are likely to be able to quickly 
interpret I/O performance in a system, application, and historical context and assess 
how to improve performance, if they even have access to sufficient data to begin with. 
 
Finally, once an I/O analysis has been performed, there are still many open questions 
with respect to how best to enact solutions. Possibilities include guided suggestions, 
automatic tuning, and automatic reconfiguration of available resources. 

4.5.3 Modeling Workloads 
 
In order to rigorously study an SSIO system, we must first establish the ability to 
accurately model the workloads that it will service. SSIO workloads include not just 
traffic from individual application runs, but also large-scale, multistep scientific 
workflows and even aggregate traffic from a facility’s entire user base. It is not 
practical to reproduce such workloads by re-executing production applications. Re-
executing full applications may consume too much CPU time, be logistically difficult 
to execute, contain sensitive information, or simply be impractical for a simulator or 
mathematical model. 
 
The SSIO community therefore has a crosscutting need for modeling of representative 
workloads for storage system evaluation and performance tuning purposes. This 
modeling can take many forms, including proxy applications, microkernels, synthetic 
benchmarks, mathematical request distributions, and more. Regardless of the 
methodology used, our ability to accurately model SSIO workloads has a direct impact 
on how effective our other SSIO research activities will be in the real world. 
 
State of the Art 
Several research efforts have made important contributions in automatic creation of 
representative skeleton applications based on instrumentation or static analysis. 
Examples include [Logan2012, Dickson2017, Behzad2014b]. There is also promising 
early work in generalizing this capability so that workloads can be modeled from 
multiple data sources depending on available resources and desired fidelity 
[Snyder2015]. Many of these tools rely on instrumentation methods described earlier 
in Section 4.5.1, but it is also important to highlight that some researchers have 
developed techniques that specifically target the need for accurate workload 
modeling [Behzad2014a, Byna2008, Dorier2014]. Preliminary work has also shown 
the potential to extrapolate small-scale workloads into large-scale workloads 
[Luo2017]. 
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Benchmarking is also an important part of SSIO research. Many HPC SSIO-related 
benchmarks exist, such as interleaved or random (IOR) [Shan2008], which focuses on 
bulk data performance, and MDTest [MDTest n.d.], which focuses on metadata 
operations such as file creation and deletion. Those two benchmarks are being 
merged into a single code base and are actively promoted as part of the 
IO500 initiative to standardize reporting and sharing of I/O benchmark results 
[Kunkel2017]. In addition, the recent DOE Coral 2 procurement included four I/O 
benchmarks: the aforementioned IOR and MDTest, as well as Simul and FTree 
[Coral2018]. The MACSio benchmark has made strides in representing multiple 
application patterns and I/O paradigms within a single benchmark tool [Miller2015]. 
Recent efforts have also have explored self-adaptive benchmarking, in which the 
benchmark adjusts itself to the capabilities of the system and also takes preliminary 
steps to isolate the sources of bottlenecks [Kunkel2018]. 
 
Efforts are also underway to extend the benchmarks beyond single case executions 
into regular regression tests that track performance over time for a system 
[Lockwood2017a, Palmer2015]. 
 
Seeding Workshop Discussion 
Very little work exists in modeling future SSIO workloads. This task includes 
incorporation of emerging computational methods and their associated I/O patterns 
(notably, machine learning algorithms), techniques for extrapolating today’s 
workloads to future systems, incorporation of benchmarking in co-design efforts, and 
modeling of larger-scale workflows that span multiple jobs and applications. As has 
been the case for many years, the field is in need of more microkernels that represent 
prevalent applications moving forward. 
 
Current benchmarks also suffer from piecemeal methodology and lack of 
standardization. Most benchmarks measure low-level SSIO activities; only a few are 
intended for full stack understanding. Benchmarking results are also often reported 
inconsistently, with different levels of rigor with respect to timing methods, workload 
execution time, and sampling methods to account for variance. At a broader level, 
workload models, evaluation results, and the parameters needed to recreate them are 
not consistently disseminated in a standard way through the community. Facilities 
and researchers are not incentivized to run workload models and disseminate the 
results. 

4.5.4 Modeling Systems 
 
There is a long-standing need for accurate and easy-to-use modeling and simulation 
tools for SSIO systems. Modeling and simulation could be applied to experimentation 
with new hardware, new system architectures, new algorithms, and new software 
technologies without consuming costly production resources. It can also be used in 
real-time or near-real-time to aid in autonomous decision-making for deployed 
systems. As with the tools described in previous subsections, however, SSIO system 
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models require continuous maintenance and follow-up to ensure that they track 
rapidly evolving technology. 
 
State of the Art 
System modeling techniques can be broadly characterized into simulation-based 
methods (e.g., discrete event simulators) and analytical methods (e.g., machine 
learning or statistical models). Both can play a key role depending on the objective, 
use case, or availability of input data. For example, fine-grained models may provide 
the best approximation of behavior, while coarse-grained models may provide more 
rapid turnaround or results that are easier to understand. Some modeling techniques 
rely on intimate architectural knowledge, while others rely on large datasets for 
training. 
 
The state of the art for SSIO system simulation is the CODES project, which has been 
used for a number of studies, including evaluation of burst buffer architectures and 
communication interference due to I/O traffic generated by burst buffers 
[Mubarak2017]. CODES has the ability to execute simulations at large scale using 
existing DOE computing resources and a modular software infrastructure that 
enables subsets of the model to be interchanged according to fidelity or modeling 
needs [Mubarak2017TPDS]. Other SSIO simulation frameworks have recently 
explored topics such as big data storage systems [Liu2015], wide area transfers 
[Kettimuthu2012, Settlemyer2012], and hierarchical storage [Luettgau2017]. 
Simulators such as SIMCAN [Núñez2010] and PIOSimHD [Kunkel2013] also have the 
ability to ingest HPC I/O traces and evaluate system performance at multiple levels. 
 
Interconnect technology plays a key role in storage system simulation, and this field 
is well explored by not only CODES but also the SST project [Groves2016]. Both 
CODES and SST offer a range of modern interconnect topologies deployed in HPC 
systems and data centers. DiskSim remains the most widely used storage device 
simulator [DiskSim n.d.] in a variety of research endeavors, but others have recently 
been explored as well [Poremba2015].  
 
The state of the art for SSIO system mathematical modeling applies machine learning 
techniques to derive predictive models based on observation and analysis of previous 
behavior [Madireddy2018, Xie2017]. Current work in this area focuses on how to 
account for variability and uncertainty in predictive models, how to adapt models in 
response to changes over time, and how to apply these results to future systems. 
 
Seeding Workshop Discussion 
A number of challenges remain in modeling of SSIO systems. The first two pertain to 
the previous subsections in this report: how do we incorporate instrumentation and 
monitoring (Section 4.5.1) into models for ongoing validation and evolution, and how 
do we combine workload and system modeling (Sections 4.5.3 and 4.5.4) into a 
coherent framework? While the CODES project has made progress on the latter issue, 
the former remains an open challenge. Second, the emergence of new technologies 
and new applications are stretching the scope of what needs to be modeled to gain a 
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thorough understanding of SSIO systems moving forward. At the component level, 
new storage technologies such as nonvolatile memory (NVM), shingled disks, and 
energy-assisted magnetic recording are not well-represented in today’s models. At 
the system level, scientific campaigns will increasingly span multiple jobs, multiple 
system resources, and multiple datasets in order to produce a meaningful scientific 
result. This trend calls for storage system models to broaden their scope to include 
multijob workflows, wide area transfers, and other elements of the HPC ecosystem in 
a coherent modeling environment. At the modeling algorithm level, additional work 
is needed to accurately account for contention and other sources of variability in 
order to maximize the usefulness of SSIO models. 
 
Other important issues with simulation tools include intellectual property limitations 
for industry-developed simulation tools, incomplete validations of the tools, and 
incomplete validation of data from simulation of SSIO systems. Validation of tools 
takes years of use and improvement. The community lacks the resources to promote 
standardization or broad use of modeling tools, and vendors are not incentivized in 
procurement to deliver behavioral models for their products. 

4.5.5 Discussion Themes 
 
A number of themes emerged during workshop discussion, summarized below. 
 
Instrumentation and Monitoring: Attendees noted the tension between achieving 
the granularity of data capture necessary for some applications and limiting the 
impact of monitoring on system performance and behavior. One possible mechanism 
for addressing this tension is dynamic (or active) instrumentation, where triggers 
enable finer granularity of data capture under certain circumstances. Similarly, fine-
grained data can be used for inferring the semantic requirements of applications, with 
the goal of relaxing semantics when possible. As part of this discussion, attendees 
noted that there are both online and offline use cases. For example, online monitoring 
can be used to feed control algorithms, whereas offline monitoring can be used for 
post hoc performance analysis and understanding high-level trends at the facility 
level. In addition, attendees noted that situations where data are directly accessible 
via load/store semantics require alternative methods of instrumentation. 
 
Correlation with other storage layers and other aspects of the system was also 
discussed in detail. A crosscutting issue (within SSIO and beyond) that attendees 
noted was that placing behavioral data in context is key to understanding. This means 
connecting with behaviors at multiple levels of, and systems in, the storage stack 
(e.g., HDF5 and POSIX calls on the client, metadata and data operations on storage 
servers). Similarly, connecting with activities at the workflow level can provide much 
deeper insight into system-level behavior. Looking outside our field for methods of 
monitoring data organization and correlation was seen as valuable. 
 
Finally, the group considered how instrumentation might be accomplished. One 
possibility is through deep integration of tracing into implementations of libraries 
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(e.g., built into structures), although current approaches along these lines require 
significant development effort. The attendees wondered whether there is a general 
approach or tool that could be of assistance. Similarly, there are open questions on 
what metrics (e.g., performance, memory utilization, power or energy) should be 
captured, how to assess the value of these in specific situations, and how to put 
metrics into appropriate context (e.g., as a fraction of some peak). Capturing and 
sharing best practice was recognized as valuable, and there is an understanding that 
coordination with compute facilities is needed to ensure that their concerns are met 
and that strategies employed can be reasonably deployed in production facilities. 
 
Interpretation and Application: It is clear that simply capturing a wealth of data is 
not useful in itself, but rather that these data should aid in understanding and 
decision-making. Key use cases include: tracking how data elements move through a 
life cycle, feeding autonomic processes, identifying and addressing root causes of 
problems, understanding application use of specific SSIO services, and guiding future 
system procurements. Many open questions remain in how to present data to 
different users and software systems, both in online and post hoc scenarios. 
 
Having methods for translating these data into actionable intelligence for users and 
then motivating and empowering users to make appropriate adjustments were seen 
as a key pragmatic issue standing in the way of making the best use of this class of 
data. Facility staff are another key consumer of these data, and enabling situational 
awareness was seen as a key use case, and one in which instrumentation of all codes 
was not seen as viable. Finally, combining (fusing) data through correlation and 
annotation were discussed as important enablers, and the inclusion of data sources 
outside the SSIO context key for specific use cases. 
 
Modeling Workloads: The workshop attendees identified a number of challenges in 
practical HPC I/O workload modeling. The first set of challenges arises from 
application scale: how do we represent entire workloads concisely, limit the cost of 
model generation, and extrapolate them to larger configurations? The second set of 
challenges arises from concerns over accuracy: how do we distinguish declarative 
from imperative behavior, standardize models, protect anonymity while retaining 
key characteristics, and ensure that the workloads are reproducible? 
 
There was a consensus that choosing an appropriate modeling technique and 
validation method depends on the use case for the model. Employing predictive 
models to improve job scheduling was given as one example of a class of use cases in 
which models are used for real-time control optimization. Those use cases rely on the 
understanding of cross-job interference, and they emphasize rapid feedback over 
absolute model accuracy. Resource provisioning was given as an alternative use case. 
That use case puts more emphasis on fine-grain fidelity to allocate appropriate 
resources for a job. In summary, different modeling techniques and different 
validation constraints may be appropriate for different use cases. 
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Emerging work in probabilistic and data-driven modeling is appealing as machines 
and their workloads become more complex. Even with these approaches, however, it 
is difficult to produce truly accurate predictions, although a flawed prediction can still 
yield welcome improvements in control capability. 
 
Modeling Systems: The attendees identified several challenges in system modeling 
that revolve around disconnects between system modeling, monitoring, and model 
application. In particular, how do we incorporate system monitoring information into 
system models, how do we validate system models to ensure their accuracy over time, 
and how do we directly integrate simulation into the modeling ecosystem? 
 
There are many potential uses for system modeling. It could be used to guide multitier 
provisioning; run what-if scenarios; and provide insights into cost, reliability, and 
performance trade-offs between candidate architectures. Some of these use cases 
have more mature modeling techniques established than others. There is no one 
single breakthrough that will make system modeling practically applicable for all use 
cases, but there are several aspects of system modeling that could be improved. There 
is a need for better, low-level component models that reflect the reality of today’s 
systems. There is also a need for models that can be refined or revised in response to 
system changes in a timely, validated manner. The attendees also identified a need to 
reconcile known inaccuracies in our view of system state in complex systems as a 
prerequisite to model building. 
 
Facilitating Research: Work in this area can be hindered by the lack of availability 
of resources on which to test and the lack of relevant data. For example, test systems 
are needed on which to ensure that approaches are viable; however, in addition, 
methods to orchestrate specific scenarios (e.g., a specific class of fault) are key 
enablers for understanding how monitoring systems react and how (or how well) 
they observe specific behaviors. In addition, large volumes of monitoring data are 
required for specific approaches to be viable, such as the application of learning 
approaches to better understanding system behavior. Guiding the deployment of 
monitoring tools on today’s systems could enable more rapid development and 
adoption of next-generation, learning-based tools for understanding SSIO systems. 
Important aspects of utilization of large volumes of data of this nature are 
anonymization and normalization. Anonymization is key to opening up availability of 
this data to a larger audience, while normalization is important for adapting to 
changes in the facility (e.g., software upgrades). On top of these issues is one of 
ensuring that adequate context is captured so that data made public is not 
misinterpreted or misused. 

4.5.6 Research Directions 
 
Participants concluded that better understanding of SSIO systems leads to more 
productive applications; enhanced adaptation of running services; and more effective 
design, development, and procurement of tomorrow’s applications, systems, and 
system software. The following priorities emerged from the discussion.  
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Enabling real-time and post hoc analysis through instrumentation, capture, and 
retention of monitoring data. 
 

• Develop scalable and minimally intrusive methods of data gathering on 
application- and system-side, keeping pace with technological advancements 
in hardware and software. 

• Stream delivery of data for real-time analysis and decision-making. 
 
Scalable and minimally intrusive data-gathering methods enable the investigation of 
full-scale applications and systems rather than just experimental examples. This 
ensures that instrumentation data are representative of real-world behavior, and also 
enables real-time feedback to users. For such instrumentation to remain relevant, it 
must incorporate emerging technologies as they are deployed. This includes new 
hardware such as NVRAM, new programming models such as machine learning 
frameworks, and new architectures such as object storage systems. Furthermore, 
streaming delivery of data will make the instrumentation data applicable not just for 
post-hoc analysis but for real-time analysis and real-time control feedback. 
 
Predicting behavior through workload, software stack, and architectural 
modeling. 
 

• Develop analytical, ML, and reduced models for rapid decision-making. 
• Develop validated models at multiple fidelities for design space exploration. 
• Develop system models to aid in data integration. 

 
Modeling of relevant systems, services, and workloads complement data gathering 
activities. A variety of validated, predictive models should be considered depending 
on the use case for the model. This challenge calls for further research in methods 
including analytical, machine learning, and reduced models to cover the spectrum of 
high-fidelity and rapid decision-making use cases. In addition, integration of SSIO 
models with models capturing other aspects of the system (e.g., network and 
communication workload, scheduler) must be accounted for when tackling questions 
of importance to facilities, both in terms of day-to-day operations and future 
procurement decisions.  
 
Integrating data sources and identifying correlations to improve our 
understanding. 
 

• Pursue real-time and post hoc data fusion and learning. 
• Identify and obtain the large datasets required for learning applications. 

 
The transformation of monitoring data into knowledge is a nontrivial task that 
naturally involves the fusion of data from multiple sources. Important real-time 
(e.g., autonomics) and post hoc (e.g., performance tuning) use cases exist with distinct 
needs. Machine learning is a promising approach to knowledge generation, but for 
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these approaches to be effective, the aforementioned challenges in instrumentation 
and capture must be addressed in order to gather the requisite data on which learning 
can occur. 

4.6 Streaming Data 
 
The storage systems designed for advanced scientific computing have historically 
been architected to absorb I/O generated from bulk-synchronous checkpoint and 
restart operations. However, the rate at which experimental and observational data 
facilities are improving in throughput and resolution are forcing their resulting data 
volumes and scales of analysis into the realm of high-performance computing as well. 
The result is a growing tension between the storage and I/O requirements of EOD 
sources and the infrastructure provided by ASCR facilities. 
 
Broadly speaking, there are two major EOD analysis modes from which the majority 
of streaming data requirements emerge. The first is tightly coupled to data acquisition 
with the intent of reducing the latency between an experimental observation and 
insight to allow rapid refinement of experimental conditions. This mode 
acknowledges the scarcity of time that the experimental or observational instrument 
can be utilized and aims to maximize the productive output of an instrument in a fixed 
period of time. Facilities such as telescopes (which may be observing rare events 
[Nugent 2015]) and beamlines (where beam time is strictly allocated [Parkinson 
2016]) are often the source of streaming data workloads operating in this mode. 
 
The second mode of streaming data analysis occurs asynchronously to data 
acquisition. Whereas the source of the streaming data in the primary mode is an 
experimental instrument itself, the input data in this secondary mode is streamed 
from remote, nonvolatile storage. The goal of this secondary analysis is often to derive 
insight from large collections of experimental data where the precise quanta of data 
that are relevant to the scientific objective are not known a priori. As a result, this 
secondary mode may access parts of certain data objects, large collections of data 
objects in their entirety, and/or data objects that are distributed across disparate 
physical storage systems. This mode is most often used in large collaborative 
experiments such as the Compact Muon Solenoid detector [Bloom2015] at the Large 
Hadron Collider where throughput, not latency, of the analysis is the chief 
optimization point. 
 
These two modes are by no means mutually exclusive, and a single experimental or 
observational facility may require that both tightly coupled acquisition and analysis 
and asynchronous streaming analysis be carried out at a large-scale computing 
facility. Furthermore, the precise definition of streaming data in both cases continues 
to be the subject of some debate; for example, data acquisition systems commonly 
generate the output to POSIX files, and analysis applications consume input from 
POSIX files. In such cases, it is unclear whether such a workflow is truly distinct from 
a workflow that involves simple remote file transfers. 
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4.6.1 Tightly Coupled Acquisition and Analysis 
 
State of the Art 
The relatively high cost of generating data through experimental or observational 
instruments results in their data output having very high value. It follows that 
committing these raw outputs to nonvolatile storage as quickly as possible is a chief 
design point for data acquisition systems (DAQs), and many DAQs follow the 
archetypal design shown in Figure 4.4. 
 

 
 
Figure 4.4: Schematic showing typical storage path for high-value data. 
 
Because POSIX file systems have very well-defined consistency and durability 
semantics, DAQs attached to EOD systems often convert raw detector signals directly 
into POSIX files on locally attached, low-latency persistent storage. Once these file-
encoded data are persisted locally, they can be transferred or streamed to a remote 
computing resource for analysis. 
 
The end-to-end movement of experimental or observational data between the DAQ 
and computing facility can occur in several different ways, as depicted in Figure 4.5. 
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Figure 4.5: Three modes of end-to-end movement of experimental or observational 
data. 
 
Mode (a) above, where a file is streamed from a local file system attached to the DAQ 
to a storage system to which the HPC has direct access, is most common despite the 
data “streaming” actually happening entirely in the form of standard POSIX file 
transfers via Globus, bbcp, scp, or other tools. Despite a number of significant 
drawbacks to scientific productivity, this is currently the prevailing mode of 
operation because it is fundamentally simple; file transfer tools already exist to 
moderate the interfacility data motion, and POSIX file systems have a very well-
defined API and access semantics. As such, though, this mode is not truly streaming 
the data so much as it is performing near-real-time file transfer. While such near-real-
time file transfers come with a set of challenges worth further discussion, these 
challenges are distinct from the other two modes given that file-to-file transfers are 
generally well understood. 
 
A major issue with respect to file-to-file transfers is their inherently high latencies 
associated with persisting the transferred data in its entirety in two places before it 
can be processed. Even if only the first few kilobytes of a specific data object from a 
DAQ need to be read to determine whether the data are valid or not, the entire 
contents of that data unit must be transferred to the computing facility before a basic 
validation process can occur. Furthermore, the process by which the analysis 
application is informed that a datum has been successfully transferred is also often 
file-based; polling for a sentinel file or a complete set of data units is commonly used. 
These latencies of POSIX synchronization and file-based polling are antithetical to the 
notion of tightly coupled DAQ and analysis, leaving significant room for improvement 
in the responsiveness of streaming data analysis, where it may be required for 
applications such as experimental steering.  
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Mode (b) partially addresses this issue by transferring data directly from the DAQ's 
local storage system to the memory space from which the analysis will be computed. 
Because the analysis application does not have to traverse the POSIX I/O stack to 
access new data units as they arrive, there is potential for a significant reduction in 
the latency between data generation on the DAQ and analysis results from the 
compute. The trade-off in this case is that the data transfer between the experimental 
or observational facility and the computing facility is much less well defined; the 
analysis application is no longer receiving its input from POSIX files and instead may 
rely on network-based protocols (such as S3 or Swift). However, such protocols often 
support partial reads where required and allow analysis applications to retrieve only 
the data of interest over the wide-area network instead of copying entire data files. 
 
Mode (c) minimizes the latency between data acquisition and analysis, offering the 
tightest coupling between the two. While this mode is the notionally optimal 
configuration of the three, it is also the most susceptible to data loss as a result of the 
data being entirely volatile from data acquisition to analysis. As previously discussed, 
this is not a viable solution for many EOD facility users due to their inability to tolerate 
data loss in the event of a failure of the wide area network or remote storage resource. 
Given that today’s computing facilities have long served batch-oriented workloads 
with indeterminate latencies between job submission and execution, downtime for 
maintenance or long queue wait times are also commonplace. This reality further 
makes mode (c) untenable in the presence of networks that fail and compute facilities 
that do not align their maintenance windows with those of experimental facilities. 
 
Seeding Workshop Discussion 
As described above, the state of the art for tightly coupled data acquisition and 
analysis is predominantly file-based data generation, file-based data transfer, and 
file-based ingestion by analysis applications. This state of present practice results 
from a tension between the desire for low-latency, highly responsive access to data 
from the computational resource and the need for highly reliable data acquisition 
using easily implemented APIs and semantics. 
 
A principal challenge that impedes moving from mode (a) and toward the more 
latency-optimized modes (b) and (c) is the lack of well-defined interfaces between 
DAQ systems and the compute node memory from which analysis applications ingest 
their data. Unfortunately, many DAQs are proprietary black-box appliances, and 
redefining their external interfaces compounds this challenge. Wrapping the DAQ in 
a data transfer agent with well-defined external interfaces would preserve the 
requirement for low time-to-nonvolatility while enabling external data access 
through APIs that are not tied to POSIX files. Other abstractions atop POSIX files, 
including HDF5’s single writer, multiple reader (SWMR) capability, also provide a 
more semantically relevant API to analysis applications than what the DAQ may 
provide. 
 
The tension between EOD workloads requiring highly available computing and 
storage resources and the shared nature of computing facilities’ storage and 
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networking resources exposes another significant challenge. Aside from operational 
considerations such as maintenance windows, quality-of-service guarantees along 
the data path between DAQs and the analysis application would be of great benefit to 
streaming workloads. While most networks, transport protocols, and file systems 
support quality-of-service guarantees to some degree, they are not well integrated 
with each other and into the job control systems at computing facilities. 

4.6.2 Asynchronous Streaming Analysis 
 
State of the Art 
High-value experimental datasets as described in the previous section can retain 
significant scientific value for years after their generation. Both large-scale 
experiments (such as the Compact Muon Solenoid detector [Bloom 2015] at the Large 
Hadron Collider) and observational data sources (such as the Sloan Digital Sky Survey 
[Abolfathi2018]) produce data that are consumed by thousands of researchers 
around the world. However, the mechanisms by which such datasets are distributed 
to their scientific communities are widely variable. 
 
Owing in part to the size of these datasets, they are not often processed in their 
entirety; rather, researchers conduct focused analysis on subsets of the data that may 
be either a representative sample or a cross-section of the data types observed. If the 
dataset is indexed in a way that is amenable to simple subset selection, the process of 
transferring data is a straightforward matter of identifying the remote data resources 
of interest and only transferring those data to the computing facility for processing. 
In the cases where a suitable index is not available a priori, the process of identifying 
data to be analyzed can involve a significant amount of wasted data transfer to build 
such an index by inspecting the entire remote dataset. 
 
The APIs and semantics of accessing these remote datasets vary. The high-energy 
physics community has largely standardized around the XROOTD framework 
[Dorigo2005], which provides the infrastructure for distributed, federated, and 
scalable data repositories that enable client applications to retrieve data objects from 
a single, remote, global namespace directly into application memory without having 
to stage it to a local POSIX file system. That said, XROOTD is not as semantically rich 
as POSIX file systems; for example, it is possible to retrieve entire data objects into 
application memory, but there is no straightforward mechanism to stream only a 
partial object (such as a data object header). 
 
Other scientific datasets are provided in a much more manual fashion with the most 
rudimentary cases providing only basic HTTP access as a means to transfer remote 
data objects into application memory. Staging data objects to near-compute storage 
using Globus, bbcp, or similar file transfer tools is also prevalent for the same reason 
that file-to-file transfers prevail in the tightly coupled acquisition and analysis case: 
POSIX files provide a very well-defined API and set of access semantics, which 
analysis applications can easily adopt. 
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In all cases, asynchronous streaming analysis is distinct from tightly coupled 
streaming analysis in that it does not have the extreme requirement of high 
responsiveness and low latency between signal generation and analyzed data. Rather, 
asynchronous streaming workloads are driven by the desire to process as much data 
in as short a period of time as possible. Furthermore, such workflows are not 
necessarily open loops as is common with tightly coupled streaming analysis; there 
are cases where it would be advantageous to make multiple passes over data during 
analysis [Fox2015], as would be the case in algorithm development or neural network 
training. 
 
Seeding Workshop Discussion 
Because asynchronous streaming analysis often targets only subsets of large 
distributed datasets, a principal challenge lies in efficiently identifying and streaming 
only those data that are of scientific interest to its consumer. Such remote filtering 
and sampling tasks may map well to active storage systems, which can perform data 
processing and indexing without requiring wholesale data transfer to the computing 
facility. However, as discussed in Section 4.1.3, the programming models and APIs to 
perform these tasks are not well defined beyond existing relational and nonrelational 
database interfaces. 
 
This lack of well-defined models and semantics can be generalized to other aspects of 
streaming data analysis. While the high-energy physics community has demonstrated 
successes with the XROOTD framework, such successes remain exceptional in all but 
the largest experimental and observational scientific communities. A common set of 
access semantics across different data sources have not been identified, and the data 
models used to store and represent these data are also widely varied across 
disciplines. While efforts such as HDF5’s SWMR mode are making progress toward 
defining a meaningful data model and access API, it still relies on a network file 
system to provide a protocol for streaming data. 

4.6.3 Discussion Themes 
 
Because streaming data reflects a usage modality that touches many of the 
aforementioned computer science challenges, the discussion around streaming data 
at the workshop was distinctly crosscutting. Over the course of the session, the 
attendees expressed positions that revolved around three central themes that are 
relevant to a broad range of specific streaming data workflows and use cases. 
 
Enablement of multimodal analysis and replicated data streams. It is rarely the 
case that an experimental facility generates only a single data stream with a 
homogenous data type. Rather, it is far more common for an experimental instrument 
to generate a multitude of data from different sensors as described in Section 3.3.1. 
Similarly, the output of large-scale simulations are often characterized by high 
dimensionality outputs. In both cases, the diversity of data types represent multiple 
types of scientific data that may be relevant to only a subset of the research 
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community; by extension, researchers often need to access only a subset of the data 
stream. 
 
This theme of enabling researchers to access different subsets of a data stream aligns 
well with the more general workflow optimization technique of minimizing data 
motion to increase workflow throughput. It simplifies the analysis burden on domain 
scientists by only returning relevant data, and it additionally increases scientific 
throughput by eliminating the situation where different subcommunities have to line 
up and wait for their relevant part of the data stream to arrive. 
 
The requirement to replicate data streams also arose during the discussion. Tasks 
such as neural network training (and retraining) require the consumption of large 
sets of data that benefit from being streamed, and workflows that employ different 
applications of artificial intelligence would benefit from being able to consume 
replicated streams. 
 
In addition, globally streaming data sources such as those originating from very large 
experiments, as described in Section 4.6.2, often benefit from geographically 
distributed caches by reducing the need to transfer data over network paths. While 
streaming the same data to multiple destinations from a static data source does not 
require strong synchronicity as would be enabled by replicated streams, the practice 
of caching or buffering large datasets is likely to benefit from research applied toward 
enabling synchronously replicated streams. 
 
Flexibility to operate across diverse storage and data resources. By definition, 
streaming data involves at least two different data resources: the data source and the 
destination computational facility. Efficiently using the storage infrastructure at the 
sources and destinations becomes increasingly challenging as the heterogeneity 
between these end points increases, and it was agreed that any tools, methods, and 
infrastructure designed to address the challenges surrounding streaming data must 
be flexible enough to accommodate this infrastructural diversity. 
 
A number of specific infrastructural complexities were enumerated by participants: 
 

• Many EOD facilities have local computing and storage resources, so the tools 
and methods for streaming data management must handle both intrafacility 
and interfacility streaming. 

• Small-scale and large-scale computing both play a role in streaming data 
analysis; however, the specific computations that run on each may be 
different. For example, small, local computing may perform trivially parallel 
compression and filtering ahead of streaming to a large-scale computing 
facility for more complex parallel data analysis. 

• Streaming data sources and destinations may possess only compute or only 
storage. 
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• In-network compute and storage may also be present and enable processing 
of data in transit if these resources can be accessed effectively. 

 
The discussion also drew many parallels with other research areas’ discussions at the 
workshop. For example, heterogeneous and tiered storage systems that may have 
been designed with sustained I/O workloads such as those generated by 
checkpoint/restart may have components that can distinctly benefit from streaming 
data analysis as well. Flash-based acceleration layers may also be able to support 
small transactional record-based I/O such as those encountered at Jefferson 
Laboratory. A better understanding of both storage system capabilities and the 
workflow applications that operate on streaming data will be required to determine 
the best way to leverage diverse storage and data resources without losing flexibility. 
It follows that there are opportunities for synergy across SSIO research areas that 
should be identified and exploited wherever possible. 
 
Resilience to interruptions that may otherwise cause experimental data to be 
lost. As discussed in Section 4.6.1, there are classes of experimental data that are 
irreproducible and therefore require extremely reliable storage systems to ensure 
that rare phenomenon are correctly persisted and retained as quickly as possible. 
Workshop attendees noted that current storage and I/O systems at today’s HPC 
facilities do not typically offer much flexibility or expressivity in this regard; as a 
result, streaming data workflows generally cannot adjust their behavior when 
operating over SSIO systems that offer different levels of reliability or resilience. 
Those data streams which are irreproducible are therefore cached to a persistent 
local buffer, increasing the resource consumption and time to insight. 
 
Participants noted that the ultimate goal for streaming data would be true end-to-end 
QoS guarantees. The interposition of networked POSIX file systems in streaming data 
analysis makes this objective challenging; however, defining mechanisms by which 
data sources can express their resilience requirements or data destinations can 
advertise their resilience capabilities would enable workflows to make decisions 
about what resources would best match their needs. For example, if a tightly coupled 
acquisition and analysis workflow needs the highest possible reliability to ensure 
data that from an instrument are not lost, it may choose to use a highly reliable 
network path and remote storage resource if available. Should such resources not be 
available, it could choose to be sent to a local cache so as to maintain the required 
resilience at the cost of performance. 

4.6.4 Research Directions 
 
The session clearly established that streaming data from both experimental and 
observational data and from modeling and simulation are a new class of large-scale 
computational workload. Establishing flexible, foundational methods to support 
streaming data analysis will simplify scaling and reduce time to insight from new 
streaming data sources, and the following priorities emerged along the three themes 
described previously in Section 4.6.3. 
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Providing means for multimodal analysis by enabling one data source to serve 
multiple, different research efforts. 
 

• Allow scientists to subscribe to subsets of data for different scientific 
objectives. 

• Cache parts of data streams to support geographically distributed research 
efforts. 

 
Allowing domain researchers to specify the parts of a data stream that are relevant to 
them would enable a much tighter coupling between experimental and observational 
data sources that are intrinsically complex and multimodal. Domain scientists would 
be able to draw only the data relevant to them without having to wait in line as other 
data are being delivered over the stream, reducing the latency to the first bit of 
valuable data during tightly coupled acquisition and analysis. Similarly, asynchronous 
streaming analysis would also benefit from such flexibility by reducing overall data 
motion during their streaming data workflows and enabling more effective use of 
storage and network caches available along the data path. 
 
Enabling such multimodal data streams may benefit from the application of many 
new hardware and software techniques; for example, active storage could facilitate 
remote filtering and indexing of data to accelerate the rate at which a subset of a data 
stream can be identified and delivered. Different data types may also come with 
different output frequencies, performance optima, and resilience requirements that 
naturally map to different storage tiers within a computing facility or storage 
resources across computing facilities. The development of multidimensional data 
stores may also provide unique benefits to multimodal data streams by more 
naturally mapping the different logical components of a data stream to the storage 
systems ingesting those data. 
 
Identifying overlapping elements across different streaming data workflows to 
establish common interfaces through which data streams can be accessed and 
processed. 
 

• Enable in-line processing of data to and from both local and remote data and 
computing resources, ranging from simple compression/filtering to 
substantive analysis. 

• Efficiently utilize storage resources at the data source, destination, and 
network. 

 
Experimental workflows from different science domains often have similar 
technological requirements. Identifying a set of common operations, methods, and 
patterns would enable the creation of common tools for working with streaming data. 
These common interfaces would frame a single layer of abstraction that would enable 
domain scientists to adopt the best practices and optimal approaches for handling 
data streams without being exposed to the underlying hardware, middleware, and 
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system software that enables high performance. Such a common abstraction for 
streaming data may include features such as in-line processing, which can reduce the 
need to move all of the data between a streaming data source and the computational 
resources processing that data. 
 
On a related note, using storage resources located at the data source, destination, and 
all stops along the data path would enable data reduction in transit to the same end. 
The challenges of effectively placing data as it moves draws parallels with challenges 
in using deep storage hierarchies; finding the optimal place for data streams or 
stream buffers based on the consumers of that data can have a dramatic effect on 
improving the overall efficiency of the workflow operating on that data. As such, there 
is significant overlap between the research directions outlined in Section 4.4 and 
streaming data analysis. 
 
Supporting different reliability and performance requirements for data 
streams. 
 

• Enable data sources to express reliability/performance requirements. 
• Allow both end points to adapt to advertised unreliability in network and 

storage along data path. 
 
Some experimental data cannot be recreated and must not be lost, whereas others 
can tolerate some loss if it enables faster time to science. Establishing methods and 
software for experiments to express these requirements and negotiate such trade-
offs will be essential to allow different streaming data workflows to choose the 
storage and computing resources that best meet their requirements. On a related 
point, storage systems that can provide strong performance guarantees are expected 
to become essential for streaming data analysis. This expectation applies not only to 
traditional dimensions of performance, such as streaming I/O bandwidth, but to 
latency and the variation in performance as well. Meeting this expectation will 
require developing a better understanding of transient performance variation as well 
as of the longer-term performance degradation caused by time-dependent evolution 
of both software and physical media. 
 
It is notable that this requirement for better introspection into storage systems’ 
intrinsic performance and resilience capabilities was also identified as an 
opportunistic direction for research in the context of workflows (Section 4.3) and the 
storage hierarchy (Section 4.4). This commonality speaks to a greater need to allow 
scientific workflows, whether they depend on streaming data or not, to be able to 
more effectively couple with the storage system and I/O resources on which they are 
executing. 
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5 Supporting Activities 
 
Although the workshop did not have a dedicated session on supporting activities for 
SSIO research, throughout the workshop supporting activities were called out as 
important for the community in order to perform the needed research. While these 
topics are not research activities, the workshop attendees saw them as necessary 
ingredients to inform, enable, and sustain research into SSIO areas. 
 
The supporting activities that were discussed focused on two themes. The first was 
the availability of forward-looking (at reasonable scale) computing and storage 
resources (testbeds) on which realistic experiments associated with SSIO R&D topics 
could be performed. The second theme was the need for highly documented 
operational data of existing leading-edge computing systems, network systems, 
storage systems, and their workloads. Failure, performance, and usage-related data 
in an understandable, clean, and documented form were all deemed essential in order 
to assist SSIO researchers with deep understanding of modern SSIO problem spaces 
and their projections to future systems. These data have taken on a new importance 
in this era of machine learning. 

5.1 Computing, Networking, and Storage Resources 
 
Many of the challenges inherent in building storage systems and I/O capabilities to 
support DOE science revolve around finding solutions that scale to systems at the 
cutting edge of HPC and that can make best use of new technologies that have just 
arrived on the market. Thus, research in this domain is dependent upon the 
availability of relevant test platforms. 
 
State of the Art 
Several capabilities were identified as desirable for ensuring the availability of 
computing and storage resources. Cloud-oriented systems research mechanisms such 
as Chameleon [Chameleon2015] and Cloud Lab [CloudLab2015] were thought to 
have some utility in providing computing resources but are limited to R&D that can 
be run in a cloud-based environment. The NSF GENI [Geni2006] suite supporting 
research in networking was also mentioned as a potentially useful method of enabling 
related SSIO research, especially research involving long-distance networking. Other, 
more HPC-oriented resources such as the DOE/NNSA/Lawrence Livermore National 
Laboratory (LLNL) Hyperion [Hyperion n.d.] and the NSF/DOE/NNSA/LANL Parallel 
Reconfigurable Observational Environment (PRObE) [NMC2019] systems were also 
mentioned as useful; however, these systems are likely insufficient for future SSIO 
research without expanding the types of hardware and experiments they will 
support. Hyperion is not managed for openly competed research for extreme-scale 
computing, but its hardware is relatively new.  
 
PRObE was the only recent resource that was specifically designed so researchers 
could have full access all the way to the hardware, and it allowed root access for 
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reasonably long periods of time. This ability to have full root access to the real, not 
virtual, testbed hardware is important. Because PRObE utilizes retired DOE 
hardware, however, the architectures were not well suited for future research. 
Unfortunately, neither the PRObE nor the Hyperion systems are still in service. 
 
Challenges 
The lack of modern and periodically renewed, large-scale testbed computing 
environments is a significant challenge, and this includes in-system and off-system 
storage and the ability to provide users with “bare metal” root access. PRObE and 
Hyperion do meet some aspects of this need area, but their accessibility levels do not 
extend to enough researchers and are not always modern enough to satisfy the need. 
The ability to try out new hardware mechanisms is also a requirement. Neither 
PRObE nor Hyperion is funded specifically to assist the national SSIO research 
community. Root access to bare metal hardware is needed in order to support 
reproducibility in system-level experimentation. Neither facility is rich with 
instrumentation tools, fault injectors, or other generally useful testing tools. 
 
The need is really a combination of new and frequently renewed hardware in an 
openly competed-for resource that allows access all the way to the hardware. Also 
needed is coordination with efforts in advanced architecture, as well as future 
software stack development. 

5.2 Availability of Highly Documented Operational Data 
 
Relevant data informs researchers about the behavior of applications, the patterns of 
access in facility systems, the types of hardware failures observed, and other 
important details that guide the selection of research direction and improve our 
ability to assess solutions. With the increased adoption of machine learning 
techniques, these data can also be used to train models for a variety of purposes. 
 
State of the Art 
Several facilities have made well-documented operational data available. Among the 
releases are data from LANL [LANL Data n.d.] and NERSC. The LANL failure data 
release represented the largest operational failure data release performed in two 
decades when it was released in 2006. It came with FAQs, and much care was taken 
to clean the data well.  
 
Storage-oriented data are provided by the large-scale Sandia trace data [Sandia Data 
n.d.] and the Argonne Darshan usage-related data [Carns2013, Argonne n.d.]. Not 
only is the Darshan data an example of well-produced data, but it also represents a 
usable tool by HPC sites to assist with data collection. In addition, storage system 
namespace statistics are provided by the DOE Petascale Data Storage Institute’s 
FSStats effort [Felix2011, Dayal2008]. Included are data from many HPC sites, a tool 
for collecting the data, and even a multisite clearinghouse for making the data 
available. BackBlaze also released a sizable data collection that tracked hard disk 
failures over time [BackBlaze2015]. 
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Challenges 
A major challenge in this area is funding incentive for researchers to create tools to 
assist HPC sites to accurately produce, curate, and provide operational data 
(including SSIO-related data) without adversely affecting production operation. Data 
involving operations, failure, repair, use, and performance, for all layers of storage 
and for both data and metadata, are needed in order to engage the full SSIO research 
community. Ideally, data would span from applications, complex workflows, and all 
other uses of storage down to mechanisms including management of the SSIO 
systems themselves. This data would be provided in a consistent way over many 
years, and it would be periodically updated. Facilities may also need incentives to 
deploy tools that can capture this data, to perform necessary anonymization and 
documentation, and to make this data available to the community. 
 
Funding also is needed in order to pay for collection, curation, and broad 
dissemination of this operational data. If the data are not well cared for and are not 
periodically updated to current thinking and architectures, then the full community 
cannot engage, and leverage will be lost. 
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6 Glossary 
 
ADIOS Adaptive I/O System 
ALCF Argonne Leadership Computing Facility 
AMO Atomic Memory Operations 
AMR Adaptive Mesh Refinement 
API Application Programming Interface 
Argonne Argonne National Laboratory 
ASCR Office of Advanced Scientific Computing Research 
CMS Compact Muon Solenoid (experiment at CERN) 
DAQ Data Acquisition 
DMP Data Management Plan 
DNA Deoxyribonucleic Acid 
DOE U.S. Department of Energy 
DRAM Dynamic Random Access Memory 
EOD Experimental and Observational Data 
FES Fusion Energy Sciences (DOE-SC) 
FLOPS Floating Point Operations per Second 
HDF Hierarchical Data Format 
HPC High-Performance Computing 
HPSS High-Performance Storage System 
HSM Hierarchical Storage Management 
I/O Input/Output 
IOR Interleaved Or Random 
LANL Los Alamos National Laboratory 
LDMS Lightweight Distributed Metric Service 
LLNL Lawrence Livermore National Laboratory 
MDS MetaData Server 
MIMD Multiple Instruction Multiple Data 
ML Machine Learning 
NERSC National Energy Research Scientific Computing Center 
NNSA National Nuclear Security Administration 
NSF National Science Foundation 
NVRAM Non-Volatile Random Access Memory 
NVMe Non-Volatile Memory Express  
OLCF Oak Ridge Leadership Computing Facility 
ORNL Oak Ridge National Laboratory 
OS Operating System 
PIC Particle-in-Cell 
PDSI Petascale Data Storage Institute 
PLFS Parallel Log-structured File System 
PNNL Pacific Northwest National Laboratory 
POSIX Portable Operating System Interface 
PRObE Parallel Reconfigurable Observational Environment 
PSNR Peak Signal to Noise Ratio 
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PVFS Parallel Virtual File System 
QoS Quality of Service 
R&D Research and Development 
RAID Redundant Array of Independent Disks 
RMA Remote Memory Access 
SC Office of Science (DOE) 
SciDAC Scientific Discovery through Advanced Computing 
SCM Storage-Class Memory 
SCR Scalable Checkpoint/Restart 
SIMD Single Instruction Multiple Data 
SSD Solid State Disk 
SSIO Storage System and I/O 
SST Structural Simulation Toolkit or Sustainable Staging Transport 
SWMR Single Writer, Multiple Reader 
TTFB Time To First Byte 
UQ Uncertainty Quantification 
XDD Command line tool for measuring I/O performance 
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7 Workshop Attendees 
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8 Workshop Agenda  
 
The workshop was organized around six topical areas identified by the organizers as 
areas where gaps exist in the capabilities required for DOE science to proceed at pace. 
Each day began with an initial set of talks and a panel that provided context and 
background for the attendees, followed by rigorous moderated discussion. 
 

Wednesday, September 19, 2018   

Time  Activity  

8:15am – 8:35am 
Welcome (Barb Helland) and opening remarks 
(Lucy Nowell) 
Reminder of charge, overview of meeting, safety, etc. 

8:35am – 8:50am Talk: Experimental and Observational Data 
Wes Bethel 

8:50am – 9:05am Talk: Streaming Data 
Graham Heyes 

9:05am – 9:20am Talk: Workflow Management 
Tom Peterka 

9:20am – 10:00am Talk: Science requirements for SSIO at the LCFs 
Jack Wells & Kevin Harms 

10:00am – 10:30am Break 

10:30am – 11:45am Panel: Applications and Facilities Requirements 
(Application Pull) 
Moderator: Kathryn Mohror 
Participants: Wes Bethel, Graham Heyes, Jack Wells,  
Kevin Harms, Evan Felix, Tom Peterka, Kristy Kallback-Rose 

11:45am –12:35am Lunch 

12:35pm – 2:05pm Working Session 1: Integrating with Science Workflows 
Moderator: Scott Klasky 
Scribe: Brad Settlemyer 

2:05pm – 2:35pm Break 

2:35pm – 4:05pm Working Session 2: Understanding SSIO Systems 
Moderator: Rob Ross 
Scribe: Galen Shipman 

4:05pm – 4:25pm Break 

4:25pm – 5:55pm Working Session 3: Streaming Data 
Moderator: Matt Wolf 



Storage Systems and Input/Output 2018 Workshop Report 98 

Scribe: Glenn Lockwood 

Thursday, September 20, 2018 

Time  Activity  

8:15am – 8:30am Talk: Extreme Heterogeneity Workshop Report 
Lucy Nowell 

8:30am – 8:50am Talk: Storage Technologies 
Gary Grider 

8:50am – 9:10am Talk: Memory Technologies; Blurring the Lines 
Dan Ernst 

9:10am – 10:15am Panel: Storage Technologies 
(Tech Push Panel) 
Moderator: Lee Ward 
Participants: Gary Grider, Kevin Harms, Eric Pouyoul, 
Dan Ernst, Lance Evans 

10:15am – 10:45am Break 

10:45am – 12:15pm Working Session 4: Heterogeneous/multi-tier storage 
systems  
Moderator: Kathryn Mohror 
Scribe: Kevin Harms 

12:15pm – 1:15pm Lunch 

1:15pm – 1:30pm Talk: ISDM Workshop 
Tom Peterka 

1:30pm – 3:00pm Working Session 5: Metadata, Name Spaces, and 
Provenance 
Moderator: Lee Ward 
Scribe: Quincey Koziol  

3:00pm –- 3:25pm Break 

3:25pm – 4:55pm Working Session 6: HW/SW architectures  
Moderator: Brad Settlemyer 
Scribe: Rob Ross 

4:55pm – 5:00pm Closing remarks and adjourn 
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