

Ab initio study of zirconium(IV) chloride

Eunja Kim¹, Philippe F. Weck², Rosendo Borjas¹, Eswari Balasekaran¹, Frederic Poineau¹

¹Department of Physics, University of Nevada Las Vegas, Las Vegas, NV 89154, kimej@physics.unlv.edu

²Sandia National Laboratories, Albuquerque, NM 87185, pfweck@sandia.gov

INTRODUCTION

Zirconium halides are of crucial importance in numerous research fields and industrial applications such as unconventional catalysis [1], refining of Zr-containing ores by Kroll reduction [2], chemical vapor deposition (CVD) [3], or nuclear engineering [4-6]. For example, chlorination has been proposed for large-scale separation and selective recovery of Zr, as $ZrCl_4$, from U-Zr alloys or used nuclear fuel cladding [4, 5]. In addition, ZrX_4 (X=Br, Cl) is utilized in the preparation of CVD zirconium carbide layers of tristructural-isotropic (TRISO) nuclear fuel micro-particles [6]. Although an accurate knowledge of the properties of zirconium halides is key to optimizing process conditions for the aforementioned applications, recent and accurate thermomechanical information for Zr halides remains scarce [3]. In particular, for crystalline $ZrCl_4$ the low-temperature calorimetric measurements by Todd [7] and Efimov et al. [8], in the temperature ranges 52 – 296 K and 9 – 315 K, are still used as references [3]. In addition, no comprehensive computational studies of the thermomechanical properties of $ZrCl_4$ (cr) have been reported, to the best of our knowledge. Here, we report computational studies of the structural, lattice dynamics, and thermomechanical properties of bulk monoclinic $ZrCl_4$ using the zero-damping dispersion-corrected density functional theory [DFT-D3(zero)], the quasi-harmonic approximation (QHA).

Total-energy calculations were carried out using Grimme's dispersion-corrected DFT (DFT-D3)[9], as implemented in the Vienna *ab initio* simulation package (VASP) [10]. The exchange-correlation energy was computed using the generalized gradient approximation (GGA), with the parameterization of Perdew, Burke, and Ernzerhof (PBE) [11]. Previous first-principles studies demonstrated that standard functionals, such as PBE, correctly reproduce the structure-properties relationship of bulk zirconium and Zr alloys, as well as transition-metal chloride compounds [12-15].

The projector augmented wave (PAW) method [16,17] was utilized to model the interaction between valence electrons and ionic cores. PAW pseudopotentials were used to represent the remaining core electrons together with the nuclei. The Kohn-Sham (KS)

equations were solved using the blocked Davidson iterative matrix diagonalization scheme [18]. A plane-wave cutoff energy of 500 eV was chosen for the electronic wavefunctions, ensuring total-energy convergence to within 1 meV/atom. Partial occupancies of the wavefunctions were controlled using Gaussian smearing, with a Gaussian width of 0.1 eV. Simultaneous ionic and cell relaxations of $ZrCl_4$ were conducted, without symmetry constraints applied. The Hellmann-Feynman forces acting on atoms were calculated with a convergence tolerance set to 0.01 eV/Å. The Brillouin zone(BZ) was sampled using the Monkhorst-Pack k -point scheme[19] with a k -point mesh of $5 \times 5 \times 5$.

RESULTS

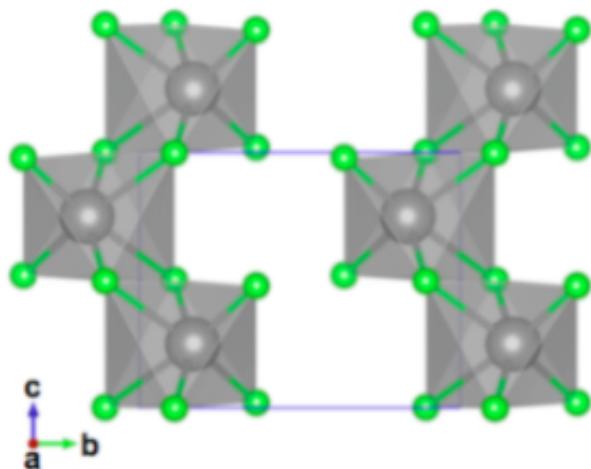

Initial structural optimization calculations with standard DFT-PBE for the bulk monoclinic $ZrCl_4$ unit cell (space group $P2/c$; IT No. 13; $Z = 2$) yielded lattice parameters of $a = 6.93$, $b = 8.16$ and $c = 6.35$ Å ($\alpha = \gamma = 90^\circ$, $\beta = 107.6^\circ$; $V = 342.0$ Å 3), considerably larger than X-ray diffraction (XRD) measurements [20]. This stems from the lack of a correct description of cohesive van der Waals interactions resulting from dynamical correlations between fluctuating charge distributions in standard DFT. Therefore, Grimme's dispersion-corrected DFT (DFT-D3) was utilized in this study. Table 1 summarizes the calculated and experimental structural parameters.

Table 1 The lattice parameters of bulk monoclinic $ZrCl_4$ calculated in the zero-temperature limit.

$ZrCl_4$ (P2/c)	DFT-PBE (this work)	XRD [20]	DFT-D3 (this work)
a (Å)	6.39	6.361 ± 0.004	6.38
b (Å)	8.16	7.407 ± 0.004	7.49
c (Å)	6.35	6.256 ± 0.004	6.25

β (°)	107.6	109.3 \pm 0.04	107.6
Volume (Å ³)	342	278.2	282.9

The lattice parameters of bulk monoclinic ZrCl_4 calculated in the zero-temperature limit are in excellent agreement with experimental values from XRD (X-ray diffraction) measurements [20] as shown in Table 1. The optimized ZrCl_4 unit-cell, featuring chains of edge-sharing coordination octahedra along the [001] direction, is depicted in Figure 1.

Figure 1 Crystal structure of bulk ZrCl_4 (space group $\text{P}2/c$; IT No. 13; $Z = 2$) optimized with DFT-D3(zero). The unit cell is represented by solid blue lines. Color legend: Cl, green; Zr, grey.

The computed bond distances between Zr centers ($2e$ Wyckoff positions) and apical and bridge Cl ligands ($4g$ Wyckoff positions) are $d_{\text{Zr}-\text{Cl}_{\text{apical}}} = 2.33 \text{ \AA}$ and $d_{\text{Zr}-\text{Cl}_{\text{bridge}}} = 2.50, 2.69 \text{ \AA}$. These bond distances compare well with the XRD values of $d_{\text{Zr}-\text{Cl}_{\text{apical}}} = 2.307 \text{ \AA}$ and $d_{\text{Zr}-\text{Cl}_{\text{bridge}}} = 2.497, 2.656 \text{ \AA}$ [20]. The calculated (measured) Zr–Zr distance is 3.99 \AA (3.962 \AA), and the bond angles $\angle \text{Cl}_{\text{apical}}\text{ZrCl}_{\text{apical}}$ and $\angle \text{Cl}_{\text{bridge}}\text{ZrCl}_{\text{bridge}}$ are 100.9 and 79.6° (100.66 and 79.54°), respectively.

Phonon analysis was conducted using the finite-displacement method near equilibrium volume within the QHA in order to derive thermal properties of bulk ZrCl_4 . A temperature effect was added to the calculated total energy $U(V)$ of the system through the phonon contribution. While the melting point of ZrCl_4 was reported as $710 \pm 1 \text{ K}$, a monoclinic to cubic phase

transformation around $\approx 538 \text{ K}$ was discussed in previous studies [3]. Therefore, the present calculations for monoclinic $\text{ZrCl}_4(\text{cr})$ are limited to temperatures below $\approx 550 \text{ K}$. The computed thermal evolutions of K_0 and K_0' using the Vinet equation of state [22]. The bulk modulus and its pressure derivative are predicted to vary from $K_0 = 8.7$ to 7.0 GPa and from $K_0' = 10.4$ to 8.9 GPa between 0 and 550 K . Interestingly, both K_0 and K_0' do not decrease monotonically with temperature, but exhibit instead maxima in the vicinity of ≈ 20 and 80 K , respectively.

The isobaric molar heat capacity (C_p) and entropy (S) are calculated and compared with the available experimental data [27]. It is found that our calculated entropy, isochoric molar heat capacity, and isobaric molar heat capacity at standard pressure ($P = 1 \text{ bar}$) for bulk ZrCl_4 are in excellent agreement with low-temperature heat capacity measurements by Todd [7] and Efimov et al. [8]. The standard values calculated at $T = 298.15 \text{ K}$ in this study are $C_p^0 = 107.3 \text{ J/mol K}^{-1}$ and $S_p^0 = 162.1 \text{ J mol}^{-1} \text{ K}^{-1}$.

In Summary, DFT-D3(zero) calculations were conducted to investigate the lattice dynamics and thermo-mechanical properties of bulk monoclinic $\text{ZrCl}_4(\text{cr})$. The isobaric molar heat capacity derived from phonon calculations within the quasi-harmonic approximation is in fair agreement with existing calorimetric data. New heat-capacity measurements for high-purity $\text{ZrCl}_4(\text{cr})$ are desirable, especially above room temperature where calorimetric data are scarce.

REFERENCES

- [1] G. Homerin, D. Baudelot, P. Dufre'noy, B. Rigo, E. Lipka, X. Dezitter, C. Furman, R. Millet, A. Ghinet, *Tetrahedron Letters* 57 (2016) 1165.
- [2] B. Lustman, J. F. Kerze, *The metallurgy of zirconium*, McGraw Hill: New York, NY, 1955.
- [3] M. G. M. van der Vis, E. H. P. Cordfunke, R. J. M. Konings, *Thermochimica Acta* 302 (1997) 93.
- [4] A. E. Bohe', J. J. Andrade Gamboa, D. M. Pasquevich, *Mater. Sci. Technol.* 13 (1997), 865.
- [5] E. D. Collins, G. D. DelCul, B. B. Spencer, R. R. Brunson, J. A. Johnson, D. S. Terekhov, N. V. Emmanuel, *Procedia Chemistry* 7 (2012) 72.
- [6] T. Ogawa, K. Fukuda, S. Kashimura, T. Tobita, F. Kobayashi, S. Kado, H. Miyanishi, I. Takahashi, T. Kikuchi, *J. Am. Ceram. Soc.* 75 (1992), 2985.
- [7] S. S. Todd, *J. Am. Chem. Soc.* 72 (1950) 2914.
- [8] M. E. Efimov, I. V. Prokopenko, V. A. Medvedev, G. A. Berezovskii, I. E. Paukov, *J. Chem. Thermodynamics* 21 (1989) 677.
- [9] S. Grimme, J. Antony, S. Ehrlich, S. Krieg, *J. Chem. Phys.* 132 (2010) 154104.

- [10] G. Kresse, J. Furthmüller, Phys. Rev. B 54 (1996) 11169.
- [11] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.
- [12] P. F. Weck, E. Kim, F. Poineau, E. E. Rodriguez, A. P. Sattelberger, K. R. Czerwinski, Inorg. Chem. 48 (2009), 6555.
- [13] F. Poineau, C. D. Malliakas, P. F. Weck, B. L. Scott., E. V. Johnstone, P. M. Forster, E. Kim, M. G. Kanatzidis, K. R. Czerwinski, A. P. Sattelberger, J. Am. Chem. Soc. 133 (2011) 8814.
- [14] C. D. Malliakas, F. Poineau, E. V. Johnstone, P. F. Weck, E. Kim, B. L. Scott, P. M. Forster, M. G. Kanatzidis, K. R. Czerwinski, A. P. Sattelberger, J. Am. Chem. Soc. 135 (2013) 15955.
- [15] P. F. Weck, E. Kim, V. Tikare, J. A. Mitchell, Dalton Trans. 44 (2015) 18769.
- [16] P. E. Blöchl, Phys. Rev. B 50 (1994) 17953.
- [17] G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758.
- [18] E. R. Davidson, in Methods in Computational Molecular Physics, G. Diercksen, and S. Wilson; Eds.; NATO Advanced Study Institute, Series C, Plenum: New York, NY, 1983, vol. 113, p. 95.
- [19] H. Monkhorst, J. Pack, Phys. Rev. B 13 (1976) 5188.
- [20] B. Krebs, Angew. Chem. 81 (1969) 120.
- [21] A. Togo, F. Oba, I. Tanaka, Phys. Rev. B 78 (2008) 134106.
- [22] P. Vinet, J. R. Rose, J. Ferrante, J. R. Smith, J. Phys.: Condens. Matter, 1 (1989) 1941.
- [23] J. S. O. Evans, J. Chem. Soc., Dalton Trans. (1999) 3317.
- [24] E. Kim et al., Chemical Physics Letters 691 (2018) 98–102.

ACKNOWLEDGEMENT

This research was performed using funding received from the DOE Office of Nuclear Energy's Nuclear Energy University Program. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security.