
ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Lemont, Illinois 60439

Manifold Sampling for Optimization of Nonconvex
Functions that are Piecewise Linear Compositions of

Smooth Components1

Kamil Khan, Jeffrey Larson, and Stefan M. Wild

Mathematics and Computer Science Division

Preprint ANL/MCS-P8001-0817

September 2017 (revised April 2018)

Updates to this preprint may be found at
http://www.mcs.anl.gov/publications

1This material was based upon work supported by the U.S. Department of Energy, Office
of Science, Office of Advanced Scientific Computing Research under Contract No. DE-AC02-
06CH11357.

http://www.mcs.anl.gov/publications

Manifold Sampling for Optimization of Nonconvex Functions that

are Piecewise Linear Compositions of Smooth Components

Kamil A. Khan∗ Jeffrey Larson†‡ Stefan M. Wild§

August 27, 2018

Abstract

We develop a manifold sampling algorithm for the minimization of a nonsmooth composite function
f , ψ + h ◦ F when ψ is smooth with known derivatives, h is a known, nonsmooth, piecewise linear
function, and F is smooth but expensive to evaluate. The trust-region algorithm classifies points in
the domain of h as belonging to different manifolds and uses this knowledge when computing search
directions. Since h is known, classifying objective manifolds using only the values of F is simple. We
prove that all cluster points of the sequence of the manifold sampling algorithm iterates are Clarke
stationary; this holds although points evaluated by the algorithm are not assumed to be differentiable
and when only approximate derivatives of F are available. Numerical results show that manifold sampling
using zeroth-order information about F is competitive with algorithms that employ exact subgradient
values from ∂f .

1 Introduction

This paper addresses the optimization problem minimize
x∈Rn

f(x) when f is of the form

f(x) , ψ(x) + h(F (x)), (1)

where ψ : Rn → R is smooth with known derivatives, h : Rp → R is a nonsmooth, piecewise linear function
with a known generalized Clarke subdifferential, and the function F : Rn → Rp is smooth. Specifically, we
assume that h is analytically known and that one can identify the linear functions that contribute to the
subdifferential of h at any point in its domain. This setting includes both the case when ∇F : Rn → Rn×p
may not be available (such as in derivative-free optimization [8]) and the case when h is nonconvex.

In this paper, we develop a manifold sampling algorithm that overcomes the unavailability of ∇F by
building a smooth model mFi of each component Fi of F . The collection of model gradients ∇mFi is used
by the algorithm to approximate ∇F . We show that by using such approximations, manifold sampling
converges to generalized stationary points of f and performs well empirically. The algorithm proposed here
extends that developed in [22] for the case where h in (1) is piecewise linear.

Previous efforts addressing functions of the form (1) have focused largely on cases where h is convex or
where the derivatives of F are available. Foundational work for the case when h is convex was presented in
[16, 35]. When∇F is unavailable, [18] considers the composition of convex h with smooth F and derives error
bounds between h(F (x)) and h(M(x)) (and between the subdifferentials of h(F (x)) and h(M(x))) when M
is a sufficiently accurate model of F ; therefore, the analysis in [18] largely generalizes the work of [19], which
studies the case of h(·) , max(·), and [22], which studies h(·) , ‖·‖1. In [13], the authors study error bounds,

∗Department of Chemical Engineering, McMaster University, Hamilton, ON (kamilkhan@mcmaster.ca).
†Corresponding author
‡Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL (jmlarson@anl.gov, wild@anl.

gov).

1

kamilkhan@mcmaster.ca
jmlarson@anl.gov
wild@anl.gov
wild@anl.gov

convergence, and termination of algorithms that use Taylor-like models of (1) when ∇F is available and h is
convex. Similarly, the authors of [17] address the worst-case complexity of trust-region algorithms when h is
convex and a smoothing function of h exists and is known. Recent work on nonconvex h when ∇F and ∇ψ
are assumed available includes analysis of prox-regular methods in [14] and analysis of quasi-Newton methods
in [32]. Additional methods for optimizing nonsmooth, nonconvex objectives when gradient information is
unavailable include [21], which proposes a version of gradient sampling that approximates gradients using
function evaluations, and [3], which employs approximate subgradients to define descent directions.

Accompanying the developments in machine learning is a growing interest in nonconvex loss functions
(see, e.g., [2, 5, 7, 24]). Such nonconvex loss functions have been observed to be more efficient in modeling of
complex machine learning problems [4] and their use can result in other computational benefits [7]. Examples
of such nonconvex h include those in [25, Appendix B] and the censored `1-loss in [34]. We use the censored
`1-loss (which is piecewise linear) in the numerical experiments in Section 5 to compare manifold sampling
with other algorithms for optimizing nonsmooth, nonconvex functions. In our experiments, two of the three
manifold sampling implementations do not use exact gradient information, whereas other algorithms are
given elements of the subdifferential of f .

An outline of the paper, which subsumes the results in [22], is as follows. Section 2 contains background
information and definitions used throughout the paper and formally defines piecewise linear functions. In
considering such functions, we present a significant extension of manifold sampling compared with the version
developed in [22] addressing `1 functions. By couching the development of manifold sampling in terms of
piecewise linear functions, we hope that extensions to other piecewise-continuous cases may more easily
arise. Section 3 presents the new manifold sampling algorithm, which includes a more general trust-region
acceptance test that applies to other functions as well as `1 objective functions. Section 4 analyzes the
sequence of iterates generated by manifold sampling. Many of the results in Section 4 are considerable
extensions over their counterpart results in [22]. For example, the proof of [22, Lemma 4] explicitly uses the
fact that h is an `1 function, whereas here we address general piecewise linear functions. Section 5 compares
three implementations of manifold sampling with implementations of other methods.

2 Background

Before proceeding, we present the definitions, notation, and assumptions used in this paper. All norms are
assumed to be `2 norms unless otherwise stated. The closure, interior, and convex hull of a set S are denoted
cl (S), int (S), and co (S), respectively. Given a closed convex set S ⊂ Rn, the projection of x ∈ Rn onto S,
denoted proj(x,S), is the unique element of the set arg min

y∈S
‖y − x‖. Let B(x; ∆) , {y : ‖x− y‖ ≤ ∆}.

2.1 Fully linear models

Manifold sampling constructs models mFi of each component Fi; in order to show convergence of our al-
gorithm, mFi must sufficiently approximate Fi near a given point x. This property is formalized in the
following standard definition [8].

Definition 1. A function mFi : Rn → R is said to be a fully linear model of Fi on B(x; ∆) if there exist
constants κi,ef and κi,eg, independent of x and ∆, so that∣∣Fi(x+ s)−mFi(x+ s)

∣∣ ≤ κi,ef∆
2 ∀s ∈ B(0; ∆)∥∥∇Fi(x+ s)−∇mFi(x+ s)

∥∥ ≤ κi,eg∆ ∀s ∈ B(0; ∆).

For derivation of error bounds for f when fully linear models of each component function Fi are available
and h is convex, see [18].

One can easily build fully linear component models of smooth functions Fi (including functions that
satisfy our later assumption in Assumption 2 on page 4), even when ∇Fi is unavailable; see, for example,
[8, Chapter 6]. Since an evaluation of F provides values for all components, using a common set of points

2

to build all component models can save significant resources when F is expensive to evaluate. Although we
do not need to ensure that every component model used within our algorithm is fully linear, we make the
following assumption for ease of presentation.

Assumption 1. Each model mFi in M , [mF1 , . . . ,mFp]T is a fully linear model of Fi and twice continuously
differentiable. Also, for i ∈ {1, . . . , p} there exists κi,mH so that ‖∇2mFi(x)‖ ≤ κi,mH for all x ∈ Rn. For

these constants and those in Definition 1, define κf ,
∑p
i=1 κi,ef , κg ,

∑p
i=1 κi,eg, and κmH ,

∑p
i=1 κi,mH.

Assumption 1 implicitly assumes that each component function is continuously differentiable; formal
assumptions about the component functions are stated in Assumption 2.

2.2 Generalized derivatives

We now introduce terminology from nonsmooth analysis.

Definition 2 (from [30, 6]). The B-subdifferential of a locally Lipschitz continuous function f at a point x
is the set of all limiting gradients from differentiable points that converge to x, that is,

∂Bf(x) ,

{
lim
yj→x

∇f(yj) : yj ∈ D
}
, (2)

where D is the set of points where f is differentiable. The generalized Clarke subdifferential of f at x is
defined as

∂Cf(x) , co (∂Bf(x)) .

Definition 3. A point x is called a Clarke stationary point of f : X → R if 0 ∈ ∂Cf(x).

If f is scalar-valued and locally Lipschitz continuous on an open set X ⊂ Rn, then Clarke stationarity is
a necessary condition for local optimality.

2.3 Piecewise linear functions

Throughout this paper, affine functions are referred to as “linear”; thus, linear functions are not required to
vanish at the origin.

Definition 4 (adapted from [31]). A function h : Rp → Rq is piecewise linear if h is continuous and there
exists a finite collection H , {hi : i = 1, . . . , m̄} of affine functions that map Rp into Rq, for which

h(z) ∈
{
h̃(z) : h̃ ∈ H

}
, ∀z ∈ Rp.

In this case, h is said to be a continuous selection of H, and the elements of H are called selection functions
of h.

All functions satisfying Definition 4 are Lipschitz continuous everywhere and B-differentiable everywhere.
That is, ∂Bf and therefore ∂Cf (from Definition 2) are well defined everywhere [31, 6]. Although h is piecewise
linear by assumption, h ◦ F might not be.

We now define useful sets for describing piecewise linear functions.

Definition 5 (adapted from [31]). We employ the following sets for functions h satisfying Definition 4:

Si , {y : h(y) = hi(y)} , S̃i , cl (int (Si)) , Ieh(z) ,
{
i : z ∈ S̃i

}
.

Elements of Ieh(z) are called essentially active indices; any function hi for which i ∈ Ieh(z) is an essentially
active selection function for h at z. A function hj ∈ H is an essentially active selection function for h, or a
linear piece of h (without reference to a particular point z) if it is essentially active for h at some point z.

3

For any z ∈ Rp, we define its manifold to be

M(z) , {y ∈ Rp : Ieh(y) = Ieh(z)} .

Since hi is assumed to be linear, each set S̃i is a union of finitely many convex polyhedra. Thus, each manifold
M(z) is also a union of finitely many convex polyhedra. Note that the manifolds do not necessarily partition
the domain and that Definition 4 does not specify the collection H uniquely (though the set of functions
that are essentially active somewhere is uniquely defined for piecewise linear functions). If h , ‖·‖∞, then

h ◦F is a continuous selection of the 2p functions in {±F1, . . . ,±Fp}. If h , ‖·‖1, then h ◦F is a continuous
selection of the 2p functions in {

∑p
i=1 siFi : si ∈ {−1, 1}}.

To show that cluster points of the sequence of iterates from the manifold sampling algorithm are Clarke
stationary, we make the following assumptions on ψ, h, and F .

Assumption 2. Suppose that the set L ,
{
x : f(x) ≤ f(x0)

}
is bounded and the function f is of the form (1)

where h is a piecewise linear (Definition 4) selection of H , {h1, . . . , hm̄}, where hi : z ∈ Rp 7→ 〈ai, z〉+bi for
each i. Define
Lh , max {‖ai‖ : i = 1, . . . , m̄}; observe that Lh is a Lipschitz constant for h. Suppose that the essentially
active index set Ieh(z) (Definition 5) can be computed for each z ∈ Rp.

For a constant ∆max > 0 define Lmax =
⋃
x∈L B(x; ∆max). Suppose that each Fi is continuously differ-

entiable on Lmax and that ∇F is Lipschitz continuous on Lmax with a Lipschitz constant L∇F . Similarly,
suppose that ψ is twice continuously differentiable on Lmax and that ∇ψ is Lipschitz continuous on Lmax

with a Lipschitz constant L∇ψ.

Define κfH , maxx∈Lmax

{∥∥∇2ψ(x)
∥∥}+ LhκmH, and observe that κfH is finite.

3 Algorithmic Framework

This section provides a rough outline of the manifold sampling algorithm (presented in Algorithm 1 on
page 7) for optimizing a function f of the form (1) subject to Assumptions 1 and 2. Our algorithm builds
component models mFi of each Fi at a point x and places the first-order terms of each model in the ith
column of the matrix ∇M(x) ∈ Rn×p. That is,

∇M(x) ,
[
∇mF1(x), . . . ,∇mFp(x)

]
.

At the kth iteration of the algorithm, the current iterate xk is known. The p component function values
Fi(x

k) can be computed, and the set of essentially active indices Ieh(F (xk)) is available. Then, p component
models mFi that approximate Fi near xk are built. Using the elements of Ieh(F (xk)), we infer a set of
generators Gk using the manifolds that are potentially active at xk. Elements of Gk will be of the form
∇ψ(xk) +∇M(xk) ai for suitable manifolds 〈ai, x〉+ bi and co

(
Gk
)

can then be used as an approximation
to ∂Cf(xk).

3.1 Master model

Assuming Gk contains t elements, Algorithm 1 uses these t generators to infer that the corresponding
gradients {aj1 , . . . , ajt} of selection functions of h may be active at (or relatively near) the current iterate
xk. The minimum-norm element of Gk is denoted

gk , proj
(
0, co

(
Gk
))
∈ co

(
Gk
)
. (3)

We let λ∗ ∈ [0, 1]t with
∑
i λ
∗
i = 1 denote the coefficients of the convex combination gk = Gkλ∗, where

the columns of Gk are the generators in Gk. The coefficients λ∗ may be obtained by solving the quadratic
optimization problem

minimize
λ

1

2
λT (Gk)TGkλ

subject to eTλ = 1, λ ≥ 0.

(4)

4

These coefficients λ∗ will be used to combine the p component models mFi into a smooth model of f .
Since the qth generator in Gk (alternatively, the qth column of Gk) is given by ∇ψ(xk) + ∇M(xk)ajq ,

we have Gk = ∇ψ(xk) eT +∇M(xk)Ak, where

Ak ,

 aj1 · · · ajt

 .
To ensure that the smooth master model mf

k : Rn → R has a gradient equal to gk from (3), we consider the
set of weights wk = Akλ∗ and define

mf
k(x) , ψ(xk) +

p∑
i=1

wkim
Fi(x) +

p∑
i=1

λ∗i bji . (5)

Note that the last term in (5) is constant and does not affect the model’s minimizer. It is included to ensure
a direct correspondence between mFi and Fi.

Observe that by construction,

∇mf
k(xk) = ∇ψ(xk) +

p∑
i=1

wki∇mFi(xk)

= ∇ψ(xk) +

p∑
i=1

∇mFi(xk)(Akλ∗)i

= ∇ψ(xk)(eTλ∗) +∇M(xk)Akλ∗ = Gkλ∗ = gk.

Note that wki ∈ [−Lh, Lh] for each i ∈ {1, . . . , t} due to the fact that λ∗ ∈ [0, 1]t and
∑
i λ
∗
i = 1. If Gk

contains exactly one generator (i.e., t = 1), then λ∗ = 1, and the master model is simply

mf
k(x) = ψ(x) +

p∑
i=1

(aj1)im
Fi(x) + bj1 = ψ(x) + 〈M(x), aj1〉+ bj1 .

3.2 Sufficient decrease condition

In the kth iteration, the master model will be used in the trust-region subproblem

minimize
{
mf
k(xk + s) : s ∈ B(0; ∆k)

}
. (6)

As with traditional trust region methods, this problem does not have to be solved exactly. Rather, the
solution sk of (6) needs only to satisfy the sufficient decrease condition

ψ(xk)− ψ(xk + sk) +
〈
M(xk)−M(xk + sk), a(k)

〉
≥ κd

2
‖gk‖min

{
∆k,
‖gk‖
κmH

}
, (7)

where a(k) is the gradient of some selection function h(k) ∈ H satisfying

h(k)(F (xk)) ≤ h(F (xk)) and h(k)(F (xk + sk)) ≥ h(F (xk + sk)). (8)

Note that the sufficient decrease condition (7) differs from the typical trust-region method; instead of mea-

suring the decrease in mf
k between xk and xk + sk, (7) measures the decrease using a selection function

h(k). The sufficient decrease condition (7) extends the approach from [22], where h = ‖·‖1 and decrease is
measured by using the sign pattern of F at xk+sk. Lemma 2 will show that an h(k) ∈ H satisfying (8) exists
when h is piecewise linear. Lemma 3 will show that an analogue of [22, Lemma 1] guarantees the existence
of a relatively easy-to-find Cauchy point that satisfies (7).

5

If several selection functions h(k) ∈ H satisfy (8), then any may be chosen. Where possible, our experience
to date suggests choosing a selection function that maximizes the descent in f from xk to xk + sk while
satisfying (8). Since the function ψ does not affect the selection functions, maximizing descent amounts to
choosing

h(k) ∈ arg max
hi∈H

{hi(F (xk))− hi(F (xk + sk)) : hi satisfies (8)}. (9)

3.3 ρk test

In common with other trust-region methods, manifold sampling uses a ρk test to measure whether the master
model mf

k sufficiently approximates the function f within the trust region. Manifold sampling measures this
agreement using a specific element h(k) of the set H that defines h instead of using h itself. The value of ρk can
therefore be considered the ratio of actual decrease to predicted decrease in f using a selection function h(k).
Before ρk can be calculated, manifold information from h(k) must be included in Gk. Therefore, Gk may be
augmented after a candidate step sk has been computed and F (xk+sk) has been evaluated. Although adding
manifold information to Gk may result in a given iteration having more than one trust-region subproblem
and therefore more than one evaluation of F per iteration, in practice the number of function evaluations
per iteration is rarely more than 1. This process of adding elements to Gk will not cycle indefinitely because
the number of manifolds defining h is finite.

Explicitly, given a selection function h(k) ∈ H (with gradient a(k)) satisfying (8), ρk is the ratio

ρk ,
ψ(xk)− ψ(xk + sk) + h(k)(F (xk))− h(k)(F (xk + sk))

ψ(xk)− ψ(xk + sk) + 〈M(xk)−M(xk + sk), a(k)〉
. (10)

The point xk + sk is chosen to be the next iterate only if ρk is sufficiently large.

3.4 Generator set Gk

We complete our discussion of the manifold sampling algorithm by showing how, in the kth iteration of
Algorithm 1, the set Gk of generators is built. We ultimately show that the generated co

(
Gk
)

approximates
∂Cf(xk) sufficiently well in order to ultimately guarantee convergence of our algorithm.

Several approaches for constructing Gk are possible; we impose the following requirement for Gk.

Assumption 3. At iteration k of Algorithm 1, the constructed set Gk satisfies{
∇ψ(xk) +∇M(xk) ai : i ∈ Ieh(F (xk))

}
⊆ Gk and

Gk ⊆
{
∇ψ(xk) +∇M(xk) ai : y ∈ B

(
xk; ∆k

)
, i ∈ Ieh(F (y))

}
.

In practice, the set
⋃
y∈B(xk;∆k) I

e
h(F (y)) in Assumption 3 may be difficult to evaluate, since, in the

derivative-free case, F is available only through sampling. Instead, the following two choices for Gk are
consistent with this assumption and may be constructed in practice:

•
{
∇ψ(xk) +∇M(xk) ai : i ∈ Ieh(F (xk))

}
and

•
{
∇ψ(xk) +∇M(xk) ai : i ∈ Ieh(F (y)), y ∈ Y

}
, for some finite set Y ⊂ B(xk; ∆k).

We suggest constructing the set Y using points where f has been evaluated in previous iterations. These
points could be any point evaluated before iteration k (including, for example, points evaluated while con-
structing component models mFi). In the numerical results in Section 5, we compare both of the above
approaches for building generator sets.

Observe that the second of these approaches uses manifold information from points near xk. This is
similar to the approach of gradient sampling [20] but has two key differences: we do not assume that h is
differentiable at any of the sampled points, and we are not approximating the gradient at any point other

6

Algorithm 1: Manifold sampling for piecewise linear compositions

1 Set η1 ∈ (0, 1), κd ∈ (0, 1), κmH ≥ 0, 1
η2
∈ (κmH,∞), γdec ∈ (0, 1), γinc ≥ 1, and ∆max > 0

2 Choose initial iterate x0 and trust-region radius ∆0 satisfying ∆max ≥ ∆0 > 0
3 for k = 0, 1, 2, . . . do

4 Build p component models mFi

k that are fully linear and satisfy
∑p
i=1

∥∥∥∇2mFi

k

∥∥∥ ≤ κmH on

B(xk; ∆k)
5 Form ∇M(xk) using ∇mFi

k (xk)

6 Construct Gk ⊂ Rn satisfying Assumption 3
7 ρk ← −∞
8 while ρk = −∞ do

9 Build master model mf
k using (5)

10 if ∆k < η2‖∇mf
k(xk)‖ (acceptability criterion) then

11 Approximately solve (6) to obtain sk

12 Evaluate F (xk + sk) and set h(k) satisfying (8)

13 if (∇ψ(xk) +∇M(xk) a(k)) ∈ Gk then
14 if sk does not satisfy (7) then
15 Approximately solve (6) to obtain a new sk satisfying (7)

16 Evaluate F (xk + sk) and set h(k) satisfying (8)

17 Calculate ρk using (10)

18 else

19 Gk ← Gk ∪ {∇ψ(xk) +∇M(xk) a(k)} and update mFi

k

20 else
21 break out of while loop; iteration is unacceptable

22 if ρk > η1 > 0 (successful iteration) then
23 xk+1 ← xk + sk, ∆k+1 ← min{γinc∆k,∆max}
24 else
25 xk+1 ← xk, ∆k+1 ← γdec∆k

than xk where we approximate the minimum-norm element of ∂Cf(xk). Intuitively, this additional manifold
information obtained from sampling can “warn” the algorithm about sudden changes in gradient behavior
that may occur within the current trust region.

We conclude this section by giving our algorithmic framework and restrictions on algorithmic parame-
ters in Algorithm 1, which employs various intermediate constructions described in this section. Note the
following aspects of the algorithm.

Line 8: Algorithm 1 will stay in this while loop fewer than |H| −
∣∣Ieh (F (xk)

)∣∣ times, where Ieh is defined in
Definition 5. The reason is that{

∇ψ(xk) +∇M(xk)ai : ai ∈ H
}
⊇ Gk ⊇

{
∇ψ(xk) +∇M(xk)ai : i ∈ Ieh

(
F (xk)

)}
and each time Line 13 is visited, the cardinality of Gk has increased by one. In the worst case, information
from all elements of H must be added to Gk before ρk is calculated.

Line 12: The existence of at least one such h(k) is guaranteed by Lemma 2. Furthermore, Lemma 2 even
guarantees that there exists a linear component that is essentially active somewhere in co

({
F (xk), F (xk + sk)

})
;

our analysis does not require that the selected h(k) is active in co
({
F (xk), F (xk + sk)

})
.

Line 15: That such an xk + sk can be computed is shown in Lemma 3.

7

Acceptable iterations: As defined in Line 10, acceptable iterations occur when ∆k < η2‖∇mf
k(xk)‖ =

η2‖gk‖, and so the norm of the master model gradient is sufficiently large to consider taking a step sk.
Note that on these iterations

‖gk‖ ≥ min
{
κmH∆k,

∥∥gk∥∥} ≥ κmH min
{

∆k, η2

∥∥gk∥∥} = κmH∆k. (11)

Successful iterations: As defined in Line 22, successful iterations are those acceptable iterations for which
ρk > η1 and xk+1 ← xk + sk. Note that on every successful iteration,

• (∇ψ(xk) +∇M(xk)a(k)) ∈ Gk and

• the decrease condition in (7) is satisfied.

Line 23: By construction, all points evaluated by the algorithm are in the set Lmax defined in Assumption 2.

4 Analysis of Manifold Sampling

To study Algorithm 1, we first show some preliminary results in Section 4.1 and then analyze the algorithm’s
sequence of iterates in Section 4.2.

4.1 Preliminaries

We now show a result linking elements in co
(
Gk
)

to the subdifferentials of f at nearby points. Subsequent
results will establish cases when our construction of the generator set Gk satisfies the suppositions made in
the statement of Lemma 1.

Lemma 1. Let Assumptions 1 and 2 hold, and let x, y ∈ Rn satisfy ‖x − y‖ ≤ ∆. Choose any subsets
I, J ⊆ {1, . . . , |H|} for which I ⊆ J , and define

G , {∇ψ(x) +∇M(x) ai : i ∈ I} and H , co {∇ψ(y) +∇F (y) aj : j ∈ J} .

Then for each g ∈ co (G), there exists v(g) ∈ H satisfying

‖g − v(g)‖ ≤ c2∆, (12)

where c2 is defined by
c2 , L∇ψ + Lh(L∇F + κg), (13)

for L∇ψ Lh, and L∇F defined in Assumption 2 and κg defined in Assumption 1.

Proof (adapted from [22]). Any g ∈ co (G) may be expressed as

g = ∇ψ(x) +
∑
i∈I

λi∇M(x) ai, (14)

where
∑
i∈I λi = 1 and λi ≥ 0 for each i.

By supposition, (∇ψ(y) +∇F (y) ai) ∈ H for all i ∈ I. For

v(g) , ∇ψ(y) +
∑
i∈I

λi∇F (y) ai,

using the same λi as in (14) for i ∈ I, convexity of H implies that v(g) ∈ H. Since y ∈ B(x; ∆), the triangle
inequality and Assumptions 1 and 2 give

‖∇M(x) ai −∇F (y) ai‖ ≤ ‖∇F (y)−∇F (x)‖ ‖ai‖+ ‖∇F (x)−∇M(x)‖ ‖ai‖
≤ (LhL∇F + κgLh)∆,

8

for each i. Using this along with (14) and the definition of v(g) yields

‖g − v(g)‖ ≤

∥∥∥∥∥∇ψ(x)−∇ψ(y) +
∑
i∈I

[λi∇M(x) ai − λi∇F (y) ai]

∥∥∥∥∥
≤ ‖∇ψ(x)−∇ψ(y)‖+

∑
i∈I

λi ‖∇M(x) ai −∇F (y) ai‖ ≤ c2∆.

The approximation property in Lemma 1 can be used to motivate the use of the master model gradient
in (3).

Before proceeding, we prove the following lemma, which shows that there always exists a selection function
h(k) satisfying (8).

Lemma 2. Consider a piecewise linear function φ : [`, u] ⊂ R→ R. There exists a linear function φ̄ : R→ R
satisfying all the following conditions:

• φ̄ is an essentially active selection function for φ at some x ∈ [`, u],

• φ̄(`) ≤ φ(`), and

• φ̄(u) ≥ φ(u).

In particular, if Assumption 2 holds, then for any xk, sk ∈ Rn, there exist y ∈ co
(
{F (xk), F (xk + sk)}

)
and

a selection function h(k) ∈ Ieh(y) ⊂ H satisfying (8).

Proof. The case when l = u is trivial. Therefore, let us assume that ` < u. For some p ∈ N, there exist
` , t0 < t1 < . . . < tp , u for which φ is linear on [tk−1, tk] for each k ∈ {1, . . . , p}. Choose ak, bk ∈ R for

which φ(x) = akx + bk , φk(x) for each x ∈ [tk−1, tk] and k ∈ {1, . . . , p}. The lemma will be proved by
induction on p.

As the base case of the inductive argument, if p , 1, then φ ≡ φ1 on [`, u], and φ̄ , φ1 satisfies each
condition trivially.

As the inductive step, suppose that the lemma’s claims have been established when p , q. Now consider

the case in which p , q + 1. By construction, φ1(`) = φ(`). If a1 ≥ φ(u)−φ(`)
u−` , then φ1(u) ≥ φ(u), and so φ1

is the required selection function φ̄. Next, suppose that a1 <
φ(u)−φ(`)

u−` . The inductive assumption applies to
φ on the subdomain [t1, u]; thus, there exists κ ∈ {2, . . . , q + 1} for which φκ(u) ≥ φ(u) and φκ(t1) ≤ φ(t1).
It suffices to show that φκ(`) ≤ φ(`); to obtain a contradiction, suppose that φκ(`) > φ(`), in which case

aκ =
φκ(t1)− φκ(`)

t1 − `
<
φ(t1)− φ(`)

t1 − `
= a1.

Consequently,

φ(u)− φ(`) ≤ (φκ(u)− φκ(t1)) + (φ1(t1)− φ1(`))

= aκ(u− t1) + a1(t1 − `) < a1(u− `) < φ(u)− φ(`),

which is a contradiction. Therefore, the claimed conditions are all satisfied when φ̄ , φκ.
Now, suppose that Assumption 2 holds, and choose any fixed xk, sk ∈ Rn. The obtained result may be

applied to the piecewise linear mapping:

φ : [0, 1]→ R : t 7→ (1− t)ψ(xk) + tψ(xk + sk) + h
(
(1− t)F (xk) + tF (xk + sk)

)
,

whose essentially active selection functions at any t̃ ∈ [0, 1] may all be chosen to take the form

φ̃ : [0, 1]→ R : t 7→ (1− t)ψ(xk) + tψ(xk + sk) + h̃
(
(1− t)F (xk) + tF (xk + sk)

)
,

for h̃ ∈ Ieh(ỹ), where ỹ := (1− t̃)F (xk) + t̃F (xk + sk). The final claimed result follows immediately.

9

We now use Lemma 2 to show that certain regularity assumptions guarantee that Line 15 in Algorithm 1
is satisfiable. We note that Line 15 is not reached if 0 ∈ Gk by virtue of the acceptability criterion.

Lemma 3. For any aq satisfying 0 6= (∇ψ(xk) +∇M(xk)aq) ∈ Gk upon reaching Line 15 of Algorithm 1,
if M and f satisfy Assumptions 1 and 2, κd ∈ (0, 1), κfH is as defined in Assumption 2, and

j∗ , max

{
0,

⌈
logκd

(∥∥∇ψ(xk) +∇M(xk)aq
∥∥

κfH∆k

)⌉}
, (15)

then

ŝj
∗
, −κj

∗

d ∆k
∇ψ(xk) +∇M(xk)aq
‖∇ψ(xk) +∇M(xk)aq‖

(16)

satisfies
∥∥ŝj∗∥∥ ≤ ∆k and (7) (in place of sk).

Proof. First note that

κfH ≥
∥∥∇2ψ(x)

∥∥+

p∑
i=1

‖ai‖
∥∥∇2mFi(x)

∥∥ ≥ ∥∥∇2ψ(x)
∥∥+

p∑
i=1

[aq]i
∥∥∇2mFi(x)

∥∥
≥

∥∥∥∥∥∇2ψ(x) +

p∑
i=1

[aq]i∇
2mFi(x)

∥∥∥∥∥ (17)

for any x ∈ Lmax and any aq.

Because κd ∈ (0, 1), κi+1
d ≤ κdied ≤ κid for any i ≥ 0, Equation (15) implies that

κd min

{
1,
‖∇ψ(xk) +∇M(xk)aq‖

κfH∆k

}
≤ κj

∗

d ≤
‖∇ψ(xk) +∇M(xk)aq‖

κfH∆k
. (18)

Note that
∥∥ŝj∗∥∥ ≤ ∆k follows from κd ∈ (0, 1). Since whenever xk is updated, the denominator of (10) is

positive and ρk > η1 > 0,

0 < ψ(xk)− ψ(xk + sk) + h(k)(F (xk))− h(k)(F (xk + sk))

0 < ψ(xk)− ψ(xk + sk) + h(F (xk))− h(F (xk + sk))

f(xk + sk) < f(xk).

Therefore, xk ∈ L for all iterations and xk + ŝj
∗ ∈ Lmax, where L and Lmax are defined in Assumption 2.

For s ∈ Rn and any fixed aq satisfying the hypotheses of the lemma, define

m̂(s) , ψ(xk + s) +
〈
M(xk + s), aq

〉
.

Since ψ and M are twice continuously differentiable (Assumption 2 and Assumption 1, respectively) on
Lmax, Taylor’s theorem provides an ξ ∈ (xk, xk + s) so that

m̂(0)− m̂(s) = −〈∇ψ(xk) +∇M(xk)aq, s〉 −
1

2
〈s,∇2ψ(ξ)s+

p∑
i=1

[aq]i∇2mFi(ξ)s〉

≥ −〈∇ψ(xk) +∇M(xk)aq, s〉 −
1

2
‖s‖2κfH,

because ξ ∈ Lmax and κfH satisfies (17). Setting s , ŝj
∗

in the last expression yields

− 〈∇ψ(xk) +∇M(xk)aq, ŝ
j∗〉 − 1

2
‖ŝj
∗
‖2κfH

=κj
∗

d ∆k

(
1−

κj
∗

d κfH∆k

2 ‖∇ψ(xk) +∇M(xk)aq‖

)∥∥∇ψ(xk) +∇M(xk)aq
∥∥

≥ 1

2
κj
∗

d ∆k

∥∥∇ψ(xk) +∇M(xk)aq
∥∥ ,

10

where the last term is obtained from the upper bound in (18). If j∗ = 0, then (7) immediately follows from
noting that ∇ψ(xk) +∇M(xk)aq ∈ Gk implies that ‖∇ψ(xk) +∇M(xk)aq‖ ≥ ‖gk‖.

If j∗ ≥ 1, then j∗ =

⌈
logκd

(
‖∇ψ(xk)+∇M(xk)aq‖

κfH∆k

)⌉
. For κd ∈ (0, 1) and any c ≥ 0, it follows that

κ
dce
d ≥ κc+1

d and thus κj
∗

d ≥ κd
‖∇ψ(xk)+∇M(xk)aq‖

κfH∆k
. Using this relation and again noting that ‖∇ψ(xk) +

∇M(xk)aq‖ ≥ ‖gk‖ therefore yields

1

2
κj
∗

d ∆k

∥∥∇ψ(xk) +∇M(xk)aq
∥∥ ≥ 1

2κfH
κd

∥∥∇ψ(xk) +∇M(xk)aq
∥∥2

≥ 1

2κfH
κd

∥∥gk∥∥2
,

which completes the proof.

4.2 Stationarity of cluster points

We now prove that cluster points of the sequence of iterates generated by Algorithm 1 are Clarke stationary;
the proof used the following sequence of results:

Lemma 4 shows that when the trust-region radius ∆k is a sufficiently small multiple of the norm of the
master model gradient,

∥∥gk∥∥, the iteration is guaranteed to be successful.

Lemma 5 shows that lim
k→∞

∆k = 0.

Lemma 6 shows that a subsequence of master model gradients gk must go to zero as well, as k →∞.

Lemma 7 shows that zero is in the generalized Clarke subdifferential ∂Cf(x∗) of any cluster point x∗ of any
subsequence of iterates where the master model gradients go to zero.

Theorem 4.1 shows that 0 ∈ ∂Cf(x∗) for any cluster point x∗ of the sequence of iterates generated by
Algorithm 1.

We demonstrate in the following lemma that building a master model gradient gk from a particular
combination of the component model gradients ensures a successful iteration if ∆k is sufficiently small. (The
particular combination is defined by manifolds that are active in the trust region.)

Lemma 4. Let Assumptions 1 and 2 hold. If an iteration is acceptable and

∆k <
κd(1− η1)

4κfLh
‖gk‖, (19)

then ρk > η1 in Algorithm 1, and the iteration is successful.

Proof. Since the iteration is acceptable, gk 6= 0, and the bound on ∆k is positive. By Lemma 2, there exists
some h(k) with gradient a(k) satisfying (8). Therefore,

1− ρk ≤ |ρk − 1| =
∣∣∣∣ψ(xk)− ψ(xk + sk) + h(k)(F (xk))− h(k)(F (xk + sk))

ψ(xk)− ψ(xk + sk) + 〈M(xk)−M(xk + sk), a(k)〉
− 1

∣∣∣∣ (20)

Since M is a fully linear model of F on B(xk; ∆k) by Assumption 1, F and h satisfy Assumption 2, and∥∥sk∥∥ ≤ ∆k, combining the two terms on the right-hand side of (20) produces a numerator that satisfies∣∣∣h(k)(F (xk)) − h(k)(F (xk + sk)) −
〈
M(xk) −M(xk + sk), a(k)

〉∣∣∣
=
∣∣∣〈F (xk), a(k)

〉
−
〈
F (xk + sk), a(k)

〉
−
〈
M(xk) −M(xk + sk), a(k)

〉∣∣∣
≤
∥∥∥F (xk) −M(xk)

∥∥∥∥∥∥a(k)∥∥∥+
∥∥∥F (xk + sk) −M(xk + sk)

∥∥∥∥∥∥a(k)∥∥∥
≤ 2κfLh∆2

k. (21)

11

Applying (21) to the numerator of (20) and (7) to the denominator of (20), we have

1− ρk ≤
2κfLh∆2

k

ψ(xk)− ψ(xk + sk) + 〈M(xk)−M(xk + sk), a(k)〉

≤ 4κfLh∆2
k

κd ‖gk‖min
{

∆k,
‖gk‖
κmH

}
≤ 4κfLh∆2

k

κd ‖gk‖∆k
, (22)

where the last inequality comes from (11). Applying (19) to (22) leaves

1− ρk ≤
4κfLh∆k

κd ‖gk‖
< 1− η1.

Thus, ρk > η1 if ∆k satisfies (19), and the iteration is successful.

The next lemma shows that the sequence of manifold sampling trust-region radii converges to zero.

Lemma 5. Let Assumptions 1 and 2 hold. If {xk,∆k}k∈N is generated by Algorithm 1, then the sequence
{f(xk)}k∈N is nonincreasing, and lim

k→∞
∆k = 0.

Proof. If iteration k is unsuccessful, then ∆k+1 < ∆k, and xk+1 = xk; therefore, f(xk+1) = f(xk). On
successful iterations k, ρk > η1 and ‖gk‖ > 0, and sk satisfies (7) by construction. Using the definitions of
h(k) and ρk and equations (7) and (11), we have

f(xk)− f(xk+1) = ψ(xk)− ψ(xk + sk) + h(F (xk))− h(F (xk + sk))

≥ ψ(xk)− ψ(xk + sk) + h(k)(F (xk))− h(k)(F (xk + sk))

= ρk(ψ(xk)− ψ(xk + sk) + 〈M(xk)−M(xk + sk), a(k)〉)

≥ η1
κd

2
‖gk‖min

{
∆k,
‖gk‖
κmH

}
≥ η1

κd

2
‖gk‖∆k > 0. (23)

Thus, the sequence {f(xk)}k∈N is nonincreasing.
To show that ∆k → 0, we consider the cases in which there are infinitely or finitely many successful

iterations separately. First, suppose that there are infinitely many successful iterations, indexed by {kj}j∈N.

Since f(xk) is nonincreasing in k and f is bounded below (by Assumption 2), the sequence {f(xk)}k∈N
converges to some limit f∗ ≤ f(x0). Thus, from (23), having infinitely many successful iterations (indexed
{kj}j∈N) implies that

∞ > f(x0)− f∗ ≥
∞∑
j=0

f(xkj)− f(xkj+1) >

∞∑
j=0

η1∆kj

∥∥gkj∥∥ > ∞∑
j=0

η1

η2
∆2
kj , (24)

where the last inequality comes from the acceptability of all successful iterations. It follows that ∆kj → 0
for the sequence of successful iterations. Observe that ∆kj+1 ≤ γinc∆kj and that ∆k+1 = γdec∆k < ∆k if

iteration k is unsuccessful. Thus, for any unsuccessful iteration k > kj , ∆k ≤ γinc∆q, where q , max{kj :
j ∈ N, kj < k}. It follows immediately that

0 ≤ lim
k→∞

∆k ≤ γinc lim
j→∞

∆kj = 0,

and so ∆k → 0 as required.
Next, suppose there are only finitely many successful iterations; let ν ∈ N be the number of successful

iterations. Since γdec < 1 ≤ γinc, it follows that 0 ≤ ∆k ≤ γνincγ
k−ν
dec ∆0 for each k ∈ N. Thus, ∆k → 0 as

required.

12

We now show that the norms of the master model gradients are not bounded away from zero.

Lemma 6. Let Assumptions 1 and 2 hold. If the sequence {xk,∆k}k∈N is generated by Algorithm 1, then
lim inf
k→∞

‖gk‖ = 0.

Proof. To obtain a contradiction, suppose there is an iteration j and some ε > 0 for which ‖gk‖ ≥ ε, for all
k ≥ j. Algorithm 1 guarantees that ∆j ≥ γjdec∆0 > 0. Moreover, any iteration where ∆k ≤ C

∥∥gk∥∥ for

C , min

{
η2,

κd(1− η1)

4κfLh

}
will be successful because the conditions of Lemma 4 are then satisfied. Therefore, by the contradiction
hypothesis, any k ≥ j satisfying ∆k ≤ Cε is guaranteed to be successful, in which case ∆k+1 = γinc∆k ≥ ∆k.
On the other hand, if ∆k ≥ Cε, then ∆k+1 ≥ γdec∆k. A straightforward inductive argument then yields
∆k ≥ min(γdecCε,∆j) > 0 for all k ≥ j, contradicting Lemma 5. Thus, no such (j, ε) pair exists, and so
lim inf
k→∞

‖gk‖ = 0.

The next lemma shows that subsequences of iterates with master model gradients converging to 0 have
cluster points that are Clarke stationary (Definition 3). Algorithm 1 generates at least one such subsequence
of iterates by Lemma 6.

Lemma 7. Let Assumptions 1–3 hold, and let {xk,∆k, g
k}k∈N be a sequence generated by Algorithm 1. For

any subsequence {kj}j∈N of acceptable iterations such that both

lim
j→∞

‖gkj‖ = 0,

and {xkj}j∈N → x∗ for some cluster point x∗, then 0 ∈ ∂Cf(x∗).

Proof. Let Ik contain the indices of selection functions of h represented in Gk, and let Jk , Ieh(F (x∗)). Since
∆k → 0 by Lemma 5, {xkj}j∈N converges to x∗ by assumption, and piecewise linear functions are piecewise
differentiable in the sense of Scholtes [31], Assumption 3 implies that, for k sufficiently large, only selection
functions that are essentially active at x∗ are represented in Gk. Consequently, Ikj ⊆ Jkj . By Lemma 1
with I ← Ikj , J ← Jkj , x← xkj , y ← x∗, and ∆← ∆kj , there exists v(gkj) ∈ ∂Cf(x∗) for each gkj so that

‖gkj − v(gkj)‖ ≤ c2∆kj ,

with c2 defined by (13). Thus, by the acceptability of every iteration indexed by kj ,

‖gkj − v(gkj)‖ ≤ c2η2‖gkj‖,

and so
‖v(gkj)‖ ≤ (1 + c2η2)‖gkj‖.

Since ‖gkj‖ → 0 by assumption, therefore
∥∥v(gkj)

∥∥ → 0. Proposition 7.1.4 in [15] then yields the claimed
result, by establishing that ∂Cf is outer-semicontinuous and therefore 0 ∈ ∂Cf(x∗).

Theorem 4.1. Let Assumptions 1–3 hold. If x∗ is a cluster point of a sequence {xk} generated by Algo-
rithm 1, then 0 ∈ ∂Cf(x∗).

Proof. First, suppose that there are only finitely many successful iterations and k′ is the last.
Suppose for contradiction that 0 /∈ ∂Cf(xk

′
). By continuity of Fi (Assumption 2), there exists ∆̄ > 0 so

that for all ∆ ∈ [0, ∆̄], the manifolds active in B(xk
′
; ∆̄) are precisely the manifold active at xk

′
; that is,

Ieh(xk
′
) =

⋃
y∈B(xk′ ;∆)

Ieh(y) for all ∆ ≤ ∆̄.

13

By assumption, ∆k decreases by a factor of γdec in each iteration after k′ since every iteration after k′

is unsuccessful. There is therefore a least iteration k′′ ≥ k′ so that ∆k′′ ≤ ∆̄. By Assumption 3, for each
k ≥ k′′, Gk contains all manifolds at xk

′
, and therefore (∇ψ(xk) +∇M(xk)a(k)) ∈ Gk. Since k′ is the last

successful iteration, xk = xk
′

for all k ≥ k′′ ≥ k′. Consequently, the conditions for Lemma 1 hold for x← xk,
y ← xk

′
, (noting that xk = xk

′
) ∆← 0, G← Gk, and H ← ∂Cf(xk

′
); thus, for each k ≥ k′′, gk ∈ ∂Cf(xk

′
).

Since 0 /∈ ∂Cf(xk
′
) by supposition, v∗ , proj(0, ∂Cf(xk

′
)) is nonzero, and so

‖gk‖ ≥ ‖v∗‖ > 0 for all k ≥ k′′. (25)

Since ∆k → 0, ∆k will satisfy the conditions of Lemma 4 for k sufficiently large: there will be a successful
iteration contradicting k′ being the last.

Next, suppose there are infinitely many successful iterations. We will demonstrate that there exists a
subsequence of successful iterations {kj} that simultaneously satisfies both

xkj → x∗ and ‖gkj‖ → 0. (26)

If the sequence {xk}k∈N converges, then the subsequence
{
xkj
}
j∈N from Lemma 6 satisfies (26). Otherwise, if

the sequence {xk}k is not convergent, we will show that
lim infk→∞(max{‖xk − x∗‖, ‖gk‖}) = 0 for each cluster point x∗. Suppose for contradiction that there exist
ν̄ > 0, an iteration k̄, and a cluster point x∗ of the sequence {xk} with the following property. Considering
the infinite set

K , {k : k ≥ k̄, ‖xk − x∗‖ ≤ ν̄},

suppose that the subsequence
{
xk
}
k∈K converges to x∗ and that ‖gk‖ > ν̄ for all k ∈ K. From (24), we have

that

η1

∑
k∈K

‖gk‖‖xk+1 − xk‖ ≤ η1

∞∑
k=0

‖gk‖‖xk+1 − xk‖ <∞, (27)

since on successful iterations, ‖xk+1 − xk‖ ≤ ∆k, while on unsuccessful iterations, ‖xk+1 − xk‖ = 0. Since
‖gk‖ > ν̄ for all k ∈ K, we conclude from (27) that∑

k∈K

‖xk+1 − xk‖ <∞. (28)

Since xk 6→ x∗, there exists some ν̂ ∈ (0, ν̄) for which, for each k′ ∈ K, there exists

q(k′) , min{κ ∈ N : κ > k′, ‖xκ − xk
′
‖ > ν̂}.

From this construction, since ν̂ < ν̄, then {k′, k′ + 1, . . . , q(k′)− 1} ⊂ K.
By (28), for ν̂ there exists N ∈ N such that∑

k∈K
k≥N

∥∥xk+1 − xk
∥∥ ≤ ν̂.

Taking k′ ≥ N , by the triangle inequality, we have

ν̂ < ‖xq(k
′) − xk

′
‖ ≤

∑
i∈{k′,k′+1,...,q(k′)−1}

‖xi+1 − xi‖ ≤
∑
k∈K
k≥N

∥∥xk+1 − xk
∥∥ ≤ ν̂.

Therefore, ν̂ < ν̂, a contradiction. Therefore lim infk→∞(max{‖xk − x∗‖, ‖gk‖}) = 0 for all cluster points
x∗, and there is a subsequence satisfying (26). By Lemma 7, 0 ∈ ∂Cf(x∗) for all such subsequences.

14

5 Implementation and Experimentation

We implemented manifold sampling for piecewise linear functions (MS4PL) in MATLAB. The parameters
used in the MS4PL implementation of Algorithm 1 were η1 = 0.05, κd = 10−4, η2 = 104, γdec = 0.5, γinc = 2,
∆max = 108, and ∆0 = 0.1. Fully linear quadratic models of the component functions Fi were formed at
Line 4 of Algorithm 1 using the routine from POUNDerS [33], whereby an explicit value of κmH is not used
in model building. In the implementation tested here, κmH is also not used when checking for descent; this
can be viewed as effectively setting κmH to zero in (7). We consider two options for constructing the initial
generator set at Line 6: what we denote as MS4PL-1 uses

Gk ,
{
∇ψ(xk) +∇M(xk) ai : i ∈ Ieh(F (xk))

}
,

and what we denote as MS4PL-2 uses

Gk ,
{
∇ψ(xk) +∇M(xk) ai : i ∈ Ieh(F (y)), y ∈ Y

}
,

where Y is all points in B(xk; ∆k) that have already been evaluated during the given run. (Such points are
past iterates of the algorithm as well as points evaluated in order to construct models of the components
of F .) MS4PL then determines the minimum-norm element of Gk by solving (4) using a specialized active
set method from [12]. These weights define the master model of f via (5). We then solve our trust-region
subproblems on B(xk; ∆k) using GQT [27].

The determination of h(k) in MS4PL requires some care; for many problems, |H| is so large that evaluating
hi(F (xk)) and hi(F (xk + sk)) for all hi ∈ H is unnecessarily expensive. Often, evaluating h at F (x) may
return only the value of h(F (x)) and Ieh (F (x)) (for Ieh defined in Definition 5). Therefore, MS4PL uses the
following procedure to identify h(k). The implementation first checks whether any selection function hi for
i in Ieh

(
F (xk)

)
∪ Ieh

(
F (xk + sk)

)
satisfies (8), picking the function that predicts the largest decrease in f

between xk and xk + sk. That is,

h(k) ← arg max
i∈Ieh(F (xk))∪Ieh(F (xk+sk))

{hi(F (xk))− hi(F (xk + sk)) : hi satisfies (8)},

breaking ties arbitrarily if necessary. If no selection function active at F (xk) or F (xk + sk) satisfies (8), then
determining h(k) requires considering selection functions that are active at neither F (xk) nor F (xk + sk). In
this case, we evaluate points on an increasingly refined grid between F (xk) and F (xk + sk). If evaluating
h at 1,024 evenly spaced points between F (xk) and F (xk + sk) does not identify any hi satisfying (8), only
then will MS4PL resort to completely enumerating all elements of H.

Since ∆k+1 ≥ γdec∆k for each k, the convergence rate of any implementation is fundamentally limited in
some sense by the chosen values for γdec and γinc. A complete study of this effect has not been performed.

We compared the performance of MS4PL with SLQP-GS, an implementation of gradient sampling, and
GRANSO, a quasi-Newton method that uses a steering strategy to update the penalty parameter. Both solve
sequential quadratic programs, and both are designed to optimize nonconvex, nonsmooth functions [9, 10,
11, 26]. Both SLQP-GS and GRANSO are given access to f and elements of ∂Bf ; MS4PL-1 and MS4PL-2 do
not receive this information (but have access to F and information about the nonsmooth structure in h) in
our computational experiments. Even though SLQP-GS and GRANSO are given this (significant) additional
information, we measure progress of all methods in terms of the number of function evaluations. That is,
although we record the number of times SLQP-GS and GRANSO request an element of the subdifferential
of f at a point, both are getting gradient information for free when measuring performance. As a point of
reference, we also modified MS4PL-1 to use linear models built using ∇F (i.e., similar gradient information
available to SLQP-GS and GRANSO). This implementation is denoted MS4PL-1-grad.

For our final comparison, we use a modified version of POUNDerS [33], which we denote PLC. This
implementation is a model-based trust-region method that builds models of each component Fi around each
iterate xk and then combines this information into a smooth master model of f by using a single element of
∂Bf(xk). This PLC implementation was run with η1 = 0.05, γdec = 0.5, γinc = 2, ∆max = 108, and ∆0 = 0.1.
The trust-region subproblems in PLC were solved by using MINQ [29] on an ∞-norm trust region.

15

5.1 Test Problems

We benchmark all methods on a set of censored `1-loss functions. Given data d ∈ Rp, censors c ∈ Rp, and
the mapping F : Rn → Rp, we define

f(x) =

p∑
i=1

|di −max {Fi(x), ci}| .

In other words, ψ is the zero function, and h(z) =
∑p
i=1 |di −max {zi, ci}| . This nonconvex, piecewise-linear

loss function is discussed in [34]; the loss function penalizes deviation of Fi(x) from target data di, but only
if Fi(x) is larger than the censor value ci.

For these problems, the gradients of the selection functions that are active at z ∈ Rp can be obtained by

gi =


sign (zi − di) if zi > ci

{0, sign (zi − di)} if zi = ci

0 if zi < ci,

i = 1, . . . , p,

where

sign (z) =


1 if z > 0

{−1, 1} if z = 0

−1 if z < 0.

To generate different problem instances, we define F by the 53 vector mappings in [28, Section 4], which
satisfy 2 ≤ n ≤ 12 and 2 ≤ p ≤ 45. Code for evaluating these functions (47 of which are nonlinear) can
be found at [1]. We then define the data d and censors c in a manner that attempts to introduce points of
nondifferentiability to the problem. For components 2 ≤ i ≤ p, we draw ci uniformly from [li, ui] where

li = min
{
Fi(x

0), Fi(x
∗)
}

and ui = max
{
Fi(x

0), Fi(x
∗)
}
,

where x0 is a starting point from [28] and x∗ is a known approximate minimizer of
∑p
i=1 Fi(x)2. If we make

the (crude) assumption that Fi(x) is also drawn uniformly from [li, ui], then max{ci, zi} follows the modified
beta distribution (ui− li) ∗ β(2, 1) + li; for the p− 1 components components in question, we therefore draw
di from this distribution. For each of the 53 problems, we draw 10 random instances of ci and di from
their distributions resulting in 530 benchmark problems. We cannot censor all components Fi in this fashion
because if Fi(x

0) ≤ Fi(x∗) for all i, every component of Fi(x
0) will be censored, thereby causing the starting

point x0 to be Clarke stationary. We therefore set c1 = −∞ and d1 = 0. The 10 sets of c and d for each
problem are available at [23].

These problems have the useful property that elements of ∂Bf are fairly easy to calculate. Therefore, we
provide this information to SLQP-GS and GRANSO. We also use gradient information when benchmarking,
namely the results in Figures 3 and 4 below.

Figure 1 shows contour plots for the tenth benchmark instance of three of the two-dimensional benchmark
problems. We record the manifolds observed when evaluating the 200× 200 points in the contour plots and
then uniquely number each manifold. This allows us to visualize (a subset of) the manifolds present.

5.2 Comparison of algorithms

We ran MS4PL-1, MS4PL-2, MS4PL-1-grad, PLC, SLQP-GS, and GRANSO on the 530 benchmark problem
instances outlined above. All implementations were given 500(np + 1) function evaluations where np is the
dimension of problem p. We use data profiles to compare their ability to solve the benchmark problems. Data
profiles show the fraction of problems solved to some level τ after a given number of function evaluations. In
an attempt to normalize for problems with higher dimension np (as such problems are assumed to be more
difficult), the number of function evaluations are grouped into np + 1 batches.

16

Figure 1: Contour manifold plots for the tenth instance of three of the two-dimensional test problems. A
blue circle denotes the problem starting point; and M, G, and P denote the approximate solutions returned
by MS4PL-1, GRANSO, and PLC, respectively. From left to right, the number of manifolds shown are 6, 6,
and 3, respectively.

Formally, if tp,s is the number of function evaluations required for implementation s to solve problem p
in some set of problems P , then the data profile is

ds(α) =

∣∣∣{p :
tp,s
np+1 ≤ α

}∣∣∣
|P |

.

All that remains is to define when we consider an implementation to have solved a problem p to a level
τ . We first examine convergence by observing how the sequence of objective function values approach the
best-found function value by any of the implementations. We consider an implementation s to have solved
problem p to a level τ after j evaluations if

f(x0)− f(xj) ≥ (1− τ)(f(x0)− f̃p), (29)

where x0 is the problem’s starting point, xj is the jth point evaluated by a given implementation, and f̃p is
the best-found function value by any implementation on problem p. For example, if τ = 0.1, the convergence
test in (29) considers an implementation to have solved problem p when a point is evaluated with 90% of the
possible decrease on the problem (for the implementations being compared). Figure 2 shows data profiles
for all implementations for two values of τ .

The data profile values at 500(np + 1) show that all of the implementations aside from PLC find 99%
of the best-found decrease on at least half of the benchmark problems. Given that SLQP-GS and GRANSO
are given exact gradient information whenever they request it, the success of MS4PL-1 and MS4PL-2 is
especially stark. (SLQP-GS requests gradient information on approximately 80% of its function evaluations;
GRANSO requests gradient information on every function evaluation.) Examination of the iterates produced
by SLQP-GS appears to suggest that a re-starting mechanism causes iterations to jump to different parts of
the domain. The other implementations do not display this behavior.

Only slight differences are observed between initializing Gk with information at xk or information at all
previously evaluated points in B(xk; ∆k) (MS4PL-1 and MS4PL-2, respectively). The additional gradient

17

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

MS4PL-1

MS4PL-2

PLC

SLQP-GS

GRANSO

MS4PL-1-grad

(a) τ = 10−2

0 100 200 300 400 500

0

0.2

0.4

0.6

0.8

1

(b) τ = 10−5

Figure 2: Data profiles for 6 solvers for convergence test (29) measuring success in terms of function values.

information available to MS4PL-1-grad only slightly improves the performance of manifold sampling in terms
of the metric (29). The smooth method PLC that is considering only a single manifold when constructing
its smooth master model performs noticeably worse than the other implementations.

Considering only function values when comparing the performance of implementations of local optimiza-
tion algorithms on nonconvex benchmark problems may be deceiving. An implementation may be converging
to a stationary point with a higher function value than other stationary points. The behavior seen in Figure 2
could indicate that the MS4PL variants are finding stationary points with better function values than the
other implementations. Therefore, in Figure 3 we show data profiles based on measuring the approximate
stationarity of points evaluated by each implementation.

For convex h, Yuan [36] presents a useful measure of stationarity at any point. Unfortunately, this metric
is inappropriate for nonconvex h because a large decrease in objective value may exist arbitrarily close to a
stationary point to which some implementation has converged. We therefore resort to sampling gradients in
a ball around each point evaluated by each implementation and then computing a minimum-norm element
in the convex hull of these points. Specifically, we evaluate the generalized subdifferential of h at 30 points
drawn uniformly in a ball of radius 10−8 around each point evaluated by each implementation. We set g̃(xj)
to be the minimum-norm element of the union of these 30 generalized subdifferentials around each point xj

evaluated by each algorithm. That is,

g̃(xj) = proj

(
0,

30⋃
l=1

{
∇F (xl)∇hi(F (xl)) : xl ∈ B(xj ; 10−8), i ∈ Ieh(F (xl))

})
.

(For all observed cases,
∥∥Ieh(F (xl))

∥∥ = 1.) We consider an implementation to have solved a problem to a
level τ after j function evaluations if ∥∥g̃(xj)

∥∥ ≤ τ ∥∥g̃(x0)
∥∥ . (30)

Note that knowledge of ∂Bf is used to benchmark all implementations; only SLQP-GS and GRANSO use
elements of ∂Bf when running.

Data profiles using the stationarity measure convergence test (30) are shown in Figure 3. For a tight
tolerance, τ = 10−7, the implementations (excepting PLC) find stationary points for between 70% and 80%
of the benchmark problems. We note that increasing τ to 10−3 results in each implementation solving only
approximately 5% more problems as measured by (30). This fact suggests that the benchmark problems

18

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

MS4PL-1

MS4PL-2

PLC

SLQP-GS

GRANSO

MS4PL-1-grad

(a) τ = 10−3

0 100 200 300 400 500

0

0.2

0.4

0.6

0.8

1

(b) τ = 10−7

Figure 3: Data profiles for 6 solvers for convergence test (30) measuring success in terms of approximate
subdifferentials.

are either being solved or not. In general, the performance of all implementations is relatively robust with
respect to the level τ , which is an endorsement for the relative quality of benchmark problem set with respect
to the convergence test (30).

Even though PLC is building smooth models mFi and combining them with an arbitrary element of ∂Bf ,
it is unable to find stationary points at the largest tolerance τ on even half of the problems. Note that the
difference between PLC and the other implementations is much larger than the differences between any of
the manifold sampling or gradient sampling implementations. When gradient information is available (i.e.,
MS4PL-1-grad), manifold sampling’s ability to find stationary points is further improved, and comparable
with GRANSO.

Overall, Figures 2 and 3 show that the manifold sampling implementations that have access only to values
of F but utilize information about the manifolds of h are competitive with gradient-based methods that are
given access to true elements of ∂Bf . For the problems considered, we find that when the derivative of F is
unavailable, exploiting knowledge of h is nearly as valuable as having access to subgradients of f .

Data profiles built using function values (Figure 2) reveal complementary information to data profiles
built using approximate gradient values (Figure 3) for some problems. For example, Figure 4 shows how
function values and normalized gradient-norm values progress as MS4PL-1, MS4PL-2, and PLC are run
on a single benchmark problem. The best function value found by MS4PL-1 is 0.4; but after 500(n + 1)
function evaluations,

∥∥g̃(xj)
∥∥ has not approached zero. For this problem, MS4PL-2 has identified a point x70

satisfying
∥∥g̃(x70)

∥∥ = 2.6 × 10−8 and f(x70) = 1.2. (The common starting point for this problem satisfies

f(x0) = 1.3× 103 and
∥∥g̃(x0)

∥∥ = 241.2.)

6 Discussion

We are interested in generalizing the convergence results for manifold sampling to the case where h is a
selection of a finite set of continuous, but not necessarily piecewise linear, functions. Extending the above
analysis hinges critically on showing that some selection function (or combination of selection functions) can
suitably approximate the behavior of h within the trust region. If h is a selection of functions H that are
continuous but not necessarily affine, simple cases exist where no h(k) ∈ H satisfies (8). We therefore lack a
selection function to use within the definition of ρk in (10).

19

0 50 100 150

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

MS4PL-1

MS4PL-2

PLC

Figure 4: Progress of f(xj) and normalized
∥∥g̃(xj)

∥∥ values for three implementations on the first instance

of problem 8. Dots appear at the minimum of
∥∥g̃(xj)

∥∥ for each method.

We have considered analyzing methods that require knowledge of which functions in H are essentially
active between xk and xk + sk; this requirement seems unreasonable since F is assumed to have a relatively
unknown structure. Whereas the current approach requires information only about the selection functions at
F (xk) and F (xk + sk) (or possibly information on the line

[
F (xk), F (xk + sk)

]
), learning information about

F on the line
[
xk, xk + sk

]
could require significantly more evaluations of F and therefore add significant

computational expense when F is expensive to evaluate. Therefore, our current research effort has focused on
determining a theoretically suitable and computationally practical h(k) and ρk that do not require significant
information about the behavior of F between xk and xk + sk.

Establishing convergence rates for manifold sampling currently remains elusive because of the noncon-
vexity in h. The results in [17] critically rely on the convexity of h. Also, deterministic rates would seem
to require knowledge of all manifolds that are active in each trust region radius. Probabilistic rates may be
possible.

Acknowledgments

This material was based upon work supported by the U.S. Department of Energy, Office of Science, Office
of Advanced Scientific Computing Research under Contract No. DE-AC02-06CH11357. We are grateful to
the anonymous referees for their thoughtful suggestions.

References

[1] Derivative-free optimization test functions. http://www.mcs.anl.gov/~more/dfo/matlab/dfovec.m.
Accessed: 2018-06-25.

20

 http://www.mcs.anl.gov/~more/dfo/matlab/dfovec.m

[2] A. Aravkin, J. V. Burke, A. Chiuso, and G. Pillonetto, Convex vs non-convex estimators for
regression and sparse estimation: The mean squared error properties of ARD and GLasso, Journal of
Machine Learning Research, 15 (2014), pp. 217–252, http://jmlr.org/papers/v15/aravkin14a.html.

[3] A. M. Bagirov, B. Karasözen, and M. Sezer, Discrete gradient method: Derivative-free method
for nonsmooth optimization, Journal of Optimization Theory and Applications, 137 (2008), pp. 317–334,
https://doi.org/10.1007/s10957-007-9335-5.

[4] Y. Bengio and Y. LeCun, Scaling learning algorithms towards AI, in Large-Scale Kernel Machines,
L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, eds., MIT Press, 2007, ch. 14, pp. 321–360.

[5] S. Bhojanapalli, A. Kyrillidis, and S. Sanghavi, Dropping convexity for faster semi-definite
optimization, in 29th Annual Conference on Learning Theory, V. Feldman, A. Rakhlin, and O. Shamir,
eds., vol. 49 of Proceedings of Machine Learning Research, Columbia University, New York, NY, 2016,
pp. 530–582, http://proceedings.mlr.press/v49/bhojanapalli16.html.

[6] F. H. Clarke, Optimization and Nonsmooth Analysis, John Wiley & Sons, 1983.

[7] R. Collobert, F. Sinz, J. Weston, and L. Bottou, Trading convexity for scalability, in Pro-
ceedings of the 23rd international conference on Machine Learning, ACM Press, 2006, pp. 201–208,
https://doi.org/10.1145/1143844.1143870.

[8] A. R. Conn, K. Scheinberg, and L. N. Vicente, Introduction to Derivative-Free Optimization,
MPS/SIAM Series on Optimization, SIAM, Philadelphia, PA, 2009.

[9] F. E. Curtis, SLQP-GS, 2017. http://coral.ise.lehigh.edu/frankecurtis/software.

[10] F. E. Curtis, T. Mitchell, and M. L. Overton, A BFGS-SQP method for nonsmooth, nonconvex,
constrained optimization and its evaluation using relative minimization profiles, Optimization Methods
and Software, 32 (2017), pp. 148–181, https://doi.org/10.1080/10556788.2016.1208749.

[11] F. E. Curtis and M. L. Overton, A sequential quadratic programming algorithm for nonconvex,
nonsmooth constrained optimization, SIAM Journal on Optimization, 22 (2012), pp. 474–500, https:
//doi.org/10.1137/090780201.

[12] F. E. Curtis and X. Que, A quasi-Newton algorithm for nonconvex, nonsmooth optimization with
global convergence guarantees, Mathematical Programming Computation, 7 (2015), pp. 399–428, https:
//doi.org/10.1007/s12532-015-0086-2.

[13] D. Drusvyatskiy, A. D. Ioffe, and A. S. Lewis, Nonsmooth optimization using Taylor-like models:
error bounds, convergence, and termination criteria, Tech. Report 1610.03446, ArXiv, Oct. 2016, https:
//arxiv.org/abs/1610.03446.

[14] D. Drusvyatskiy and A. S. Lewis, Error bounds, quadratic growth, and linear convergence of prox-
imal methods, Mathematics of Operations Research, (2018), https://doi.org/10.1287/moor.2017.
0889.

[15] F. Facchinei and J.-S. Pang, Finite-Dimensional Variational Inequalities and Complementarity
Problems, vol. II, Springer-Verlag, New York, 2003.

[16] R. Fletcher, A model algorithm for composite nondifferentiable optimization problems, in Non-
differential and Variational Techniques in Optimization, D. C. Sorensen and R. J.-B. Wets, eds.,
vol. 17 of Mathematical Programming Studies, Springer Berlin Heidelberg, 1982, pp. 67–76, https:

//doi.org/10.1007/BFb0120959.

[17] R. Garmanjani, D. Júdice, and L. N. Vicente, Trust-region methods without using derivatives:
Worst case complexity and the nonsmooth case, SIAM Journal on Optimization, 26 (2016), pp. 1987–
2011, https://doi.org/10.1137/151005683.

21

http://jmlr.org/papers/v15/aravkin14a.html
https://doi.org/10.1007/s10957-007-9335-5
http://proceedings.mlr.press/v49/bhojanapalli16.html
https://doi.org/10.1145/1143844.1143870
http://coral.ise.lehigh.edu/frankecurtis/software
https://doi.org/10.1080/10556788.2016.1208749
https://doi.org/10.1137/090780201
https://doi.org/10.1137/090780201
https://doi.org/10.1007/s12532-015-0086-2
https://doi.org/10.1007/s12532-015-0086-2
https://arxiv.org/abs/1610.03446
https://arxiv.org/abs/1610.03446
https://doi.org/10.1287/moor.2017.0889
https://doi.org/10.1287/moor.2017.0889
https://doi.org/10.1007/BFb0120959
https://doi.org/10.1007/BFb0120959
https://doi.org/10.1137/151005683

[18] W. Hare, Compositions of convex functions and fully linear models, Optimization Letters, (2017),
https://doi.org/10.1007/s11590-017-1117-x.

[19] W. Hare and J. Nutini, A derivative-free approximate gradient sampling algorithm for finite minimax
problems, Computational Optimization and Applications, 56 (2013), pp. 1–38, https://doi.org/10.
1007/s10589-013-9547-6.

[20] K. C. Kiwiel, Convergence of the gradient sampling algorithm for nonsmooth nonconvex optimization,
SIAM Journal on Optimization, 18 (2007), pp. 379–388, https://doi.org/10.1137/050639673.

[21] K. C. Kiwiel, A nonderivative version of the gradient sampling algorithm for nonsmooth nonconvex
optimization, SIAM Journal on Optimization, 20 (2010), pp. 1983–1994, https://doi.org/10.1137/
090748408.

[22] J. Larson, M. Menickelly, and S. M. Wild, Manifold sampling for L1 nonconvex optimization,
SIAM Journal on Optimization, 26 (2016), pp. 2540–2563, https://doi.org/10.1137/15M1042097.

[23] J. Larson and S. M. Wild, Censored L1 problem specifications, 2018. http://www.mcs.anl.gov/

~jlarson/MS4PL.

[24] Y. LeCun, Who is afraid of non-convex loss functions?, 2007, https://www.cs.nyu.edu/~yann/

talks/lecun-20071207-nonconvex.pdf. Presented at NIPS Workshop on Efficient Machine Learn-
ing.

[25] P.-L. Loh, Statistical consistency and asymptotic normality for high-dimensional robust M -estimators,
The Annals of Statistics, 45 (2017), pp. 866–896, https://doi.org/10.1214/16-aos1471.

[26] T. Mitchell, GRANSO, 2017. https://gitlab.com/timmitchell/GRANSO.

[27] J. J. Moré and D. C. Sorensen, Computing a trust region step, SIAM Journal on Scientific and
Statistical Computing, 4 (1983), pp. 553–572, https://doi.org/10.1137/0904038.

[28] J. J. Moré and S. M. Wild, Benchmarking derivative-free optimization algorithms, SIAM Journal
on Optimization, 20 (2009), pp. 172–191, https://doi.org/10.1137/080724083.

[29] A. Neumaier, MINQ, 2017. http://www.mat.univie.ac.at/~neum/software/minq.

[30] L. Qi, Convergence analysis of some algorithms for solving nonsmooth equations, Mathematics of Op-
erations Research, 18 (1993), pp. 227–244, https://doi.org/10.1287/moor.18.1.227.

[31] S. Scholtes, Introduction to Piecewise Differentiable Equations, Springer New York, 2012, https:

//doi.org/10.1007/978-1-4614-4340-7.

[32] L. Stella, A. Themelis, and P. Patrinos, Forward-backward quasi-Newton methods for nonsmooth
optimization problems, Computational Optimization and Applications, 67 (2017), pp. 443–487, https:
//doi.org/10.1007/s10589-017-9912-y.

[33] S. M. Wild, Solving derivative-free nonlinear least squares problems with POUNDERS, in Advances
and Trends in Optimization with Engineering Applications, T. Terlaky, M. F. Anjos, and S. Ahmed,
eds., SIAM, 2017, pp. 529–540, http://www.mcs.anl.gov/papers/P5120-0414.pdf.

[34] R. S. Womersley, Censored discrete linear l1 approximation, SIAM Journal on Scientific and Statis-
tical Computing, 7 (1986), pp. 105–122, https://doi.org/10.1137/0907008.

[35] R. S. Womersley and R. Fletcher, An algorithm for composite nonsmooth optimization problems,
Journal of Optimization Theory and Applications, 48 (1986), pp. 493–523, https://doi.org/10.1007/
bf00940574.

22

https://doi.org/10.1007/s11590-017-1117-x
https://doi.org/10.1007/s10589-013-9547-6
https://doi.org/10.1007/s10589-013-9547-6
https://doi.org/10.1137/050639673
https://doi.org/10.1137/090748408
https://doi.org/10.1137/090748408
https://doi.org/10.1137/15M1042097
http://www.mcs.anl.gov/~jlarson/MS4PL
http://www.mcs.anl.gov/~jlarson/MS4PL
https://www.cs.nyu.edu/~yann/talks/lecun-20071207-nonconvex.pdf
https://www.cs.nyu.edu/~yann/talks/lecun-20071207-nonconvex.pdf
https://doi.org/10.1214/16-aos1471
https://gitlab.com/timmitchell/GRANSO
https://doi.org/10.1137/0904038
https://doi.org/10.1137/080724083
http://www.mat.univie.ac.at/~neum/software/minq
https://doi.org/10.1287/moor.18.1.227
https://doi.org/10.1007/978-1-4614-4340-7
https://doi.org/10.1007/978-1-4614-4340-7
https://doi.org/10.1007/s10589-017-9912-y
https://doi.org/10.1007/s10589-017-9912-y
http://www.mcs.anl.gov/papers/P5120-0414.pdf
https://doi.org/10.1137/0907008
https://doi.org/10.1007/bf00940574
https://doi.org/10.1007/bf00940574

[36] Y.-x. Yuan, Conditions for convergence of trust region algorithms for nonsmooth optimization, Math-
ematical Programming, 31 (1985), pp. 220–228, https://doi.org/10.1007/bf02591750.

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne Na-
tional Laboratory (“Argonne”). Argonne, a U.S. Department of Energy Office of Science laboratory,
is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and
others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article
to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and
display publicly, by or on behalf of the Government. The Department of Energy will provide public
access to these results of federally sponsored research in accordance with the DOE Public Access
Plan http://energy.gov/downloads/doe-public-access-plan.

23

https://doi.org/10.1007/bf02591750
http://energy.gov/downloads/doe-public-access-plan

