
LLNL-CONF-742568

Advanced multidomain method for
multiphase flow interaction with
Lagrangian structural meshes

Y. Kanarska, S. Schofield, T. Dunn, B. Liu, C.
Noble

November 30, 2017

MULTIMAT
Santa Fe, NM, United States
September 18, 2017 through September 22, 2017



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



 1 

Advanced multi-domain method for multiphase flow interaction with Lagrangian 1 

structural meshes 2 

 3 

Yuliya Kanarska1, Samuel Schofield, Timothy Dunn, Benjamin Liu, Charles Noble 4 

Lawrence Livermore National Laboratory 5 
1kanarska1@llnl.gov 6 

 7 

Keywords: embedded grids, interface, multiphase flow, Lagrange hydro 8 

 9 

ABSTRACT 10 

 11 

Multiphase flow with particulates has emerged as a topic of fundamental fluid and continuum 12 

mechanics interest in many applications including national security applications. For more 13 

efficient simulation workflows, the utilization of a separate background multiphase flow mesh 14 

and foreground Lagrangian structural meshes is greatly beneficial. We propose a multi-domain 15 

coupling method for multiphase Godunov compressible high-speed flow interacting with an ALE 16 

structure on a different mesh. Along with cell centered updates in ghost points similar to ghost 17 

fluid methods we use additional modifications of the solid states at faces in such a way that 18 

resulting solution of the Riemann problem at each face satisfies the boundary interface 19 

conditions. Due to variation in targets and potentially dense particulate phases, the embedded 20 

grid coupling methodology needs to be stable across a wide range of fluid/structure density ratios 21 

as well as both dense and dilute particle regimes. We are developing multiphase extensions of 22 

the Banks, et. al. (2011) interface conditions that are appropriate for the wide range of multi-23 

phase flow conditions. Several examples demonstrate applicability of the method for multiphase 24 

flow interaction with dynamic deformable Lagrangian structural meshes. 25 

 26 

1. Introduction 27 

 28 

In the research community, there has been significant progress in numerical methods for fluid-29 

structure interaction with high speed flows (Pember aet al., 1995, Peskin et al., 2002, Ghias et al., 30 

2007, Tipton et al. 2011, Puso et al., 2012). However, little work has been done on the consistent 31 
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coupling of multiphase compressible flow with Lagrange structural meshes. To provide a more 32 

productive capability with rapid analysis turnaround, the utilization of separate background 33 

multiphase flow meshes and foreground Lagrangian structural meshes is greatly beneficial. A 34 

solid model used for structural or thermo-mechanical calculations can be used almost “as is” in 35 

the dynamic calculation. These targets often have very unstructured meshes making the creation 36 

of a globally conformal mesh that ties the structure to the finely, reasonably uniform, zoned 37 

mesh required for the turbulent high-speed flow calculation extremely challenging.  The 38 

embedded mesh approach has much more flexibility and is clearly preferred, however, there are 39 

significant challenges in extending the numerical methods used for embedded boundaries to 40 

multiphase formulations that are currently used for multiphase blast. There has been significant 41 

progress in numerical methods for fluid-structure interaction with high speed flows including the 42 

ghost fluid method (Fedkiw, 2002, Ghias 2007, Tipton et al., 2011), cut cell method (Pember et 43 

al., 1998), immersed boundary method (Peskin, 2002), Lagrange multiplier method (Pusso et al., 44 

2012). The primary difficulty of standard embedded grid schemes is that traditional discrete 45 

interface conditions often result in numerical instability. Due to variation in target and potentially 46 

dense particulate phases, the embedded grid coupling methodology needs to be stable across a 47 

wide range of fluid/structure density ratios, something only few coupling methods have (Banks 48 

et al., 2011).  49 

The proposed approach is the extension of the ghost fluid method to couple Eulerian 50 

multiphase to ALE Lagrangian solid dynamics including interaction of multiphase particles with 51 

the foreground mesh. We have combined a number of ideas from the recent literature including 52 

ghost-fluid and embedded interface methods. Some unique features of this work include 53 

development of a multiphase (and even multiple EOS) extension of the Banks, et. al. (2011) 54 

interface conditions that is appropriate to couple multiphase fluid with Lagrangian structures 55 

across wide range of material properties. In addition to the ghost cell updates we modify the left 56 

and right Riemann states similar to Gorsse et al., (2011) in such a way that resulting solution of 57 

the Riemann problem at each face satisfies the boundary interface conditions. These 58 

modifications allow achieving higher accuracy of the resulting scheme. 59 

The paper is organized as follows: In section 2 a short description of our multi-domain approach 60 

is presented. The multiphase solver equations and algorithm are briefly described in section 3. 61 

The low Mach number corrections to the standard compressible flows are presented in section 4. 62 
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Section 5 outlines the explicit Lagrangian hydrodynamic equations and solver. The mesh 63 

intersection and element categorization is described in Section 6. The interface conditions used 64 

are detailed in section 7 and the coupling technique is described in section 8. Verification, 65 

validation, and numerical simulations are discussed in section 9. Conclusions and future work 66 

are given in the last section. 67 

 68 

2. Multi-domain partitioned approach 69 

 70 

ALE3D code is a multi-physics numerical simulation software tool utilizing arbitrary-71 

Lagrangian-Eulerian (ALE) techniques (Noble et al., 2017). It has different physical solvers and 72 

mesh generation techniques. The goal of our multi-domain multi-physics coupling approach is to 73 

couple different solvers in ALE3D that operate on different domains and meshes. However, the 74 

technique described in this paper can be adopted for other multiphysics codes as well. Each 75 

domain and its associated simulation solver and mesh are isolated and communicate with other 76 

domains only through surfaces. A problem can be decomposed into domains on which an 77 

appropriate solver is chosen, for instance a rigid body solver coupled with an explicit time 78 

stepping compressible flow solver or a thermal-mechanical solid model can be coupled with an 79 

incompressible flow model. This approach is often referred to as “partitioned” and has many 80 

advantages including low memory requirements, low computational cost, and high parallel 81 

efficiency. There is no need to solve globally coupled systems of equations, which can be 82 

problematic particularly during parallel execution. Since the coupling occurs only through 83 

surfaces, well tested single physics solvers can be used, with each solver remaining separate and 84 

operating on its own domain. This will also enable different fluid and/or solid solvers to be 85 

exchanged with minimal effort. In a numerical scheme, there are many ways that velocity- and 86 

stress-continuity can be enforced in the discrete approximation. Banks et al., (2011) performed a 87 

normal mode stability analysis of the linearized problem to investigate the stability of different 88 

numerical interface conditions for a model problem approximated by upwind type finite 89 

difference schemes. Their analysis shows that depending on the ratio of densities between the 90 

solid and the fluid, some numerical interface conditions are stable up to the maximal Courant–91 

Friedrich–Levy (CFL)-limit, while other numerical interface conditions suffer from a severe 92 

reduction of the stable CFL-limit. They also proposed a new interface condition which is 93 
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obtained as a simplified characteristic boundary condition (described in Section 7), that is proved 94 

to not suffer from any reduction of the stable CFL-limit.  95 

In this paper, we are extending and applying these conditions for coupling multiphase fluid with 96 

Lagrange structures. We describe the coupling technique with application to the finite volume 97 

multiphase solver described in section 3 and finite element Lagrange hydro solver described in 98 

section 4. 99 

 100 

3. Multiphase flow equations 101 

 102 

The multiphase solver is based on the finite volume method using the discrete equation model 103 

(DEM) and allows description of multiple multiphase species, including dense particles 104 

(Chinnaya et al., 2003, Dunn, 2011). In this model, each phase has its own velocity and 105 

thermodynamic state (pressure, temperature, etc.). The presence of multiple velocities requires a 106 

modification to the standard single-phase ALE integration. The multiphase model handles these 107 

complications by integrating discrete equations for volume fraction 𝛼 (can vary between 0 and 108 

1), density 𝜌, momentum 𝜌𝑢, and total energy 𝜌𝐸 of each species. Considering two-phase gas-109 

particle flow, this model is described by a system of seven partial differential equations: 110 

conservations of mass, momentum, and energy for each phase, plus an additional equation for 111 

the evolution of volume fraction. For one-dimensional flow, these equations are given as: 112 

 113 
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 122 

where the subscripts c and d indicate properties of the carrier phase or discrete particle phase 123 

respectively. For simplicity we present 1D equations, whereas the numerical code operates on 124 

3D grids.   Details of the model equations and solution can be found in Saurel & Abgrall (1999) 125 

and Dunn (2011). The left sides of the equations represent the hydrodynamic response of the 126 

material, whereas the right-hand-side represents the non-conservative interaction between 127 

phases. These non-conservative terms account for momentum and energy transfer from one 128 

phase to the other due to various mechanisms such as drag 𝐹, and heat transfer 𝑄,. The equations 129 

are solved indirectly using the Discrete Equation Method (DEM) of Chinnayya et al. (2004). The 130 

key idea is to discretize the multiphase mixture at the microscopic level and then to average the 131 

discrete equations. It provides a new discrete model as well as the numerical method. The DEM 132 

implicitly defines the values for the interface pressure 𝑃, and interface velocity 𝑉, and 133 

evaluation of these terms can be found in Chinnaya et al. (2004) and Dunn (2011). The resulting 134 

DEM equations are discretized using an Eulerian-based Godunov finite volume method with 135 

mesh motion. The convective and mesh motion integral terms are evaluated as surface fluxes. 136 

The DEM prescribes that these fluxes are computed at each inter-phase contact as well as 137 

contacts between different phases. The current formulation uses the Artificial Upstream Flux 138 

vector Splitting (AUFS) scheme of Sun & Takayama (2003) by default to compute the flux. It 139 

should be noted, that the numerical method presented here can be applied to any finite volume 140 

multiphase solver, but DEM method is chosen here since it has already existed in ALE3D code. 141 

 142 

4. Low Mach correction. 143 

 144 

It is known that low Mach features are heavily dampened in the standard compressible numerical 145 

schemes. Venkatesewaran and Merkle (1998) and Thornber et al. (2008a) demonstrated that the 146 

leading order kinetic energy dissipation rate in a finite volume Godunov scheme increases as 147 

Mach number M decreases. In the particular case of the MUSCL advection scheme with a van 148 

Leer limiter it was shown that the leading order kinetic energy dissipation rate can be written as 149 

𝜖 = =-3

>?
𝑢𝑢-𝑢-- +

=-@

?A
(3𝑢--? +(2𝐶 − 3)𝑢-𝑢---)      (9) 150 

 151 
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where u and a are the velocity normal to the cell interface and speed of sound, respectively, C is 152 

the Courant–Friedrich–Levy (CFL) number and Dx is the cell length. Therefore, the dissipation is 153 

proportional to the speed of sound and the magnitude of the velocity derivatives squared at 154 

leading order.  It was demonstrated that the increase in dissipation at low Mach numbers is not 155 

physical, but is a property of the discrete system.  Thornber et al., (2008) proposed a simple 156 

modification of the reconstruction process within finite volume schemes to allow significantly 157 

improved resolution of low Mach number perturbations for use in mixed 158 

compressible/incompressible flows. The idea of the method is to modify left 𝑢E and right states 159 

𝑢F computed using standard compressible solver as 160 

𝑢EG,E =
0I40J

?
+ 𝑧 0IL0J

?
         (10) 161 

𝑢EG,F =
0I40J

?
+ 𝑧 0JL0I

?
         (11) 162 

where 𝑧 = min	(𝑀RSTUR, 1) and 𝑀RSTUR = max	(𝑀E,𝑀F). 163 

We implemented this correction in the DEM multiphase solver. It will be shown in example 9.1 164 

in Section 9 that such modifications prevent the numerical suppression of low Mach number 165 

flow instabilities. 166 

 167 

5. Lagrangian hydrodynamic equations 168 

 169 

The arbitrary Lagrangian-Eulerian hydrodynamic solver solves the equations of motion in the 170 

Lagrange frame and accomplishes advection numerically by calculating fluxes between the 171 

Lagrange mesh and its relaxed or Eulerian mesh. Compressible flow modeling is accomplished 172 

via the addition of an artificial viscosity term to the momentum equation. The equations of 173 

motion and the energy equation are discretized using the finite element method 174 

The momentum equations are 175 
%YZ[
%-[

+ 𝜌𝑓& = 𝜌𝑥̈&          (12) 176 

where 𝜎&`  is the Cauchy stress, 𝜌 is the density, and 𝑓 is the body force density and 𝑥& is the 177 

displacement. 178 

Mass conservation is stated as 179 

𝜌𝑉 = 𝜌a           (13) 180 

where 𝑉 is the relative volume and 𝜌a is the reference density. 181 
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The energy equation is 182 

𝐸̇ = 𝑉𝑠&`𝜖&̇` − (𝑝 + 𝑞)𝑉̇         (14) 183 

which is integrated in time and used for the equation-of-state (EOS) evaluations and a 184 

global energy balance. The deviatoric stresses are 185 

𝑠&` = 𝜎&` − (𝑝 + 𝑞)	𝛿&`         (15) 186 

where 𝑝 is pressure and defined as 187 

𝑝 = −>
g
𝜎hh − 𝑞          (16) 188 

𝑞 is the artificial viscosity, 𝛿&`	is the Kronecker delta, and 𝜖&̇`  is the strain rate tensor. 189 

As most hydrocodes, we split the stress into the pressure which comes from the EOS and the 190 

deviatoric stress which is obtained in an incremental form using the Jaumann rate and a 191 

traditional Wilkins type plasticity treatment. Details of the numerical solution procedure can be 192 

found in Noble et al., (2017). 193 

 194 

6. Mesh intersection and element categorization 195 

 196 

At each cycle, the intersection of the exterior boundary of the foreground mesh with the 197 

background mesh is computed.    The result of the calculation is a set of interface segments, 198 

which are portions of the exterior faces of the foreground mesh clipped to the background mesh 199 

cell in which they are contained.  For each segment the outward normal, segment center, and 200 

segment area are computed and stored (Figure 2). For efficient identification of ghost cells of the 201 

background grid, underlying the foreground mesh and its boundary, a distance function 𝜑 is 202 

used. The signed distance to the interface segment is evaluated at each node of the element 𝜑j   203 

and at the element center  𝜑k . Based on those signed distances, the elements are categorized as 204 

fluid (all 𝜑j > 0 and t 𝜑k > 0), fluid-cut (some	𝜑j < 0 and  𝜑k > 0), solid-cut (some	𝜑j < 0 205 

and  𝜑k < 0), and ghost (all 𝜑j < 0 and  𝜑k < 0) elements. For categorization, the foreground 206 

is deemed to be the “solid” and the background the “fluid”, although properly the foreground 207 

ALE solver can also be fluid, that is materials without strength. Element categorization 208 

according to the signed distance is presented in Table 1. An example for a circular interface is 209 

shown in Figure 3. The element categorizations are used to update solution. The fluid-cut cells 210 

are treated as any other cells in the multiphase solver. Fluid-cut and fluid elements are used to 211 
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enforce boundary conditions at the interface. The solutions for ghost and solid-cut elements are 212 

updated using specified interface conditions. In addition, the element categorization is used to 213 

define which fluxes at the faces need to be modified. It will be shown in section 8 that in addition 214 

to the cell-center update, similar to the most ghost fluid methods, we modify the solid side of the 215 

Riemann problem at the faces which result in better accuracy of the coupling scheme. 216 

 217 

Table 1. Element categorization according to the signed distance. 218 

𝜑k  𝜑j Element category Description 

𝜑k > 0 All 𝜑j > 0 Fluid Element outside the interface 

𝜑k > 0 Some 𝜑j < 0 Fluid-cut Element cut by interface 

𝜑k < 0 Some 𝜑j < 0 Solid-cut Element cut by interface 

𝜑k < 0 All 𝜑j < 0 Ghost Element inside the interface 

 219 

7. Interface conditions 220 

 221 

Standard fluid structure interaction (FSI) conditions are usually formulated as follows: (1) the 222 

fluid velocity is forced to be equal to the solid velocity and (2) solid boundary conditions include 223 

pressure boundary conditions taken from the fluid. However, Banks et al. (2011) showed that 224 

such approximation may lead to numerical instabilities if the solid and fluid have similar 225 

densities, which could be the case of multiphase dense particles. In the recent articles (Banks et 226 

al., 2011 and Banks et al., 2014), a stable interface projection scheme was developed for the 227 

problem of coupling a compressible and incompressible fluid with stress and velocity state 228 

(𝝈𝑳, 𝒖𝑳) and a deformable elastic solid states (𝝈𝑹, 𝒖𝑹)  of arbitrary density 𝜌E  and 𝜌F . These 229 

conditions can be summarized as 230 

𝒏𝑻𝒖𝑰 =
uI

uJ4uI
𝒏𝑻𝒖𝑹 +

uJ
uJ4uI

𝒏𝑻𝒖𝑳 +
>

uJ4uI
𝒏𝑻(𝝈𝑹𝒏 − 𝝈𝑳𝒏),    (17) 231 
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𝒕𝑻𝝈𝑰𝒏 =
uI

uJ4uI
𝒕𝑻𝝈𝑳𝒏 +

uJ
uJ4uI

𝒕𝑻𝝈𝑹𝒏 +
>

uJ4uI
𝒕𝑻(𝒖𝑹 − 𝒖𝑳),     (20) 234 
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where impedances are	𝜖E,F = 1/𝑐𝜌E,F , 𝒏 is a unit normal to the interface and t is the outward 235 

vector tangent to the interface (there are two tangential mutually orthogonal vectors in 3D). It 236 

was shown by Banks et al., (2011) that the last term in these equations can be dropped because 237 

they are approximations to the interface coupling conditions of no jump in stress or velocity. 238 

Also, they mention that they could be kept if one desired. Such conditions proved to be stable for 239 

the entire range fluid/solid density ratios including the difficult regime of light solids coupled to 240 

heavy fluids. Such a stable coupling has been elusive in the literature and lays the groundwork 241 

for other coupling regimes. We used such conditions to develop a coupling scheme for each pair 242 

of multiphase variables and Lagrange hydro variables. Those averaged values are later 243 

extrapolated to both multiphase solver and Lagrange hydro as shown in the next section. 244 

 245 

8. Coupling scheme 246 

 247 

In this section, the numerical algorithm of solving the multiphase equations and Lagrange hydro 248 

equations on the coupled meshes is presented. The numerical solution is derived as multi-stage 249 

procedure illustrated in Figure 4 as follows 250 

 251 

Step1: Advance Lagrange hydro 252 

Solve the ALE Lagrange hydro equations to advance the solution from time step n to n+1. The 253 

interface pressure and velocity computed at the end of previous time step are applied as the 254 

boundary conditions to the Lagrange mesh. There are several options for the averaging 255 

techniques to derive the interface pressure. The first option is to use volume averaging of the 256 

pressures for each species at the interface. The second option is to use impedance averaging of 257 

the species pressures. We are currently using the first option of averaging in this paper and will 258 

consider other options later on. Once the averaged pressure is available the solution is advanced 259 

using the standard Lagrange hydro approach described in Section 3. 260 

 261 

Step 2: Define interface conditions 262 

We update the interface position at time step n+1, create interface segments and categorize 263 

elements. We calculate interface conditions at the mesh interface at n+1 time step for each state 264 

variable. For each segment, we find the closest fluid and solid elements and derive interface 265 
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conditions in the projection to normal. We use impedance-weighted conditions described in 266 

Section 7. In the case of the frictionless compressible flow and slip boundary conditions between 267 

solid and multiphase we use those interface conditions for hydrodynamic pressure p. As 268 

suggested by Banks et al. (2011) we also dropped last terms. Each multiphase species has its own 269 

interface conditions (𝑝,y, 𝑢,y)  based on the impedance averaging of species state (𝑝zy , 𝑢zy ) and 270 

Lagrange hydro material (𝑝R, 𝑢R) as 271 

𝑝,y =
u{|{4u}~ |}~

u}~ 4u{
          (21) 272 

𝑢,y =
u{0}~ 4u}~ 0{
u}~ 4u{

          (22) 273 

This interface values are used to update multiphase variables in ghost and solid-cut regions as 274 

described at the next steps.  275 

 276 

Step 3: First order ghost update 277 

Since ghost zones can be uncovered at the next time step due to the mesh motion we need to 278 

update those values. We use first order neighbors and interface values derived at Step 2. First, we 279 

project a ghost fluid grid point of interest onto the fluid–structure interface and determine its 280 

reflection (image point) with respect to the interface segment containing that ghost fluid grid 281 

point (cell 0 in Figure 4, Step 3). Since an image point usually falls in the physical fluid domain, 282 

the fluid state variables at this point are computed by interpolation, using available first order 283 

neighbors (cells 1, 2 and 3 in Figure 4, Step 3). Then, the multiphase velocity state vector for 284 

each species at the ghost fluid grid point is computed as follows. The fluid velocity vector (or its 285 

normal component in the case of slip boundary conditions) is obtained by linearly extrapolating 286 

the interpolated fluid velocity vector at the image point and the structural velocity vector at the 287 

projection point. The values of the remaining primary fluid variables (mass, pressure, internal 288 

energy and volume fractions) at the ghost fluid grid point are set to the interpolated values at the 289 

image fluid grid point. This step is somewhat similar to the ghost fluid methods (e.g. Ghias et al., 290 

2007). However, to improve accuracy of the method, additional modifications to the face 291 

variables are done at the Step 5. This step is also necessary in the case of moving objects. When 292 

a cell changes from a ghost cell to a fluid cell, ghost values become a fluid and further evolved as 293 

any other fluid data.  294 

 295 
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Step 4: Find states of the Riemann problem in multiphase solver 296 

At this step, we find the left and right states of the Riemann problem for multiphase fluid 297 

variables using standard MUSCL reconstruction scheme for each multiphase species as 𝑈4 =298 

(𝛼4, 𝜌4, 𝑢4, 𝑝4) and  𝑈L = (𝛼L, 𝜌L, 𝑢L, 𝑝L).	 We will further assume that the solid side 299 

corresponds to 𝑈4 and fluid side corresponds to 𝑈L. 300 

 301 

Step 5: Second order interface update 302 

Extrapolate interface conditions defined at Step 2 to the faces using first and second order 303 

neighbor elements (Figure 4). We update here the face states for the cell 0 (see Step 5 in Figure 304 

4). In particular, the value of 𝑢∗	is determined by the following formula 305 

(𝒖∗ ∙ 𝒏𝑰) = (𝒖𝑰 ∙ 𝒏𝑰) + (
>
?
− 𝑑)𝑠        (23) 306 

(𝒖∗ ∙ 𝝉𝑰) = (𝒖L ∙ 𝝉𝑰)          (24) 307 

where d is the distance between interface point I and cell center 1 (Step 5 in Figure 4). Interface 308 

point I is evaluated as the intersection of the boundary of the foreground grid with the line 309 

connecting the cell centers 0 and 1 (Step 5 in Figure 4). Slope s for velocity field is computed 310 

using d-weighted slope computation as in Gorsse et al., (2012) as  311 

𝑠 = 𝒖𝑰 ∙ 𝒏𝑰 − 𝒖𝟏 ∙ 𝒏𝑰 +
>L�
>4�

(𝒖𝑰 ∙ 𝒏𝑰 − 𝒖𝟐 ∙ 𝒏𝑰),      (25) 312 

where 𝒖𝑰	is the interface velocity computed at the previous step, 𝒖𝟏 is the velocity of the cell 1 313 

and 𝒖𝟐 is the velocity of the cell 2 (Step 5 in Figure 4). Computing slope in this way allows 314 

avoiding instability when the cell center 1 is close to the interface I. If the slope limiter is needed 315 

the limiter slope is defined as 𝑠Ryzy(�� = 𝑚𝑖𝑛𝑚𝑜𝑑(𝑠, 𝑠?), where 316 

𝑠? = 𝒖𝟏 ∙ 𝒏𝑰 − 𝒖𝟐 ∙ 𝒏𝑰          (26) 317 

Interface pressure is assumed to be equal to the interface pressure computed at the previous step 318 

as 𝑝∗ = 𝑝,. As a result of this procedure we will have interpolated interface values (𝑢∗, 𝑝∗) to be 319 

used at the next step.  320 

 321 

Step 6: Modify Riemann states 322 

At this step, we modify the solid side of the Riemann problem for each multiphase species using 323 

extrapolated face interface values defined at the previous step as  𝑈4 = (𝛼L, 𝜌L,−𝑢L + 2𝑢∗, 𝑝∗)  324 



 12 

Modified in this way the solution of Riemann problem at the faces satisfies exactly the boundary 325 

interface conditions at the faces.  With states on either side of the interface in this way, the exact 326 

solution to the Riemann problem is symmetric about the path of the interface in x-t plane. When 327 

velocity of the fluid side state 𝑢L is less than interface velocity 𝑢∗, the solution consists of two 328 

rarefactions. When velocity the fluid side state 𝑢L	is greater than the interface velocity 𝑢∗, the 329 

solution consists of two shock waves. 330 

 331 

Step 7:  Advance multiphase solution  332 

The Artificially Upstream Flux-vector Splitting (AUFS) (Sun and Takayama, JCP, 2003) 333 

Riemann solver is used to advance the solution on the background multiphase flow mesh. This 334 

step completes the coupling scheme at time n+1. 335 

 336 

9. Numerical results 337 

 338 

In this section, we demonstrate the effectiveness of the presented coupling method for dynamic 339 

Lagrange hydro interfaces and their interaction with multiphase fluid across the entire range of 340 

material parameters for both single and multiple phases.  All gases in the considered problem are 341 

modeled as ideal gases with adiabatic exponent γ = 1.4. Since the multiphase solver is explicit 342 

we use CFL number 0.4 in all examples. 343 

 344 

9.1 Low Mach example 345 

 346 

In this example, we demonstrate applicability of the underlying multiphase flow for subsonic 347 

flow applications. In this case, an initial subsonic flow that moves from the left to right with 348 

Mach number 0.05 interacts with a step-like structure (Figure 5). We did simulations with an 349 

original compressible scheme for multiphase flow and modified scheme with the Low Mach 350 

correction described in Section 4. We used a 2D configuration with 640 by 320 mesh resolution. 351 

The vorticity field in both simulations is presented in Figure 5. We can see that the original 352 

scheme heavily damps the Low Mach instabilities at the interfaces. The low Mach correction 353 

reduces the dissipation allowing the scheme to capture the interfacial instabilities. 354 

 355 
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9.2 Advection with uniform velocity 356 

 357 

Here we present a test when the solid object moves diagonally with the same velocity as the 358 

surrounding fluid. In this case, there should be no artificial flows generated if the interface 359 

conditions and ghosts, fluid-cut and solid-cut elements are updated correctly. Mesh resolution 360 

was 13x13. Figure 6 shows the initial velocity and the velocity after 200 cycles.  It is unchanged 361 

and there is no artificial flow generated. Therefore, we conclude that the method proposed in this 362 

paper has been implemented correctly. 363 

 364 

9.3 Piston problem 365 

 366 

The initial problem consists of a gamma law gas on the left and right and a solid piston in the 367 

center. The problem setup is similar to what was used in Dunn et al., (2011). Initially, the gas on 368 

the left is at a higher pressure than the gas on the right, resulting in a pressure force pushing the 369 

piston to the right. As the piston moves, the volume on the left increases causing a decrease in 370 

the pressure on the left. At the same time, the volume on the right decreases causing an increase 371 

in the pressure on the right. Eventually, the pressure on the right becomes greater than the 372 

pressure on the left causing the piston to decelerate and then get pushed to the left. Thus, the 373 

pressure force causes the piston to travel back and forth in a cyclic fashion. The initial geometry 374 

for this problem is shown in Figure 7. We used a 3D configuration with 40x8x8 mesh resolution. 375 

The problem consists of a rigid piston separating two gases. The piston is modeled using 376 

properties similar to steel, resulting in an essentially rigid material. This problem uses a one-377 

dimensional geometry. It is modeled using a two-dimensional mesh with a single zone in the y 378 

direction and symmetry boundary conditions on the sides, resulting in a pseudo-1D flow in the x 379 

direction. The problem has a domain length of 4 with the origin (x = 0) at the center. The 380 

piston’s length is 1. Initially, the gas on the left has a length of 1 and the right gas has a length of 381 

2. Thus, the initial volume of the gas on the right is twice the volume of the gas on the left. 382 

Therefore, the pressure in the left gas is initially twice that of the right gas. 383 

We did several simulations by varying piston/gas density ratios and used a standard FSI coupling 384 

conditions and impedance averaged interface conditions presented in Section 7. Figure 7 shows 385 

the results of simulation for 100 piston/air mass ratio and 0.01 piston/air ratio. In the last case the 386 
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piston was simulated as a low density fluid. Figure 7c shows that the spurious waves are 387 

generated for a piston problem without impedance conditions at low solid/fluid density ratios, 388 

whereas the solution is smooth if we use impedance coupling conditions. In addition, the second 389 

order coupling scheme, as expected, appears more accurate at all range of density ratios. Since 390 

the motion of the piston is governed by Newton’s second law it can be shown (Dunn, 2011) that 391 

it is described by equation 392 

 393 
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 395 

where x is the center of mass of the piston,  𝑝∗ and 𝑉∗ are the pressure and volume at equilibrium, 396 

A is the frontal area of the piston equal to 1 here, 𝑚�SR is the mass of the piston. Figure 7b shows 397 

results of comparisons with the analytical solution.  The second order coupling scheme with 398 

impedance coupling conditions match very well the analytical solution. 399 

 400 

9.4 Modified Sod problem 401 

 402 

To demonstrate that the proposed coupling technique is applicable and stable when both 403 

foreground and background solvers have similar properties the method has been applied to the 404 

Sod shock tube test case. The initial conditions are (𝜌, 𝑢, 𝑝)E = (1,−0.5,1),  (𝜌, 𝑢, 𝑝)F =405 

(0.125,0,0.1), where the initial discontinuity is placed at x=0.5 and the foreground grid with 406 

gamma law gas was initially placed at x=0.6 (Figure 8a). The background domain of size 1x1 407 

was discretized using 128x128 mesh resolution. The foreground domain of initial length 0.25 408 

was discretized with 32x32 mesh resolution. Figure 8 shows the pressure, density and velocity 409 

profiles in both background and foreground regions. The foreground grid is allowed to move and 410 

it deforms and propagates with the shock wave. The pressure, density and velocity are similar on 411 

both meshes, but they are sharper for the foreground mesh since this mesh moves with the shock 412 

wave and have little numerical dissipation. In this example, the background and foreground 413 

solvers have similar properties (gamma law gases in this example). Therefore, this example 414 

demonstrates that the proposed coupling technique is stable and capable reproducing 415 

discontinuities at the interfaces between domains with similar material properties. 416 
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 417 

9.5 Shock wave interaction with Lagrange structure 418 

 419 

This is a validation test of the multiphase model for a simulation of a shock wave impacting a 420 

steel panel. The test is designed to test fluid-structure interaction for a transient compressible 421 

flow. A two-dimensional planar geometry was used in the calculations. The problem dimensions 422 

are given in Figure 9a. A thin steel plate is placed at the center of a rectangular domain. An 423 

initial high-pressure, high temperature region (p=10-1 Mbar, T=3000 K) of radius 10 cm is placed 424 

at x= 25 cm. The surrounding gas has atmospheric air conditions (p=1-6 Mbar, T=300 K). This 425 

initial pressure and temperature jump generates a shock, which impacts the panel and induces 426 

flexure of the plate. The thickness of the plate is 10 cm. The background mesh has resolution 427 

50x50 cells. The steel panel (foreground mesh) is discretized using 5x25 cells. The plate is 428 

modeled using the Lagrangian structural model for steel while the air is modeled as a single-429 

phase material using the multiphase method. No analytic solution is available for this test. 430 

Therefore, we compare results of the simulations with conforming grid simulations that are done 431 

with the same initial conditions and resolution. In the last case, the conforming grid stretches and 432 

deforms as the plate moves whereas in the first case the background mesh remains uniform. 433 

Figure 9 shows snapshots of velocity field in both simulations at time 0.2 s (embedded approach 434 

– Figure 9c, conforming grid – Figure 9d) and 0.65 s (embedded approach – Figure 9e, 435 

conforming grid – Figure 9f). Figure 9b shows comparison of the averaged velocity in the plate 436 

in both simulations. We see that results obtained using two different techniques agree very well. 437 

Therefore, we conclude that the multiphase-flow algorithm appears to be coupled to the 438 

Lagrangian structure properly for this problem. 439 

 440 

9.6 Shock wave with tungsten particles interaction with Lagrange structure 441 

 442 

This last example demonstrates interaction of a shock wave that consists of tungsten particles 443 

with a solid structure. The setup is similar to the previous example but now the initial high-444 

pressure region consists of tungsten particles (10% volume fractions) and air (90% volume 445 

fraction). Figure 9 shows reflection of the tungsten particles from the structure once they interact 446 

with a plate. Several drag models are available to parametrize air-particles coupling terms. For 447 
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this particular simulation, we used Akhatov drag model (Akhatov and Vainshtein 1984). The 448 

background mesh has resolution 120x120x120 cells. The steel target (foreground mesh) is 449 

discretized using 40x40x10 cells. As flow with the tungsten particles reaches the target, the steel 450 

panel starts to deform and solid stresses inside the steel target are developed (Figure 10).  These 451 

results demonstrate that the coupling algorithms used in the current approach are appropriate for 452 

modeling the interaction between multiphase particles and Lagrange structures. 453 

 454 

10. Conclusions  455 

 456 

A numerical technique to couple an Eulerian multiphase flow solver with Lagrangian 457 

hydrodynamics has been developed. The primary purpose is to allow simulations using different 458 

solvers operating on different domains and meshes. A number of algorithmic ideas are combined 459 

to design a coupling technique in such a way that coupling occurs only through interfaces, 460 

allowing simulation codes to remain separate. Some unique features of this work included 461 

development of multiphase interface conditions that are appropriate for the multi-phase flow 462 

conditions across the entire range of material parameters. In addition to the cell centered updates 463 

in ghost points similar to the ghost fluid methods we use additional modifications of the solid 464 

states at the faces in such a way that resulting solution of the Riemann problem at the faces 465 

satisfies the boundary interface conditions and approves accuracy of the scheme. The ability of 466 

the new coupling technique to reproduce complex features of the interaction of multiphase flow 467 

with Lagrange structures is presented on several examples. These examples demonstrate the 468 

efficiency and potential of the present technique to simulate interaction of the multiphase blast 469 

with deformable tragets.  470 
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 523 

 524 

Figure 1.  A cartoon depicting the evolution of a multi-domain problem. 525 

 526 
Figure 2.  An example of signed distances evaluation for the nodes and the cell center. 527 

 528 
Figure 3. An example of circular foreground Lagrangian boundary and the background mesh 529 

element categories that participate in coupling. 530 

Advanced Multi-domain Coupling

1 Project Goals

Munitions operation is a complex process spanning di�erent physics regimes. On one end of the
spectrum “hydrodynamics” is a very good description for gasses and bending metals. On the other
hand when details of the particulate nature of the material are important, such as during penetration
or weapons e�ects, “granular flow” may be more appropriate. Often these two regimes coexist and
the situation may be further complicated by the need to incorporate surface physics, such as surface
tension and friction. One natural way to deal with these situations is to separate the problem into
its individual pieces, one for each physical process, and then couple the various sub-pieces together
along surfaces. The Advanced Multi-domain Coupling project (AMC) is developing computational
technologies to facilitate this task. We are currently investigating fluid-structure interaction (FSI)
problems because they are most appropriate for high-explosives applications.

2 Introduction

Domain 1

Domain 2

Surface

early time late time

Figure 1: A cartoon depicting the evolution of a multi-domain problem.

Figure 1 shows a cartoon depicting a model multi-domain FSI problem. In our approach, each
domain and its associated simulation code are isolated and communicate with other domains only
through surfaces. This approach is often referred to as “partitioned” and has many advantages including
low memory requirements, low computational cost, and high parallel e⇥ciency. Because each domain
operates independently there is no globally imposed time stepping which means each domain is free to
use a locally appropriate time step and method. In addition, there is no need to solve globally coupled
systems of equations which can be problematic, particularly during parallel execution. Furthermore,
because the coupling occurs only through surfaces, simulation codes remain separate. This will enable
di�erent fluid and/or solid solvers to be exchanged with minimal e�ort.

The primary di⇥culty of the partitioned approach is that traditional discrete interface conditions
often result in numerical instability. We have addressed these instabilities by constructing new ad-
vanced discretizations of the interface conditions which are provable stable when used in a partitioned
discretization. In [1] we used normal-mode analysis to analyze the stability of a newly derived interface
projection scheme which strongly enforces the domain coupling conditions for compressible fluids and
elastic bodies. We proved stability for the entire range of material parameters including the regime of

1
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  531 
 532 

 533 
   534 

Figure 4.  Illustration of the multi-step coupling algorithm for the multiphase solver operated on 535 

the background grid (green) and Lagrange hydro operated on the foreground grid (red). 536 
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 538 

(a)539 

(b) 540 

Figure 5. Results of the interaction of subsonic flow with a step solid structure. The calculated 541 

voriticity using the modified low Mach scheme is shown in (a) and the standard compressible 542 

scheme results are shown in (b). The low Mach number features presented in (a) are heavily 543 

damped by the standard compressible numerical scheme (b). 544 

 545 

 546 
t=0 ms      t=30 ms 547 

Figure 6. Advection of the Lagrangian object moving with the matching velocity of the fluid. As 548 

expected, no artificial flows are generated. Therefore, the interface conditions are implemented 549 

correctly. 550 
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 551 
(a) 552 

 553 
(b) 554 

 555 
(c) 556 

Figure 7. Pressure driven piston calculation showing the importance of numerical boundary and 557 

coupling methods at different solid/fluid density ratios.  A high-pressure gas on the left pushes a 558 

solid piston to the right (a). The piston velocity is shown for solid/fluid density ratios of 100 559 

along with the analytical solution (b) and solid/fluid density ratios of 0.01 (c). Without the 560 

impedance based interface conditions, spurious waves are generated.  561 
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 562 

 563 
(a)                                                                         (b)  564 

 565 
(c)                                                                               (d) 566 

Figure 8. Results from the modified Sod shock tube test case problem for coupled meshes. A 567 

foreground mesh is initially placed at the right (a). Both background and foreground material is 568 

gamma-low air therefore impedance-averaged conditions are important in this example. As 569 

shock propagates to the right, foreground mesh moves. Density (b), pressure (c) and velocity (d) 570 

at time t=0.15 in both background solvers and foreground solvers are shown. 571 
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           574 
            (a)                                                        (b) 575 

 576 
           (c)                                                               (d) 577 

 578 
                                                  (e)                                                                 (f) 579 

Figure 9. Comparison of shock wave interaction with a Lagrange deformable structure. The 580 

initial pill of high-pressure air is located on the left (a). Simulations are done with the embedded 581 

grids method presented in this work and compared to a conformal mesh method. Velocity field 582 

comparison are presented for time 0.17 s (embedded grid (c) and conformal mesh –(d) and a time 583 

0.67 s (embedded grid (e) and conforming mesh (f). 584 
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 585 

 586 
t = 0 ms 587 
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 588 
t = 100 ms 589 



 27 

 590 
T=150 ms 591 

Figure 10. A blast wave that consists of tungsten particles (10% volume fraction) and air 592 

(90% volume fraction) interacts with a solid structure. Once particles reach the wall they are 593 

reflected. The velocity field in the air phase is shown in the upper panels and the particle mass 594 

fraction is shown in the lower panels. Also shown are stresses developed inside the steel plate 595 

due to the interaction with the shock wave. 596 


