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ABSTRACT

Multiphase flow with particulates has emerged as a topic of fundamental fluid and continuum
mechanics interest in many applications including national security applications. For more
efficient simulation workflows, the utilization of a separate background multiphase flow mesh
and foreground Lagrangian structural meshes is greatly beneficial. We propose a multi-domain
coupling method for multiphase Godunov compressible high-speed flow interacting with an ALE
structure on a different mesh. Along with cell centered updates in ghost points similar to ghost
fluid methods we use additional modifications of the solid states at faces in such a way that
resulting solution of the Riemann problem at each face satisfies the boundary interface
conditions. Due to variation in targets and potentially dense particulate phases, the embedded
grid coupling methodology needs to be stable across a wide range of fluid/structure density ratios
as well as both dense and dilute particle regimes. We are developing multiphase extensions of
the Banks, et. al. (2011) interface conditions that are appropriate for the wide range of multi-
phase flow conditions. Several examples demonstrate applicability of the method for multiphase

flow interaction with dynamic deformable Lagrangian structural meshes.

1. Introduction

In the research community, there has been significant progress in numerical methods for fluid-

structure interaction with high speed flows (Pember aet al., 1995, Peskin et al., 2002, Ghias et al.,
2007, Tipton et al. 2011, Puso et al., 2012). However, little work has been done on the consistent
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coupling of multiphase compressible flow with Lagrange structural meshes. To provide a more
productive capability with rapid analysis turnaround, the utilization of separate background
multiphase flow meshes and foreground Lagrangian structural meshes is greatly beneficial. A
solid model used for structural or thermo-mechanical calculations can be used almost “as is” in
the dynamic calculation. These targets often have very unstructured meshes making the creation
of a globally conformal mesh that ties the structure to the finely, reasonably uniform, zoned
mesh required for the turbulent high-speed flow calculation extremely challenging. The
embedded mesh approach has much more flexibility and is clearly preferred, however, there are
significant challenges in extending the numerical methods used for embedded boundaries to
multiphase formulations that are currently used for multiphase blast. There has been significant
progress in numerical methods for fluid-structure interaction with high speed flows including the
ghost fluid method (Fedkiw, 2002, Ghias 2007, Tipton et al., 2011), cut cell method (Pember et
al., 1998), immersed boundary method (Peskin, 2002), Lagrange multiplier method (Pusso et al.,
2012). The primary difficulty of standard embedded grid schemes is that traditional discrete
interface conditions often result in numerical instability. Due to variation in target and potentially
dense particulate phases, the embedded grid coupling methodology needs to be stable across a
wide range of fluid/structure density ratios, something only few coupling methods have (Banks
etal.,2011).

The proposed approach is the extension of the ghost fluid method to couple Eulerian
multiphase to ALE Lagrangian solid dynamics including interaction of multiphase particles with
the foreground mesh. We have combined a number of ideas from the recent literature including
ghost-fluid and embedded interface methods. Some unique features of this work include
development of a multiphase (and even multiple EOS) extension of the Banks, et. al. (2011)
interface conditions that is appropriate to couple multiphase fluid with Lagrangian structures
across wide range of material properties. In addition to the ghost cell updates we modify the left
and right Riemann states similar to Gorsse et al., (2011) in such a way that resulting solution of
the Riemann problem at each face satisfies the boundary interface conditions. These
modifications allow achieving higher accuracy of the resulting scheme.

The paper is organized as follows: In section 2 a short description of our multi-domain approach
is presented. The multiphase solver equations and algorithm are briefly described in section 3.

The low Mach number corrections to the standard compressible flows are presented in section 4.



63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

Section 5 outlines the explicit Lagrangian hydrodynamic equations and solver. The mesh
intersection and element categorization is described in Section 6. The interface conditions used
are detailed in section 7 and the coupling technique is described in section 8. Verification,
validation, and numerical simulations are discussed in section 9. Conclusions and future work

are given in the last section.

2. Multi-domain partitioned approach

ALE3D code is a multi-physics numerical simulation software tool utilizing arbitrary-
Lagrangian-Eulerian (ALE) techniques (Noble et al., 2017). It has different physical solvers and
mesh generation techniques. The goal of our multi-domain multi-physics coupling approach is to
couple different solvers in ALE3D that operate on different domains and meshes. However, the
technique described in this paper can be adopted for other multiphysics codes as well. Each
domain and its associated simulation solver and mesh are isolated and communicate with other
domains only through surfaces. A problem can be decomposed into domains on which an
appropriate solver is chosen, for instance a rigid body solver coupled with an explicit time
stepping compressible flow solver or a thermal-mechanical solid model can be coupled with an
incompressible flow model. This approach is often referred to as “partitioned” and has many
advantages including low memory requirements, low computational cost, and high parallel
efficiency. There is no need to solve globally coupled systems of equations, which can be
problematic particularly during parallel execution. Since the coupling occurs only through
surfaces, well tested single physics solvers can be used, with each solver remaining separate and
operating on its own domain. This will also enable different fluid and/or solid solvers to be
exchanged with minimal effort. In a numerical scheme, there are many ways that velocity- and
stress-continuity can be enforced in the discrete approximation. Banks et al., (2011) performed a
normal mode stability analysis of the linearized problem to investigate the stability of different
numerical interface conditions for a model problem approximated by upwind type finite
difference schemes. Their analysis shows that depending on the ratio of densities between the
solid and the fluid, some numerical interface conditions are stable up to the maximal Courant—
Friedrich-Levy (CFL)-limit, while other numerical interface conditions suffer from a severe

reduction of the stable CFL-limit. They also proposed a new interface condition which is
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obtained as a simplified characteristic boundary condition (described in Section 7), that is proved
to not suffer from any reduction of the stable CFL-limit.

In this paper, we are extending and applying these conditions for coupling multiphase fluid with
Lagrange structures. We describe the coupling technique with application to the finite volume
multiphase solver described in section 3 and finite element Lagrange hydro solver described in

section 4.

3. Multiphase flow equations

The multiphase solver is based on the finite volume method using the discrete equation model
(DEM) and allows description of multiple multiphase species, including dense particles
(Chinnaya et al., 2003, Dunn, 2011). In this model, each phase has its own velocity and
thermodynamic state (pressure, temperature, etc.). The presence of multiple velocities requires a
modification to the standard single-phase ALE integration. The multiphase model handles these
complications by integrating discrete equations for volume fraction a (can vary between 0 and
1), density p, momentum pu, and total energy pE of each species. Considering two-phase gas-
particle flow, this model is described by a system of seven partial differential equations:
conservations of mass, momentum, and energy for each phase, plus an additional equation for

the evolution of volume fraction. For one-dimensional flow, these equations are given as:
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where the subscripts ¢ and d indicate properties of the carrier phase or discrete particle phase
respectively. For simplicity we present 1D equations, whereas the numerical code operates on
3D grids. Details of the model equations and solution can be found in Saurel & Abgrall (1999)
and Dunn (2011). The left sides of the equations represent the hydrodynamic response of the
material, whereas the right-hand-side represents the non-conservative interaction between
phases. These non-conservative terms account for momentum and energy transfer from one
phase to the other due to various mechanisms such as drag F! and heat transfer Q. The equations
are solved indirectly using the Discrete Equation Method (DEM) of Chinnayya et al. (2004). The
key idea is to discretize the multiphase mixture at the microscopic level and then to average the
discrete equations. It provides a new discrete model as well as the numerical method. The DEM
implicitly defines the values for the interface pressure P! and interface velocity V! and
evaluation of these terms can be found in Chinnaya et al. (2004) and Dunn (2011). The resulting
DEM equations are discretized using an Eulerian-based Godunov finite volume method with
mesh motion. The convective and mesh motion integral terms are evaluated as surface fluxes.
The DEM prescribes that these fluxes are computed at each inter-phase contact as well as
contacts between different phases. The current formulation uses the Artificial Upstream Flux
vector Splitting (AUFS) scheme of Sun & Takayama (2003) by default to compute the flux. It
should be noted, that the numerical method presented here can be applied to any finite volume

multiphase solver, but DEM method is chosen here since it has already existed in ALE3D code.
4. Low Mach correction.

It is known that low Mach features are heavily dampened in the standard compressible numerical
schemes. Venkatesewaran and Merkle (1998) and Thornber et al. (2008a) demonstrated that the
leading order kinetic energy dissipation rate in a finite volume Godunov scheme increases as
Mach number M decreases. In the particular case of the MUSCL advection scheme with a van

Leer limiter it was shown that the leading order kinetic energy dissipation rate can be written as

2 3
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where u and a are the velocity normal to the cell interface and speed of sound, respectively, C is
the Courant—Friedrich-Levy (CFL) number and Ax is the cell length. Therefore, the dissipation is
proportional to the speed of sound and the magnitude of the velocity derivatives squared at
leading order. It was demonstrated that the increase in dissipation at low Mach numbers is not
physical, but is a property of the discrete system. Thornber et al., (2008) proposed a simple
modification of the reconstruction process within finite volume schemes to allow significantly
improved resolution of low Mach number perturbations for use in mixed
compressible/incompressible flows. The idea of the method is to modify left u; and right states

ug computed using standard compressible solver as

_ up+upr Uup—upr

UWme =~ T2 (10)
_ up+upr UR—Uuj,

Wmr == tZ2—; (11)

where z = min (M;,.q;, 1) and M,,.q; = max (M, Mg).
We implemented this correction in the DEM multiphase solver. It will be shown in example 9.1
in Section 9 that such modifications prevent the numerical suppression of low Mach number

flow instabilities.
5. Lagrangian hydrodynamic equations

The arbitrary Lagrangian-Eulerian hydrodynamic solver solves the equations of motion in the
Lagrange frame and accomplishes advection numerically by calculating fluxes between the
Lagrange mesh and its relaxed or Eulerian mesh. Compressible flow modeling is accomplished
via the addition of an artificial viscosity term to the momentum equation. The equations of
motion and the energy equation are discretized using the finite element method

The momentum equations are

aO'aB _ .
m‘l'pfa = PXq (12)

where o, is the Cauchy stress, p is the density, and f is the body force density and x,, is the
displacement.

Mass conservation is stated as

pV = pg (13)

where V is the relative volume and p, is the reference density.
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The energy equation is

E=Vsapéap — (0 + OV (14)
which is integrated in time and used for the equation-of-state (EOS) evaluations and a

global energy balance. The deviatoric stresses are

Sep = 0ap — (0 +q) Sup (15)

where p is pressure and defined as

p=—30m—0 (16)
q is the artificial viscosity, 8,4 is the Kronecker delta, and €, is the strain rate tensor.

As most hydrocodes, we split the stress into the pressure which comes from the EOS and the
deviatoric stress which is obtained in an incremental form using the Jaumann rate and a

traditional Wilkins type plasticity treatment. Details of the numerical solution procedure can be

found in Noble et al., (2017).
6. Mesh intersection and element categorization

At each cycle, the intersection of the exterior boundary of the foreground mesh with the
background mesh is computed. The result of the calculation is a set of interface segments,
which are portions of the exterior faces of the foreground mesh clipped to the background mesh
cell in which they are contained. For each segment the outward normal, segment center, and
segment area are computed and stored (Figure 2). For efficient identification of ghost cells of the
background grid, underlying the foreground mesh and its boundary, a distance function ¢ is
used. The signed distance to the interface segment is evaluated at each node of the element ¢y,
and at the element center ¢..Based on those signed distances, the elements are categorized as
fluid (all @y > 0 and t ¢, > 0), fluid-cut (some @y < 0 and ¢, > 0), solid-cut (some @y < 0
and @, < 0), and ghost (all ¢,y < 0 and ¢, < 0) elements. For categorization, the foreground
is deemed to be the “solid” and the background the “fluid”, although properly the foreground
ALE solver can also be fluid, that is materials without strength. Element categorization
according to the signed distance is presented in Table 1. An example for a circular interface is
shown in Figure 3. The element categorizations are used to update solution. The fluid-cut cells

are treated as any other cells in the multiphase solver. Fluid-cut and fluid elements are used to
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enforce boundary conditions at the interface. The solutions for ghost and solid-cut elements are
updated using specified interface conditions. In addition, the element categorization is used to
define which fluxes at the faces need to be modified. It will be shown in section 8 that in addition
to the cell-center update, similar to the most ghost fluid methods, we modify the solid side of the

Riemann problem at the faces which result in better accuracy of the coupling scheme.

Table 1. Element categorization according to the signed distance.

Qc ON Element category | Description
@c>0 Allpy >0 Fluid Element outside the interface
@oc>0 Some @y < 0 | Fluid-cut Element cut by interface
oc <0 Some @y < 0 | Solid-cut Element cut by interface
@pc <0 All oy <0 Ghost Element inside the interface

7. Interface conditions

Standard fluid structure interaction (FSI) conditions are usually formulated as follows: (1) the
fluid velocity is forced to be equal to the solid velocity and (2) solid boundary conditions include
pressure boundary conditions taken from the fluid. However, Banks et al. (2011) showed that
such approximation may lead to numerical instabilities if the solid and fluid have similar
densities, which could be the case of multiphase dense particles. In the recent articles (Banks et
al., 2011 and Banks et al., 2014), a stable interface projection scheme was developed for the
problem of coupling a compressible and incompressible fluid with stress and velocity state

(o1, u;) and a deformable elastic solid states (o g, ug) of arbitrary density p; and pg. These

conditions can be summarized as

1

nTu, = p—v nTug + e:fq nTu; + p—vn nf(ogn — o n), (17)
tTu, = e::q tTug p—v tTu, + eRieL t"(ogn — oy n), (18)
nfon= p—v nfo,n+ e:TReLnTaRn + eRieL n’ (ug —u;), (19)
tTon = p—v tTo,n+ e:fq tTogn + p—v t"(ug —uy), (20)
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where impedances are €, p = 1/cp;, r , 1 is a unit normal to the interface and # is the outward
vector tangent to the interface (there are two tangential mutually orthogonal vectors in 3D). It
was shown by Banks et al., (2011) that the last term in these equations can be dropped because
they are approximations to the interface coupling conditions of no jump in stress or velocity.
Also, they mention that they could be kept if one desired. Such conditions proved to be stable for
the entire range fluid/solid density ratios including the difficult regime of light solids coupled to
heavy fluids. Such a stable coupling has been elusive in the literature and lays the groundwork
for other coupling regimes. We used such conditions to develop a coupling scheme for each pair
of multiphase variables and Lagrange hydro variables. Those averaged values are later

extrapolated to both multiphase solver and Lagrange hydro as shown in the next section.

8. Coupling scheme

In this section, the numerical algorithm of solving the multiphase equations and Lagrange hydro
equations on the coupled meshes is presented. The numerical solution is derived as multi-stage

procedure illustrated in Figure 4 as follows

Stepl: Advance Lagrange hydro

Solve the ALE Lagrange hydro equations to advance the solution from time step n to n+1. The
interface pressure and velocity computed at the end of previous time step are applied as the
boundary conditions to the Lagrange mesh. There are several options for the averaging
techniques to derive the interface pressure. The first option is to use volume averaging of the
pressures for each species at the interface. The second option is to use impedance averaging of
the species pressures. We are currently using the first option of averaging in this paper and will
consider other options later on. Once the averaged pressure is available the solution is advanced

using the standard Lagrange hydro approach described in Section 3.

Step 2: Define interface conditions
We update the interface position at time step n+ 1/, create interface segments and categorize
elements. We calculate interface conditions at the mesh interface at n+/ time step for each state

variable. For each segment, we find the closest fluid and solid elements and derive interface
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conditions in the projection to normal. We use impedance-weighted conditions described in
Section 7. In the case of the frictionless compressible flow and slip boundary conditions between
solid and multiphase we use those interface conditions for hydrodynamic pressure p. As
suggested by Banks et al. (2011) we also dropped last terms. Each multiphase species has its own
interface conditions (p}, u!) based on the impedance averaging of species state (p%,, ul,) and

Lagrange hydro material (p;, u;) as

i _ ePi+enph
Pl = @
EmTE]
i elu,in+erinul
e (22)
EmTE]

This interface values are used to update multiphase variables in ghost and solid-cut regions as

described at the next steps.

Step 3: First order ghost update

Since ghost zones can be uncovered at the next time step due to the mesh motion we need to
update those values. We use first order neighbors and interface values derived at Step 2. First, we
project a ghost fluid grid point of interest onto the fluid—structure interface and determine its
reflection (image point) with respect to the interface segment containing that ghost fluid grid
point (cell 0 in Figure 4, Step 3). Since an image point usually falls in the physical fluid domain,
the fluid state variables at this point are computed by interpolation, using available first order
neighbors (cells 1, 2 and 3 in Figure 4, Step 3). Then, the multiphase velocity state vector for
each species at the ghost fluid grid point is computed as follows. The fluid velocity vector (or its
normal component in the case of slip boundary conditions) is obtained by linearly extrapolating
the interpolated fluid velocity vector at the image point and the structural velocity vector at the
projection point. The values of the remaining primary fluid variables (mass, pressure, internal
energy and volume fractions) at the ghost fluid grid point are set to the interpolated values at the
image fluid grid point. This step is somewhat similar to the ghost fluid methods (e.g. Ghias et al.,
2007). However, to improve accuracy of the method, additional modifications to the face
variables are done at the Step 5. This step is also necessary in the case of moving objects. When
a cell changes from a ghost cell to a fluid cell, ghost values become a fluid and further evolved as

any other fluid data.

10
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Step 4: Find states of the Riemann problem in multiphase solver

At this step, we find the left and right states of the Riemann problem for multiphase fluid
variables using standard MUSCL reconstruction scheme for each multiphase species as U, =
(ay,ps uy,py) and U = (a_, p_,u_,p_). We will further assume that the solid side

corresponds to U, and fluid side corresponds to U_.

Step 5: Second order interface update

Extrapolate interface conditions defined at Step 2 to the faces using first and second order
neighbor elements (Figure 4). We update here the face states for the cell O (see Step 5 in Figure
4). In particular, the value of u, is determined by the following formula

(. n) = (-n) + G- d)s (23)
(w.-t) = (u_-1)) (24)
where d is the distance between interface point 7 and cell center 1 (Step 5 in Figure 4). Interface
point / is evaluated as the intersection of the boundary of the foreground grid with the line

connecting the cell centers 0 and 1 (Step 5 in Figure 4). Slope s for velocity field is computed

using d-weighted slope computation as in Gorsse et al., (2012) as
s=u,-n,—u1-n,+£(u,-n,—u2-n,), (25)
where u; is the interface velocity computed at the previous step, u4 is the velocity of the cell 1
and u, is the velocity of the cell 2 (Step 5 in Figure 4). Computing slope in this way allows
avoiding instability when the cell center 1 is close to the interface /. If the slope limiter is needed
the limiter slope is defined as Sjjpiter = minmod(s, s,), where

S;=Up Ny —Up My (26)
Interface pressure is assumed to be equal to the interface pressure computed at the previous step

as p, = p'. As aresult of this procedure we will have interpolated interface values (u,,p,) to be

used at the next step.
Step 6: Modify Riemann states

At this step, we modify the solid side of the Riemann problem for each multiphase species using

extrapolated face interface values defined at the previous step as U, = (a_,p_, —u_ + 2u,,p,)

11
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Modified in this way the solution of Riemann problem at the faces satisfies exactly the boundary
interface conditions at the faces. With states on either side of the interface in this way, the exact
solution to the Riemann problem is symmetric about the path of the interface in x-# plane. When
velocity of the fluid side state u_ is less than interface velocity u,, the solution consists of two
rarefactions. When velocity the fluid side state u_ is greater than the interface velocity u,, the

solution consists of two shock waves.

Step 7: Advance multiphase solution
The Artificially Upstream Flux-vector Splitting (AUFS) (Sun and Takayama, JCP, 2003)
Riemann solver is used to advance the solution on the background multiphase flow mesh. This

step completes the coupling scheme at time n+1.

9. Numerical results

In this section, we demonstrate the effectiveness of the presented coupling method for dynamic
Lagrange hydro interfaces and their interaction with multiphase fluid across the entire range of
material parameters for both single and multiple phases. All gases in the considered problem are
modeled as ideal gases with adiabatic exponent y = /.4. Since the multiphase solver is explicit

we use CFL number 0.4 in all examples.

9.1 Low Mach example

In this example, we demonstrate applicability of the underlying multiphase flow for subsonic
flow applications. In this case, an initial subsonic flow that moves from the left to right with
Mach number 0.05 interacts with a step-like structure (Figure 5). We did simulations with an
original compressible scheme for multiphase flow and modified scheme with the Low Mach
correction described in Section 4. We used a 2D configuration with 640 by 320 mesh resolution.
The vorticity field in both simulations is presented in Figure 5. We can see that the original
scheme heavily damps the Low Mach instabilities at the interfaces. The low Mach correction

reduces the dissipation allowing the scheme to capture the interfacial instabilities.

12
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9.2 Advection with uniform velocity

Here we present a test when the solid object moves diagonally with the same velocity as the
surrounding fluid. In this case, there should be no artificial flows generated if the interface
conditions and ghosts, fluid-cut and solid-cut elements are updated correctly. Mesh resolution
was 13x13. Figure 6 shows the initial velocity and the velocity after 200 cycles. It is unchanged
and there is no artificial flow generated. Therefore, we conclude that the method proposed in this

paper has been implemented correctly.

9.3 Piston problem

The initial problem consists of a gamma law gas on the left and right and a solid piston in the
center. The problem setup is similar to what was used in Dunn et al., (2011). Initially, the gas on
the left is at a higher pressure than the gas on the right, resulting in a pressure force pushing the
piston to the right. As the piston moves, the volume on the left increases causing a decrease in
the pressure on the left. At the same time, the volume on the right decreases causing an increase
in the pressure on the right. Eventually, the pressure on the right becomes greater than the
pressure on the left causing the piston to decelerate and then get pushed to the left. Thus, the
pressure force causes the piston to travel back and forth in a cyclic fashion. The initial geometry
for this problem is shown in Figure 7. We used a 3D configuration with 40x8x8 mesh resolution.
The problem consists of a rigid piston separating two gases. The piston is modeled using
properties similar to steel, resulting in an essentially rigid material. This problem uses a one-
dimensional geometry. It is modeled using a two-dimensional mesh with a single zone in the y
direction and symmetry boundary conditions on the sides, resulting in a pseudo-1D flow in the x
direction. The problem has a domain length of 4 with the origin (x = 0) at the center. The
piston’s length is 1. Initially, the gas on the left has a length of 1 and the right gas has a length of
2. Thus, the initial volume of the gas on the right is twice the volume of the gas on the left.
Therefore, the pressure in the left gas is initially twice that of the right gas.

We did several simulations by varying piston/gas density ratios and used a standard FSI coupling
conditions and impedance averaged interface conditions presented in Section 7. Figure 7 shows

the results of simulation for 100 piston/air mass ratio and 0.01 piston/air ratio. In the last case the

13
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piston was simulated as a low density fluid. Figure 7c shows that the spurious waves are
generated for a piston problem without impedance conditions at low solid/fluid density ratios,
whereas the solution is smooth if we use impedance coupling conditions. In addition, the second
order coupling scheme, as expected, appears more accurate at all range of density ratios. Since
the motion of the piston is governed by Newton’s second law it can be shown (Dunn, 2011) that

it is described by equation

Rt (e Bl e B @

where x is the center of mass of the piston, p, and V, are the pressure and volume at equilibrium,
A is the frontal area of the piston equal to 1 here, my,; is the mass of the piston. Figure 7b shows
results of comparisons with the analytical solution. The second order coupling scheme with

impedance coupling conditions match very well the analytical solution.
9.4 Modified Sod problem

To demonstrate that the proposed coupling technique is applicable and stable when both
foreground and background solvers have similar properties the method has been applied to the
Sod shock tube test case. The initial conditions are (p, u,p);, = (1,—0.5,1), (p,u,p)r =
(0.125,0,0.1), where the initial discontinuity is placed at x=0.5 and the foreground grid with
gamma law gas was initially placed at x=0.6 (Figure 8a). The background domain of size 1x1
was discretized using 128x128 mesh resolution. The foreground domain of initial length 0.25
was discretized with 32x32 mesh resolution. Figure 8 shows the pressure, density and velocity
profiles in both background and foreground regions. The foreground grid is allowed to move and
it deforms and propagates with the shock wave. The pressure, density and velocity are similar on
both meshes, but they are sharper for the foreground mesh since this mesh moves with the shock
wave and have little numerical dissipation. In this example, the background and foreground
solvers have similar properties (gamma law gases in this example). Therefore, this example
demonstrates that the proposed coupling technique is stable and capable reproducing

discontinuities at the interfaces between domains with similar material properties.
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9.5 Shock wave interaction with Lagrange structure

This is a validation test of the multiphase model for a simulation of a shock wave impacting a
steel panel. The test is designed to test fluid-structure interaction for a transient compressible
flow. A two-dimensional planar geometry was used in the calculations. The problem dimensions
are given in Figure 9a. A thin steel plate is placed at the center of a rectangular domain. An
initial high-pressure, high temperature region (p=10" Mbar, T=3000 K) of radius 10 cm is placed
at x= 25 cm. The surrounding gas has atmospheric air conditions (p=1< Mbar, 7=300 K). This
initial pressure and temperature jump generates a shock, which impacts the panel and induces
flexure of the plate. The thickness of the plate is 10 cm. The background mesh has resolution
50x50 cells. The steel panel (foreground mesh) is discretized using 5x25 cells. The plate is
modeled using the Lagrangian structural model for steel while the air is modeled as a single-
phase material using the multiphase method. No analytic solution is available for this test.
Therefore, we compare results of the simulations with conforming grid simulations that are done
with the same initial conditions and resolution. In the last case, the conforming grid stretches and
deforms as the plate moves whereas in the first case the background mesh remains uniform.
Figure 9 shows snapshots of velocity field in both simulations at time 0.2 s (embedded approach
— Figure 9c, conforming grid — Figure 9d) and 0.65 s (embedded approach — Figure 9e,
conforming grid — Figure 9f). Figure 9b shows comparison of the averaged velocity in the plate
in both simulations. We see that results obtained using two different techniques agree very well.
Therefore, we conclude that the multiphase-flow algorithm appears to be coupled to the

Lagrangian structure properly for this problem.

9.6 Shock wave with tungsten particles interaction with Lagrange structure

This last example demonstrates interaction of a shock wave that consists of tungsten particles
with a solid structure. The setup is similar to the previous example but now the initial high-
pressure region consists of tungsten particles (10% volume fractions) and air (90% volume
fraction). Figure 9 shows reflection of the tungsten particles from the structure once they interact

with a plate. Several drag models are available to parametrize air-particles coupling terms. For
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this particular simulation, we used Akhatov drag model (Akhatov and Vainshtein 1984). The
background mesh has resolution 120x120x120 cells. The steel target (foreground mesh) is
discretized using 40x40x10 cells. As flow with the tungsten particles reaches the target, the steel
panel starts to deform and solid stresses inside the steel target are developed (Figure 10). These
results demonstrate that the coupling algorithms used in the current approach are appropriate for

modeling the interaction between multiphase particles and Lagrange structures.

10. Conclusions

A numerical technique to couple an Eulerian multiphase flow solver with Lagrangian
hydrodynamics has been developed. The primary purpose is to allow simulations using different
solvers operating on different domains and meshes. A number of algorithmic ideas are combined
to design a coupling technique in such a way that coupling occurs only through interfaces,
allowing simulation codes to remain separate. Some unique features of this work included
development of multiphase interface conditions that are appropriate for the multi-phase flow
conditions across the entire range of material parameters. In addition to the cell centered updates
in ghost points similar to the ghost fluid methods we use additional modifications of the solid
states at the faces in such a way that resulting solution of the Riemann problem at the faces
satisfies the boundary interface conditions and approves accuracy of the scheme. The ability of
the new coupling technique to reproduce complex features of the interaction of multiphase flow
with Lagrange structures is presented on several examples. These examples demonstrate the
efficiency and potential of the present technique to simulate interaction of the multiphase blast

with deformable tragets.
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Figure 4. Illustration of the multi-step coupling algorithm for the multiphase solver operated on

the background grid (green) and Lagrange hydro operated on the foreground grid (red).
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Figure 5. Results of the interaction of subsonic flow with a step solid structure. The calculated
voriticity using the modified low Mach scheme is shown in (a) and the standard compressible
scheme results are shown in (b). The low Mach number features presented in (a) are heavily

damped by the standard compressible numerical scheme (b).

t=0 ms t=30 ms

Figure 6. Advection of the Lagrangian object moving with the matching velocity of the fluid. As
expected, no artificial flows are generated. Therefore, the interface conditions are implemented

correctly.
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Figure 7. Pressure driven piston calculation showing the importance of numerical boundary and

solid piston to the right (a). The piston velocity is shown for solid/fluid density ratios of 100
along with the analytical solution (b) and solid/fluid density ratios of 0.01 (c). Without the

impedance based interface conditions, spurious waves are generated.

coupling methods at different solid/fluid density ratios. A high-pressure gas on the left pushes a
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grids method presented in this work and compared to a conformal mesh method. Velocity field
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Figure 10. A blast wave that consists of tungsten particles (10% volume fraction) and air

(90% volume fraction) interacts with a solid structure. Once particles reach the wall they are

due to the interaction with the shock wave.
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reflected. The velocity field in the air phase is shown in the upper panels and the particle mass

fraction is shown in the lower panels. Also shown are stresses developed inside the steel plate
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