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Abstract

Cross-layer forensic investigation is addressed for Industrial Internet of Things (IIoT) device 
attacks in Critical Infrastructure (CI) applications.  The operational motivation for cross-layer 
investigation is provided by the desire to directly correlate bit-level network anomaly detection 
with physical layer (PHY) device connectivity and/or status (normal, defective, attacked, etc.) at 
the time of attack.  The technical motivation for developing cross-layer techniques is motivated 
by 1) having considerable capability in place for Higher-Layer Digital Forensic Information 
exploitation—real-time network cyberattack and post-attack analysis, 2) having considerably 
less capability in place for Lowest-Layer PHY Forensic Information exploitation—the PHY 
domain remains largely under exploited, and 3) considering cyber-physical integration as a 
means to jointly exploit higher-layer digital and lowest-layer PHY forensic information to 
maximize investigative benefit in IIoT cyber forensics.  A delineation of higher-layer digital and 
lowest-layer PHY elements is provided for the standard network Open Systems Interconnection 
(OSI) model and the specific Perdue Enterprise Reference Architecture (PERA) commonly used 
in IIoT Industrial Control System/Supervisory Control and Data Acquisition (ICS/SCADA) 
applications.  A forensics work summary is provided for each delineated area based on selected 
representative publications and provides the basis for presenting the envisioned cross-layer 
forensic investigation.



Introduction

This paper addresses the forensics of Internet of Things (IoT) devices with specific focus on the 
unique challenges associated with the Industrial IoT (IIoT) subset.  Among the existing 
difficulties in the criminal justice system with respect to all cyber crime is the collection of 
evidence [1] and the fact that cyber crime cases are, by nature, some of the most difficult to 
investigate [2].  Operating under the definition of cyber forensics as “the practice of collecting, 
analysing, and reporting on digital information in a way that is legally admissible” [3], the 
difficulty in end-to-end operations is easily demonstrated.  Whether or not the collection of 
forensic data supports criminal investigation or enables protecting exposed vulnerabilities, 
many cyber incidents and crimes are not reported because, among other reasons beyond the 
difficulty, there is a belief that there is little chance of successful prosecution and even fear of 
negative publicity [4].  Despite these factors, most consumer-level computing technology has 
increasingly asked its users to trust that technology will “function correctly and that 
information that [consumers] provide, or that is collected about them, will be adequately 
protected” [5] for a variety of daily uses (e.g., IoT devices, Google, Facebook, Instagram).  
Unfortunately, this trust benefits the criminals given that a “majority of the people in modern 
societies are not particularly concerned about their data as long as they can happily and 
securely use technologies and commercial products to [enhance] their social lives,” [5] and this 
mindset shows no sign of changing any time soon.

There is clear concern that IoT and “smart devices can also be used to launch Distributed Denial 
of Service  (DDoS) attacks against governments and corporate networks” [6].  However, the 
mindset that has emphasized ease of use has contributed to the explosion of IoT devices for 
consumers and industry alike, with some forecasts indicating that the number of internet-
connected devices will reach 50 billion by 2020 [7] and pass $1.1 trillion ($USD) by 2021 [8].  
This includes proliferation of the IIoT computing technology subset which adds to, and 
exacerbates, the existing challenges of cyber forensics.  Many IoT devices are components of 
systems defined by the United States Department of Homeland Security [9] and the European 
Commission of Migration and Home Affairs [10] as part of Critical Infrastructure (CI) operations.  
The subordinate subset of IIoT devices provides complementary functionality in Industrial 
Control System/Supervisory Control and Data Acquisition (ICS/SCADA) applications.

The overlapping functionality and interdependencies of IoT and IIoT devices are illustrated 
Figure 1 along with the functional location of ICS/SCADA critical infrastructure elements. In 
preparing this review it became evident that the lack of cross-layer exploitation, and specifically 
the joint consideration of higher-layer digital and lowest-layer physical information, is prevalent 
across the broader IIoT domain and a decision was made to consider ICS/SCADA elements for 
illustration such as included in Figure 1. This decision was made given that the greatest 



sustained (documented, vocalized, etc.) concern over the lack of cross-layer exploitation has 
occurred within the ICS/SCADA community where researchers and practitioners alike have been 
“championing” the cause for cross-layer security and safety enhancements (Weiss, 2017; Weiss, 
2018).

The interdependencies highlighted in Figure 1 expose the unique challenges associated with IoT 
and IIoT systems when compared to traditional Information Technology (IT) systems in terms of 
cyber forensics. These challenges can be generalized to six main points: 1) the unique quality of 
where forensic artefacts may exist is more holistic (i.e., unique evidence may exist in 
either/both the physical layer and the higher layers); 2) Commercial Off-The-Shelf (COTS) 
products have inherent vulnerabilities that have often been ignored and cybersecurity is often a 
retroactive measure placed on a system [11]; 3) many IIoT devices, and especially those used in 
SCADA/ICS applications, cannot be powered off to conduct forensic investigations; 4) forensic 
evidence is generally more volatile [3] in industrial applications; 5) forensic data for IIoT devices 
is generally an afterthought until such data are needed to investigate an attack and 
subsequently prevent a future attack—the “time to discover and unwind potential incidents 
can take weeks, if not months, of deep inspection by threat hunting experts” [12]; and 6) the 
specialization of specific systems and/or networks (e.g., SCADA) often requires a forensic 
specialist who “has to be an expert in such systems/networks … in order to identify where 
potential forensic evidence could be located” (Casey, 2011).



Figure 1:  Functional overlap and interdependencies between broader IoT and the IIoT subset supporting 
cyber forensic physical systems and infrastructure exploitation using financial, medical and vehicular 
systems as examples (physical expanse of graphic elements not to scale).

This advanced review paper is not intended to represent an all-encompassing literature review 
in a subject area that is of great interest and which has yielded hundreds of related publications 
in just the past decade.  Rather, a sufficient amount information is pulled from a selected 
number of cited references to 1) help the reader gain an appreciation for the breadth of global 
Research, Development, and Demonstration (RDD) activity that has occurred in IIoT forensics, 
and 2) provide motivation for researchers to stay the course and build upon a solid foundation 
while enhancing the effectiveness of forensic investigative tools and methods.  The selected 
information is incorporated into presentation of an IIoT Forensic Investigative Framework 
(Section 1) that can be used for IIoT applications.  The framework is currently supported by 
Higher-Layer Digital Forensic Information (Section 2) and Lower-Layer Physical Forensic 
Information (Section 3) , the integration of which is proposed for Cross-Layer Forensic 
Information (Section 4) exploitation—a largely under reported, under exploited mechanism 
that is envisioned as providing considerable benefit.



IIOT INVESTIGATIVE FRAMEWORK

Digital Forensic Frameworks

Any forensic technique must necessarily be part of an investigation framework to ensure that 
the evidence collected is useful for criminal prosecution and/or future vulnerability mitigation.  
The field and study of digital forensic science (addressed here in the High-Layer Digital Forensic 
Information section as a subordinate term to cyber forensics) dates back to approximately the 
late 1970’s.  Over the last 40 years, many forensic frameworks have been proposed and evolved 
based on changing technology, experience of evidence admissibility, ever-changing cybercrime 
attack methods, and government/public interest. It was during this time that the US Federal 
Bureau of Investigation (FBI) stood up their Computer Analysis and Response Team in 1984 [14] 
and the United Kingdom stood up their Computer Crime Unit in 1985 [15].  The forensic 
framework evolution has motivated governments around the world to evolve their criminal 
laws and law enforcement practices to accommodate the efficient collection of digital evidence.  
However, up to 2006 there were no US laws governing the collection of digital evidence [16] 
until an amendment was passed allowing for the collection of “electronically stored 
information” and its use in civil litigation cases [17].

The definition of cyber forensics adopted here for presentation follows the definition published 
by the US-based National Institute of Standards and Technology (NIST) and includes “the 
application of science to the identification, collection, examination, and analysis [four phases] 
of data while preserving the integrity of the information and maintaining a strict chain of 
custody for the data” [18] .  The various definition elements are embodied in the digital forensic 
processes flow diagram in Figure 2 which includes selected elements and process flow 
attributed to (a) [19], (b) [20], (c) [21], and (d) [22] as indicated.  The shaded box elements in 
Figure 2 include Proactive phase elements from [23] and are the basis for subsequent 
discussion in the paper—the unshaded box elements are among the Reactive phase elements 
noted in [23]. The US Department of Justice (DOJ) in [19] considers a more simplified 
framework that includes only four phases: assessment, acquisition, examination, 
documentation/reporting.  More specific details of framework evolution during the 2005-2015 
timeframe can be found in [20].



Figure 2:  Digital forensic process flow diagram with flow attributed to the [19, 20, 21, 22] references as 
indicated. Shaded boxes denote Proactive Phase elements and non-shaded boxes denote Reactive Phase 
elements according to [23].



IIOT Forensic Information Domains

Contextualization of IIoT forensic information domains (or any other domain for that matter) 
requires consideration of specific implementation and operational details within the targeted 
application space.  This includes consideration of the network protocol (communication rules, 
structure, etc.) being considered.  There are two existing models shown in Figure 3 that 
collectively represent the major IIoT applications of interest here, including 1) the 7-layer Open 
Systems Interconnection (OSI) model [22] which represents a broad range of network 
applications, and 2) the 6-layer Perdue Enterprise Reference Architecture (PERA) [21] which is 
most common for ICS/SCADA applications.  Figure 3 also shows the separation of cyber forensic 
information based on 1) evidence collected and analysed within higher layers (Digital Forensic 
Information), and 2) evidence collected and analysed at the lowest physical (PHY) layer 
(Physical Forensic Information).  As detailed in subsequent sections of the paper, this functional 
separation is introduced to differentiate between higher-layer digital (bit-level) and lowest-
layer PHY (waveform-level) forensic exploitation.

Figure 3: Relationship between the Open Systems Interconnection (OSI) Seven-Layer Model [22] and six-
layer Perdue Enterprise Reference Architecture (PERA) [21] showing layer association to Digital, Physical, 
and Cross-Layer Forensic Information domains. 



Figure 4 shows a general IIoT network architecture consisting of different types of wired and 
wireless communication connections that may be employed—not all IIoT applications employ 
all of the indicated interconnectivity.  Collectively, locations within the enterprise, plant, field 
site, vehicle, etc., where digital data may be stored and the required communication 
interconnectivity provide the opportunity for exploitation of higher-layer digital forensic 
information and lowest-layer physical forensic information.  As addressed in the remaining 
major paper sections, there is 1) an overabundance of directly related work on exploiting 
Higher-Layer Digital Forensic Information for real-time network level protection, cyberattack 
detection/defence, and post-attack forensics analysis—this wealth of information is a result of 
the historical RDD emphasis in the IT domain, 2) a considerable amount of information related 
to Lowest-Layer Physical Forensic Information, especially in the area of Radio Frequency 
Fingerprinting (RFF)—a vast majority of this work provides little to no details on forensic 
exploitation, and 3) sufficient information to motivate consideration for Cross-Layer Forensic 
Information whereby digital and physical forensic information is jointly considered to support 
development of a corroborated forensic investigation.



Figure 4.  General IIoT network architecture consisting of Internet, Wide Area Network (WAN), Local 
Area Network (LAN), and Personal Area Network (PAN) connections.  Wired and/or RF wireless 
interconnectivity provides access for bit-level data/packet sniffing, logging, historian, Network Forensic 
Analysis (NFA) and PHY-based Radio Frequency Fingerprinting (RFF) processes.

HIGHER-LAYER DIGITAL FORENSIC INFORMATION

Higher-layer digital forensic information may be viewed in terms of a hierarchy involving three 
general levels, including bit-level, network-level, and user-level forensic techniques—the 
distinguishing boundaries between these levels is somewhat arbitrary and may be blurred in 
some applications.  The following review of higher-layer digital forensic techniques considers 
each of these levels independently.  However, it should be noted that techniques applied at one 
level often, if not always, have application at other levels or can be used to corroborate findings 
at lower levels. IIoT forensic analysis utilizes similar forensic techniques as other applications, 
thus many surveys of applications that are not specific to IIoT are included here.  In general, 
there is a lack of “tools and methodologies designed specifically to incorporate SCADA 
system[s], including their protocols and proprietary log formats” [11].  Therefore, the major 
difference between higher-layer digital forensics and those specifically applicable to IIoT is not 
necessarily in technique implementation itself but rather that specific system-level expertise is 
required to identify and collect useful data (Box 1).

Box 1. Insider Threats Present Unique IIoT Cyber Forensic Challenges:  Forensic data collection for 
IIoT applications can be challenging in that the threat itself may very well emerge from among the 
very system experts charged with conducting forensic data collection.  A 2017 report cites that 60% of 
industrial cyberattacks are from insider threats [23], with 44.5% of these having malicious intent [24].  
When a forensic investigation requires system expertise for proprietary IIoT, ICS, and SCADA 
architectures that are decades old, there may be only one or a few qualified experts who can support 
the investigation.  If these individuals are themselves complicit with the threat, soliciting there 
support will most likely be detrimental to the investigation.  The risk of this occurring can be 
mitigated by 1) training additional personnel in the older IIoT, ICS, and/or SCADA system 
architectures, 2) updating plant/enterprise access and maintenance policies (e.g., two-person 
integrity access and control rule), and/or 3) modernizing selected system components without 
necessarily requiring an extensive and expensive plant-wide overhaul.

Bit-Level Forensic Analysis

The collection and analysis of bit-level information are reviewed here as being distinct from the 
Network Intrusion Detection (NID) and Network Forensic Analysis (NFA) discussed in the 
following section because many techniques developed for this level can be used or 
extrapolated to the network-level.  Furthermore, bit-level information that is collected from 



ICS/SCADA Programmable Logic Controller (PLC), Remote Terminal Unit (RTU), field sensor, 
communication gateway, etc., devices can be used to assist in post-attack analysis [25] while 
providing the most accurate view on how information is actually stored [26] and assisting in 
determining device authenticity.

Articles that specifically address bit-level forensics in the context discussed here are sparse, as 
are surveys and related reviews. However, as noted in [26] bit-level techniques are not only 
useful for copying or converting collected evidence but are also useful for detecting anomalies 
to allow investigators to reliably reconstruct data fragments or determine where bit insertion or 
deletion is of particular interest. In light of this concept, [27] provides a thorough review of 
statistical anomaly detection methods that are directly applicable to bit-level forensics, albeit 
their focus is on NID application.  The authors in [28] illustrate and review works utilizing bit-
level n-gram based forensics regarding authorship.  This is followed by work in [29] which 
further demonstrates that bit-level classification techniques can help overcome potential 
deficiencies of stand-alone network-level forensic techniques, such as using such techniques in 
the absence of comments (very common in malicious code).  Other types of collected evidence 
may be substantiated through bit-level techniques, e.g., passive digital video forensics using 
pixel-based feature extraction to detect spatio-temporal forgeries or copy-move attacks [30].  
Combining the results of individual techniques from various plant-wide systems and connecting 
them to bit-level forensic information collected from IIoT devices builds a substantive post-
attack narrative.  However, the collection of such data is dependent on the data being stored 
long enough after an attack for investigators to have access when needed.

The amount of data collected at the bit-level and higher is continuing to increase to a point 
where previously utilized techniques need augmentation [31] in order to produce a timely 
contribution to a forensic investigation [32].  To this end, machine learning, data mining, and 
deep learning all hold promise for improving the efficiency of handling large amounts of data.  
However, as additional techniques such as these are developed, their use must be considered 
in relation to the admissibility and repeatability of forensic evidence provided by these 
methods [33].

Another consideration for bit-level forensic analysis is determining whether or not investigators 
have direct access to hardware components.  For example, there has been a considerable 
amount of work addressing mobile device forensics where investigators have hardware-in-hand 
and can access the contents of 1) internal memory storage devices, and/or 2) removable 
storage devices containing user and service provider details.  One hardware-in-hand example is 
SIM card evidence that is 



“forensically-retrieved from a mobile device in the form of call logs, contacts, and SMSs; a 
mobile forensic investigator should also be aware of the vast amount of user data and network 
information that are stored in the mobile SIM card such as Integrated Circuit Card Identifier 
(ICCID), International Mobile Subscriber Identity (IMSI), and Abbreviated Dialing Numbers 
(ADN)” [34].  This is more generally considered “mobile device forensics” [35] (which may be 
extended without loss of generality to many IIoT devices) whereby investigators acquire data 
from internal memory of handsets and Universal Integrated Circuit Cards (UICCs) or similar to 
extract features of cellular networks like logs of usage, geographic location, and other data.  

As previously noted, bit-level techniques are not exclusive to hardware-in-hand or device level 
forensic analysis.  The placement of a bit-level traffic historian somewhere within a network 
architecture to collect data for post-attack forensic analysis [36] is recommended, along with 
specific placement in the network so as to mitigate the chances of the historian itself becoming 
compromised.  Similarly, packet sniffers, protocol analyzers, and similar devices enable the 
observation and/or collection of communications (packets, bits, etc.) flowing between 
computers—a partial survey and review of related network techniques is presented in [37]. In 
light of the bit-level techniques that bridge to the network-level, the authors in [38] 
contextualize the concept and also discuss specific challenges of data acquisition in SCADA 
systems.  The bit-level to network-level forensic analysis connection becomes clear when 
successful bit-level forensic analysis properly attributes network-level activity to a given source. 

Network-Level Forensic Analysis

The bit-level techniques in the previous section may be extended to apply to network-level 
forensic analysis whereby the nature of the attack and attack attribution begin to take place.  
As illustrated in Figure 3 and Figure 4, IIoT network-level forensics applications (PERA Layer 1 
and higher) can utilize some network-level techniques of other communication applications 
(OSI Layer 2 and higher).  The type of techniques that may be considered for transition between 
bit-level and network-level forensics generally include analysis of data files [18], disk image 
copy, log system security, transportation security, data security, data recovery, file system 
analysis, network traffic capture and analysis, network survey, and IP traceback [39].

Network-level forensics primarily focuses on network traffic analysis. Of note, the term network 
forensics is often used in the context of both post-attack forensic science as well as real-time 
monitoring and network security—the   former has been defined as “strict network forensics” 
as opposed to “general network forensics” [39].  This paper focuses on techniques associated 
with strict network forensics (herein referred to simply as network forensics).  Network 
forensics is defined as the use of scientifically proven techniques [40] to capture and analyse 
network traffic in order to discover the source of attacks, and also includes tasks such as 



reassembling transferred files, keyword searches, and parsing human communication-like 
emails or chat sessions [41].

Given the nature of network layer data, and especially when considering IIoT devices, there is 
an assumed volatility and dynamic nature to the data and the storage of network traffic that 
may not exist at other layers.  The works in [42], [43], and [20] collectively describe two 
network traffic classifications, including 1) “catch-it-as-you-can,” and 2) “stop-look-and-listen.”  
In “catch-it-as-you-can” systems all packets pass through a traffic point and are captured.  This 
requires a large amount of data storage and analysis is performed after data capture, with 
storage capacity requirements increasing for Cloud computing [32] as part of the enterprise 
system.  In “stop-look-and-listen” systems selected information is saved for future analysis 
following a trigger event.   

There are Network Forensic Analysis Tools (NFATs) that capture network traffic, analyse the 
traffic, and allows administrators to identify, replay, and isolate anomalous network activity 
[44].  NFATs facilitate the organization of captured network traffic packets to be viewed as 
transport layer connections between machines.  All NFATs exhibit three basic properties [45]: 1) 
data collection, 2) data preservation without alteration, and 3) data replay.  The specific 
techniques associated with network forensics are tightly connected with the tools used in the 
process.  This paper does not seek to catalogue or survey all available tools given the list is 
changing frequently. However, summary tables of selected NFATs are provided in [42] and [41], 
with [27] providing related survey and review information on NID forensics.

The bit-level and network-level forensic techniques discussed thus far and referenced herein 
are part of an overall investigation strategy that seeks to empirically describe the cyberattack 
and properly attribute it to the perpetrator(s).  However, the evidence collected from the bit-
level and network-level techniques may not be sufficient in and of itself when considered in 
isolation.  Considering benefits of corroboration with other data sources, one final forensic 
layer within higher-level digital forensics is reviewed–the top-layers of the OSI and PERA models 
accounting for online data discoverable by forensic investigators (Box 2).



Box 2. Emergence of Operational Technology (OT) and IIoT Implications:  The OT framework has 
only recently emerged as a means to discriminate between systems that use computing resources 
to support administrative operations (mainstream IT applications) versus industrial operations 
(mainstream ICS/SCADA applications) [46] - the Venn diagram in this reference shows ICS and 
SCADA functionality completely embodied within OT.  Thus, the IT and OT distinction centres 
around different networking technologies (hardware and/or software) and different skill sets are 
required to properly maintain system operation.  Whereas most businesses are familiar with IT 
career field specialization that includes a myriad of specialized certifications, the OT profession is 
currently much more limited and does not have widely accepted standards like the IT Security+ 
standard.  Relative to this gap, “IT and OT have traditionally been developed and managed as two 
separate domains, the IIoT and Smart Manufacturing technologies have contributed to the blurring 
of lines between the two, and there are significant opportunities to be derived from aligning IT and 
OT” [47].  The need for doing so is evident when considering 1) a 2018 IIoT security survey that 
indicates most organizations globally are forecasting a 10% to 25% growth in connected IoT devices, 
with the potential for this rate to double every three to seven years [48], and 2) the fact that 32% of 
IIoT devices are connected directly to the internet and bypass traditional IT security layers, with 
only 40% of users reporting that they are applying routine patches and updates [48].  This increases 
the challenge for real-time IIoT device protection and cyber forensics as information from 
supposedly identical “witness” systems is collected, processed, etc.

 

User-Level Forensic Analysis

The user-level is defined here as data collected from the application-layer, data collected from 
Cloud storage, or any open-source intelligence (OSINT) application.  Traditional forensic 
methods must be modified, or new methods created, in order to accommodate the large 
amounts of data required for IIoT forensic investigations [31].  Even when the amount of data 
collected is reduced, the amount of digital forensic information could still overwhelm an 
investigation.  OSINT contributes a semi-automated process that extracts entity information 
and expands cross-device and cross-case analysis [49].  When combined with other higher-layer 
digital forensic information (previously discussed), or Physical Forensic Information (discussed 
in the next section), these data can synergistically produce the desired corroboration for 
forming a clear forensic picture.  The benefits obtained from cross-device and cross-case 
analysis provide motivation for development of the concept of Cross-Layer Forensic 
Information presented in the final main section of the paper.



LOWEST-LAYER PHY

Many of the higher layer digital techniques addressed in the previous sections are generally not 
IIoT application specific.   This section addresses lowest-layer physical information available for 
forensic analysis and having direct applicability to IIoT forensics.  Many network and bit-level 
IIoT processes (Figure 3 PERA model Layer 1 and higher) rely on sensors for monitoring and 
controlling physical processes (pressure, temperature, speed, etc.).   Thus, the IIoT PHY domain 
is rich in forensic information that may be exploited for a post-attack investigation.  Outside of 
forensic applications there has been considerable RDD activity in single layer PHY-based Radio 
Frequency Fingerprinting (RFF) methods developed to support network defence of both wired 
and wireless communications [50], [51], [60], [52]–[59].  These works have predominantly 
addressed the discrimination of various hardware components (e.g., the gateway devices 
shown in Figure 4) used to establish communications.  While some of these works suggest that 
the demonstrated methods support forensic analysis, the concept of forensic support is more 
of a theme used to motivate the readers and there are minimal details provided on actual 
forensic implementation.  The nearly non-existent usage of RFF in PHY-based forensic 
applications is supported by an internet search using “radio frequency forensics” which yields 
an abundance of references addressing Radio Frequency Identification (RFID).  The number of 
hits returned for this search (100,000s) is potentially misleading given that forensics in the RFID 
application space addresses the ability to “track and manage forensic evidence … streamline 
the capture, collection, and transfer of [digital] data to track assets and people” [61].  Thus, the 
use of a digital ID in RFID forensic applications is not at a true PHY-based forensic exploitation 
but rather is more consistent with the higher-level forensic exploitation methods addressed in 
the previous section. 

While the cross-device uniqueness of electronic device fingerprints may not be totally on par 
with cross-human fingerprint uniqueness, results such as provided in  [50], [51], [60], [52]–[59] 
routinely demonstrate near 100% discrimination for selected scenarios and have been 
sufficiently promising to sustain progressive RDD over the past 10 years.  Collectively, these and 
other related RFF works have addressed nearly all common communication signalling schemes, 
including Bluetooth [53], Automation [50], [51], and ZigBee [60] Personal Area Networks 
(PANs); WiFi [52], [54], [55], [59] Wireless Local Area Network (WLANs), and WiMAX [57], [58] 
Wide Area Networks (WANs), to name a few.  For the references provided, the unique RFF 
features have been reliably extracted from various signal domains, including 1) time [51]–[53], 
[55], [58], 2) frequency [50]–[52], 3) joint time-frequency [57], [59], and 4) constellation [54], 
[60].  A majority of RFF works available for forensic consideration are based on burst type 
communications, which when used for committing a cyberattack or electronic crime, may leave 
behind 1) only a single fingerprint—this may occur for a simple attack against a ZigBee control 
element that is designed to respond to a single command burst, or 2) 10s to 1000s of 



fingerprints—this may occur for a progressive multi-node WiFi network attack with the actual 
number of fingerprints “left behind” by the perpetrator(s) depending on the extent and 
duration of the attack.  In the case of RFF-based forensics, anything “left behind” for analysis 1) 
must have been sensed, collected, and stored by a historian or similar device, and 2) be in the 
proper format to enable reliable extraction of features for the selected RFF method.

CROSS-LAYER FORENSIC INFORMATION

Inherent to any investigation that involves the use of cyber forensic artefacts is the integrated 
analysis of all artefacts in light of real-world conditions at the time of the attack.  The biometric-
based work in [62] describes this concept as a “cyber-physical integration” as it relates to 
supporting criminal investigations.  There is a wealth of information on cross-layer attack and 
defence work in Cognitive Radio (CR) [63], [64], Metropolitan Area Network (MANET) [65], [66] 
and Wireless Sensor Network (WSN) [66], [67] applications, with a collective overview of these 
and other applications provided in [68].  Given the benefits realized in these application areas it 
is reasonable to infer that some of the defence mechanisms in these works may be adopted 
and exploited for IIoT forensic analysis and investigation benefit.

The cross-layer forensic investigative benefit becomes more evident by considering the related 
PHY-based ICS/SCADA example in (Lopez Jr. et al., 2018) which provides a generalization of IIoT 
attack assessments based on what are categorized as (a) Remote access attack (RAA) strategies 
that aim to alter the sensed/reported field device state being received and acted upon by the 
PLC and (b) physical access attack (PAA) strategies that aim to alter the physical device 
hardware, firmware, etc. The RAA and PAA assessments in (Lopez Jr. et al., 2018) were made 
using discriminating features extracted from communication links being used for exchanging 
control and sensing information between the PLC and field devices. Of note in these RAA and 
PAA assessments is that integrated cross-PERA layer and cross-SCADA zone processing was not 
implemented. Rather, the assessments are based on an inherent assumption that cross-layer 
only and within-zone only bit-level protection methods have been “fooled” and that 100% PHY-
based device identity and state determination is desired. Using a normal-versus-anomalous 
(attacked) detection strategy and 12 assessment scenarios (six RAA and six PAA assessments 
using two devices from three manufacturers with each device operating at two distinct set 
points), the process in (Lopez Jr. et al., 2018) successfully yielded an anomaly detection rate 
(ADR) of ADR ≈ 91.3% and ADR ≈ 95.5% for RAA and PAA assessments, respectively. This PHY-
based only performance suggests great promise for achieving ADR ≈ 100%, that is, 100% attack 
detection and/or post-attack attribution, in IIoT applications by including cross-layer methods 
similar to those noted in the previous paragraph.



As confirmed by the literature review conducted to prepare this advanced review, the overall 
conclusion in the earliest cited work remains valid today, i.e., “a majority of existing research on 
security issues in wireless networks mainly focuses on attack and defence in individual network 
layers” [63].  This includes a majority of single higher-layer approaches that tend to underutilize 
or entirely disregard PHY layer information.  As a result, these approaches are not enable direct 
correlation of bit-level network anomaly detection (higher-layer digital forensic evidence) with 
PHY connectivity and/or hardware device status (attacked, defective, etc.).  While likely a 
limitation across the broader IIoT domain, the greatest concern over this has been vocalized 
within the ICS/SCADA community where researchers and practitioners are “championing” the 
cause for security and safety improvement using cross-layer information [69], [70].  The 
envisioned IIoT cross-layer benefit could be demonstrated using a comparative performance 
assessment based on analysis using 1) only Digital Forensic Information per the Higher-Layer 
Digital Forensic Information section—comparable to conducting a criminal investigation using 
only witness information, 2) only PHY information per the Lowest-Layer Physical Forensic 
Information—comparable to conducting a criminal investigation using only physical fingerprint 
information, and 3) cyber-physical integration of both digital and physical forensic 
information—enabling generation of a more complete picture of events occurring during the 
crime.

The integration and exploitation of digital and PHY is conceptually illustrated using the SCADA 
architecture in Figure 5. This figure shows that the forensic investigative surface is comprised of 
multiple SCADA zones that include exploitable digital and physical information. The architecture 
in Figure 5 is based on the framework presented in (Eden et al., 2016), with the control zone 
intentionally expanded here to distinguish the PERA model Basic Control (a) and Physical (b) 
layer elements in Figure 3. As shown, there are interzone firewalls that enable forensic analysis 
using the typical firewall log data, event data, Internet Protocol (IP) addresses, and port log files 
(Eden et al., 2016). Additionally, there is a wealth of forensic information available throughout 
all SCADA zones that can be used to support analysis. Some details of this information and its 
location within each zone are provided in Table 1 which includes a representative sampling and 
summary of table entries provided in Eden et al. (2016).



Figure 5: Forensic investigative surface comprised of SCADA zones with representative elements 
available for forensic analysis. The architecture is based on the framework presented in Eden et al. 
(2016) with the control zone expanded to highlight elements of higher-digital and lowest-physical 
elements.

Conclusion

This advanced review addresses cyber forensics of IoT devices with specific focus on the unique 
challenges associated with the IIoT subset.  Given that the majority of IIoT devices are part of 
Critical Infrastructure (CI) systems, the necessity to have a robust forensic framework and well-
defined, repeatable, and admissible techniques is paramount.  This paper provides a 
representative sampling of information pulled from a selected number of cited references to 1) 
help the reader gain an appreciation for the breadth of global research, development, and 
demonstration (RDD) activity that has occurred in IIoT forensics, and 2) provide motivation for 



researchers to stay the course, build upon a solid foundation, and enhance the effectiveness of 
forensic investigative tools and methods.   

A Forensic Investigative Framework is presented for use in IIoT applications, with primary 
support pillars including existing higher-layer digital and lowest-layer physical (PHY) forensic 
information methods.  As supported by the summary information provided, the greatest degree 
of forensic exploitation occurs within the higher-layer digital domain(s), with the lowest-layer 
PHY domain remaining largely under exploited.  This motivated the introduction of cyber-
physical integration as a means for exploiting cross-layer forensic information to maximize 
investigative benefit in IIoT cyber forensics, as well as cyber forensics as a whole.
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Table 1: Location and type of forensic information available in SCADA implementation zones 
shown in Figure 5. This includes a representative sampling and summary of table entries 
provided in Eden et al. (2016) with the corresponding Figure 3 PERA layer added for 
completeness.

Zone Device Type Forensic Data PERA Layer

Corp Workstation(s) Program/file execution, account/browser
Usage, connected device logs

5

Corp Email server Server logs, email transactions 5

Corp Web server Server/event logs, IP addresses, session data 5

Corp Database server Data files, server/system event logs, trace files 4, 5

Corp Routers/switches Event logs, MAC addresses, IP/routing tables, CAM 3

Data Workstation(s) Program/file execution, account/browser usage, 
connected devices, logs

2, 3

Data OPC server Field device/communication logs 2, 3

Data Application server DHCP configuration log 2

Data MTU Logs, connected devices, PLC/RTU I/O data 1

Data Domain controller Logon/security events 1

Data Routers/switches Event log(s), IP table(s), CAM 1

Cont Workstation RAM, connected devices, PLC/HMI baseline images 1

Cont HMI Logs, issued commands, reports 1

Cont Switches Content addressable memory (CAM) 1

Cont PLC/RTU Logs, active processes, timestamps, ladder-logic 
program codes, SD card firmware versions

0


