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The Lagrangian-Eulerian method is broadly used for simulations of dispersed multiphase

flows by solving the continuous phase in the Eulerian framework while treating the dispersed

phase as point particles in a Lagrangian framework. The accuracy of the Lagrangian-Eulerian

method largely depends on the number of computational particles tracked for the Lagrangian

phase. In this study, an adaptive Lagrangian particle tracking algorithm is proposed to balance

the statistical error and the computational cost by dividing and merging the particles according

to the local particle statistics in the computational domain. The computational particles are

considered as weighted sampling points of the particle probability density functions which

represents a statistical equivalence of the Lagrangian phase. The algorithm is implemented

as a part of a C++ library for Lagrangian particles, Grit, with performance portability to

multi-core or many-core CPUs and Graphic Processing Unit architectures. The accuracy

of the proposed algorithm with two different schemes are studied through a test problem

with analytical solutions for both the particle number density and momentum source term.

The results are used to evaluate the proposed algorithm as well as to validate the parallel

implementation.

Introduction

T
he modeling of dispersed multiphase flow [1] is of importance to several engineering applications, such as

combustion [2], material processing [3]. Dispersed multiphase flows are flows in which the dispersed phases are not

materially connected [1] and modeling the real physical process of dispersed multiphase flows is a tremendous task. For

example, in many spray combustion processes, the fuel sprays are injected into a pressurized combustion chamber at a

very high speed, breaking up, evaporating and mixing with the carrier phase, while the carrier phase is usually strongly

turbulent and reacting, which is challenging to model by itself.

There are generally two modeling approaches for the numerical simulations of the dispersed multiphase flows, i.e.,

the Eulerian-Eulerian (EE) method [4] and the Lagrangian-Eulerian (LE) method [5]. The EE method treats both the

continuous and dispersed phases in the Eulerian framework while the LE method solves the carrier phase in the Eulerian

framework and the dispersed phases in the Lagrangian framework. Traditionally, the LE method is considered to be

more flexible and can be applied to both dilute and dense flows. In comparison, the EE method is more effective only

when the bulk properties of the dispersed phase are more statistically representative. However, the accuracy of the LE

method largely depends on the number of computational particles tracked so that significant computational resources

are required for realistic simulations with large numbers of computational particles. Furthermore, since the number

density of the computational particles is not always uniform across the computational domain for realistic applications,

cells enclosing large number of computational particles tend to introduce smaller errors while cells having less particles

result in larger errors.

For the numerical solution of the Eulerian phase, the discretization errors due to a finite number of spatial and

temporal points are usually determined by the mesh resolution and the numerical discretization scheme. One can

either use a finer mesh/time step or employ high-order spatial/temporal discretization schemes to reduce the numerical
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errors. Contrary to the popularity of the LE method, the statistical errors due to a finite number of particles for the

Lagrangian phase in the LE method has rarely been studied until recently [6, 7]. Generally, the statistical error is

inversely proportional to the square root of number of computational particles enclosed by a computational cell if there

is no bias error. When refining the mesh for the Eulerian phase, one inevitably suffers from larger statistical errors for

the Lagrangian particles due to less computational particles for each computational cell. For the opposite condition,

although a coarser mesh will reduce the statistical errors, larger discretization error for the Eulerian phase and the

interpolation errors due to the coarse mesh will still decrease the accuracy of the particle tracking.

Another difficulty is introduced by the fact that in modern large scale simulations, the mesh is often nonuniform or

even dynamical changing. For example, the adoption of Adaptive Mesh Refinement (AMR) [8, 9] has been becoming

more and more popular recently for practical simulations. The concept of AMR is to adapt the mesh dynamically

wherever necessary such as in highly turbulent regions, flame fronts or shocks, etc., where localized large gradients

are required to be numerically captured by a local mesh refinement. For many applications, these refinement regions

for the Eulerian phase may or may not coincide with the positions of the Lagrangian particles. As a consequence, the

traditional LE method results in much larger statistical errors at these refinement regions when the same number of

computational particles enters a refinement mesh from a coarser mesh. Unlike the plenty algorithms for AMR, the

algorithms for adaptive particle tracking are still at the trial and error level and need to be further investigated due to its

stochastic nature.

One method to overcome this difficulty is to consider these Lagrangian particles as weighted sampling points

of the particle probability density functions (PDF) [10, 11] which represents a statistical equivalence of the real

physical particles. A comprehensive particle PDF formulation has been introduced by Subramaniam [10] and Pai and

Subramanian [12]. The consistent relation between the physical system and a statistical expression through the particle

PDF formulation is well established. However, the studies that discusses the algorithms that implements the particle

PDF based formulation are quite limited. Garg et al. [13] proposed a numerically convergent algorithm by maintaining

a near-uniform number density of the computational particles based on the particle PDF formulation. However, their

particle number control strategy is too simple and might have problems extending to more general problems. Doisneau

et al. [14] has developed a semi-Lagrangian transport scheme to eliminate the stochastic noises from the traditional

Lagrangian method leading to a promising solution method for dense sprays.

The aim of this study is to develop and validate an adaptive Lagrangian particle tracking algorithm which divides

and combines computational particles at targeted regions based on the statistics of the local computational particles.

The idea is to extract the statistical information of the particles within a specified computational cell or domain and then

redistribute more particles with smaller weights while conserving the original particle PDF in the same cell or domain.

The most important part is how the particles are redistributed when divided. All variables of each particle need to be

recalculated by specific schemes which are the key factors for conserving the particle PDF regarding redistributing the

particles. Garg et al. [13] chooses to preserve a minimum statistical equivalence by spreading the locations of the newly

generated particles uniformly within the computational cell and keeping the same velocity as the annihilated particle.

In this study, we focus on two basic extraction and redistribution schemes for different variables. One approach is to

presume a particle PDF with certain parameters extracted from the existing particle data. For example, if a Gaussian

distribution is presumed for certain variable of the particles, the mean and standard deviation need to be extracted from

the particle samples before being divided. Then the newly-generated particles can be redistributed according to the

Gaussian distribution with the same mean and standard deviation. The other approach is to directly obtain a particle

PDF from the particle data numerically, which is less practical in large simulations.

The proposed algorithm is implemented as part of a Lagrangian particle tracking library, Grit [15]. Grit is a C++

library for Lagrangian particle tracking for massively hierarchical parallel simulations with performance portability to

diverse architectures such as multi-core or many-core CPUs and Graphic Processing Unit (GPU). The performance

portability is realized through Kokkos [16] library which provides top-level abstractions for arrays, memory spaces,

execution spaces and basic parallel kernels. All the computations in this study are performed on an Nvidia Pascal P100

GPU. This study focuses on the accuracy of the adaptive particle tracking algorithm, so the parallel performance will

not be discussed in detail.

The adaptive particle tracking algorithm is tested through a two-phase flow problem proposed by Garg et al. [13]

to analyze the resulting statistic errors, as well as to validate the parallel implementation. To quantify the statistical

errors and the effectiveness of different particle PDF schemes of the adaptive particle tracking algorithm, the calculated

particle density n and momentum source Sm are compared to the analytical solutions.
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Governing equations
The position equation and momentum equation for the dispersed phase in the Lagrangian coordinates are:

dxi

dt
= ui (1)

dui

dt
=

Fi

mi

, (2)

where i = 1, 2, 3, · · · , N (t) is the index of each physical particle and N (t) is the total number of physical particles; xi
is the position of the ith particle with ui being its velocity; mi is the mass of the particle and is kept the same for all

particles in this study; Fi represents the forces exerted on each particle and here only the drag force is considered:

Fi =
1

2
ρ f CD,i Ai |U f − ui |(U f − ui) . (3)

U f is the velocity of the Eulerian phase at the particle location; Ai is the frontal area of the particle; CD,i is the drag

coefficient according to the following empirical law:

CD,i =
24

Rei

(

1 +
1

6
Re

2/3
i

)

, (4)

where ρ f is the density of the Eulerian phase at the particle location. The particle Reynolds number Rei is defined as

Rei =
|U f − ui |di

νf
(5)

with νf being the local kinematic viscosity of the Eulerian phase and di being the particle diameter. A particle

momentum relaxation time is often used which reduces Eq. (2) to

dui

dt
=

(U f − ui)

τp,i
, (6)

τp characterizes the relaxation time for a particle to respond to the change of flow field. Another parameter with physical

significance is the Stokes number defined as St = τp/τf , where τf is the a characteristic time scale of the Eulerian phase.

A momentum source term for the Eulerian momentum equation from the Lagrangian phase is collected from the

particles by

Sm = −
1

∆V

Nl
∑

i=1

βiFi , (7)

for two-way coupling calculations, where ∆V is the volume of the computational cell enclosing the nearby Nl particles

and βi is the deposition ratio from the ith particle to the grid node at X.

In practice, computational particles are employed instead of real particles to save computational resources. Each

computational particle represents a group of physical particles with the same properties. The ratio between real and

computational particles is denoted as the weight wi and the total number of particles are conserved if

Nc
∑

i=1

wi = N , (8)

where Nc is the total number of computational particles. Accordingly, Eq. (7) becomes

Sm = −
1

∆V

Nc, l
∑

i=1

wi βiFi . (9)

For the traditional LE method [5], the weight wi is a constant. In the perspective of statistical formulations based on the

particle PDF, the weight wi can also be regarded as the sampling weight of the particle PDF. The position and velocity

equations for computational particles with a changing weight are the same as Eq. (1) and (2) except now it is looping

over Nc notional particles with changing weights.
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The corresponding evolution equation for the particle PDF f (x, u, t) is given by

∂ f

∂t
+

∂uk f

∂xk
+

∂

∂uk

(

Fk

m
f

)

= 0 , (10)

where

f (x, u, t) =

Nc
∑

i=1

wiδ(x − xi)δ(v − vi) , (11)

which integrates to the total number of particles N . The joint particle PDF described by Eq. (11) has a very large phase

space for all possible values so that it is impractical to directly design an algorithm based on it. Instead, we focus on

reconstructing the PDF of each variable for the group of particles within the computational cell/domain.

In the current study, an adaptive algorithm is proposed to evolve the number density of the sampling points nc and

the weight wi , by dividing and combining the computational particles.

The procedure of the adaptive algorithm is described as the following:

(1) Designate the computational cells that need to divide or combine particles. The cells can be manually selected or

depend on some parameters like grid resolution, turbulence length scale, sampling point density, etc;

(2) If the computational particles need to be divided, extract the statistical information from the existing computational

particles. The extracted information can be the parameters for a presumed PDF or a directly collected PDF for different

variables;

(3) Dividing each particle into Ndv,l particles: Deactivate the particles that are to be divided and initialize new

particles with a weight of wi/Ndv,l within each computational cell/domain according to the extracted particle PDF;

(4) Combining Ncb,l particles: Deactivate Ncb,l particles and apportion the weight and other conserved variables to

the remaining particles Nrm,l (= Nc − Ncb,l) in the computational cell/domain;

(5) Check the consistency of weight if necessary;

(6) Evolve all the particles (Solve the ordinary differential equations).

The combining scheme is simply an even redistribution of weight and other conserved scalars. The weight and other

conserved scalars are updated as:

w
′
i = wi +

∑Ncb, l

j=1
w j

Nrm,l

(12a)

φ′i =
1

w
′
i

*.,wiφi +

∑Ncb, l

j=1
w jφ j

Nrm,l

+/- , (12b)

where i = 1, 2, 3, · · · , Nrm,l is the index for the remaining computational particles within the domain/cell. The first

moment of the particle PDF, or the mean, is conserved.

For the particle dividing algorithm, two basic particle PDF extraction and redistribution schemes will be described,

i.e., the presumed PDF scheme and the directly collected PDF scheme. The Gaussian distribution is chosen for the

presumed PDF scheme.

For the presumed Gaussian PDF scheme, the mean and the standard deviation for the variable of existing particles at

the targeted computational cells/domains are calculated. The mean (or ensemble average) µ and the standard deviation

σ for a cell or domain is calculated from the local computational particles as:

µ = 〈φ〉 =
∑Nc, l

i=1
wiφi

∑Nc, l

i=1
wi

(13a)

σ =

√
√

√

Nc,l

(Nc,l − 1)

∑Nc, l

i=1
wi (φi − 〈φ〉)2

∑Nc, l

i=1
wi

. (13b)

Let ψ be the sampling-space variable and assume the variable φi follows a Gaussian distribution:

f (ψ; µ, σ2) =
1

√
2πσ2

e
− (ψ−µ)2

2σ2 . (14)
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Integrating the probability density function, we got the corresponding cumulative distribution function (CDF):

F (ψ) =

∫ ψ

−∞
f (φ; µ, σ2)dφ =

1

2

[
1 + erf

(

ψ − µ
√

2σ

)]
, (15)

where the error function is defined as

erf(u) =
2
√
π

∫ u

0

e−t
2/2dt . (16)

The value of φ′ for the newly generated particle can be found by

φ′ = µ +
√

2σerf−1(2R − 1) , (17)

where R is a random number uniformly distributed on [0.0, 1.0]. The presumed PDF scheme is more suitable for the

cell-based division and for applications with large vorticities where the computational particles tend to get stranded by

the eddies.

The other way is to directly numerically calculate the PDF of certain variable from the particle data first and then

redistribute the particles according to the extracted PDF. Within a computational cell or domain, the PDF of certain

variable φi bounded by ψmax and ψmin can be numerically extracted first. The minimum and the maximum for the

sampling points are found by

ψmax = max
φ∈Ω

(φ) (18a)

ψmin = min
φ∈Ω

(φ) , (18b)

where Ω = {φ1, φ2, · · · , φNc, l
} is the sampling space. After discretizing the range [ψmin, ψmax] into a finite number

(Nint ) of intervals ∆ψ, the PDF f (ψ j ) is ready to be calculated numerically as

f (ψ j ) =

∑Nc, j

k=1
wkφk

∑Nc, l

i=1
wiφi

, (19)

where the sum in the numerator is looping over the samples within the range of [ψ j, ψ j + ∆ψ]. The CDF is obtained by

numerically integrating the PDF as

F (ψ j ) =

Nint
∑

j=1

f (ψ j )∆ψ. (20)

The values of F (ψ j ) and ψ j need to be stored for inverse calculation in the next step. When reconstructing the PDF, the

new value φ′ is calculated by

φ′ = F−1(R). (21)

The numerical inverse calculation of F−1(R) is by interpolation of the F (ψ j ) and ψ j table and R is a random number

uniformly distributed on [0.0, 1.0]. The strength of the directly collected PDF scheme is in its flexibility. It can be

employed either for a cell-based division or a larger-domain-based division. However, it can be seen that the directly

collected PDF scheme is only accurate or efficient when the original PDF is smooth.

Implementation
The adaptive particle tracking algorithm described above is implemented in a performance portable particle tracking

library, Grit. Grit is programmed with the top-level abstractions provided by Kokkos for multi-dimensional arrays,

memory spaces, execution spaces and basic parallel kernels. All of the computational kernels are able to be accelerated

with the on-node parallelism by GPUs or multi-core, many-core CPUs.

A two-level data structure is employed to store and operate on particles. Particles are grouped together in clouds,

which are then managed as a dynamically linked list as shown in Fig. 1. The Cloud class is inherited from the list

container in the C++ standard template library (STL). The addition and deletion of particles are accomplished at the

cloud level while operations within each cloud are executed through parallel execution kernels on the devices. The list is

periodically compacted by merging clouds with low occupancy to keep the data structures and storage requirement

within bounds.
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Fig. 1 Sketch of the two-level data structure of the particles in Grit.

For the current implementation, the size of the particle array in a cloud is statically allocated. A flag is used for each

particle in the cloud to indicate whether the particle is active or inactive. For example, if Nc,l active particles in a cloud

are to be divided by a dividing ratio of Ndv,l . The Nc,l active particles in the original cloud will first be deactivated.

Then Ndv,l new clouds will be inserted to the linked list. Each cloud will activate Nc,l particles with the variables

initialized and the weight being 1/Ndv,l of the original weight. At the end of the algorithm or a time step, the whole list

will be compacted where the clouds with low occupancy will be merged together and the vacant cloud will be deleted.

The statistical calculations mentioned in this paper are programmed by parallel patterns. For example, counting

particles with a certain flag can be done by the parallel reduce pattern, integrating a PDF can be efficiently accomplished

by the parallel scan pattern, etc., which are provided by the Kokkos library. Yet, kernels for collecting values from

multiple particles to a shared mesh node have to be based on the atomic operations because of potential race conditions.

Problem description: two-phase flow with steady-state gas velocities
In order to evaluate the accuracy of the adaptive particle tracking algorithm, a problem of two-phase dilute particle

laden flow designed by Garg et al. [13] is studied. The Eulerian phase has a constant velocity field of

Ux (x, y) = U0 (22a)

Uy (x, y) = U0

(

1 − y

Ly

)

, (22b)

where 0 < x < Lx = L and 0 < y < Ly = L. The particles enter the computational domain from the left boundary

(x = 0) with a initial velocity of (U0, 0). Since the x–component of the gas phase velocity is the same as the initial

velocity of the particles in x–direction, there is no relative motion between the particles and the gas phase in the

x–direction. The two-phase flow is characterized by a Stokes number St = τf /τp = 0.8 with τf = Lx/U0 being the

flow-through time. The particles with the same size and density are injected at x = 0 according to a specified volume

fraction field:

α(0, y) =
αmax + αmin

2
+

αmax − αmin

2
sin(

2πy

Ly

) , (23)

with the αmax and αmin being 0.01 and 0.001, respectively. From the nonuniform distribution of the initial position of

the computational particles, it is expected that there will be regions downstream that have less computational particles if
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(a) (b)

Fig. 2 Contour plots of the analytical solutions of (a) the normalized number density n∗ and (b) the normalized

y–component of the momentum source term S∗m,y .

we choose to inject the particles with a same weight.

The analytical solutions in terms of normalized particle density n∗ = n/nmax and the y–component of the normalized

momentum source S∗m,y = Sm,y/Sm,y,max are given by Garg et al. [13] and shown in Fig. 2. The upper region in Fig. 2(a)

with smaller normalized particle density n∗ is expected to have larger statistical errors for the traditional LE method

since fewer particles are tracked locally.

The purpose of this test is to show the limitation of the traditional LE method and quantify the improvements from

adaptive particle tracking algorithm of different schemes. A range of numerical simulations with different mesh sizes,

particle numbers and different particle dividing schemes are studied to validate the algorithm and implementation

discussed in this paper. All tests are conducted on a Nvidia Pascal 100 GPU. An explicit fourth-order six-stage

Runge–Kutta method [17] is used for the time integration and a fourth-order Lagrange polynomial scheme is employed

for the forward interpolation of velocity field from the Eulerian phase to the Lagrangian particles. The momentum

deposition is by a Gaussian kernel, the deposition rate βi (Xj) in Eq. (7) and (9) from the particle i to the grid point Xj is

calculated by

gi (Xj ) = exp *,−
|xi − Xj |2

2h2
+- (24a)

βi (Xj ) =
gi (Xj )

∑Mg, l

k=1
gk

. (24b)

For a 2-D 16-point stencil, each particle i located at xi will deposit to a total number of Mg,l=16 grid nodes surrounding

it with the area of 3∆x × 3∆y. The parameter h is a filter length scale which is set to 1 for this whole test. The

normalization by Eq. (24b) is to conserve the momentum transfer, i.e.,
∑Mg, l

k=1
βi (Xk ) = 1. It is worth noting that this

numerical deposition works as a filter so that unless the grid of a problem is infinitely fine and the number of particles

tracked are infinitely large, the numerical solution of Sm,y will not be as same as the analytical solution.

Results and Discussion
Numerical results from the traditional LE method in terms of relative errors from two cases with different mesh sizes

and particle numbers are shown in Fig. 3. The relative errors of particle density and momentum source are calculated
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(a) (b)

(c) (d)

Fig. 3 Contour plots of relative error of number density ǫn (left) and the y–component of the momentum

source term ǫSm,y
(right) for two cases: 100 × 100, 0.5 million particles (top); 200 × 200, 1 million particles

(bottom).

from

ǫn =
n − nanalytical

nanalytical

(25a)

ǫSm,y
=

Sm,y − Sm,y,analytical

Sm,y,analytical

. (25b)

In the first case, Figs. 3(a) and 3(b), a total number of 0.5 million computational particles are tracked on a 100 × 100

uniform Cartesian mesh; In the second case, Figs. 3(c) and 3(d), a total number of 1.0 million computational particles

are tracked on a 200 × 200 uniform Cartesian mesh. The time step dt = 0.2τf /Nx is scaled with the grid size Nx to

ensure the consistency in the x–direction. At every time step, 1000 computational particles are injected according to the

volume fraction, Eq. (23). The statistical error is mainly due to the uneven distribution of computational particles in

the y–direction, and the number of sampling points on the y–direction are kept the same for both cases even though

the total number of particles injected are different. The relative errors of particle density ǫn for these two cases are

shown in Figs. 3(a) and 3(c) and the relative errors of the y–component of the momentum source ǫSm,y
are shown in

Figs. 3(b) and 3(d). The scales of the relative errors (0 to 0.8 for ǫn and 0 to 0.3 for ǫSm
) are kept the same for the
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(a) (b)

Fig. 4 Contour plots of (a) relative error of number density ǫn and (b) the y–component of the momentum

source term ǫSm,y
for the case of 100 × 100, 0.5 million particles with Scheme I with each particle divided into

32 particles at (x = 0.1, 0.5 < y < 1.0).

ease of direct comparison. For both cases, the relative errors for both the particle density and momentum source are

found to be nonuniform, with much larger relative errors at the upper region (0.5L < y < L). This is simply due to less

computational particles being injected at the upper side of the inlet. Comparing the results between different meshes,

the convergence problem of traditional LE method is visualized. The relative error for both the particle density and

momentum source in the fine mesh (200 × 200) in the whole computational domain is significantly higher than that

from the coarse mesh (100 × 100). In real applications, where the velocity of the Eulerian phase is numerical calculated,

a convergence of numerical solutions for the Eulerian phase with respect to finer meshes is expected. However, the

solution might not converge due to this large statistical errors of the Lagrangian phase for coupled cases. This is the

fundamental motivation for the development of a better particle tracking algorithm.

To solve this problem, two different schemes for the adaptive particle tracking algorithm are to be tested. Both

schemes are to divide the particles at the upper region (0.5L < y < L). For the first scheme (Scheme I), the positions

of the newly generated particles are redistributed uniformly within the computational cell where the original particle

resides. The y–component of the particle velocity uy is calculated from the presumed Gaussian distribution as described

in the section for governing equations.

The same simulation setup for the 100 × 100 mesh, 0.5 million particles case is employed except that the particles

injected into the upper inlet are now divided at (x = 0.1L, 0.5L < y < L) into 32 particles with Scheme I. Surprisingly,

the improvement is found to be very limited even with a large division ratio of 32 as shown in Fig. 4. For the relative

error of the particle density n shown in Fig. 4(a), the Scheme I is found to be able to reduce the errors to a certain

level. However, in terms of the relative error of the momentum source Sm,y as shown in Fig. 4(b), there is almost

no improvement. This indicates that the reconstructed velocity field from a presumed Gaussian distribution is not

accurate. This can be seen from the velocity equation of the Eulerian phase. From Eq. (22b), it is clear that the velocity

distribution of the particles should be monotonically decreasing with the increasing of y. So to presume a Gaussian

distribution for uy is not suitable for this example. Another reason for the ineffectiveness of Scheme I is because, the

area of deposition kernel (3∆x × 3∆y) is much larger than that of the computational cell used (∆x × ∆y).

Based on the analysis of the results of Scheme I, it is found that (1) the particles need to be redistributed in a

larger domain other than within each cell; and (2) the velocity distribution for the newly-generated particles needs to

be improved by using the information from the Eulerian phase. Thus in Scheme II, the following is employed: The

PDF of y–location of the particles is extracted for a larger domain other than for each cell. Then the y–location of

the newly-generated particles are initialized according to the stored PDF. The y–component of the particle velocity is

presumed to be linear which is indicated by the distribution of Uy of Eulerian phase. The slope b and the intercept

a are needed, which can be extracted from the particles through the weighted least squares method to minimize
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(a) (b)

(c) (d)

Fig. 5 Contour plots of (a) relative error of number density ǫn, (b) the y–component of the momentum source

term ǫSm,y
for the case of 100× 100, 0.5 million particles with Scheme II with each particle divided into 4 particles

at (x = 0.0, 0.5L < y < L), (c) relative error of number density ǫn, (d) the y–component of the momentum source

term ǫSm,y
for the case of 100 × 100, 2.0 million particles with traditional LE method.

∑Nc, l

1
wi[φi − (a + bxi)]

2, i.e.,

b =

∑Nc, l

i=1
wi xiφi − (

∑Nc, l

i=1
wi xi)(

∑Nc, l

i=1
wiφi)/

∑Nc, l

i=1
wi

∑Nc, l

i=1
wi x

2
i
− (

∑Nc, l

i=1
wi xi)2/

∑Nc, l

i=1
wi

(26a)

a =

∑Nc, l

i=1
wiφi

∑Nc, l

i=1
wi

− b

∑Nc, l

i=1
wi xi

∑Nc, l

i=1
wi

. (26b)

If the weight is a constant for all samples, Equation (26) reduces to the standard form [18]:

b =

∑Nc, l

i=1
xiφi − (

∑Nc, l

i=1
xi)(

∑Nc, l

i=1
φi)/Nc,l

∑Nc, l

i=1
x2
i
− (

∑Nc, l

i=1
xi)2/Nc,l

(27a)

a =

∑Nc, l

i=1
φi

Nc,l

− b

∑Nc, l

i=1
xi

Nc,l

. (27b)
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(a) (b)

(c) (d)

Fig. 6 Contour plots of (a) relative error of number density ǫn, (b) the y–component of the momentum source

term ǫSm,y
for the case of 200× 200, 1.0 million particles with Scheme II with each particle divided into 4 particles

at (x = 0.0, 0.5 < y < 1.0), (c) relative error of number density ǫn, (d) the y–component of the momentum source

term ǫSm,y
for the case of 200 × 200, 4.0 million particles with traditional LE method.

The value of φ′ for the newly generated particle can be found by

φ′ = bx + a , (28)

x is the y-coordinates of the particle for this case.

The results with Scheme II for a domain of (x = 0.0, 0.5L < y < 1.0L) with the division ratio of 4 for the 100× 100

mesh are shown in Figs. 5(a) and 5(b). The computational particles are divided and redistributed in the whole region of

(x = 0.0, 0.5L < y < L) instead of at the cell basis. Only one PDF of y for this region is extracted and reconstructed at

each time step. Compared with the results of the LE method without division shown in Figs. 4(a) and 4(b), the relative

errors of particle density and momentum source are significantly reduced in the domain of (0.5L < y < L) where the

particles are divided after injection. The results for 100 × 100 mesh with 2 million particles are shown in Figs. 5(c) and

5(d). The relative errors in the upper region are reduced to the same level as that with four times more particles for the

traditional LE method.

Similar comparison is made for the 200 × 200 mesh as shown in Fig. 6. The results with Scheme II for a division

domain of (x = 0.0, 0.5L < y < L) with the division ratio of 4 are shown in Fig. 6(a) and 6(b). The results for 200× 200

11



(a) (b)

(c) (d)

Fig. 7 Contour plots of (a) relative error of number density ǫn, (b) the y–component of the momentum source

term ǫSm,y
for the case of 100 × 100, 0.5 million particles, (c) relative error of number density ǫn, (d) the

y–component of the momentum source term ǫSm,y
for the case of 200 × 200, 1.0 million particles. Both are run

with Scheme II with each particle divided into 4 particles at (x = 0.5L, 0.56L < y < L).

mesh with 4 million particles are shown in Figs. 6(c) and 6(d). Comparing the results from the traditional LE method,

Figs. 3(c) and 3(d) for the 200 × 200 mesh and the results with the adaptive particle tracking algorithm with Scheme II

for the same mesh, Figs. 6(a) and 6(b), the larger statistical errors in the upper region of the computational domain due

to a smaller sampling density nc are significantly reduced. The results of the Lagrangian phase are converging with the

refinement of the mesh when applying the adaptive particle tracking algorithm with Scheme II.

For the previous two cases, the particles are divided right after the injection with Scheme II. Since the particles are

initialized with uy = 0, the velocity of the redistributed particles are kept zero. The improvement is solely because of the

redistribution of the particles in the y–direction according to the extracted PDF for y–location. For the next two cases, the

division domain is then changed to (x = 0.5L, 0.56L < y < L) so that the uy needs to be redistributed with the presumed

linear distribution of Scheme II. The results with Scheme II for a division domain of (x = 0.5L, 0.56L < y < L) with

the division ratio of 4 are shown in Figs. 7(a) and 7(b) for the 100 × 100 mesh and Figs. 7(c) and 7(d) for the 200 × 200

mesh. Both the ǫn and ǫSm,y
are much smaller in the domain of (0.5L < x < L, 0.56L < y < L) for both meshes

compared with that from the traditional LE method shown in Fig. 3. This proves that the local statistical error can

be controlled if more computational particles can be reconstructed from the particle PDF. This adaptiveness of the

12



proposed algorithm is crucial for the potential applications to problems with AMR at the mesh refinement regions.

Conclusions
An adaptive particle tracking algorithm for reducing the statistical error of the LE method was developed and

validated. The algorithm was based on locally reconstructing the particle PDF of the Lagrangian particles. Two schemes

were employed for an example of a two-phase particle-laden flow. The effectiveness of these two schemes was quantified

by directly comparing to the analytical solution. It was found that the choices of schemes for different variables are

critical for the effectiveness of the algorithm. Although the theory of presenting the physical system with particle PDF

formulation is well established, there are still many issues at the algorithm level. It is found that to repopulate particles

at the cell level may not be always good if the source of the statistical error is rooted in conserving the particle PDF for a

large sampling space covering a larger domain. Another observation is that the information of the Eulerian phase can be

very helpful in determining the specific schemes or parameters that are to be used for the adaptive particle tracking

algorithm. Future studies will be focused on further developing and applying the adaptive particle tracking algorithm to

multiphase flows with AMR.
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