This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LOCS.2018.2885976, IEEE Letters of

the Computer Society

The TENNLab Exploratory Neuromorphic
Computing Framework

James S. Plank, Member, IEEE, Catherine D. Schuman, Member, IEEE, Grant Bruer, Student
Member, IEEE, Mark E. Dean, Fellow, IEEE, and Garrett S. Rose, Member, IEEE

Abstract—Spiking, neuromorphic computing systems are in a period of active exploration by the computing community. While they
feature computational expressiveness beyond both von Neumann computing models and feed-forward neural networks, they are also
challenging to design and program. The TENNLab exploratory neuromorphic computing framework is a software infrastructure, soon to
be open-source, whose goal is to enable potential users of spiking, neuromorphic computing systems to develop applications and
evaluate computing architectures, and for architecture researchers to develop and evaluate their architectures with a variety of
applications. In this letter, we present the software architecture of the TENNLab framework.

Index Terms—Neuromorphic computing, spiking recurrent neural networks, machine learning, beyond Moore’s Law.

1 INTRODUCTION

ITH the demise of Moore’s Law and the success
Wof Deep Learning has come a renewed interest in
exploring unconventional, but powerful computing archi-
tectures. One class of these architectures is termed “Neuro-
morphic Computing Systems,” because of their inspiration
from the human brain. Neuromorphic computing systems
process temporal spiking events in place of the fetch-and-
execute cycle of a von Neumann computer, or static assign-
ment of input values in a Deep Learning system. The spikes
have values (amplitudes) and are processed by a fabric
of neurons, which accumulate values from their incoming
spikes, until their accumulators reach predetermined thresh-
olds, at which point they produce spiking “fire” events.
Neurons are connected by synapses, which carry outgoing
spikes from one neuron to be applied as incoming spikes to
another neuron. While there are additional features which
can enrich a neuromorphic computing system, such as leaky
neurons or plastic synapses, all spiking neuromorphic com-
puting systems share this fabric of neurons, synapses and
spikes.

Neuromorphic computing systems feature a high
amount of parallelism, and their computing power is
rich, being termed “Super-Turing” by Cabessa and Siegel-
mann [1]. As an example, certain classification applications
have been developed on neuromorphic systems that achieve
comparable accuracy to Deep Learning systems, but with
over 100 times fewer components [17]. Additionally, neu-
rons and synapses are typically simple to build. For exam-
ple, recent research projects have explored memristors, bio-
memetic substrates and optoelectronics, among other de-
vices, to implement neurons and synapses in neuromorphic
processors [3], [13], [19]. A more complete listing of neuro-
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morphic hardware research projects has been provided by
Schuman et al in 2017 [18]. To summarize, neuromorphic
processors are attractive as low-power devices with high
computational complexity. Application areas often focus on
real-time control, IOT, or data processing at a data source, as
these areas feature the requirements of complex processing
and low power.

The biggest challenge with neuromorphic systems is
how to program them. There have been both research and
commercial products which employ the Deep Learning
approach of programming with backpropagation [6], [14];
however, these approaches limit the networks to being feed-
forward, which jettisons the computational advantages of
highly recurrent networks. Current exploratory approaches
for programming recurrent neuromorphic systems include
competitive algorithms [20], reservoir computing [7], ge-
netic algorithms [21], spike timing-dependent plasticity [8]
and custom algorithm design [11], [12]. Unlike Deep Learn-
ing, which has a host of programming environments such
as TensorFlow, Microsoft Cognitive Toolkit and Keras, there
are no general software environments for neuromorphic
computing. PyNN [5] is a general Python-based interface
to neuromorphic systems which has been inspirational to
our work. We intend to explore PyNN when we develop
Python front-end interfaces to our framework. The works
cited above all employ custom-built software.

In this paper, we describe the TENNLab exploratory
neuromorphic computing framework. The framework pro-
vides interfaces and software support for the development
and testing of both neuromorphic applications and neu-
romorphic devices. The programming approach utilizes a
genetic algorithm called Evolutionary Optimization of Neuro-
morphic Systems (EONS) [16], [21], which requires minimal
support from the application and the device, but otherwise
is a general purpose approach. The framework has already
been employed to develop over twenty neuromorphic ap-
plications and six neuromorphic devices. One feature of the
framework is that applications and devices program to a
general model, and therefore applications can run on all
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architectures, and architectures can support all applications.
In this paper, we describe the software architecture of the
framework. We plan to support the framework as open
source software, starting in 2019, and welcome collaborators
who wish to explore neuromorphic applications and devices
within the framework.

2 THE STRUCTURE OF AN APPLICATION

Figure 1 shows the main loop of an application running
on a neuromorphic device. The application communicates
its state, which is composed of values, to the device. This
communication is aided by a module in the framework
which converts values to spikes and back again. The device
accepts input spikes and then processes for a period of time,
producing output spikes. These spikes are converted to val-
ues which are then interpreted as input to the application,
and the loop continues until the application is complete.

State Run

Application O Framework @

Input

Fig. 1. The main loop of an application running on a neuromorphic
device within the TENNLab framework. Applications express states and
interpret inputs using values, whereas the devices process spikes.

The framework supports many encodings of values to
spikes, including the following:

o Direct encoding of the value as spike amplitude.

e Binning, by using multiple input neurons for a
value, and partitioning the values into bins, each bin
going to a specific input neuron.

o Rate Coding the value into multiple spikes, where
higher values are represented with more spikes.

e Stochastic Logic, where values are converted into
spike trains, and the decision to spike at each point
along the train is assigned randomly with a proba-
bility based on the value.

o Temporal Coding, where values are converted into
two spikes, and the interval between the spikes is
determined by the value.

o Combinations of Direct, Binning and Rate Coding.

The framework supports the same encodings for output,
except there is no direct encoding, because a neuron or
synapse’s spike value typically does not change. For Bin-
ning, multiple output neurons partition each output’s value
into bins, and the bin that spikes the most is used as the
output. Similarly with Rate Coding, the number of spikes
determines the output value.

The encodings and their various parameterizations may
be assigned by the application at runtime.

2.1 An Example Application - Sense-and-Avoid

To help guide the explanation, we present an example
TENNLab application, which we call Sense-and-Avoid. This
is a control application, where a vessel is traveling through
space, equipped with a fixed array of LIDAR sensors to de-
tect obstacles. The vessel starts traveling forward, and may

boost its power by a fixed amount along any of its (z,y, )
axes. The space through which it travels is populated by
moving objects. The goal of a neuromorphic device that
controls the vessel is to have it to travel as far forward as
it can, while avoiding obstacles and staying within a certain
threshold along the y-axis. Figure 2 shows a screen shot of
the application.

Fig. 2. A screen shot of the Sense-and-Avoid application, where a vessel
equipped with LIDAR sensors travels through space (toward the reader),
avoiding moving obstacles.

2.2 Application Software Components

Figure 3 shows the software components that an application
must implement within the TENNLab framework, and how
the components fit in with the other software modules. The
application must implement three libraries and two driver
programs. The framework implements a separate driver
program for training, using the application’s libraries. The
arrows in the figure denote compilation dependencies of the
various drivers and libraries.
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Fig. 3. TENNLab software modules from the application perspective.

The first application library is named Engine. It imple-
ments functionality specific to the application that is inde-
pendent of anything neuromorphic. In the case of Sense-
and-Avoid, this library implements the physics behind the
simulation, the LIDAR sensors and the moving obstacles. A
Standalone Driver program must also be written so that the
application may be executed and tested independent of any
neuromorphic components. In the case of control applica-
tions like Sense-and-Avoid, a visualization component may
be included.

The second library is named Neuro. It performs any
interaction that the application may have with a neuromor-
phic device, such as sending state (see Figure 1), receiving
input and instructing the device to run. As depicted in
Figure 3, the application interacts with an App Support
module within the framework, which performs the relevant
input/output encodings and interactions with the device.
For Sense-and-Avoid, the state is composed of the read-
ings from the LIDAR array, and the neuromorphic device
controls which of the six directions (if any) to boost. The
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specification of the neurons, synapses and their relevant
parameters is in the form of a network serialization, which
may be stored in a file or communicated as a character
string. A Neuromorphic Driver program must be written,
which loads one of these networks onto the device, and
runs the application using the device. The network has been
created by EONS or by another means of machine learning.

The last application library is named EONS. This library
must implement a fitness function, which receives a network
from the framework’s EONS Driver, and then runs training
tests using the Neuro library. From the tests it returns a
fitness score, which the EONS Driver uses to create further
networks for the application. For Sense-and-Avoid, the fit-
ness function is composed of several independent runs of
the application, each time with a different seed. Each run
ends after a time threshold, or when the vessel collides with
an object or goes out of field. The runs are scored on their
success in getting to the goal, and scores are averaged for a
resulting fitness value.

All three libraries must be written to facilitate mul-
tithreading from the EONS Driver, which can perform
multiple fitness runs in parallel. To do so, each library must
be partitioned into read-only state that may be shared across
fitness runs, and instance-only state that is specific to an
individual fitness run. In that way, EONS may leverage all
of the cores (and hyperthreads) of a given machine.

3 DEVICE SOFTWARE COMPONENTS

Figure 4 shows the software components from the perspec-
tive of a device. The device module must implement three
libraries that interact with the framework. The first, named
Network, manages the neuromorphic networks that are sent
to the device by the application. Network management tasks
include loading networks onto the device, and serializing
networks for storage. This library is necessary so that the
applications and the framework do not need to understand
any device specifics in order to load and store networks.
Device

Application Framework
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Fig. 4. TENNLab software modules from the perspective of a device.

Hardware

The second library is named Device, and manages the
interactions of the neuromorphic device and the framework.
These interactions include processing input spikes, com-
municating output spikes, and having the device run for
a specified number of cycles. The spikes are specified by
the framework as having floating point values between -1
and 1, which are applied at floating point times relative to
the current time. It is up to the Device library to convert
these numbers to the spike and time units specific to the
device. For example, the memristor-based neuromorphic
device mrDANNA converts the numbers to discrete values
and the times to discrete cycles [2]. In contrast, the NIDA
device allows for the floating point values to be sent directly
to the device [17].

The Device library is the interface to the actual neuro-
morphic device, whether implemented in simulation or in
hardware. For EONS, simulation is typically preferable, to
leverage available computing resources [15]. However, for
some devices, like Intel’s Loihi (as of this writing), hardware
is the only available option [4].

The last library is named EONS. It interfaces with the
framework’s EONS Driver, by implementing conversions
between EONS’ representation of a graph and the networks
supported by the device (please see the next section).

4 EONS

The EONS Driver is a program within the TENNLab frame-
work, whose goal is to train networks for a given application
and device. EONS first reads parameters that are specific to
an application (e.g., number of inputs and outputs) and to
a device (e.g., dimensionality, size), and then it generates an
initial population of random graphs according to those pa-
rameters. These graphs are the entities on which EONS acts,
rather than on networks that are specific to a device. The rea-
son that EONS uses graphs is discussed below. The graphs
are then converted into networks for the given device by
the device’s EONS Library. The networks are then passed
to the application’s EONS Library so that the application
can determine the fitness of each network. The networks
are converted back to graphs, and EONS then orders the
graphs by their fitnesses. It generates the next population
by selecting graphs of the ordered population and having
them reproduce, either by duplicating them, merging them,
or having them crossover. Following reproduction, they
may mutate as well. These operations are diagrammed in
Figure 5. The resulting population is converted to networks,
and the process repeats, either until a desired fitness is
achieved, or the EONS process is terminated due to time.

Crossover

Mutation

Merge

Fig. 5. The genetic operators of EONS, which transform one population
of graphs into another.

EONS works on a general graph representation of a
neuromorphic network. The graph contains neurons (nodes)
and synapses (edges). Each neuron may have any number
of parameterized values, as may each synapse. The entire
graph may have parameterized values as well. These pa-
rameters are defined by the device at the startup to EONS.
EONS then applies its genetic operators to the graph struc-
ture (the neurons and synapses) and to all of the parameters.
In this way, EONS does not have to concern itself with the
meaning of the various parameters. For example, neurons
can have leak rates and plasticity parameters, and these are
optimized by EONS just like any other parameter (such as
the threshold) of a neuron.
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The decision to have EONS work on a general graph
representation was made from experience. At first, the
genetic operators had to be written as part of the device
module, which allowed them to be customized for each
device. This led to very poor genetic operations, because
device module authors were not experienced with genetic
algorithms, and either wrote very limited genetic operators,
or copied them from another device’s module. With the
general graph representation, device module authors only
have to write conversion routines for their network to and
from the general graph representation. The “smarts” of the
genetic operators are then the purview of the framework.
This allows for genetic algorithm features to be written
once, within the framework, and apply to all devices im-
plemented within the framework.

Because the EONS process may be computationally ex-
pensive, the framework includes a distributed EONS driver
that runs over MPI on a cluster environment. We employed
this to do a 24-hour EONS run for a robot surveillance
application on 18,000 cores of the Titan supercomputer at
Oak Ridge National Laboratory [9].

5 DISCUSSION

The primary advantage of the TENNLab framework is its
generality. EONS is capable of operating with a variety of
devices, architectures, and applications without changing
its underlying algorithm. As such, it is easy to apply to
new neuromorphic implementations as well as new applica-
tions. This reduces the burden on both neuromorphic hard-
ware developers and neuromorphic application developers.
Additionally, EONS can be used to investigate the initial
capabilities of a hardware platform without requiring the
hardware developer to have a broader understanding of
training or learning methodologies, either those inspired by
machine learning or those inspired by neuroscience. This is
important for a software framework, because much of the
neuromorphic community is made up of researchers who
may not have a background in those fields.

The framework can be applied to explorations of low-
power neuromorphic devices for IOT and edge computing.
One example is the robot surveillance application men-
tioned above, where device and robotic simulators were
employed to train a network for the DANNA neuromorphic
device. The network was loaded onto a battery-powered
robot and FPGA-implemented DANNA device, successfully
performing an autonomous room surviellance, exclusively
under neuromorphic control [9]. This demonstrates a work-
flow for neuromorphic processors in the field, that incorpo-
rates the TENNLab framework.

6 STATUS

The software framework is written entirely in C++. Its size
is roughly 15,000 lines of code. We have developed over
20 applications in the framework, mostly in the domain
of control applications; however, we also have general-
purpose applications for classification and for event de-
tection in time-series data. There are six devices currently
implemented within the framework, with hardware imple-
mentations on FPGA/VLSI [10], memristors [15], oil-lipid

bimembranes [13], and optoelectronics [19]. The last of these
is important because the device module was written by
researchers at NIST and not by the TENNLab team. We have
funding from Intel to implement a device module for their
Loihi neuromorphic processor [4].

The application modules range from 1,000 to 6,000 lines
of code, and the device modules average around 5,000
lines of code. The framework contains a simple application
(streaming exclusive-or) with a long tutorial walk-through,
to aid those developing new applications, and a simple
device (NIDA [17]), again with a long tutorial walk-through,
to aid those developing new devices. We plan to post the
code as open source in 2019.

We are actively researching all facets of the framework,
including the effectiveness of other encoding techniques,
such as rank order and sparse population encoding. One ad-
vantage of the EONS approach is that it composes well with
other learning methodologies, such as unsupervised and/or
online learning. We are undergoing two explorations in
this arena. The first inserts an unsupervised autoencoder
between the application’s state and the device’s inputs.
The second explores the effectiveness of STDP as an un-
supervised, online learning technique to “hone” the EONS-
produced networks, and allow them to adapt.

7 CONCLUSION

We have described the software architecture of the
TENNLab exploratory neuromorphic computing frame-
work. The framework’s goal is to support research on appli-
cations and devices for spiking, neuromorphic computing
systems. The approach to programming applications is a
genetic algorithm called EONS, which requires minimal
application and device support, but is otherwise general
purpose. We plan to post the framework as open source in
2019, and welcome collaboration.
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