

SANDIA REPORT

SAND2015-9816

Unlimited Release

Printed October 2015

Advanced SMRs using S-CO₂ Power Conversion with Dry Cooling

Bobby Middleton

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Sandia National Laboratories

UNLIMITED RELEASE

Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov
Online ordering: <http://www.osti.gov/scitech>

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Rd
Alexandria, VA 22312

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.gov
Online order: <http://www.ntis.gov/search>

UNLIMITED RELEASE

SAND2015-9816
Unlimited Release
October 2015

Advanced SMRs using S-CO2 Power Conversion with Dry Cooling

Bobby Middledon
Advanced Nuclear Concepts
Sandia National Laboratories
P.O. Box 5800
Albuquerque, New Mexico 87185-MS1136

Abstract

This report concludes the LDRD entitled “Advanced SMRs using S-CO₂ Power Conversion with Dry Cooling.” The goal of this project was to demonstrate the feasibility of using sCO₂ as the working fluid in a dry-cooled natural circulation loop. The reason for doing this is to demonstrate that such a loop could be utilized in small modular reactors (SMRs) as a method for (a) passively removing decay heat from the reactor and (b) cooling the reactor without using the copious amounts of water needed for wet-cooled reactors. The dry-cooling aspect of this work is possible due to the working conditions of a sCO₂ Brayton power conversion cycle.

The loop was designed, built, and operated over the three-year life of the LDRD project. This report outlines some of the key accomplishments and some of the future work that we are continuing to try to complete in the future.

A more comprehensive report will be completed and submitted in the Fall of 2015.

UNLIMITED RELEASE

UNLIMITED RELEASE

CONTENTS

1. Project Purpose	7
2. Summary of Accomplishments.....	9
3. Significance.....	11

UNLIMITED RELEASE

UNLIMITED RELEASE

ANNUAL REPORT TEXT

1. PROJECT PURPOSE

Small modular reactors (SMRs) continue to be proposed around the world to meet ever-increasing electrical energy needs, particularly in areas where large-scale transmission is not feasible. The DOE has recently announced a program of \$1 billion aimed at licensing of light-water SMRs, demonstrating a high priority on this technology.

Light-water SMRs are promising in the near term, however they require a large nearby water source for evaporative cooling, and ultimately suffer from the same waste issues and shutdown heat removal concerns as their larger predecessors. This proposal identifies two ways in which supercritical-CO₂ (S-CO₂) is uniquely capable of addressing these problems:

First, recent studies have shown that the S-CO₂ power cycle is strongly compatible with dry-air cooling. Because the cycle is optimized to reject heat around 88°F, its efficiency does not degrade sharply with relatively high ambient temperatures, unlike steam plants. Turbomachinery size and capital cost both overwhelmingly favor S-CO₂ over steam. Therefore the dry-cooled S-CO₂ cycle is advantageous even when coupled to light-water SMRs.

Furthermore, next-generation SMRs will undoubtedly be fast reactors cooled by high-temperature gas or sodium, capable of operating 20 years or more without refueling. Their used-fuel value would be high, advancing reprocessing and reducing waste volume. S-CO₂ itself can be used effectively as the primary reactor coolant for a direct-cycle turbine. CO₂ fluid properties near the critical point promote large natural circulation flowrates, allowing for passive decay heat removal for safe shutdown during accident scenarios.

This study will be aimed at experimentally investigating these two thermal-fluid phenomena.

This project is LDRD-funded because it advances state of the art, but is beyond the investment horizon for other customers. We are developing models and correlations of CO₂ fluid properties in the highly-compressible region near the critical point. As air-cooled natural circulation of supercritical fluids has not been experimentally investigated, this work is well within the scope of LDRD projects.

UNLIMITED RELEASE

UNLIMITED RELEASE

2. SUMMARY OF ACCOMPLISHMENTS

We designed, built, and operated an air-cooled natural circulation loop with supercritical carbon dioxide (sCO₂) as the working fluid. In June of 2014, we accomplished the first known controlled air-cooled natural circulation of sCO₂. We have since modified the loop to cool it with water. We ran the loop, collected data, and analyzed the data. We have modeled the loop in Relap5 and in FUEGO (computational fluid dynamics codes). From these models, we have calculated heat transfer coefficients, Nusselt number, and Grashof numbers, and developed correlations for these dimensionless parameters.

One presentation has been given and two others are under development. Two journal articles outlining the results are also under development.

We have demonstrated the potential of sCO₂ as a working fluid in an air-cooled natural circulating decay-heat-removal loop for nuclear power. Calculations are ongoing to scale our results to that needed for realistic power operations. These calculations will be detailed in a report that is forthcoming.

UNLIMITED RELEASE

UNLIMITED RELEASE

3. SIGNIFICANCE

This project demonstrates the potential to place energy production in arid regions. For the US, the importance of this is most obvious in the southwestern portion of the country. However, water for power production is becoming scarcer and the water that is available is becoming more expensive. At some point the cost of water will become prohibitive and the air cooling capabilities demonstrated in this project will be a means of producing power without the need for water as a source of cooling.

This project has also demonstrated that control of naturally circulated sCO₂ is feasible.

UNLIMITED RELEASE

UNLIMITED RELEASE

Distribution

1	MS0359	D. Chavez, LDRD Office	1911
1	MS0359	D. Chavez	dchavez@sandia.gov (electronic copy)
1	MS1136	Gary E. Rochau	gerocha@sandia.gov (electronic copy)
1	MS1136	Bobby D. Middleton	bmiddle@sandia.gov (electronic copy)
1	MS0899	Technical Library	9536 (electronic copy)

Sandia National Laboratories