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Abstract Physcomitrella patens is a model bryophyte rep-
resenting an early land plant in the green plant lineage. This
organism possesses many advantages as a model organism.
Its genome has been sequenced, its predominant life cycle
stage is the haploid gametophyte, it is readily transform-
able and it can integrate transformed DNA into its genome
by homologous recombination. One limitation for the use of
P. patens in photosynthesis research is its reported inability
to grow photoheterotrophically, in the presence of sucrose
and the Photosystem II inhibitor 3-(3,4-dichlorophenyl)-
1,1-dimethylurea, which prevents linear photosynthetic
electron transport. In this communication we describe the
facile isolation of a P. patens strain which can grow pho-
toheterotrophically. Additionally, we have examined a
number of photosynthetic parameters for this strain grown
under photoautotrophic, mixotrophic (in the presence
of sucrose) and photoheterotrophic conditions, as well as
the 3-(3,4-dichlorophenyl)-1,1-dimethylurea-inhibited state.
The ability to grow P. patens photoheterotrophically should
significantly facilitate its use in photosynthetic studies.

Introduction

The moss Physcomitrella patens is an important devel-
oping model organism. As a bryophyte, it represents a
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non-vascular land plant, the earliest representatives of
which were present at least 350—400 million years ago
(Hueber 1961). The predominant life cycle stage of these
organisms is the haploid gametophyte. The P. patens
genome has been sequenced (Rensing et al. 2008), the
organism is transformable and can integrate exogenous
DNA into its genome via homologous recombination
(Schaefer and Zryd 1997). The ability to specifically target
genes for knockout and replacement has proved a very use-
ful characteristic of this organism. Recently, P. patens has
been used in an increasing number of studies examining
plant evolution, physiology and metabolism (Cove 2005;
Cove et al. 20006).

One limitation on the use of P. patens in the field of
photosynthesis is its reported inability to grow hetero-
trophically (Thornton et al. 2005), i.e. in the absence of
linear chain photosynthetic electron transport when sup-
plied with a carbon source. These authors observed no
growth of P. patens when gametophytic explants were
transferred to media containing 3-(3,4-dichlorophenyl)-
1,1-dimethylurea (DCMU) and 0.5 % glucose. They also
tested a number of other carbon sources, none of which
could apparently support heterotrophic growth. The two
organisms which have proved, arguably, among the most
useful for photosynthesis research, are the cyanobacterium
Synechocystis sp. PCC 6803 (henceforth Synechocystis
6803) and Chlamydomonas reinhardtii (henceforth Chla-
mydomonas); both can utilize exogenous carbon sources
to support growth in the absence of linear chain electron
transport. Synechocystis can be cultured photohetero-
trophically in the presence of the Photosystem II (PS II)
herbicide DCMU when supplied with glucose (Williams
1988). This has allowed the isolation of numerous PS II
mutants (Williams 1988; Vermaas et al. 1987; Bricker
et al. 1998; Pakrasi et al. 1989). This organism can also
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grow very slowly via light-activated heterotrophic growth
on glucose in darkness if supplied with a brief pulse of
blue light on a daily basis (Anderson and MclIntosh 1991).
Chlamydomonas can grow heterotrophically in the dark
when supplied with acetate (Rochaix 1987). Mutants com-
pletely lacking PS II have also been isolated and character-
ized in this organism (de Vitry et al. 1989). Consequently,
the ability to grow heterotrophically allows the genetic
manipulation of genes involved in photosynthesis and the
recovery of otherwise lethal mutations in the photosyn-
thetic apparatus.

Interestingly, a number of reports have indicated that
P. patens can utilize sucrose to supplement photosyn-
thetic growth. For instance, gametophytic tissue grown
in the presence of sucrose grows more rapidly than in
its absence (Frank et al. 2005). Additionally, if sucrose
is provided under dark growth conditions, the growth of
caulonemal tissue, which contains few chloroplasts, is
enhanced, while the growth of chloronemal tissue, which
contains abundant chloroplasts, is suppressed (Cove
et al. 1978). Under low light intensities or very short day
lengths the presence of sucrose enhances the growth rate
of chloronemal tissue (Cove et al. 1978). Finally, putative
sucrose uptake transporters are present in the P. patens
genome. Two type IIA and three type III sucrose trans-
porters appear to be present, although their subcellular
localization and physiological roles have yet to be deter-
mined. It has been suggested that sucrose uptake trans-
porters may be important for scavenging sucrose from the
environment in non-vascular plants (Reinders et al. 2012).
All of these studies seem to indicate that some capacity
for the utilization of exogenously supplied sucrose is pre-
sent in wild-type P. patens.

Materials and methods
Plant materials and growth conditions

Physcomitrella patens, strain Gradsen was maintained
on agar plates containing BCD medium (Cove et al.
2009) + 1 % sucrose prior to the initiation of these
experiments. For the examination of growth under dif-
ferent culture conditions, 1.5-2 mm gametophytic
explants were transferred to agar plates containing BCD
medium (photoautotrophic growth), BCD medium + 1 %
sucrose (mixotrophic growth), BCD medium + 1 %
sucrose + 10 uM DCMU (photoheterotrophic growth)
or BCD medium + 10 puM DCMU (PS IlI-inhibited).
The growth temperature was 22 °C with continuous
illumination (60 wmol photons m~2 s~1). Except where
indicated, plants were grown for 5-12 weeks prior to
characterization.
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Fluorescence and spectroscopic measurements

For all of the fluorescence and spectroscopic measurements,
gametophytes were dark-incubated for 5 min before ini-
tiation of the experiments. OJIP fluorescence induction and
non-photochemical quenching (NPQ) measurements were
performed using a Photon Systems Instruments FluorCam
800MF. Both measuring and saturating flashes are provided
by computer-controlled photodiode arrays. Data analysis was
performed using proprietary Photon Systems Instruments
software. The steady-state P,y, and cytochrome f measure-
ments were performed using a Joliot-Type Spectrophotom-
eter (JTS-10, Bio-Logic Scientific Instruments) operating in
the absorbance mode using the ‘pulse of dark’ method. For
the P;,, measurements, samples were illuminated with a
broadband actinic orange light source with a peak of 630 nm
for 5 s illumination and the absorbance changes at 705 nm
monitored Py, oxidation. At the end of the 5 s actinic illu-
mination period, P;," was reduced in the dark. The broad-
band actinic light source excites both PS II and PS 1. For the
cytochrome f measurements the same actinic illumination
protocol was used and absorbance data were collected at
546, 554, 563 and 573 nm. Data were analyzed using propri-
etary software provided by Bio-Logic Scientific Instruments
and Origin version 6.1 (OriginLab, Corp.)

Electrophoresis and protein detection

Thylakoids from gametophytes were isolated by grinding
in a glass homogenizer using a buffer containing 20 mM
Tricine—-NaOH, pH 8.4, 0.45 M sorbitol, 10 mM EDTA,
0.1 % BSA and 1 % polyvinylpyrrolidone. The homogen-
ate was filtered through two layers of Miracloth (Calbio-
chemical Co.) and the thylakoids pelleted at 2,500x g for
5 min. The thylakoid pellet was resuspended in a small
volume of 0.3 M sorbitol, 20 mM Tricine—-NaOH, pH 7.6
and 5 mM MgCl, and frozen at —80 °C until use. The chl
concentration was determined by the method of Arnon
(1949). Lithium dodecyl sulfate polyacrylamide gel elec-
trophoresis (LiDS-PAGE) was performed under condi-
tions described by Delepelaire and Chua (Delepelaire and
Chua 1979) using gradient 12.5-20 % polyacrylamide gels.
The resolved polypeptides were electroblotted onto PVDF
membranes (Immobilon-P, Millipore Corp.). After blocking
for 2 h with 5 % nonfat dry milk in TS buffer (150 mM
NaCl, 10 mM Tris—HCI, pH 7.4), the blots were washed
extensively with TS buffer and then incubated with diluted
primary antibody in TS buffer 4+ 1 % bovine serum albu-
min overnight. This was followed by washing in TS buffer
and incubation with either anti-rabbit or anti-mouse IgG-
peroxidase conjugate (Sigma) diluted in TS buffer + 1 %
bovine serum albumin. After washing in TS buffer, the
labeled protein was detected using chemiluminescence
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(Super Signal West Pico, Pierce Chemical Co.) and semi-
quantified as described previously (Yi et al. 2009).

Results and discussion

Initially, we were able to fully replicate the results of
Thornton et al. (2005). In the presence of 10 pM DCMU,
no growth of gametophytic tissue was observed on plates
supplemented with glucose or a variety of other carbon
sources (fructose, sucrose, acetate or pyruvate, all at three
different concentrations, data not shown). These cultures
were all started from parent cultures maintained autotrophi-
cally on standard BCD media in the absence of any addi-
tional carbon source.

We hypothesized that the use of sucrose by gameto-
phytic tissue might require acclimatization to the exog-
enously supplied sugar. Consequently, P. patens cultures
were maintained for 1 month on BCD medium + 1 %
sucrose. Explants of gametophytic tissue (2 mm) grown
in this manner were then plated onto various media. The
results, after 8 weeks of incubation, are shown in Fig. 1.
Luxuriant growth was observed on BCD medium, alone
(photoautotrophic growth, Fig. 1a) and on BCD medium
supplemented with 1 % sucrose (mixotrophic growth,

Fig. 1 Illustrated is the
growth of 1.5-2 mm gameto-
phytic explants after 8 weeks;
all panels are at the same
magnification. a Photoauto-
trophic growth, b mixotrophic
growth, ¢ photoheterotrophic
growth and d PS II-inhibited
gametophytes. At 8 weeks,
the DCMU-inhibited gameto-
phytes have fully bleached and
are apparently dead. Clearly,
photoheterotrophic growth is
slower than photoautotrophic
or mixotrophic growth condi-
tions. This was fully expected
and is similar to that observed
in Synechocystis 6803 and
Chlamydomonas grown under
analogous growth conditions

Fig. 1b). Interestingly, significant gametophytic growth
was also observed for BCD medium containing 1 %
sucrose + 10 pM DCMU (photoheterotrophic growth,
Fig. 1c). No growth was observed on BCD medium con-
taining 10 pM DCMU in the absence of sucrose (DCMU-
inhibited state, Fig. 1d). It should be noted that microscopic
observation of the explant borders of the photohetero-
trophically grown tissue indicated that new chloronemal
filaments were being formed as early as 1 week after trans-
plantation (data not shown). Clearly the extent of the
apparent photoheterotrophic growth of P. patens (Fig. 1c)
is lower than observed for either photoautotrophically
(Fig. 1a) or mixotrophically (Fig. 1b) grown cultures. This
was not unexpected. Both, the photoheterotrophic growth
of Synechocystis 6803 on glucose and the heterotrophic
growth of Chlamydomonas on acetate also are much slower
than observed for photoautotrophically or mixotrophically
grown cultures.

Figure 2 shows the general morphology of the gameto-
phytic tissue under these various growth conditions. The
gametophylls of photoautotrophically (Fig. 2a), mixotroph-
ically (Fig. 2b) and photoheterotrophically (Fig. 2c) grown
tissue all appear very similar. These are typically bright
green and have the same general shape. However, those
from mixotrophically grown tissue are somewhat larger
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Fig. 2 Details of the appear-
ance of gametophytes cultured
under the various growth condi-
tions; all panels are at the same
magnification. a Photoauto-
trophic growth, b mixotrophic
growth, ¢ photoheterotrophic
growth and d PS II-inhibited
gametophytes. The gameto-
phylls of the photoheterotrophi-
cally grown gametophytes are
smaller than those grown under
photoautotrophic or mixo-
trophic conditions

than those grown autotrophically; the gametophylls from
photoheterotrophically grown tissue are quite small. The
DCMU-inhibited tissue (Fig. 2d) is bleached and, as noted
above, no growth was observed.

These results indicated that P. patens was capable of
growth on media containing sucrose in the presence
of DCMU. This apparent photoheterotrophic growth
could, however, be due to a spontaneous mutation which
yielded DCMU-resistant mutant gametophytes. Such
mutants have been isolated in the D1 protein of PS II,
which bears the Qp binding site and are known in both
Synechocystis 6803 (Bouyoub et al. 1993; Dalla-Chiesa
et al. 1997) and Chlamydomonas (Galloway and Mets
1982; Erickson et al. 1984). It is also formally possible

that in the presence of sucrose, DCMU uptake is inhib-
ited. In either of these instances it would be expected that
the tissue exhibiting apparent photoheterotrophic growth
would possess relatively normal PS II electron transport
characteristics, with electrons being transported to Qg,
the plastoquinone pool and beyond even in the presence
of DCMU. Table 1 shows the analysis of an OJIP fluo-
rescence induction experiment (Strasser et al. 2000) per-
formed on P. patens grown for 12 weeks under the dif-
ferent test conditions. Please note that after 12 weeks,
gametophytes transferred to the DCMU-inhibited medium
were bleached and dead (Fig. 1d). For the fluorescence
induction experiment, gametophytes were characterized
after 2 weeks of incubation on this medium. At this time

Table 1 Fluorescence parameters of Physcomitrella gametophytes grown under various conditions

Growth condition ~ F,/Fy ABS/RC TR/RC ET,/RC DI/RC W, o,
Autotrophic 0.65+006 4224007  2.58+0.05 1034004  1.6440.04 0394002 0244001
Mixotrophic 0664007 3274013  225+0.10 0.86+0.04  1.01+0.10 0384002  0.27+0.02
Photoheterotrophic ~ 0.19 +£0.09 4234 +869 3194039  —0.12+038  39.18 4864  —022+0.19  0.02+001
DCMU-inhibited® 023 +£0.03  242+17.6 478+ 1.67 2044189  19.40 + 16.69 0384081 0014002

Fluorescence induction curves were analyzed by the methods described in Strasser et al. (2000), n = 9, mean + 1.0 SD

# These gametophytes were assayed after 2 week. After 12 weeks of treatment gametophytes treated with this condition were dead
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point, these gametophytes had not bleached and were still
quite green.

Only modest differences are evident between autotrophi-
cally and mixotrophically grown gametophytes. While
the quantum yield for energy trapping by PS II (F,/Fy)
is slightly higher in the mixotrophically grown gameto-
phytes, the absorption of photons on a reaction center basis
(ABS/RQ), their trapping by PS II (TR/RC), electron trans-
port beyond Q, (ET/RC) and energy dissipation (DI/RC)
are all somewhat higher in the gametophytes grown auto-
trophically. No differences were observed for the quan-
tum yield of electron transport (¢g,) or the efficiency of a
trapped photon leading to productive electron transport past
O (W). Overall, the differences between the fluorescence
parameters observed under these two different growth con-
ditions are quite small. The gametophytes grown under
photoheterotrophic conditions and the DCMU-inhibited
gametophytes, however, exhibited highly altered fluo-
rescence kinetics. The ET/RC and ¥, is ~0 under these
conditions, indicating that in the presence of DCMU, no
electron transport can occur past Q,. The ABS/RC and
DI/RC were very high. The small apparent number of fully
functional reaction centers, indicated by a very low F\/Fy,,
leads to these high values. Clearly, the gametophytes grown
under photoheterotrophic conditions and the DCMU-
inhibited gametophytes exhibit very similar fluorescence
characteristics. These fluorescence parameters indicate that
the photoheterotrophically grown and the DCMU-inhib-
ited gametophytes have no capacity for electron transport
past Oy, and electron transport appears fully inhibited by
DCMU. Consequently, true photoheterotrophic growth has
been observed in Physcomitrella.

The observation of a low F,/F), in gametophytes grown
in the presence of DCMU is quite interesting. This could
be due to a loss of variable fluorescence brought about by
either an increase in F);, a decrease in Fy;, or a combination
of these two conditions. Figure 3 illustrates the unprocessed
fluorescence data obtained from the different growth states.
Both the autotrophically and mixotrophically grown game-
tophytes exhibited relatively high F\; and relatively low
F, values. The photoheterotrophically grown and DCMU-
inhibited gametophytes exhibited a similarly high F\; as
observed under the other growth conditions; however, these
also exhibited a high F,. These results indicate that while a
similar number of reaction centers were present under all
growth conditions, the number of reaction centers which
could carry out successful charge separation was much
smaller in the gametophytes grown photoheterotrophically
and those which were DCMU-inhibited.

We also examined the function of PS I and the
cytochrome by/f complex under the different growth con-
ditions. Figure 4 illustrates the steady-state oxidation
(Fig. 4a) and reduction (Fig. 4b) kinetics of P,,,. The

Relative Fluorescence

Autotrophic Mixotrophic  Photoheterotrophic DCMU-Inhibited

Growth Condition
F,/F,= 0.65 0.66 0.19 0.23

Fig. 3 Raw fluorescence data for the gametophytes grown under
the different growth conditions. Autotrophically and mixotrophically
grown gametophytes exhibited a low initial level of fluorescence
(F,) and a high level of maximal fluorescence (Fy;). While the pho-
toheterotrophically grown and DCMU-inhibited gametophytes also
exhibited a relatively high Fy;, these had a high F;. This leads to a
low F\/F); value in these gametophytes. Plotted are means + 1 SD,
n =9; light gray, F; dark gray, Fy. For reference, the F\/F\; values
are shown below

steady-state oxidation kinetics are very similar for the
gametophytes grown under all conditions. These results
indicate that PS I charge separation was not perturbed
under mixotrophic or photoheterotrophic growth condi-
tions. Autotrophically and mixotrophically grown game-
tophytes exhibited similar rates of P,y," reduction, while
this was markedly slowed under photoheterotrophic
growth conditions. This was expected since in the pres-
ence of DCMU both the plastoquinone and the plastocya-
nin pools are in a predominately oxidized state; conse-
quently only a small amount of reduced plastocyanin is
available to donate electrons to PS I. Similar results were
observed for the cytochrome b¢/f complex as monitored
by steady-state cytochrome f oxidation (Fig. 4c) and
reduction (Fig. 4d). The rate of cytochrome f oxidation
was similar under all growth conditions while the reduc-
tion of oxidized cytochrome f was seriously retarded dur-
ing photoheterotrophic growth, again due to the oxidized
plastoquinone pool present under photoheterotrophic
growth conditions. The rates of oxidation and reduc-
tion for both P,,, and cytochrome f are summarized in
Table 2.

It is possible that the presence of sucrose during mix-
otrophic growth could lead to an alteration in the rate or
extent of NPQ development. This could theoretically
occur if there were either a direct or indirect redox cou-
pling between the respiratory and photosynthetic electron
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relative absorption was measured at 546, 554, 563 and 573 nm. These
data were then deconvoluted to yield the cytochrome f absorption.
Data were normalized to the value at time O representing the onset
of actinic illumination (a, ¢) and at 5 s representing the cessation of
actinic illumination (b, d)

Table 2 Steady-state oxidation Growth condition

Cytochrome f

P700

and reduction characteristics of
cytochrome f and Py, n = 4,

t,, oxidation (ms)

t,» reduction (ms)  t;, oxidation (ms)  #;,, reduction (ms)

mean + 1.0 SD
Autotrophic 41 +4
Mixotrophic 4143
Photoheterotrophic 34 + 5

151 £ 27 30+ 10 34+3
84 £ 10 24+ 10 304
2,700 £+ 1,300 51+16 1,100 & 100

transport chains. Figure 5 illustrates the result of an NPQ
experiment performed at a moderate (365 pmol pho-
tons m? s) actinic light intensity. Both the development of
NPQ upon onset of the actinic illumination and its dissi-
pation upon cessation of illumination were nearly identi-
cal in both the autotrophically and mixotrophically grown
gametophytes. It should be noted that no NPQ develop-
ment was observed in the photoheterotrophically grown
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gametophytes (data not shown). These results indicate that
no effect on NPQ was evident under mixotrophic growth
conditions.

Finally, a number of thylakoid proteins associated
with the different photosynthetic electron transport com-
plexes were also examined under the various growth con-
ditions (Fig. 6). In most instances, the examined proteins
accumulated to somewhat lower levels (50-80 %) under
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Fig. 5 NPQ development and relaxation of autotrophically and mix-
otrophically grown gametophytes. Measurements were taken at an
actinic light intensity of 365 wmol photons m~2 s~!. Arrows indicate
actinic light on and off. Photoheterotrophically grown and DCMU-
inhibited gametophytes exhibited no NPQ. Plotted are means £ 1 SD;
n=9
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Fig. 6 Thylakoid proteins from autotrophically, mixotrophically
and photoheterotrophically grown gametophytes were separated by
LiDS-PAGE and identified by immunoblotting with specific antibod-
ies. Left panel dilutions of the proteins from autotrophically grown
gametophytes; right panel proteins from mixotrophically and photo-
heterotrophically grown gametophytes. The 100 % lanes contain 3 pg
chlorophyll

mixotrophic and photoheterotrophic conditions when
compared with autotrophically grown gametophytes. One
exception was the AtpB protein, which accumulated to high
levels during photoheterotrophic growth. This observation
may indicate that the chloroplast ATP synthase accumu-
lates under this growth condition. This, however, must be
tested. While it is clear that genetic disruption of individual

subunits of the ATP synthase leads to a coordinated down-
regulation of the other subunits (Dal Bosco et al. 2004;
Drapier et al. 1992; Gatenby et al. 1989), the converse
may not be generally true. Indeed, overexpression of the
y-subunit does not lead to increased abundances of other
ATP synthase subunits (Dal Bosco et al. 2004).

Conclusions

We have demonstrated the ability to grow P. patens game-
tophytes photoheterotrophically in the presence of sucrose
as a carbon source and the PS II inhibitor DCMU. Our
studies indicate that successful photoheterotrophic growth
requires prior acclimatization of P. patens to growth on
sucrose-containing medium. Earlier, it had been shown that
the moss Ceratodon purpureus can grow photoheterotroph-
ically using glucose as a carbon source (Thornton et al.
2005). The use of C. purpureus to examine photosynthetic
processes, however, is problematic. The draft genomic
sequence is currently in the analysis stage and has not yet
been released. Additionally, the molecular tools for manip-
ulating genes in C. purpureus are not as well developed as
those for P. patens. More critically, the function and/or sta-
bility of PS II appears to be different in C. purpureus than
in P. patens and all other oxygenic photosynthetic organ-
isms which have been studied. All wild-type organisms
previously examined in flash oxygen yield experiments
including higher plants (Joliot et al. 1969; Kok et al. 1970),
cyanobacteria (Burnap et al. 1992), green algae (Jursinic
1979) and the moss P. patens (Thornton et al. 2005) exhibit
a maximum oxygen yield on the third saturating flash after
an extended dark incubation. This indicates that the oxy-
gen-evolving complex is predominantly in the S, oxidation
state (Kok et al. 1970). C. purpureus, however, exhibits a
maximum yield on the fifth flash (Thornton et al. 2005).
Taken at face value this indicates that the oxygen-evolving
complex is in the S, state, usually associated with dam-
aged oxygen-evolving complexes. Also, examination of
the flash oxygen yield pattern for C. purpureus (Thornton
et al. 2005) indicates that its oxygen yield oscillations are
much more highly dampened than observed for other oxy-
genic organisms. This result indicates misses, double hits
or deactivations (or a combination of these) are more preva-
lent in C. purpureus than in other oxygenic organisms. The
basis for these differences is unknown although one can
speculate that PS II from C. purpureus is more labile dur-
ing thylakoid membrane isolation.

Our results indicate that during photoautotrophic and
mixotrophic growth the photosynthetic characteristics of
P. patens are very similar. The fluorescence characteristics
(primarily probing PS II), as well as oxidation and reduc-
tion rates of both cytochrome f and P, and the rate of
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development and dissipation of NPQ all indicate that only
small differences exist between these two growth states.
The observed differences in the protein composition of
the thylakoid membrane are also quite modest. The dif-
ferences observed for gametophytes grown under photo-
heterotrophic conditions are all consistent with loss of PS
II function in the presence of DCMU. This is highlighted
by the similarities between photoheterotrophically grown
gametophytes and those which are DCMU-inhibited.
While, in general, the alteration of the protein complement
in thylakoids from photoheterotrophically grown game-
tophytes is very similar to those grown mixotrophically,
the possible upregulation of the ATP synthase will require
further study. Finally, the demonstrated ability to grow P.
patens photoheterotrophically should augment and extend
the utility of this model organism for use in photosynthesis
research.
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